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Computational Statistics
and Data Visualization

This book is the third volume of the Handbook of Computational Statistics and cov-
ers the field of data visualization. In line with the companion volumes, it contains
a collection of chapters by experts in the field to present readers with an up-to-date
and comprehensive overview of the state of the art. Data visualization is an active area
of application and research, and this is a good time to gather together a summary of
current knowledge.

Graphic displays are often very effective at communicating information. They are
also very often not effective at communicating information. Two important reasons
for this state of affairs are that graphics can be produced with a few clicks of the
mouse without any thought and the design of graphics is not taken seriously in many
scientific textbooks. Some people seem to think that preparing good graphics is just
a matter of common sense (in which case their common sense cannot be in good
shape), while others believe that preparing graphics is a low-level task, not appropri-
ate for scientific attention. This volume of the Handbook of Computational Statistics
takes graphics for data visualization seriously.

Data Visualization and Theory

Graphics provide an excellent approach for exploring data and are essential for pre-
senting results. Although graphics have been used extensively in statistics for a long
time, there is not a substantive body of theory about the topic. Quite a lot of atten-
tion has been paid to graphics for presentation, particularly since the superb books of
Edward Tufte. However, this knowledge is expressed in principles to be followed and
not in formal theories. Bertin’s work from the 1960s is often cited but has not been
developed further. This is a curious state of affairs. Graphics are used a great deal in
many different fields, and one might expect more progress to have been made along
theoretical lines.

Sometimes in science the theoretical literature for a subject is considerable while
there is little applied literature to be found. The literature on data visualization is very
much the opposite. Examples abound in almost every issue of every scientific jour-
nal concerned with quantitative analysis. There are occasionally articles published in
a more theoretical vein about specific graphical forms, but little else. Although there
is a respected statistics journal called the Journal of Computational and Graphical
Statistics, most of the papers submitted there are in computational statistics. Perhaps
this is because it is easier to publish a study of a technical computational problem
than it is to publish work on improving a graphic display.

Presentation and Exploratory Graphics

The differences between graphics for presentation and graphics for exploration lie
in both form and practice. Presentation graphics are generally static, and a single
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Figure1.1. A barchart of the number of authors per paper, a histogram of the number of pages per
paper, and parallel boxplots of length by number of authors. Papers with more than three authors have

been selected

graphic is drawn to summarize the information to be presented. These displays should
be of high quality and include complete definitions and explanations of the variables
shown and of the form of the graphic. Presentation graphics are like proofs of math-
ematical theorems; they may give no hint as to how a result was reached, but they
should offer convincing support for its conclusion. Exploratory graphics, on the other
hand, are used for looking for results. Very many of them may be used, and they
should be fast and informative rather than slow and precise. They are not intended
for presentation, so that detailed legends and captions are unnecessary. One presen-
tation graphic will be drawn for viewing by potentially thousands of readers while
thousands of exploratory graphics may be drawn to support the data investigations
of one analyst.

Books on visualization should make use of graphics. Figure 1.1 shows some simple
summaries of data about the chapters in this volume, revealing that over half the
chapters had more than one author and that more authors does not always mean
longer papers.

Graphics and Computing

Developments in computing power have been of great benefit to graphics in recent
years. It has become possible to draw precise, complex displays with great ease and
to print them with impressive quality at high resolution. That was not always the
case, and initially computers were more a disadvantage for graphics. Computing
screens and printers could at best produce clumsy line-driven displays of low resolu-
tion without colour. These offered no competition to careful, hand-drawn displays.
Furthermore, even early computers made many calculations much easier than before
and allowed fitting of more complicated models. This directed attention away from
graphics, and it is only in the last 20 years that graphics have come into their own
again.
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These comments relate to presentation graphics, that is, graphics drawn for the
purpose of illustrating and explaining results. Computing advances have benefitted
exploratory graphics, that is, graphics drawn to support exploring data, far more.
Not just the quality of graphic representation has improved but also the quantity. It is
now trivial to draw many different displays of the same data or to riffle through many
different versions interactively to look for information in data. These capabilities are
only gradually becoming appreciated and capitalized on.

The importance of software availability and popularity in determining what anal-
yses are carried out and how they are presented will be an interesting research topic
for future historians of science. In the business world, no one seems to be able to
do without the spreadsheet Excel. If Excel does not offer a particular graphic form,
then that form will not be used. (In fact Excel offers many graphic forms, though
not all that a statistician would want.) Many scientists, who only rarely need access
to computational power, also rely on Excel and its options. In the world of statistics
itself, the packages SAS and SPSS were long dominant. In the last 15 years, first S and
S-plus and now R have emerged as important competitors. None of these packages
currently provide effective interactive tools for exploratory graphics, though they are
all moving slowly in that direction as well as extending the range and flexibility of the
presentation graphics they offer.

Data visualization is a new term. It expresses the idea that it involves more than
just representing data in a graphical form (instead of using a table). The information
behind the data should also be revealed in a good display; the graphic should aid
readers or viewers in seeing the structure in the data. The term data visualization is
related to the new field of information visualization. This includes visualization of
all kinds of information, not just of data, and is closely associated with research by
computer scientists. Up till now the work in this area has tended to concentrate just
on presenting information, rather than on what may be deduced from it. Statisticians
tend to be concerned more with variability and to emphasize the statistical properties
of results. The closer linking of graphics with statistical modelling can make this more
explicit and is a promising research direction that is facilitated by the flexible nature
of current computing software. Statisticians have an important role to play here.

The Chapters

Needless to say, each Handbook chapter uses a lot of graphic displays. Figure 1.2 is
a scatterplot of the number of figures against the number of pages. There is an ap-
proximate linear relationship with a couple of papers having somewhat more figures
per page and one somewhat less. The scales have been chosen to maximize the data-
ink ratio. An alternative version with equal scales makes clearer that the number of
figures per page is almost always less than one.

The Handbook has been divided into three sections: Principles, Methodology,
and Applications. Needless to say, the sections overlap. Figure 1.3 is a binary matrix
visualization using Jaccard coeflicients for both chapters (rows) and index entries
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Figure1.2. A scatterplot of the number of figures against the number of pages for the Handbook’s
chapters

(columns) to explore links between chapters. In the raw data map (lower-left portion
of Fig. 1.3) there is a banding of black dots from the lower-left to upper-right cor-
ners indicating a possible transition of chapter/index combinations. In the proximity
map of indices (upper portion of Fig. 1.3), index groups A, B, C, D, and E are over-
lapped with each other and are dominated by chapters of Good Graphics, History,
Functional Data, Matrix Visualization, and Regression by Parts respectively.

Summary and Overview; Part I

The ten chapters in Part II are concerned with principles of data visualization. First
there is an historical overview by Michael Friendly, the custodian of the Internet
Gallery of Data Visualization, outlining the developments in graphical displays over
the last few hundred years and including many fine examples.

In the next chapter Antony Unwin discusses some of the guidelines for the prepa-
ration of sound and attractive data graphics. The question mark in the chapter title
sums it up well: whatever principles or recommendations are followed, the success
of a graphic is a matter of taste; there are no fixed rules.

The importance of software for producing graphics is incontrovertible. Paul Mur-
rell in his chapter summarizes the requirements for producing accurate and exact
static graphics. He emphasizes both the need for flexibility in customizing standard
plots and the need for tools that permit the drawing of new plot types.

Structure in data may be represented by mathematical graphs. George Michailidis
pursues this idea in his chapter and shows how this leads to another class of graphic
displays associated with multivariate analysis methods.

1.2.1



8 Antony Unwin, Chun-houh Chen, Wolfgang K. Hdrdle

Index Groups

C .
A s D E Indices

Jaccard Coefficient (Indices)

T T

Figure1.3. Matrix visualizations of the Handbook with chapters in the rows and index entries in the

columns

Lee Wilkinson approaches graph-theoretic visualizations from another point of
view, and his displays are concerned predominantly, though by no means exclusively,
with trees, directed graphs and geometric graphs. He also covers the layout of graphs,
a tricky problem for large numbers of vertices, and raises the intriguing issue of graph
matching.

Most data displays concentrate on one or two dimensions. This is frequently suffi-
cient to reveal striking information about a dataset. To gain insight into multivariate
structure, higher-dimensional representations are required. Martin Theus discusses
the main statistical graphics of this kind that do not involve dimension reduction and
compares their possible range of application.

Everyone knows about Chernoft faces, though not many ever use them. The po-
tential of data glyphs for representing cases in informative and productive ways has
not been fully realized. Matt Ward gives an overview of the wide variety of possible
forms and of the different ways they can be utilized.
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There are two chapters on linking. Adalbert Wilhelm describes a formal model
for linked graphics and the conceptual structure underlying it. He is able to encom-
pass different types of linking and different representations. Graham Wills looks at
linking in a more applied context and stresses the importance of distinguishing be-
tween views of individual cases and aggregated views. He also highlights the variety
of selection possibilities there are in interactive graphics. Both chapters point out the
value of linking simple data views over linking complicated ones.

The final chapter in this section is by Simon Urbanek. He describes the graphics
that have been introduced to support tree models in statistics. The close association
between graphics and the models (and collections of models in forests) is particularly
interesting and has relevance for building closer links between graphics and models
in other fields.

Summary and Overview; Part

The middle and largest section of the Handbook concentrates on individual area of
graphics research.

Geographical data can obviously benefit from visualization. Much of Bertin’s work
was directed at this kind of data. Juergen Symanzik and Daniel Carr write about mi-
cromaps (multiple small images of the same area displaying different parts of the
data) and their interactive extension.

Projection pursuit and the grand tour are well known but not easy to use. Despite
the availability of attractive free software, it is still a difficult task to analyse datasets in
depth with this approach. Dianne Cook, Andreas Buja, Eun-Kyung Lee and Hadley
Wickham describe the issues involved and outline some of the progress that has been
made.

Multidimensional scaling has been around for a long time. Michael Cox and Trevor
Cox (no relation, but an MDS would doubtless place them close together) review the
current state of research.

Advances in high-throughput techniques in industrial projects, academic studies
and biomedical experiments and the increasing power of computers for data collec-
tion have inevitably changed the practice of modern data analysis. Real-life datasets
become larger and larger in both sample size and numbers of variables. Francesco
Palumbo, Alain Morineau and Domenico Vistocco illustrate principles of visualiza-
tion for such situations.

Some areas of statistics benefit more directly from visualization than others. Den-
sity estimation is hard to imagine without visualization. Michael Minnotte, Steve Sain
and David Scott examine estimation methods in up to three dimensions. Interestingly
there has not been much progress with density estimation in even three dimensions.

Sets of graphs can be particularly useful for revealing the structure in datasets
and complement modelling efforts. Richard Heiberger and Burt Holland describe an
approach primarily making use of Cartesian products and the Trellis paradigm. Wei-
Yin Loh describes the use of visualization to support the use of regression models, in
particular with the use of regression trees.

1.2.2
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Instead of visualizing the structure of samples or variables in a given dataset, re-
searchers may be interested in visualizing images collected with certain formats. Usu-
ally the target images are collected with various types of noise pattern and it is neces-
sary to apply statistical or mathematical modelling to remove or diminish the noise
structure before the possible genuine images can be visualized. Jorg Polzehl and Vlad-
imir Spokoiny present one such novel adaptive smoothing procedure in reconstruct-
ing noisy images for better visualization.

The continuing increase in computer power has had many different impacts on
statistics. Computationally intensive smoothing methods are now commonplace, al-
though they were impossible only a few years ago. Adrian Bowman gives an overview
of the relations between smoothing and visualization. Yuan-chin Chang, Yuh-Jye Lee,
Hsing-Kuo Pao, Mei-Hsien Lee and Su-Yun Huang investigate the impact of kernel
machine methods on a number of classical techniques: principal components, canon-
ical correlation and cluster analysis. They use visualizations to compare their results
with those from the original methods.

Cluster analyses have often been a bit suspect to statisticians. The lack of formal
models in the past and the difficulty of judging the success of the clusterings were
both negative factors. Fritz Leisch considers the graphical evaluation of clusterings
and some of the possibilities for a sounder methodological approach.

Multivariate categorical data were difficult to visualize in the past. The chapter by
David Meyer, Achim Zeileis and Kurt Hornik describes fairly classical approaches
for low dimensions and emphasizes the link to model building. Heike Hofmann de-
scribes the powerful tools of interactive mosaicplots that have become available in
recent years, not least through her own efforts, and discusses how different varia-
tions of the plot form can be used for gaining insight into multivariate data features.

Alfred Inselberg, the original proposer of parallel coordinate plots, offers an over-
view of this approach to multivariate data in his usual distinctive style. Here he con-
siders in particular classification problems and how parallel coordinate views can be
adapted and amended to support this kind of analysis.

Most analyses using graphics make use of a standard set of graphical tools, for
example, scatterplots, barcharts, and histograms. Han-Ming Wu, ShengLi Tzeng and
Chun-houh Chen describe a different approach, built around using colour approxi-
mations for individual values in a data matrix and applying cluster analyses to order
the matrix rows and columns in informative ways.

For many years Bayesians were primarily theoreticians. Thanks to MCMC meth-
ods they are now able to also apply their ideas to great effect. This has led to new
demands in assessing model fit and the quality of the results. Jouni Kerman, An-
drew Gelman, Tian Zheng and Yuejing Ding discuss graphical approaches for tack-
ling these issues in a Bayesian framework.

Without software to draw the displays, graphic analyis is almost impossible nowa-
days. Junji Nakano, Yamamoto Yoshikazu and Keisuke Honda are working on Java-
based software to provide support for new developments, and they outline their ap-
proach here. Many researchers are interested in providing tools via the Web. Yoshiro
Yamamoto, Masaya lizuka and Tomokazu Fujino discuss using XML for interactive
statistical graphics and explain the issues involved.
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Summary and Overview; Part IV

The final section contains seven chapters on specific applications of data visualiza-
tion. There are, of course, individual applications discussed in earlier chapters, but
here the emphasis is on the application rather than principles or methodology.

Genetic networks are obviously a promising area for informative graphic displays.
Grace Shieh and Chin-Yuan Guo describe some of the progress made so far and make
clear the potential for further research.

Modern medical imaging systems have made significant contributions to diag-
noses and treatments. Henry Lu discusses the visualization of data from positron
emission tomography, ultrasound and magnetic resonance.

Two chapters examine company bankruptcy datasets. In the first one, Antony Un-
win, Martin Theus and Wolfgang Hirdle use a broad range of visualization tools to
carry out an extensive exploratory data analysis. No large dataset can be analysed
cold, and this chapter shows how effective data visualization can be in assessing data
quality and revealing features of a dataset. The other bankruptcy chapter employs
graphics to visualize SVM modelling. Wolfgang Hérdle, Rouslan Moro and Dorothea
Schifer use graphics to display results that cannot be presented in a closed analytic
form.

The astonishing growth of eBay has been one of the big success stories of recent
years. Wolfgang Jank, Galit Shmueli, Catherine Plaisant and Ben Shneiderman have
studied data from eBay auctions and describe the role graphics played in their anal-
yses.

Krzysztof Burnecki and Rafal Weron consider the application of visualization in
insurance. This is another example of how the value of graphics lies in providing
insight into the output of complex models.

The Authors

The editors would like to thank the authors of the chapters for their contributions. It
is important for a collective work of this kind to cover a broad range and to gather
many experts with different interests together. We have been fortunate in receiving
the assistance of so many excellent contributors.

The mixture at the end remains, of course, a mixture. Different authors take dif-
ferent approaches and have different styles. It early became apparent that even the
term data visualization means different things to different people! We hope that the
Handbook gains rather than loses by this eclecticism.

Figures 1.1 and 1.2 earlier in the chapter showed that the chapter form varied be-
tween authors in various ways. Figure 1.4 reveals another aspect. The scatterplot shows
an outlier with a very large number of references (the historical survey of Michael
Friendly) and that some papers referenced the work of their own authors more than
others. The histogram is for the rate of self-referencing.

1.2.3

1.2.4
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Figure1.4. A scatterplot of the number of references to papers by a chapter’s authors against the total

number of references and a histogram of the rate of self-referencing

Outlook

There are many open issues in data visualization and many challenging research
problems. The datasets to be analysed tend to be more complex and are certainly
becoming larger all the time. The potential of graphical tools for exploratory data
analysis has not been fully realized, and the complementary interplay between statis-
tical modelling and graphics has not yet been fully exploited. Advances in computer
software and hardware have made producing graphics easier, but they have also con-
tributed to raising the standards expected.

Future developments will undoubtedly include more flexible and powerful soft-
ware and better integration of modelling and graphics. There will probably be indi-
vidual new and innovative graphics and some improvements in the general design
of displays. Gradual gains in knowledge about the perception of graphics and the
psychological aspects of visualization will lead to improved effectiveness of graphic
displays. Ideally there should be progress in the formal theory of data visualization,
but that is perhaps the biggest challenge of all.



Part II
Principles






A Brief History
of Data Visualization

Michael Friendly

1.1
1.2

1.3

1.4

Introduction ...

MiIESTONES TOUL ...

Pre-17th Century: Early Maps and Diagrams
1600-1699: Measurement and Theory ..........

1700-1799: New Graphic FOrms ...........ccevveeeeeiiiiiiinnnns

1800-1850: Beginnings of Modern Graphics

1850-1900: The
1900-1950: The

1950-1975: Rebirth of Data Visualization .................ccooevvvviviiiiieeennnn.

Golden Age of Statistical Graphics.............cccccceernne
Modern Dark AQES .......cceevveeiiiiiiiiiiiiieeieeeee e e

1975-present: High-D, Interactive and Dynamic Data Visualization ...........

Statistical Historiography ...............ccccocococoeeeeeceieiiieieeeeena,

History as ‘Data’

Analysing Milestones Data

What Was He Thinking? — Understanding Through Reproduction..............

Final Thoughts

16
17

17
19
22
25
28
37
39
40

42

42
43
45

48

I1.1



16 Michael Friendly

It is common to think of statistical graphics and data visualization as relatively mod-
ern developments in statistics. In fact, the graphic representation of quantitative in-
formation has deep roots. These roots reach into the histories of the earliest map mak-
ing and visual depiction, and later into thematic cartography, statistics and statistical
graphics, medicine and other fields. Along the way, developments in technologies
(printing, reproduction), mathematical theory and practice, and empirical observa-
tion and recording enabled the wider use of graphics and new advances in form and
content.

This chapter provides an overview of the intellectual history of data visualiza-
tion from medieval to modern times, describing and illustrating some significant ad-
vances along the way. It is based on a project, called the Milestones Project, to collect,
catalogue and document in one place the important developments in a wide range of
areas and fields that led to modern data visualization. This effort has suggested some
questions concerning the use of present-day methods of analysing and understand-
ing this history, which I discuss under the rubric of ‘statistical historiography’

1.1 Introduction

The only new thing in the world is the history you don’t know. - Harry S Truman

It is common to think of statistical graphics and data visualization as relatively mod-
ern developments in statistics. In fact, the graphic portrayal of quantitative informa-
tion has deep roots. These roots reach into the histories of the earliest map-making
and visual depiction, and later into thematic cartography, statistics and statistical
graphics, with applications and innovations in many fields of medicine and science
which are often intertwined with each other. They also connect with the rise of statis-
tical thinking and widespread data collection for planning and commerce up through
the 19th century. Along the way, a variety of advancements contributed to the wide-
spread use of data visualization today. These include technologies for drawing and
reproducing images, advances in mathematics and statistics, and new developments
in data collection, empirical observation and recording.

From above ground, we can see the current fruit and anticipate future growth; we
must look below to understand their germination. Yet the great variety of roots and
nutrients across these domains, which gave rise to the many branches we see today,
are often not well known and have never been assembled in a single garden to be
studied or admired.

This chapter provides an overview of the intellectual history of data visualiza-
tion from medieval to modern times, describing and illustrating some significant
advances along the way. It is based on what I call the Milestones Project, an attempt
to provide a broadly comprehensive and representative catalogue of important de-
velopments in all fields related to the history of data visualization.
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There are many historical accounts of developments within the fields of proba-
bility (Hald, 1990), statistics (Pearson, 1978; Porter, 1986; Stigler, 1986), astronomy
(Riddell, 1980) and cartography (Wallis and Robinson, 1987), which relate to, inter
alia, some of the important developments contributing to modern data visualiza-
tion. There are other, more specialized, accounts which focus on the early history
of graphic recording (Hoff and Geddes, 1959, 1962), statistical graphs (Funkhouser,
1936, 1937; Royston, 1970; Tilling, 1975), fitting equations to empirical data (Fare-
brother, 1999), economics and time-series graphs (Klein, 1997), cartography (Friis,
1974; Kruskal, 1977) and thematic mapping (Robinson, 1982; Palsky, 1996) and so
forth; Robinson (Robinson, 1982, Chap. 2) presents an excellent overview of some
of the important scientific, intellectual and technical developments of the 15th-18th
centuries leading to thematic cartography and statistical thinking. Wainer and Velle-
man (2001) provide a recent account of some of the history of statistical graphics.

But there are no accounts which span the entire development of visual thinking
and the visual representation of data and which collate the contributions of disparate
disciplines. Inasmuch as their histories are intertwined, so too should be any telling
of the development of data visualization. Another reason for interweaving these ac-
counts is that practitioners in these fields today tend to be highly specialized and
unaware of related developments in areas outside their domain, much less of their
history.

Milestones Tour 1.2

Every picture tells a story. - Rod Stewart, 1971

In organizing this history, it proved useful to divide history into epochs, each of which
turned out to be describable by coherent themes and labels. This division is, of course,
somewhat artificial, but it provides the opportunity to characterize the accomplish-
ments in each period in a general way before describing some of them in more detail.
Figure 1.1, discussed in Sect. 1.3.2, provides a graphic overview of the epochs I de-
scribe in the subsections below, showing the frequency of events considered mile-
stones in the periods of this history. For now; it suffices to note the labels attached to
these epochs, a steady rise from the early 18th century to the late 19th century, with
a curious wiggle thereafter.

In the larger picture - recounting the history of data visualization - it turns out
that many of the milestone items have a story to be told: What motivated this de-
velopment? What was the communication goal? How does it relate to other devel-
opments - What were the precursors? How has this idea been used or re-invented
today? Each section below tries to illustrate the general themes with a few exemplars.
In particular, this account attempts to tell a few representative stories of these periods,
rather than to try to be comprehensive.

For reasons of economy, only a limited number of images could be printed here,
and these only in black and white. Others are referred to by Web links, mostly from
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Milestones: Time course of developments
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Figurel.1. Time distribution of events considered milestones in the history of data visualization, shown
by a rug plot and density estimate

the Milestones Project, http://www.math.yorku.ca/SCS/Gallery/milestone/, where
a colour version of this chapter will also be found.

Pre-17th Century: Early Maps and Diagrams

The earliest seeds of visualization arose in geometric diagrams, in tables of the posi-
tions of stars and other celestial bodies, and in the making of maps to aid in navigation
and exploration. The idea of coordinates was used by ancient Egyptian surveyors in
laying out towns, earthly and heavenly positions were located by something akin to
latitude and longitude by at least 200 B.C., and the map projection of a spherical earth
into latitude and longitude by Claudius Ptolemy [c. 85-c. 165] in Alexandria would
serve as reference standards until the 14th century.

Among the earliest graphical depictions of quantitative information is an anony-
mous 10th-century multiple time-series graph of the changing position of the seven
most prominent heavenly bodies over space and time (Fig. 1.2), described by Funk-
houser (1936) and reproduced in Tufte (1983, p. 28). The vertical axis represents the
inclination of the planetary orbits; the horizontal axis shows time, divided into 30
intervals. The sinusoidal variation with different periods is notable, as is the use of
a grid, suggesting both an implicit notion of a coordinate system and something akin
to graph paper, ideas that would not be fully developed until the 1600-1700s.

In the 14th century, the idea of plotting a theoretical function (as a proto bar graph)
and the logical relation between tabulating values and plotting them appeared in
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Figure1.2. Planetary movements shown as cyclic inclinations over time, by an unknown astronomer,
appearing in a 10th-century appendix to commentaries by A.T. Macrobius on Cicero’s In Somnium

Sciponis. Source: Funkhouser (1936, p. 261)

a work by Nicole Oresme [1323-1382] Bishop of Liseus' (Oresme, 1482, 1968), fol-
lowed somewhat later by the idea of a theoretical graph of distance vs. speed by Nico-
las of Cusa.

By the 16th century, techniques and instruments for precise observation and mea-
surement of physical quantities and geographic and celestial position were well de-
veloped (for example, a ‘wall quadrant’ constructed by Tycho Brahe [1546-1601], cov-
ering an entire wall in his observatory). Particularly important were the development
of triangulation and other methods to determine mapping locations accurately (Fri-
sius, 1533; Tartaglia, 1556). As well, we see initial ideas for capturing images directly
(the camera obscura, used by Reginer Gemma-Frisius in 1545 to record an eclipse
of the sun), the recording of mathematical functions in tables (trigonometric tables
by Georg Rheticus, 1550) and the first modern cartographic atlas (Theatrum Orbis
Terrarum by Abraham Ortelius, 1570). These early steps comprise the beginnings of
data visualization.

1600-1699: Measurement and Theory

Amongst the most important problems of the 17th century were those concerned
with physical measurement - of time, distance and space - for astronomy, survey-

! Funkhouser (1936, p. 277) was sufficiently impressed with Oresme’s grasp of the relation be-
tween functions and graphs that he remarked, ‘If a pioneering contemporary had collected
some data and presented Oresme with actual figures to work upon, we might have had sta-
tistical graphs four hundred years before Playfair’

1.2.2
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ing, map making, navigation and territorial expansion. This century also saw great
new growth in theory and the dawn of practical application - the rise of analytic
geometry and coordinate systems (Descartes and Fermat), theories of errors of mea-
surement and estimation (initial steps by Galileo in the analysis of observations on
Tycho Brahe’s star of 1572 (Hald, 1990, §10.3)), the birth of probability theory (Pascal
and Fermat) and the beginnings of demographic statistics (John Graunt) and ‘politi-
cal arithmetic’ (William Petty) - the study of population, land, taxes, value of goods,
etc. for the purpose of understanding the wealth of the state.

Early in this century, Christopher Scheiner (1626-1630, recordings from 1611) in-
troduced an idea Tufte (1983) would later call the principle of ‘small multiples’ to
show the changing configurations of sunspots over time, shown in Fig. 1.3. The mul-
tiple images depict the recordings of sunpots from 23 October 1611 until 19 December
of that year. The large key in the upper left identifies seven groups of sunspots by the
letters A-G. These groups are similarly identified in the 37 smaller images, arrayed
left to right and top to bottom below.

Another noteworthy example (Fig. 1.4) shows a 1644 graphic by Michael Florent
van Langren[1600-1675], a Flemish astronomer to the court of Spain, believed to be
the first visual representation of statistical data (Tufte, 1997, p. 15). At that time, lack of
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Figure1.3. Scheiner’s 1626 representation of the changes in sunspots over time. Source: Scheiner
(1626-1630)
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Figure1.4. Langren’s 1644 graph of determinations of the distance, in longitude, from Toledo to Rome.
The correct distance is 16°30”. Source: Tufte (1997, p. 15)

a reliable means to determine longitude at sea hindered navigation and exploration.?
This 1-D line graph shows all 12 known estimates of the difference in longitude be-
tween Toledo and Rome and the name of the astronomer (Mercator, Tycho Brahe,
Ptolemy, etc.) who provided each observation.

What is notable is that van Langren could have presented this information in var-
ious tables — ordered by author to show provenance, by date to show priority, or by
distance. However, only a graph shows the wide variation in the estimates; note that
the range of values covers nearly half the length of the scale. Van Langren took as his
overall summary the centre of the range, where there happened to be a large enough
gap for him to inscribe ‘ROMA. Unfortunately, all of the estimates were biased up-
wards; the true distance (16°30”) is shown by the arrow. Van Langren’s graph is also
amilestone as the earliest known exemplar of the principle of ‘effect ordering for data
display’ (Friendly and Kwan, 2003).

In the 1660s, the systematic collection and study of social data began in various
European countries, under the rubric of ‘political arithmetic’ (John Graunt, 1662 and
William Petty, 1665), with the goals of informing the state about matters related to
wealth, population, agricultural land, taxes and so forth, as well as for commercial
purposes such as insurance and annuities based on life tables (Jan de Witt, 1671). At
approximately the same time, the initial statements of probability theory around 1654
(see Ball, 1908) together with the idea of coordinate systems were applied by Chris-
tiaan Huygens in 1669 to give the first graph of a continuous distribution function*
(from Graunt’s based on the bills of mortality). The mid-1680s saw the first bivariate
plot derived from empirical data, a theoretical curve relating barometric pressure to
altitude, and the first known weather map,” showing prevailing winds on a map of
the earth (Halley, 1686).

By the end of this century, the necessary elements for the development of graphical
methods were at hand - some real data of significant interest, some theory to make

? For navigation, latitude could be fixed from star inclinations, but longitude required ac-
curate measurement of time at sea, an unsolved problem until 1765 with the invention of
a marine chronometer by John Harrison. See Sobel (1996) for a popular account.

* For example, Graunt (1662) used his tabulations of London births and deaths from parish
records and the bills of mortality to estimate the number of men the king would find avail-
able in the event of war (Klein, 1997, pp. 43-47).

* Tmage: http://math.yorku.ca/SCS/Gallery/images/huygens-graph.gif

> Image: http://math.yorku.ca/SCS/Gallery/images/halleyweathermap-1686.jpg
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sense of them, and a few ideas for their visual representation. Perhaps more impor-
tantly, one can see this century as giving rise to the beginnings of visual thinking, as
illustrated by the examples of Scheiner and van Langren.

1700-1799: New Graphic Forms

With some rudiments of statistical theory, data of interest and importance, and the
idea of graphic representation at least somewhat established, the 18th century wit-
nessed the expansion of these aspects to new domains and new graphic forms. In
cartography, mapmakers began to try to show more than just geographical position
on a map. As a result, new data representations (isolines and contours) were invented,
and thematic mapping of physical quantities took root. Towards the end of this cen-
tury, we see the first attempts at the thematic mapping of geologic, economic and
medical data.

Abstract graphs, and graphs of functions became more widespread, along with the
early stirrings of statistical theory (measurement error) and systematic collection of
empirical data. As other (economic and political) data began to be collected, some
novel visual forms were invented to portray them, so the data could ‘speak to the
eyes.

For example, the use of isolines to show contours of equal value on a coordinate
grid (maps and charts) was developed by Edmund Halley (1701). Figure 1.5, showing
isogons — lines of equal magnetic declination - is among the first examples of the-
matic cartography, overlaying data on a map. Contour maps and topographic maps
were introduced somewhat later by Philippe Buache (1752) and Marcellin du Carla-
Boniface (1782).

Timelines, or ‘cartes chronologiques, were first introduced by Jacques Barbeu-
Dubourg in the form of an annotated chart of all of history (from Creation) on a 54-
foot scroll (Ferguson, 1991). Joseph Priestley, presumably independently, used a more
convenient form to show first a timeline chart of biography (lifespans of 2000 famous
people, 1200 B.C. to A.D. 1750, Priestley, 1765), and then a detailed chart of history
(Priestley, 1769).

The use of geometric figures (squares or rectangles) and cartograms to compare ar-
eas or demographic quantities by Charles de Fourcroy® (1782) and August EW. Crome
(1785) provided another novel visual encoding for quantitative data using superim-
posed squares to compare the areas of European states.

As well, several technological innovations provided necessary ingredients for the
production and dissemination of graphic works. Some of these facilitated the repro-
duction of data images, such as three-colour printing, invented by Jacob le Blon in
1710, and lithography, invented by Aloys Senefelder in 1798. Of the latter, Robinson
(1982, p. 57) says “the effect was as great as the introduction [of the Xerox machine]”
Yet, likely due to expense, most of these new graphic forms appeared in publications
with limited circulation, unlikely to attract wide attention.

® Image: http://math.yorku.ca/SCS/Gallery/images/palsky/defourcroy.jpg
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Figure1.5. A portion of Edmund Halley’s New and Correct Sea Chart Shewing the Variations in the
Compass in the Western and Southern Ocean, 1701. Source: Halley (1701), image from Palsky (1996, p. 41)

A prodigious contributor to the use of the new graphical methods, Johann Lam-
bert [1728-1777] introduced the ideas of curve fitting and interpolation from empir-
ical data points. He used various sorts of line graphs and graphical tables to show
periodic variation in, for example, air and soil temperature.”

William Playfair [1759-1823] is widely considered the inventor of most of the graph-
ical forms used today - first the line graph and barchart (Playfair, 1786), later the

7 Image: http://www.journals.uchicago.edu/Isis/journal/demo/v000n000/000000/fg7.gif
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Figurel.6. Redrawn version of a portion of Playfair’s 1801 pie-circle-line chart, comparing population

and taxes in several nations

piechart and circle graph (Playfair, 1801). Figure 1.6 shows a creative combination of
different visual forms: circles, pies and lines, redrawn from Playfair (1801, Plate 2).

The use of two separate vertical scales for different quantities (population and
taxes) is today considered a sin in statistical graphics (you can easily jiggle either
scale to show different things). But Playfair used this device to good effect here to
try to show taxes per capita in various nations and argue that the British were over-
taxed, compared with others. But, alas, showing simple numbers by a graph was hard
enough for Playfair — he devoted several pages of text in Playfair (1786) describing
how to read and understand a line graph. The idea of calculating and graphing rates
and other indirect measurements was still to come.

In this figure, the left axis and line on each circle/pie graph shows population,
while the right axis and line shows taxes. Playfair intended that the slope of the line
connecting the two would depict the rate of taxation directly to the eye; but, of course,
the slope also depends on the diameters of the circles. Playfair’s graphic sins can per-
haps be forgiven here, because the graph clearly shows the slope of the line for Britain
to be in the opposite direction of those for the other nations.

A somewhat later graph (Playfair, 1821), shown in Fig. 1.7, exemplifies the best that
Playfair had to offer with these graphic forms. Playfair used three parallel time series
to show the price of wheat, weekly wages and reigning ruler over a 250-year span
from 1565 to 1820 and used this graph to argue that workers had become better off in
the most recent years.

By the end of this century (1794), the utility of graphing in scientific applications
prompted a Dr Buxton in London to patent and market printed coordinate paper;
curiously, a patent for lined notepaper was not issued until 1815. The first known
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Figure1.7. William Playfair’s 1821 time-series graph of prices, wages and reigning ruler over a 250-year
period. Source: Playfair (1821), image from Tufte (1983, p. 34)

published graph using coordinate paper is one of periodic variation in barometric
pressure (Howard, 1800). Nevertheless, graphing of data would remain rare for an-
other 30 or so years,® perhaps largely because there wasn't much quantitative infor-
mation (apart from widespread astronomical, geodetic and physical measurement)
of sufficient complexity to require new methods and applications. Official statistics,
regarding population and mortality, and economic data were generally fragmentary
and often not publicly available. This would soon change.

1800-1850: Beginnings of Modern Graphics

With the fertilization provided by the previous innovations of design and technique,
the first half of the 19th century witnessed explosive growth in statistical graphics and
thematic mapping, at a rate which would not be equalled until modern times.

In statistical graphics, all of the modern forms of data display were invented: bar-
and piecharts, histograms, line graphs and time-series plots, contour plots, scatter-
plots and so forth. In thematic cartography, mapping progressed from single maps
to comprehensive atlases, depicting data on a wide variety of topics (economic, so-
cial, moral, medical, physical, etc.), and introduced a wide range of novel forms of
symbolism. During this period graphical analysis of natural and physical phenom-
ena (lines of magnetism, weather, tides, etc.) began to appear regularly in scientific
publications as well.

In 1801, the first geological maps were introduced in England by William Smith
[1769-1839], setting the pattern for geological cartography or ‘stratigraphic geology’

& William Herschel (1833), in a paper that describes the first instance of a modern scatterplot,
devoted three pages to a description of plotting points on a grid.

1.24
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(Smith, 1815). These and other thematic maps soon led to new ways of showing quan-
titative information on maps and, equally importantly, to new domains for graphi-
cally based inquiry.

In the 1820s, Baron Charles Dupin [1784-1873] invented the use of continuous
shadings (from white to black) to show the distribution and degree of illiteracy in
France (Dupin, 1826) — the first unclassed choropleth map,” and perhaps the first
modern-style thematic statistical map (Palsky, 1996, p. 59). Later given the lovely
title ‘Carte de la France obscure et de la France éclairée; it attracted wide attention,
and was also perhaps the first application of graphics in the social realm.

More significantly, in 1825, the ministry of justice in France instituted the first
centralized national system of crime reporting, collected quarterly from all depart-
ments and recording the details of every charge laid before the French courts. In 1833,
André-Michel Guerry, a lawyer with a penchant for numbers, used these data (along
with other data on literacy, suicides, donations to the poor and other ‘moral’ vari-
ables) to produce a seminal work on the moral statistics of France (Guerry, 1833) -
a work that (along with Quételet, 1831, 1835) can be regarded as the foundation of
modern social science.'’

Guerry used maps in a style similar to Dupin to compare the ranking of depart-
ments on pairs of variables, notably crime vs. literacy, but other pairwise variable
comparisons were made."! He used these to argue that the lack of an apparent (nega-
tive) relation between crime and literacy contradicted the armchair theories of some
social reformers who had argued that the way to reduce crime was to increase edu-
cation.'”” Guerry’s maps and charts made somewhat of an academic sensation both
in France and the rest of Europe; he later exhibited several of these at the 1851 Lon-
don Exhibition and carried out a comparative study of crime in England and France
(Guerry, 1864) for which he was awarded the Moynton Prize in statistics by the
French Academy of Sciences.”® But Guerry’s systematic and careful work was unable

® Image: http://math.yorku.ca/SCS/Gallery/images/dupini826-map_200.jpg

' Guerry showed that rates of crime, when broken down by department, type of crime, age and
gender of the accused and other variables, remained remarkably consistent from year to year,
yet varied widely across departments. He used this to argue that such regularity implied the
possibility of establishing social laws, much as the regularity of natural phenomena implied
physical ones. Guerry also pioneered the study of suicide, with tabulations of suicides in
Paris, 1827-1830, by sex, age, education, profession, etc., and a content analysis of suicide
notes as to presumed motives.

" Today, one would use a scatterplot, but that graphic form had only just been invented (Her-
schel, 1833) and would not enter common usage for another 50 years; see Friendly and Denis
(2005).

12 Guerry seemed reluctant to take sides. He also contradicted the social conservatives who
argued for the need to build more prisons or impose more severe criminal sentences. See
Whitt (2002).

> Among the 17 plates in this last work, seven pairs of maps for England and France each
included sets of small line graphs to show trends over time, decompositions by subtype
of crime and sex, distributions over months of the year, and so forth. The final plate, on
general causes of crime, is an incredibly detailed and complex multivariate semi-graphic
display attempting to relate various types of crimes to each other, to various social and moral
aspects (instruction, religion, population) as well as to their geographic distribution.
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Figure1.8. A portion of Dr Robert Baker’s cholera map of Leeds, 1833, showing the districts affected by
cholera. Source: Gilbert (1958, Fig. 2)

to shine in the shadows cast by Adolphe Quételet, who regarded moral and social
statistics as his own domain.

In October 1831, the first case of asiatic cholera occurred in Great Britain, and over
52000 people died in the epidemic that ensued over the next 18 months or so (Gilbert,
1958). Subsequent cholera epidemics in 1848-1849 and 1853-1854 produced similarly
large death tolls, but the water-borne cause of the disease was unknown until 1855
when Dr John Snow produced his famous dot map'* (Snow, 1855) showing deaths
due to cholera clustered around the Broad Street pump in London. This was indeed
alandmark graphic discovery, but it occurred at the end of the period, roughly 1835-
1855, which marks a high point in the application of thematic cartography to human
(social, medical, ethnic) topics. The first known disease map of cholera (Fig. 1.8), due
to Dr Robert Baker (1833), shows the districts of Leeds ‘affected by cholera’ in the
particularly severe 1832 outbreak.

I show this figure to make another point - why Baker’s map did not lead to a ‘eu-
reka’ experience, while John Snow’s did. Baker used a town plan of Leeds that had
been divided into districts. Of a population of 76 000 in all of Leeds, Baker mapped

" Tmage: http://www.math.yorku.ca/SCS/Gallery/images/snow4.jpg
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the 1800 cholera cases by hatching in red ‘the districts in which the cholera had pre-
vailed’ In his report, he noted an association between the disease and living con-
ditions: ‘how exceedingly the disease has prevailed in those parts of the town where
there is a deficiency, often an entire want of sewage, drainage and paving’ (Baker, 1833,
p-10). Baker did not indicate the incidence of disease on his map, nor was he equipped
to display rates of disease (in relation to population density),”* and his knowledge of
possible causes, while definitely on the right track, was both weak and implicit (not
analysed graphically or by other means). It is likely that some, perhaps tenuous, causal
indicants or evidence were available to Baker, but he was unable to connect the dots
or see a geographically distributed outcome in relation to geographic factors in even
the simple ways that Guerry had tried.

At about the same time, 1830-1850, the use of graphs began to become recognized
in some official circles for economic and state planning — where to build railroads and
canals? What is the distribution of imports and exports? This use of graphical meth-
ods is no better illustrated than in the works of Charles Joseph Minard [1781-1870],
whose prodigious graphical inventions led Funkhouser (1937) to call him the Playfair
of France. To illustrate, we choose (with some difficulty) an 1844 ‘tableau-graphique’
(Fig. 1.9) by Minard, an early progenitor of the modern mosaicplot (Friendly, 1994).
On the surface, mosaicplots descend from bar charts, but Minard introduced two si-
multaneous innovations: the use of divided and proportional-width bars so that area
had a concrete visual interpretation. The graph shows the transportation of commer-
cial goods along one canal route in France by variable-width, divided bars (Minard,
1844). In this display the width of each vertical bar shows distance along this route;
the divided-bar segments have height proportional to amount of goods of various
types (shown by shading), so the area of each rectangular segment is proportional to
the cost of transport. Minard, a true visual engineer (Friendly, 2000), developed such
diagrams to argue visually for setting differential price rates for partial vs. complete
runs. Playfair had tried to make data ‘speak to the eyes, but Minard wished to make
them ‘calculer par I'ceil’ as well.

It is no accident that, in England, outside the numerous applications of graphical
methods in the sciences, there was little interest in or use of graphs amongst statis-
ticians (or ‘statists’ as they called themselves). If there is a continuum ranging from
‘graph people’ to ‘table people; British statisticians and economists were philosoph-
ically more table-inclined and looked upon graphs with suspicion up to the time of
William Stanley Jevons around 1870 (Maas and Morgan, 2005). Statistics should be
concerned with the recording of ‘facts relating to communities of men which are ca-
pable of being expressed by numbers’ (Mouat, 1885, p. 15), leaving the generalization
to laws and theories to others. Indeed, this view was made abundantly clear in the
logo of the Statistical Society of London (now the Royal Statistical Society): a banded

" The German geographer Augustus Petermann produced a ‘Cholera map of the
British Isles’ in 1852 using national data from the 1831-1832 epidemic (image:
http://images.rgs.org/webimages/0/0/10000/1000/800/S0011888.jpg) shaded in proportion
to the relative rate of mortality using class intervals (< 1/35,1/35 : 1/100,1/100 : 1/200,...).
No previous disease map had allowed determination of the range of mortality in any given
area.



A Brief History of Data Visualization 29

%ﬁﬂm M e mouvement comamcaal du Caanal du @cnho o 1544

Sasri par M Mpimand nue fas risen graments b Mz ('am.-\, /’j“ f(z/@

£ otad oy - Lo s, o oy s Csad s P ol ian -

Lo Ry ot srmspiar poise 28 B
ik 1 hﬂlnli t&pﬁ- ._ ol
L Ar!c ; Lﬂ:‘mﬁl ¥ “S"
«;, iclting /i Busonsnaal Bun &-..._,.u

P L >
ikt A vmz:.”ﬁ‘.;ﬂ.s...&mu.r_;r ek . 2‘;. .' o= fomdde
ot il s—.mz.a... o/ M N ,t;,,,_f,

Al

WT"M&I
s ‘71 “m.._.u;'m|ul| mm...n.m'_&'"'f'ﬁ"-" 7;““ ‘L:::'":".

£l
¥ ‘ 1
e .’-_' T
£ gL gy U

T P
b e f}. 0l i

o willle b B soolBeiotlin o cans, il

e e oyt e i

P

m&‘h‘-‘%—.—-’
Figure1.9. Minard’s Tableau Graphique, showing the transportation of commercial goods along the

Canal du Centre (Chalon-Dijon). Intermediate stops are spaced by distance, and each bar is divided by
type of goods, so the area of each tile represents the cost of transport. Arrows show the direction of
transport. Source: ENPC:5860/C351 (Col. et cliché ENPC; used by permission)

sheaf of wheat, with the motto Aliis Exterendum - to others to flail the wheat. Making
graphs, it seemed, was too much like breadmaking.

1850-1900: The Golden Age of Statistical Graphics

By the mid-1800s, all the conditions for the rapid growth of visualization had been
established - a ‘perfect storm’ for data graphics. Official state statistical offices were
established throughout Europe, in recognition of the growing importance of numeri-
cal information for social planning, industrialization, commerce and transportation.
Statistical theory, initiated by Gauss and Laplace and extended to the social realm by
Guerry and Quételet, provided the means to make sense of large bodies of data.
What started as the Age of Enthusiasm (Funkhouser, 1937; Palsky, 1996) for graph-
ics ended with what can be called the Golden Age, with unparalleled beauty and
many innovations in graphics and thematic cartography. So varied were these de-
velopments that it is difficult to be comprehensive, but a few themes stand out.

1.2.5
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Escaping Flatland

Although some attempts to display more than two variables simultaneously had oc-
curred earlier in multiple time series (Playfair, 1801; Minard, 1826), contour graphs
(Vauthier, 1874) and a variety of thematic maps, (e.g. Berghaus (1838)) a number of
significant developments extended graphics beyond the confines of a flat piece of
paper. Gustav Zeuner [1828-1907] in Germany (Zeuner, 1869), and later Luigi Per-
0zzo [1750-1875] in Italy (Perozzo, 1880) constructed 3-D surface plots of population
data.'® The former was an axonometric projection showing various slices, while the
latter (a 3-D graph of population in Sweden from 1750-1875 by year and age group)
was printed in red and black and designed as a stereogram.!”

Contour diagrams, showing isolevel curves of 3-D surfaces, had also been used
earlier in mapping contexts (Nautonier, 1602-1604; Halley, 1701; von Humboldt, 1817),
but the range of problems and data to which they were applied expanded considerably
over this time in attempts to understand relations among more than two data-based
variables, or where the relationships are statistical, rather than functional or mea-
sured with little error. It is more convenient to describe these under Galton, below.
By 1884, the idea of visual and imaginary worlds of varying numbers of dimensions
found popular expression in Edwin Abbotts (1884) Flatland, implicitly suggesting
possible views in four and more dimensions.

Graphical Innovations

With the usefulness of graphical displays for understanding complex data and phe-
nomena established, many new graphical forms were invented and extended to new
areas of inquiry, particularly in the social realm.

Minard (1861) developed the use of divided circle diagrams on maps (showing
both a total, by area, and subtotals, by sectors, with circles for each geographic region
on the map). Later he developed to an art form the use of flow lines on maps of width
proportional to quantities (people, goods, imports, exports) to show movement and
transport geographically. Near the end of his life, the flow map would be taken to its
highest level in his famous depiction of the fate of the armies of Napoleon and Han-
nibal, in what Tufte (1983) would call the ‘best graphic ever produced. See Friendly
(2002) for a wider appreciation of Minard’s work.

The social and political uses of graphics is also evidenced in the polar area charts
(called ‘rose diagrams’ or ‘coxcombs’) invented by Florence Nightingale [1820-1910]
to wage a campaign for improved sanitary conditions in battlefield treatment of sol-
diers (Nightingale, 1857). They left no doubt that many more soldiers died from dis-
ease and the consequences of wounds than at the hands of the enemy. From around
the same time, Dr John Snow [1813-1858] is remembered for his use of a dot map of
deaths from cholera in an 1854 outbreak in London. Plotting the residence of each

'® Image: http://math.yorku.ca/SCS/Gallery/images/stereo2.jpg

17 Zeuner used one axis to show year of birth and another to show present age, with number
of surviving persons on the third, vertical, axis giving a 3-D surface. One set of curves thus
showed the distribution of population for a given generation; the orthogonal set of curves
showed the distributions across generations at a given point in time, e.g. at a census.
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deceased provided the insight for his conclusion that the source of the outbreak could
be localized to contaminated water from a pump on Broad Street, the founding in-
novation for modern epidemiological mapping.

Scales and shapes for graphs and maps were also transformed for a variety of
purposes, leading to semi-logarithmic graphs (Jevons, 1863, 1879) to show percent-
age change in commodities over time, log-log plots to show multiplicative relations,
anamorphic maps by Emile Cheysson (Palsky, 1996, Figs. 63-64) using deforma-
tions of spatial size to show a quantitative variable (e.g. the decrease in time to travel
from Paris to various places in France over 200 years) and alignment diagrams or
nomograms using sets of parallel axes. We illustrate this slice of the Golden Age with
Fig. 1.10, a tour-de-force graphic for determination of magnetic deviation at sea in re-
lation to latitude and longitude without calculation (‘U Abaque Triomphe’) by Charles
Lallemand (1885), director general of the geodetic measurement of altitudes through-
out France, which combines many variables into a multifunction nomogram, using
3-D, juxtaposition of anamorphic maps, parallel coordinates and hexagonal grids.
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Figure1.10. Lallemand’s L abaque du bateau “Le Triomphe”, allowing determination of magnetic
deviation at sea without calculation. Source: courtesy Mme Marie-Noélle Maisonneuve, Les fonds

anciens de la bibliothéque de I'Ecole des Mines de Paris
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Galton’s Contributions

Special note should be made of the varied contributions of Francis Galton [1822-1911]
to data visualization and statistical graphics. Galton’s role in the development of the
ideas of correlation and regression are well known. Less well known is the role that
visualization and graphing played in his contributions and discoveries.

Galton’s statistical insight (Galton, 1886) - that, in a bivariate (normal) distribu-
tion, (say, height of a child against height of parents), (a) The isolines of equal fre-
quency would appear as concentric ellipses and (b) The locus of the (regression) lines
of means of y|x and of x|y were the conjugate diameters of these ellipses - was based
largely on visual analysis from the application of smoothing to his data. Karl Pearson
would later say ‘that Galton should have evolved all this from his observations is to
my mind one of the most noteworthy scientific discoveries arising from pure analy-
sis of observations. (Pearson, 1920, p. 37). This was only one of Galton’s discoveries
based on graphical methods.

In earlier work, Galton had made wide use of isolines, contour diagrams and
smoothing in a variety of areas. An 1872 paper showed the use of ‘isodic curves’ to
portray the joint effects of wind and current on the distance ships at sea could travel
in any direction. An 1881 ‘isochronic chart’ (Galton, 1881) showed the time it took
to reach any destination in the world from London by means of coloured regions
on a world map. Still later, he analysed rates of fertility in marriages in relation to
the ages of father and mother using ‘isogens, curves of equal percentage of families
having a child (Galton, 1894).

But perhaps the most notable non-statistical graphical discovery was that of the
“anti-cyclonic” (anticlockwise) pattern of winds around low-pressure regions, com-
bined with clockwise rotations around high-pressure zones. Galton’s work on weather
patterns began in 1861 and was summarized in Meteorographica (1863). It contained
a variety of ingenious graphs and maps (over 600 illustrations in total), one of which
is shown in Fig. 1.11. This remarkable chart, one of a two-page Trellis-style display,
shows observations on barometric pressure, wind direction, rain and temperature
from 15 days in December 1861."® For each day, the 3 x 3 grid shows schematic maps
of Europe, mapping pressure (row 1), wind and rain (row 2) and temperature (row
3), in the morning, afternoon and evening (columns). One can clearly see the series
of black areas (low pressure) on the barometric charts for about the first half of the
month, corresponding to the anticlockwise arrows in the wind charts, followed by
a shift to red areas (high pressure) and more clockwise arrows. Wainer (2005, p. 56)
remarks, ‘Galton did for the collectors of weather data what Kepler did for Tycho
Brahe. This is no small accomplishment’

Statistical Atlases
The collection, organization and dissemination of official government statistics on
population, trade and commerce, social, moral and political issues became wide-

'8 In July 1861, Galton distributed a circular to meterologists throughout Europe, asking them
to record these data synchonously, three times a day for the entire month of December 1861.
About 50 weather stations supplied the data; see Pearson (1914-1930, pp. 37-39).
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Figure1.11. One page of Galton’s 1863 multivariate weather chart of Europe showing barometric
pressure, wind direction, rain and temperature for the month of December 1861. Source: Pearson
(1914-1930, pl. 7)

spread in most of the countries of Europe from about 1825 to 1870 (Westergaard,
1932). Reports containing data graphics were published with some regularity in
France, Germany, Hungary and Finland, and with tabular displays in Sweden, Hol-
land, Italy and elsewhere. At the same time, there was an impetus to develop stan-
dards for graphical presentation at the International Statistical Congresses which had
begun in 1853 in Belgium (organized by Quételet), and these congresses were closely
linked with state statistical bureaus. The main participants in the graphics section
included Georg von Mayr, Hermann Schwabe, Pierre Emile Levasseur and Emile
Cheysson. Among other recommendations was one from the 7th Statistical Congress
in 1869 that official publications be accompanied by maps and diagrams. The state-
sponsored statistical atlases that ensued provide additional justification to call this
period the golden age of graphics, and some of its most impressive exemplars.

The pinnacle of this period of state-sponsored statistical albums is undoubtedly
the Albums de statistique graphique published annually by the French ministry of
public works from 1879 to 1897 under the direction of Emile Cheysson.!” They were

' Cheysson had been one of the major participants in committees on the standardization of
graphical methods at the International Statistical Congresses from 1872 on. He was trained



34 Michael Friendly

published as large-format books (about 11 x 17 in.), and many of the plates folded out
to four or six times that size, all printed in colour and with great attention to layout
and composition. We concur with Funkhouser (1937, p. 336) that “the Albums present
the finest specimens of French graphic work in the century and considerable pride
was taken in them by the French people, statisticians and laymen alike”

The subject matter of the albums largely concerned economic and financial data
related to the planning, development and administration of public works - transport
of passengers and freight, by rail, on inland waterways and through seaports, but
also included such topics as revenues in the major theaters of Paris, attendance at
the universal expositions of 1867, 1878 and 1889, changes in populations of French
departments over time and so forth.

More significantly for this account the Albums can also be viewed as an exquisite
sampler of all the graphical methods known at the time, with significant adaptations
to the problem at hand. The majority of these graphs used and extended the flow
map pioneered by Minard. Others used polar forms — variants of pie and circle dia-
grams, star plots and rose diagrams, often overlaid on a map and extended to show
additional variables of interest. Still others used subdivided squares in the manner
of modern mosaic displays (Friendly, 1994) to show the breakdown of a total (pas-
sengers, freight) by several variables. It should be noted that in almost all cases the
graphical representation of the data was accompanied by numerical annotations or
tables, providing precise numerical values.

The Albums are discussed extensively by Palsky (1996), who includes seven repre-
sentative illustrations. It is hard to choose a single image here, but my favourites are
surely the recursive, multimosaic of rail transportation for the 1884-1886 volumes,
the first of which is shown in Fig. 1.12. This cartogram uses one large mosaic (in the
lower left) to show the numbers of passengers and tons of freight shipped from Paris
from the four principal train stations. Of the total leaving Paris, the amounts going
to each main city are shown by smaller mosaics, coloured according to railway lines;
of those amounts, the distribution to smaller cities is similarly shown, connected by
lines along the rail routes.

Among the many other national statistical albums and atlases, those from the US
Census bureau also deserve special mention. The Statistical Atlas of the Ninth Census,
produced in 1872-1874 under the direction of Francis A. Walker [1840-1897], con-
tained 60 plates, including several novel graphic forms. The ambitious goal was to
present a graphic portrait of the nation, and it covered a wide range of physical and
human topics: geology, minerals and weather; population by ethnic origin, wealth,
illiteracy, school attendance and religious affiliation; death rates by age, sex, race and
cause; prevalence of blindness, deaf mutism and insanity; and so forth. ‘Age pyramids’
(back-to-back, bilateral frequency histograms and polygons) were used effectively to
compare age distributions of the population for two classes (gender, married/single,
etc.). Subdivided squares and area-proportional pies of various forms were also used
to provide comparisons among the states on multiple dimensions simultaneously

as an engineer at the ENPC and later became a professor of political economy at the Ecole
des Mines.
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Figure1.12. [This figure also appears in the color insert.] Mouvement des voyageurs et des marchandises

dans les principales stations de chemins de fer en 1882. Scale: 2 mm? = 10 000 passengers or tons of
freight. Source: Album, 1884, Plate 11 (author’s collection)

(employed/unemployed, sex, schooling, occupational categories). The desire to pro-
vide for easy comparisons among states and other categorizations was expressed by
arranging multiple subfigures as ‘small multiples’ in many plates.
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Following each subsequent decennial census for 1880 to 1900, reports and statisti-
cal atlases were produced with more numerous and varied graphic illustrations. The
1898 volume from the Eleventh Census (1890), under the direction of Henry Gan-
nett [1846-1914], contained over 400 graphs, cartograms and statistical diagrams.
There were several ranked parallel coordinate plots comparing states and cities over
all censuses from 1790-1890. Trellis-like collections of shaded maps showed inter-
state migration, distributions of religious membership, deaths by known causes and
so forth.

The 1880 and 1890 volumes produced under Gannett’s direction are also notable
for (a) the multimodal combination of different graphic forms (maps, tables, bar-
charts, bilateral polygons) in numerous plates and (b) the consistent use of effect-
order sorting (Friendly and Kwan, 2003) to arrange states or other categories in rela-
tion to what was to be shown, rather than for lookup (e.g. Alabama-Wyoming).

For example, Fig. 1.13 shows interstate immigration in relation to emigration for
the 49 states and territories in 1890. The right side shows population loss sorted by
emigration, ranging from New York, Ohio, Pennsylvania and Illinois at the top to
Idaho, Wyoming and Arizona at the bottom. The left side shows where the emigrants
went: Illinois, Missouri, Kansas and Texas had the biggest gains, Virginia the biggest
net loss. It is clear that people were leaving the eastern states and were attracted to
those of the Midwest Mississippi valley. Other plates showed this data in map-based
formats.

However, the Age of Enthusiasm and the Golden Age were drawing to a close. The
French Albums de statistique graphique were discontinued in 1897 due to the high
cost of production; statistical atlases appeared in Switzerland in 1897 and 1914, but
never again. The final two US Census atlases, issued after the 1910 and 1920 censuses,
‘were both routinized productions, largely devoid of colour and graphic imagination’
(Dahmann, 2001).
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Figure 1.13. Interstate migration shown by back-to-back barcharts, sorted by emigration. Source:
Statistical Atlas of the Eleventh Census, 1890, diagram 66, p. 23 (author’s collection)
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1900-1950: The Modern Dark Ages

If the late 1800s were the ‘golden age’ of statistical graphics and thematic cartography;,
the early 1900s can be called the ‘modern dark ages’ of visualization (Friendly and
Denis, 2000).

There were few graphical innovations, and by the mid-1930s the enthusiasm for
visualization which characterized the late 1800s had been supplanted by the rise of
quantification and formal, often statistical, models in the social sciences. Numbers,
parameter estimates and, especially, those with standard errors were precise. Pictures
were — well, just pictures: pretty or evocative, perhaps, but incapable of stating a ‘fact’
to three or more decimals. Or so it seemed to many statisticians.

But it is equally fair to view this as a time of necessary dormancy, application and
popularization rather than one of innovation. In this period statistical graphics be-
came mainstream. Graphical methods entered English*” textbooks (Bowley, 1901;
Peddle, 1910; Haskell, 1919; Karsten, 1925), the curriculum (Costelloe, 1915; Warne,
1916) and standard use in government (Ayres, 1919), commerce (Gantt charts and
Shewart’s control charts) and science.

These textbooks contained rather detailed descriptions of the graphic method,
with an appreciative and often modern flavour. For example, Sir Arthur Bowley’s
(1901) Elements of Statistics devoted two chapters to graphs and diagrams and dis-
cussed frequency and cumulative frequency curves (with graphical methods for find-
ing the median and quartiles), effects of choice of scales and baselines on visual esti-
mation of differences and ratios, smoothing of time-series graphs, rectangle diagrams
in which three variables could be shown by height, width and area of bars, and ‘his-
torical diagrams’ in which two or more time series could be shown on a single chart
for comparative views of their histories.

Bowley’s (1901, pp. 151-154) example of smoothing (Fig. 1.14) illustrates the charac-
ter of his approach. Here he plotted the total value of exports from Britain and Ireland
over the period 1855-1899. At issue was whether exports had become stationary in
the most recent years, and the conclusion by Sir Robert Giffen (1899), based solely
on tables of averages for successive 5-year periods,” that ‘the only sign of stationari-
ness is an increase at a less rate in the last periods than in the earlier periods’ (p.152).
To answer this, he graphed the raw data, together with curves of the moving average
over 3-, 5- and 10-year periods. The 3- and 5-year moving averages show strong evi-
dence of an approximately 10-year cycle, and he noted, ‘no argument can stand which
does not take account of the cycle of trade, which is not eliminated until we take de-
cennial averages’ (p. 153). To this end, he took averages of successive 10-year periods
starting 1859 and drew a freehand curve ‘keeping as close [to the points] as possible,

*% The first systematic attempt to survey, describe and illustrate available graphic methods for
experimental data was that of Etienne Jules Marey’s (1878) La Méthode Graphique. Marey
[1830-1904] also invented several devices for visual recording, including the sphymograph
and chronophotography to record the motion of birds in flight, people running and so forth.

?! Giffen, an early editor of The Statist, also wrote a statistical text published posthumously in
1913; it contained an entire chapter on constructing tables, but not a single graph (Klein,
1997, p. 17).

1.2.6
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Figure1.14. Arthur Bowley’s demonstration of methods of smoothing a time-series graph. Moving
averages of 3, 5 and 10 years are compared with a freehand curve drawn through four points

representing the averages of successive 10-year periods. Source: Bowley (1901, opposite p. 151)

without making sudden changes in curvature, giving the thick curve in Fig. 1.14.2
Support for Sir Robert’s conclusion and the evidence for a 10-year cycle owe much to
this graphical treatment.

Moreover, perhaps for the first time, graphical methods proved crucial in a num-
ber of new insights, discoveries and theories in astronomy, physics, biology and other
sciences. Among these, one may refer to (a) E.W. Maunder’s (1904) ‘butterfly diagram’
to study the variation of sunspots over time, leading to the discovery that they were
markedly reduced in frequency from 1645-1715; (b) the Hertzsprung-Russell dia-
gram (Hertzsprung, 1911; Spence and Garrison, 1993), a log-log plot of luminosity as
a function of temperature for stars, used to explain the changes as a star evolves and
laying the groundwork for modern stellar physics; (c) the discovery of the concept
of atomic number by Henry Moseley (1913) based largely on graphical analysis. See
Friendly and Denis (2005) for more detailed discussion of these uses.

*? A reanalysis of the data using a loess smoother shows that this is in fact oversmoothed and
corresponds closely to a loess window width of f = 0.50. The optimal smoothing parameter,
minimizing AICc is f = 0.16, giving a smooth more like Bowley’s 3- and 5-year moving
averages.
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As well, experimental comparisons of the efficacy of various graphics forms were
begun (Eells, 1926; von Huhn, 1927; Washburne, 1927), a set of standards and rules
for graphic presentation was finally adopted by a joint committee (Joint Commit-
tee on Standards for Graphic Presentation, 1914) and a number of practical aids to
graphing were developed. In the latter part of this period, new ideas and methods
for multidimensional data in statistics and psychology would provide the impetus to
look beyond the 2-D plane.

Graphic innovation was also awaiting new ideas and technology: the development
of the machinery of modern statistical methodology, and the advent of the computa-
tional power and display devices which would support the next wave of developments
in data visualization.

1950-1975: Rebirth of Data Visualization

Still under the influence of the formal and numerical zeitgeist from the mid-1930s on,
data visualization began to rise from dormancy in the mid-1960s. This was spurred
largely by three significant developments:

= Inthe USA, John W. Tukey [1915-2000], in a landmark paper, The Future of Data
Analysis (Tukey, 1962), issued a call for the recognition of data analysis as a le-
gitimate branch of statistics distinct from mathematical statistics; shortly later,
he began the invention of a wide variety of new, simple and effective graphic dis-
plays, under the rubric of ‘exploratory data analysis’ (EDA) - stem-leaf plots, box-
plots, hanging rootograms, two-way table displays and so forth, many of which
entered the statistical vocabulary and software implementation. Tukey’s stature as
a statistician and the scope of his informal, robust and graphical approach to data
analysis were as influential as his graphical innovations. Although not published
until 1977, chapters from Tukey’s EDA book (Tukey, 1977) were widely circulated
as they began to appear in 1970-1972 and began to make graphical data analysis
both interesting and respectable again.

— InFrance, Jacques Bertin [1918-] published the monumental Sémiologie graphique
(Bertin, 1967). To some, this appeared to do for graphics what Mendeleev had
done for the organization of the chemical elements, that is, to organize the vi-
sual and perceptual elements of graphics according to the features and relations
in data. In a parallel but separate stream, an exploratory and graphical approach
to multidimensional data (‘Canalyse des données’) begun by Jean-Paul Benzécri
[1932-] provided French and other European statisticians with an alternative, vi-
sually based view of what statistics was about. Other graphically minded schools
of data-thought would later arise in the Netherlands (Gifi), Germany and else-
where in Europe.

— But the skills of hand-drawn maps and graphics had withered during the dor-
mant ‘modern dark ages’ of graphics (though nearly every figure in Tukey’s EDA
(Tukey, 1977) was, by intention, hand-drawn). Computer processing of statisti-
cal data began in 1957 with the creation of FORTRAN, the first high-level lan-
guage for computing. By the late 1960s, widespread mainframe university com-
puters offered the possibility to construct old and new graphic forms by computer

1.2.7
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programs. Interactive statistical applications, e.g. Fowlkes (1969); Fishkeller et al.
(1974), and true high-resolution graphics were developed but would take a while
to enter common use.

By the end of this period significant intersections and collaborations would begin:
(a) Computer science research (software tools, C language, UNIX, etc.) at Bell Labo-
ratories (Becker, 1994) and elsewhere would combine forces with (b) Developments
in data analysis (EDA, psychometrics, etc.) and (c) Display and input technology
(pen plotters, graphic terminals, digitizer tablets, the mouse, etc.). These develop-
ments would provide new paradigms, languages and software packages for express-
ing statistical ideas and implementing data graphics. In turn, they would lead to an
explosive growth in new visualization methods and techniques.

Other themes began to emerge, mostly as initial suggestions: (a) Various novel
visual representations of multivariate data (Andrews’ (1972) Fourier function plots,
Chernoft (1973) faces, star plots, clustering and tree representations); (b) The devel-
opment of various dimension-reduction techniques (biplot (Gabriel, 1971), multi-
dimensional scaling, correspondence analysis), providing visualization of multidi-
mensional data in a 2-D approximation; (c) Animations of a statistical process; and
(d) Perceptually based theory and experiments related to how graphic attributes and
relations might be rendered to better convey data visually.

By the close of this period, the first exemplars of modern GIS and interactive sys-
tems for 2-D and 3-D statistical graphics would appear. These would set goals for
future development and extension.

1975-present: High-D, Interactive
and Dynamic Data Visualization

During the last quarter of the 20th century data visualization blossomed into a ma-

ture, vibrant and multidisciplinary research area, as may be seen in this Handbook,

and software tools for a wide range of visualization methods and data types are avail-
able for every desktop computer. Yet it is hard to provide a succinct overview of the
most recent developments in data visualization because they are so varied and have
occurred at an accelerated pace and across a wider range of disciplines. It is also more
difficult to highlight the most significant developments which may be seen as such
in a subsequent history focusing on this recent period.

With this disclaimer, a few major themes stand out.

— The development of highly interactive statistical computing systems. Initially, this
meant largely command-driven, directly programmable systems (APL, S), as op-
posed to compiled, batch processing;

— New paradigms of direct manipulation for visual data analysis (linking, brushing
(Becker and Cleveland, 1987), selection, focusing, etc.);

— New methods for visualizing high-dimensional data (the grand tour (Asimov,
1985), scatterplot matrix (Tukey and Tukey, 1981), parallel coordinates plot (In-
selberg, 1985; Wegman, 1990), spreadplots (Young, 1994a), etc.);
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= The invention (or re-invention) of graphical techniques for discrete and categor-
ical data;

— The application of visualization methods to an ever-expanding array of substan-
tive problems and data structures; and

— Substantially increased attention to the cognitive and perceptual aspects of data
display.

These developments in visualization methods and techniques arguably depended on
advances in theoretical and technological infrastructure, perhaps more so than in
previous periods. Some of these are:

— Large-scale statistical and graphics software engineering, both commercial (e.g.
SAS) and non-commercial (e.g. Lisp-Stat, the R project). These have often been
significantly leveraged by open-source standards for information presentation
and interaction (e.g. Java, Tcl/Tk);

— Extensions of classical linear statistical modelling to ever-wider domains (gener-
alized linear models, mixed models, models for spatial/geographical data and so
forth);

= Vastly increased computer processing speed and capacity, allowing computation-
ally intensive methods (bootstrap methods, Bayesian MCMC analysis, etc.), ac-
cess to massive data problems (measured in terabytes) and real-time streaming
data. Advances in this area continue to press for new visualization methods.

From the early 1970s to mid-1980s, many of the advances in statistical graphics con-
cerned static graphs for multidimensional quantitative data, designed to allow the
analyst to see relations in progressively higher dimensions. Older ideas of dimension-
reduction techniques (principal component analysis, multidimensional scaling, dis-
criminant analysis, etc.) led to generalizations of projecting a high-dimensional data-
set to ‘interesting’ low-dimensional views, as expressed by various numerical indices
that could be optimized (projection pursuit) or explored interactively (grand tour).

The development of general methods for multidimensional contingency tables be-
gan in the early 1970s, with Leo Goodman (1970), Shelly Haberman (1973) and others
(Bishop et al., 1975) laying out the fundamentals of log-linear models. By the mid-
1980s, some initial, specialized techniques for visualizing such data were developed
(four-fold display (Fienberg, 1975), association plot (Cohen, 1980), mosaicplot (Har-
tigan and Kleiner, 1981) and sieve diagram (Riedwyl and Schiipbach, 1983)), based
on the idea of displaying frequencies by area (Friendly, 1995). Of these, extensions of
the mosaicplot (Friendly, 1994, 1999) have proved most generally useful and are now
widely implemented in a variety of statistical software, most completely in the ved
package (Meyer et al,, 2005) in R and interactive software from the Augsburg group
(MANET, Mondrian).

It may be argued that the greatest potential for recent growth in data visualiza-
tion came from the development of interactive and dynamic graphic methods, al-
lowing instantaneous and direct manipulation of graphical objects and related statis-
tical properties. One early instance was a system for interacting with probability plots
(Fowlkes, 1969) in real time, choosing a shape parameter of a reference distribution
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and power transformations by adjusting a control. The first general system for manip-
ulating high-dimensional data was PRIM-9, developed by Fishkeller, Friedman and
Tukey (1974), and providing dynamic tools for projecting, rotating (in 3-D), isolating
(identifying subsets) and masking data in up to 9 dimensions. These were quite in-
fluential, but remained one-of-a-kind, ‘proof-of-concept’ systems. By the mid-1980s,
as workstations and display technology became cheaper and more powerful, desk-
top software for interactive graphics became more widely available (e.g. MacSpin,
Xgobi). Many of these developments to that point are detailed in the chapters of
Dynamic Graphics for Statistics (Cleveland and McGill, 1988).

In the 1990s, a number of these ideas were brought together to provide more gen-
eral systems for dynamic, interactive graphics, combined with data manipulation and
analysis in coherent and extensible computing environments. The combination of all
these factors was more powerful and influential than the sum of their parts. Lisp-Stat
(Tierney, 1990) and its progeny (Arc, Cook and Weisberg, 1999; ViSta, Young, 1994b),
for example, provided an easily extensible object-oriented environment for statisti-
cal computing. In these systems, widgets (sliders, selection boxes, pick lists, etc.),
graphs, tables, statistical models and the user all communicated through messages,
acted upon by whoever was a designated ‘listener; and had a method to respond. Most
of the ideas and methods behind present-day interactive graphics are described and
illustrated in Young et al. (2006). Other chapters in this Handbook provide current
perspectives on other aspects of interactive graphics.

Statistical Historiography

1.3.1

As mentioned at the outset, this review is based on the information collected for the
Milestones Project, which I regard (subject to some caveats) as a relatively compre-
hensive corpus of the significant developments in the history of data visualization. As
such, it is of interest to consider what light modern methods of statistics and graphics
can shed on this history, a self-referential question we call ‘statistical historiography’
(Friendly, 2005). In return, this offers other ways to view this history.

History as ‘Data’

Historical events, by their nature, are typically discrete, but marked with dates or
ranges of dates, and some description — numeric, textual, or classified by descrip-
tors (who, what, where, how much and so forth). Amongst the first to recognize that
history could be treated as data and portrayed visually, Joseph Priestley (1765; 1769)
developed the idea of depicting the lifespans of famous people by horizontal lines
along a time scale. His enormous (2 x 3 ft., or .75 x 1 m) and detailed Chart of Biog-
raphy showed two thousand names from 1200 B.C. to A.D. 1750 by horizontal lines
from birth to death, using dots at either end to indicate ranges of uncertainty. Along
the vertical dimension, Priestly classified these individuals, e.g., as statesmen or men
of learning. A small fragment of this chart is shown in Fig. 1.15.
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Figure1.15. A specimen version of Priestley’s Chart of Biography. Source: Priestley (1765)

Priestley’s graphical representations of time and duration apparently influenced
Playfair’s introduction of time-series charts and barcharts (Funkhouser, 1937, p. 280).
But these inventions did not inspire the British statisticians of his day, as noted earlier;
historical events and statistical facts were seen as separate, rather than as data arrayed
along a time dimension. In 1885, at the Jubilee meeting of the Royal Statistical Society,
Alfred Marshall (1885) argued that the causes of historical events could be understood
by the use of statistics displayed by ‘historical curves’ (time-series graphs): ‘I wish to
argue that the graphic method may be applied as to enable history to do this work
better than it has hitherto” (p. 252). Maas and Morgan (2005) discuss these issues in
more detail.

Analysing Milestones Data

The information collected in the Milestones Project is rendered in print and Web
forms as a chronological list but is maintained as a relational database (historical
items, references, images) in order to be able to work with it as ‘data’ The simplest
analyses examine trends over time. Figure 1.1 shows a density estimate for the distri-
bution of 248 milestone items from 1500 to the present, keyed to the labels for the
periods in history. The bumps, peaks and troughs all seem interpretable: note par-
ticularly the steady rise up to about 1880, followed by a decline through the ‘modern
dark ages’ to 1945, then the steep rise up to the present. In fact, it is slightly surprising
to see that the peak in the Golden Age is nearly as high as that at present, but this
probably just reflects underrepresentation of the most recent events.*

3 Technical note: In this figure an optimal bandwidth for the kernel density estimate was se-
lected (using the Sheather-Jones plug-in estimate) for each series separately. The smaller
range and sample size of the entries for Europe vs. North America gives a smaller bandwidth
for the former, by a factor of about 3. Using a common bandwidth fixed to that determined
for the whole series (Fig. 1.1) undersmoothes the more extensive data on European develop-

1.3.2
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Figure 1.16. The distribution of milestone items over time, comparing trends in Europe and North

America

Other historical patterns can be examined by classifying the items along various
dimensions (place, form, content and so forth). If we classify the items by place of
development (Europe vs. North America, ignoring Other), interesting trends appear
(Fig. 1.16). The greatest peak in Europe around 1875-1880 coincided with a smaller
peak in North America. The decline in Europe following the Golden Age was ac-
companied by an initial rise in North America, largely due to popularization (e.g.
textbooks) and significant applications of graphical methods, then a steep decline as
mathematical statistics held sway.

Finally, Fig. 1.17 shows two mosaicplots for the milestone items classified by Epoch,
Subject matter and Aspect. Subject was classed as having to do with human (e.g.
mortality, disease), physical or mathematical characteristics of what was represented
in the innovation. Aspect classed each item according to whether it was primarily
map-based, a diagram or statistical innovation or a technological one. The left mo-
saic shows the shifts in Subject over time: most of the early innovations concerned
physical subjects, while the later periods shift heavily to mathematical ones. Human
topics are not prevalent overall but were dominant in the 19th century. The right mo-
saic, for Subject x Aspect, indicates that, unsurprisingly, map-based innovations were
mainly about physical and human subjects, while diagrams and statistical ones were
largely about mathematical subjects. Historical classifications clearly rely on more

ments and oversmoothes the North American ones. The details differ, but most of the points
made in the discussion about what was happening when and where hold.
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Figure1.17. [This figure also appears in the color insert.] Mosaic plots for milestones items, classified by
Subject, Aspect and Epoch. Cells with greater (less) frequency than expected under independence are
coloured blue (red), with intensity proportional to the deviation from independence

detailed definitions than described here; however, it seems reasonable to suggest that
such analyses of history as ‘data” are a promising direction for future work.

What Was He Thinking? -
Understanding Through Reproduction

Historical graphs were created using available data, methods, technology and under-
standing current at the time. We can often come to a better understanding of intel-
lectual, scientific and graphical questions by attempting a re-analysis from a modern
perspective.

Earlier, we showed Playfair’s time-series graph (Fig. 1.7) of wages and prices and
noted that Playfair wished to show that workers were better off at the end of the period
shown than at any earlier time. Presumably he wished to draw the reader’s eye to the
narrowing of the gap between the bars for prices and the line graph for wages. Is this
what you see?

What this graph shows directly is quite different from Playfair’s intention. It ap-
pears that wages remained relatively stable while the price of wheat varied greatly.
The inference that wages increased relative to prices is indirect and not visually com-
pelling.

We cannot resist the temptation to give Playfair a helping hand here - by graphing
the ratio of wages to prices (labour cost of wheat), as shown in Fig. 1.18. But this would
not have occurred to Playfair because the idea of relating one time series to another
by ratios (index numbers) would not occur for another half-century (due to Jevons).
See Friendly and Denis (2005) for further discussion of Playfair’s thinking.

As another example, we give a brief account of an attempt to explore Galton’s
discovery of regression and the elliptical contours of the bivariate normal surface,

1.3.3



46 Michael Friendly

10’.
9
8]
7
°7
>
4
3

Labour

2

14

Elizabeth

] L I __ ] [ ] I
s Charles | W Charles || BWm. & MaryauGeorg el George Il [___|
James | Cromwell James Il Anne George Il George IV

CHART

Shewing 1 One View the Work
Required to Purchase
One Quarter of Wheat

1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820

Year

Figure 1.18. Redrawn version of Playfair’s time-series graph showing the ratio of price of wheat to

wages, together with a loess smoothed curve

DIAGRAM BASED oN TABLE |I.
(all fewale heights are multiplied by I'08)

MID-PARENTS

Heights
in
inches

ADULT CHILDREN
their Heights, and Deviations from 68¢inches.

Deviates

¥ @ @ g @ @ P 7 7

m
inches

72—

75—

70 -

69—

67 =

66 —

+3 —

+2 -

+*1 —

{ ! I

Figure1.19. Galton’s smoothed correlation diagram for the data on heights of parents and children,

showing one ellipse of equal frequency. Source: (Galton, 1886, Plate X)



A Brief History of Data Visualization 47

75

731

717

Mid-parent height

65

63

61 T T T T T T
61 63 65 67 69 71 73 75

Child height

Figure1.20. Contour plot of Galton’s smoothed data, showing the curves of y|x (filled circles, solid line),

x|y (open circles, solid line) and the corresponding regression lines (dashed)

treated in more detail in Friendly and Denis (2005). Galton’s famous graph show-
ing these relations (Fig. 1.19) portrays the joint frequency distribution of the height
of children and the average height of their parents. It was produced from a ‘semi-
graphic table’ in which Galton averaged the frequencies in each set of four adjacent
cells, drew isocurves of equal smoothed value and noted that these formed ‘concen-
tric and similar ellipses’

A literal transcription of Galton’s method, using contour curves of constant av-
erage frequency and showing the curves of the means of y|x and x|y, is shown in
Fig. 1.20. It is not immediately clear that the contours are concentric ellipses, nor that
the curves of means are essentially linear and have horizontal and vertical tangents
to the contours.

A modern data analyst following the spirit of Galton’s method might substitute
a smoothed bivariate kernel density estimate for Galton’s simple average of adjacent
cells. The result, using jittered points to depict the cell frequencies, and a smoothed
loess curve to show £(y|x) is shown in Fig. 1.21. The contours now do emphati-
cally suggest concentric similar ellipses, and the regression line is near the points
of vertical tangency. A reasonable conclusion from these figures is that Galton did
not slavishly interpolate isofrequency values as is done in the contour plot shown in
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Figure 1.21. Bivariate kernel density estimate of Galton’s data, using jittered points for the data, and

a smoothed loess curve for £(y|x) (solid) and regression line (dashed)

Fig. 1.20. Rather, he drew his contours to the smoothed data by eye and brain (as he
had done earlier with maps of weather patterns), with knowledge that he could, as
one might say today, trade some increase in bias for a possible decrease in variance,
and so achieve a greater smoothing.

1.4 Final Thoughts

This chapter is titled ‘A brief history...” out of recognition that it it impossible to do
full justice to the history of data visualization in such a short account. This is doubly
so because I have attempted to present a broad view spanning the many areas of
application in which data visualization took root and developed. That being said, it
is hoped that this overview will lead modern readers and developers of graphical
methods to appreciate the rich history behind the latest hot new methods. As we
have seen, almost all current methods have a much longer history than is commonly
thought. Moreover, as I have surveyed this work and travelled to many libraries to
view original works and read historical sources, I have been struck by the exquisite
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beauty and attention to graphic detail seen in many of these images, particularly those
from the 19th century. We would be hard-pressed to recreate many of these today.

From this history one may also see that most of the innovations in data visualiza-
tion arose from concrete, often practical, goals: the need or desire to see phenom-
ena and relationships in new or different ways. It is also clear that the development
of graphic methods depended fundamentally on parallel advances in technology,
data collection and statistical theory. Finally, I believe that the application of mod-
ern methods of data visualization to its own history, in this self-referential way I call
‘statistical historiography, offers some interesting views of the past and challenges for
the future.
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Graphical excellence is nearly always multivariate. - Edward Tufte

Introduction

211

This chapter discusses drawing good graphics to visualize the information in data.
Graphics have been used for a long time to present data. Figure 2.1is a scanned image
from Playfair’s Commercial and Political Atlas of 1801, reproduced in Playfair (2005).
The fairly continuous increase of both imports and exports, and the fact that the bal-
ance was in favour of England from 1720 on, can be seen easily. Some improvements
might be made, but overall the display is effective and well drawn.

Data graphics are used extensively in scientific publications, in newspapers and in
the media generally. Many of those graphics do not fully convey the information in
the data they are supposed to be presenting and may even obscure it. What makes
a graphic display of data bad? More importantly, what makes one good? In any suc-
cessful graphic there must be an effective blending of content, context, construction
and design.

Content, Context and Construction

What is plotted comes first, and without content no amount of clever design can bring
meaning to a display. A good graphic will convey information, but a graphic is always
part of a larger whole, the context, which provides its relevance. So a good graphic
will complement other related material and fit in, both in terms of content and also
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Figure 2.1. Playfair’s chart of trade between England and Ireland from 1700 to 1800
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Figure 2.2. Church attendance (DDB Life Style Survey 1975-1998)

with respect to style and layout. Finally, if a graphic is constructed and drawn well, it
will look good.

Figure 2.2 shows two similar displays of the same data from the DDB social survey
used in Robert Putnam’s book Bowling Alone (Putnam, 2000). Every year for 24 years,
different groups of 3000 people were surveyed. Amongst other questions, they were
asked how often they had attended church in the last year.

The left-hand graph includes gridlines and a coloured background and uses 3-D
columns to represent the data counts. The right-hand graph sticks to basics. In gen-
eral, the right-hand display is to be preferred (3-D columns can cross gridlines, and
zero values would be misleadingly displayed). For these data there is not much to
choose between the two representations; both convey the same overall information.
The potential weakness in both graphics is the set of categories. Grouping the data
together in different ways could give quite different impressions.

For a given dataset there is not a great deal of advice which can be given on content
and context. Those who know their own data should know best for their specific
purposes. It is advisable to think hard about what should be shown and to check with
others if the graphic makes the desired impression. Design should be left to designers,
though some basic guidelines should be followed: consistency is important (sets of
graphics should be in similar style and use equivalent scaling); proximity is helpful
(place graphics on the same page, or on the facing page, of any text that refers to
them); and layout should be checked (graphics should be neither too small nor too
large and be attractively positioned relative to the whole page or display). Neither
content nor context nor design receives much attention in books offering advice on
data graphics; quite properly they concentrate on construction. This chapter will, too.

Presentation Graphics and Exploratory Graphics

There are two main reasons for using graphic displays of datasets: either to present
or to explore data. Presenting data involves deciding what information you want to
convey and drawing a display appropriate for the content and for the intended audi-
ence. You have to think about how the plot might be perceived and whether it will be
understood as you wish. Plots which are common in one kind of publication may be
unfamiliar to the readers of another. There may only be space for one plot and it may
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be available in print for a very long time, so great care should be taken in preparing
the most appropriate display. Exploring data is a much more individual matter, us-
ing graphics to find information and to generate ideas. Many displays may be drawn.
They can be changed at will or discarded and new versions prepared, so generally no
one plot is especially important, and they all have a short life span. Clearly princi-
ples and guidelines for good presentation graphics have a role to play in exploratory
graphics, but personal taste and individual working style also play important roles.
The same data may be presented in many alternative ways, and taste and customs
differ as to what is regarded as a good presentation graphic. Nevertheless, there are
principles that should be respected and guidelines that are generally worth following.
No one should expect a perfect consensus where graphics are concerned.

2.2 Background
2.2.1 History

Data graphics may be found going very far back in history, but most experts agree
that they really began with the work of Playfair a little more than 200 years ago. He
introduced some modern basic plots (including the barchart and the histogram) and
produced pertinent and eye-catching displays (Fig. 2.1). Wainer and Spence recently
republished a collection of his works (Playfair, 2005). Not all his graphics could be
described as good, but most were. In the second half of the 19th century Minard
prepared impressive graphics, including his famous chart of Napoleon’s advance on
and retreat from Moscow. The French Ministry of Public Works used his ideas to
attractive, and presumably pertinent, effect in an annual series of publications (Album
de Statistique Graphique) from 1879 to 1899, presenting economic data geographically
for France. Examples can be found in Michael Friendly’s chapter in this book.

In the first half of the last century graphics were not used in statistics as much as
they might have been. Interestingly, the second chapter in Fisher’s Statistical Methods
for Research Workers in 1925 was on diagrams for data, so he, at least, thought graphics
important. In Vienna there was a group led by Otto Neurath which worked exten-
sively on pictograms in the 1920s and early 1930s. They produced some well-crafted
displays, which were forerunners of the modern infographics. (Whether Fig. 2.3 is
improved by including the symbols at the top to represent the USA is a matter of
taste.)

With the advent of computers, graphics went into a relative decline. Computers
were initially bad for graphics for two reasons. Firstly, much more complex analytic
models could be evaluated and, quite naturally, modelling received a great deal more
attention than displaying data. Secondly, only simple and rather ugly graphics could
be drawn by early computers. The development of hardware and software has turned
all this around. In recent years it has been very easy to produce graphics, and far more
can be seen than before. Which is, of course, all the more reason to be concerned that
graphics be drawn well.
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Figure 2.3. Pictogram by Otto Neurath of the number of cars in the USA and the rest of the world in
1914, 1920, and 1928

Literature

Several authors have written excellent books on drawing good statistical graphics, the
best known, justifiably, being Edward Tufte. His books (e.g. Tufte, 2001) include many
splendid examples (and a few dreadful ones) and describe important principles on
how to draw good graphics. Tufte criticizes unsuitable decoration and data misrepre-
sentation, but his advice is restricted to representing data properly. Cleveland’s books
[for instance, Cleveland (1994) another useful source of advice on preparing data dis-
plays] are equally valuable. And this is the way it should be. Statisticians should con-
centrate on getting the basic statistical display right, and designers may be consulted
to produce a polished final version.

While there is a place for applied books full of sound practical advice [other use-
ful references include Burn (1993), Kosslyn (1994), and Robbins (2004)], there is also
aneed for theory to provide formal structures for understanding practice and to pro-
vide a foundation from which progress can be made. Graphics must be one of the
few areas in statistics where there is little such theory. Bertin's major work (Semiolo-
gie Graphique) from 1973 contains a number of interesting ideas and is often cited,
but it is difficult to point to later work that directly extends it. Wilkinson’s Grammar
of Graphics has received a lot of attention and been quickly revised in a substantially
expanded second edition (Wilkinson, 2005).

If there is little theory, then examples become particularly important to show what
can be achieved. The two books by Wainer (1997, 2004) contain collections of columns
first published in Chance and offer instructive and entertaining examples. Friendly’s
Gallery of Statistical Visualization (http://www.math.yorku.ca/SCS/Gallery/) in-
cludes many examples, both good and bad, chronicling the history of graphical de-
velopments. The websites ASK E.T. (http://www.edwardtufte.com) and Junk Charts
(http://junkcharts.typepad.com) provide lively discussions and sage advice for par-

2.2.2
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ticular examples. It would be invidious, and perhaps unfair, to single out egregious
examples here. Readers should be able to find plenty for themselves without having
to look far.

2.2.3 The Media and Graphics

Graphical displays of data appear in the press very often. They are a subset of info-
graphics, graphical displays for conveying information of any kind, usually discussed
under the heading information visualization (Spence, 2001). Many impressive exam-
ples can be found in the New York Times. While there are guidelines which apply
to all infographics, this chapter is restricted to the construction of data visualiza-
tions.

Data displays in the media are used to present summary information, such as the
results of political surveys (what proportion of the people support which party), the
development of financial measures over time (a country’s trade balance or stock mar-
ket indices) or comparisons between population groups (average education levels of
different sections of the community). There are many other examples. These topics
only require fairly basic displays, so it is not surprising that in the media they are
commonly embellished with all manner of decoration and ornamentation, some-
times effectively drawing attention both to the graphic and to its subject, sometimes
just making it more difficult to interpret the information being presented. What is
surprising is that the graphics are often misleading or flawed.

Presentation
2.3 (What to Whom, How and Why)

How is it possible to make a mess of presenting simple statistical information? Surely
there is little that can go wrong. It is astonishing just what distortion can be intro-
duced: misleading scales may be employed; 3-D displays of 2-D data make it difficult
to make fair comparisons; areas which are apparently intended to be proportional
to values are not; so much information is crammed into a small space that noth-
ing can be distinguished. While these are some of the technical problems that can
arise, there are additional semantic ones. A graphic may be linked to three pieces of
text: its caption, a headline and an article it accompanies. Ideally, all three should be
consistent and complement each other. In extreme cases all four can tell a different
story! A statistician cannot do much about headlines (possibly added or amended by
a subeditor at the last minute) or about accompanying articles if he or she is not the
first author (in the press the journalist chooses the graphic and may have little time to
find something appropriate), but the caption and the graphic itself should be “good”

Some displays in the media highlight a news item or provide an illustration to
lighten the text. These are often prepared by independent companies at short notice
and sold to the media as finished products. Fitting the graphic to its context may be
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awkward. There are displays in scientific publications which are prepared by the au-
thors and should be the product of careful and thorough preparation. In this situation
a graphic should match its context well. Whatever kind of data graphic is produced,
a number of general principles should be followed to ensure that the graphic is at
least correct.

Whether or not a graphic is then successful as a display depends on its subject,
on its context and on aesthetic considerations. It depends on what it is supposed
to show, on what form is chosen for it and on its audience. Readers familiar with
one kind of graphic will have no trouble interpreting another example of the same
kind. On the other hand, a graphic in a form which is new to readers may lead to
unanticipated interpretation difficulties. When someone has spent a long time on
a study and further time on the careful preparation of a graphic display to illustrate
the conclusions, they are usually astonished when others do not see what they can see.
[This effect is, of course, not restricted to drawing graphics. Designers are frequently
shocked by how people initially misunderstand their products. How often have you
stared at the shower in a strange hotel wondering how you can get it to work without
its scalding or freezing you? Donald Norman’s book (Norman, 1988) is filled with
excellent examples.]

Other factors have to be considered as well. A graphic may look different in print
than on a computer screen. Complex graphics may work successfully in scientific
articles where the reader takes time to fully understand them. They will not work well
asabriefitem in a television news programme. On the other hand, graphics which are
explained by a commentator are different from graphics in print. If graphics displayed
on the Web can be queried (as with some of the maps on http://www3.cancer.gov/
atlasplus/, discussed in Sect. 2.5.5), then more information can be provided without
cluttering the display.

Scientific Design Choices
in Data Visualization

Plotting a single variable should be fairly easy. The type of variable will influence the
type of graphic chosen. For instance, histograms or boxplots are right for continuous
variables, while barcharts or piecharts are appropriate for categorical variables. In
both cases other choices are possible too. Whether the data should be transformed
or aggregated will depend on the distribution of the data and the goal of the graphic.
Scaling and captioning should be relatively straightforward, though they need to be
chosen with care.

It is a different matter with multivariate graphics, where even displaying the joint
distribution of two categorical variables is not simple. The main decision to be taken
for a multivariate graphic is the form of display, though the choice of variables and
their ordering are also important. In general a dependent variable should be plotted
last. In a scatterplot it is traditional to plot the dependent variable on the vertical axis.
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Choice of Graphical Form

There are barcharts, piecharts, histograms, dotplots, boxplots, scatterplots, roseplots,
mosaicplots and many other kinds of data display. The choice depends on the type of
data to be displayed (e.g. univariate continuous data cannot be displayed in a piechart
and bivariate categorical data cannot be displayed in a boxplot) and on what is to be
shown (e.g. piecharts are good for displaying shares for a small number of categories
and boxplots are good for emphasizing outliers). A poor choice graph type cannot be
rectified by other means, so it is important to get it right at the start. However, there
is not always a unique optimal choice and alternatives can be equally good or good
in different ways, emphasizing different aspects of the same data.

Provided an appropriate form has been chosen, there are many options to con-
sider. Simply adopting the default of whatever computer software is being used is
unlikely to be wise.

Graphical Display Options

Scales

Defining the scale for the axis for a categorical variable is a matter of choosing an
informative ordering. This may depend on what the categories represent or on their
relative sizes. For a continuous variable it is more difficult. The endpoints, divisions
and tick marks have to be chosen. Initially it is surprising when apparently reliable
software produces a really bad scale for some variable. It seems obvious what the scale
should have been. It is only when you start trying to design your own algorithm for
automatically determining scales that you discover how difficult the task is.

In Grammar of Graphics Wilkinson puts forward some plausible properties that
‘nice’ scales should possess and suggests a possible algorithm. The properties (sim-
plicity, granularity and coverage, with the bonus of being called ‘really nice’ if zero
is included) are good but the algorithm is easy to outwit. This is not to say that it is
a weak algorithm. What is needed is a method which gives acceptable results for as
high a percentage of the time as possible, and the user must also check the resulting
scale and be prepared to amend it for his or her data. Difficult cases for scaling al-
gorithms arise when data cross natural boundaries, e.g., data with a range of 4 to 95
would be easy to scale, whereas data with a range of 4 to 101 would be more awkward.

There is a temptation to choose scales running from the minimum to the maxi-
mum of the data, but this means that some points are right on the boundaries and
may be obscured by the axes. Unless the limits are set by the meaning of the data (e.g.
with exam marks from 0 to 100, neither negative marks nor marks more than 100 are
possible — usually!), it is good practice to extend the scales beyond the observed lim-
its and to use readily understandable rounded values. There is no obligatory require-
ment to include zero in a scale, but there should always be a reason for not doing so;
otherwise it makes the reader wonder if some deception is being practiced. Zero is
in fact not the only possible baseline or alignment point for a scale, though it is the
most common one. A sensible alignment value for ratios is one, and financial series
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are often standardized to all start at 100. In Fig. 2.11 the cumulative times for all the
riders who finished the Tour de France cycle race in 2004 are plotted. The data at the
end of each stage have been aligned at their means. The interest lies in the differences
in times between the riders, not so much in their absolute times.

Figure 2.4 shows histograms for the Hidalgo stamp thickness data (Izenman and
Sommer, 1988). The first uses default settings and shows a skew distribution with pos-
sibly a second mode around 0.10. The second has rounded endpoints and a rounded
binwidth and shows stronger evidence for the second mode. The third is drawn so
that each distinct value is in a different bin (the data were all recorded to a thousandth
of a millimetre). It suggests that the first mode is actually made of up to two groups
and that there may be evidence for several additional modes to the right. It also re-
veals that rounded values such as 0.07,0.08, ... . , 0.11 occur relatively more frequently.
Izenman and Sommer used the third histogram in their paper. What the data repre-
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Figure 2.4. Three different histograms of the Hidalgo stamp thickness data, all with the same
anchorpoint but with different binwidths. The horizontal scales are aligned and the total area of each

display is the same (note the different frequency scales). Source: Izenman and Sommer (1988)
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sent and how they are collected should be taken into account when choosing scales.
Asymptotic optimality criteria only have a minor role to play.

While Fig. 2.4 shows the importance of choosing binwidths carefully, it also il-
lustrates some display issues. The horizontal value axis is clearly scaled, but it would
surely be nicer if it extended further to the right. More importantly, the comparison
in Fig. 2.4 ideally requires that all three plots be aligned exactly and have the same
total area. Not all software provides these capabilities.

Graphics should be considered in their context. It may be better to use a scale in
one graphic that is directly comparable with that in another graphic instead of indi-
vidually scaling both. Common scaling is used in one form or another in Figs. 2.11,
2.13 and 2.14.

It is one thing to determine what scale to use, but quite another to draw and label
the axes. Too many labels make a cluttered impression; too few can make it hard for
the reader to assess values and differences. (Note that it is not the aim of graphics
to provide exact case values; tables are much better for that.) Tick marks in between
labels often look fussy and have little practical value. In some really bad situations,
they can obscure data points.

Sorting and Ordering

The effect of a display can be influenced by many factors. When more than one vari-
able is to be plotted, the position or order in which they appear in the graphic makes
a difference. Examples arise with parallel coordinate plots, mosaicplots and matrix
visualizations, all discussed in other chapters. Within a nominal variable with no
natural ordering, the order in which the categories are plotted can have a big effect.
Alphabetic ordering may be appropriate (a standard default, which is useful for com-
parison purposes), or a geographic or other grouping (e.g. shares by market sector)
might be relevant. The categories could be ordered by size or by a secondary variable.
Figure 2.5 shows two barcharts of the same data, the numbers in each class and in the
crew on the Titanic. The second ordering would be the same in any language, but the
first would vary (for instance, Crew, First, Second, Third in English).
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Figure 2.5. Numbers of passengers and crew who travelled on the Titanic, by class, ordered

alphabetically (in German) and by status. Source: Dawson (1995)
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Adding Model or Statistical Information -

Overlaying (Statistical) Information

Guides may be drawn on a plot as a form of annotation and are useful for emphasiz-
ing particular issues, say which values are positive or negative. Sloping guides high-
light deviations from linearity. Fitted lines, for instance polynomial regression or
smoothers, may be superimposed on data not only to show the hypothesized overall
structure but also to highlight local variability and any lack of fit. Figure 2.6 plots the
times from the first and last stages of a 100-km road race. A lowess smoother has been
drawn. It suggests that there is a linear relationship for the faster runners and a flat
one for the slower ones.

When multiple measurements are available, it is standard practice in scientific
journals to plot point estimates with their corresponding confidence intervals. (95 %
confidence intervals are most common, though it is wise to check precisely what has
been plotted.) Figure 2.7 displays the results of a study on the deterioration of a thin
plastic over time. Measurements could only be made by destructive testing, so all
measurements are of independent samples. The high variability at most of the time
points is surprising. Adjacent means have been joined by straight lines. A smoothing
function would be a better alternative, but such functions are not common for this
kind of plot. As the measurement timepoints are far apart and as there is only one
dataset, there is no overlapping here. That can very often be a serious problem.

Overlaying information, whether guides or annotation, can lead to overlapping
and cluttered displays. Good solutions are possible but may require individual ad-
justments depending on the shape of the data. A well-spaced and informative display
at one size may appear unsatisfactory and unclear when shrunk for publication.
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Figure 2.6. Times for 80 runners for the last stage of a road race vs. their times for the first stage, with
a lowess smoother. Default scales from R have been used. Source: Everitt (1993)
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Captions, Legends and Annotations

Ideally, captions should fully explain the graphic they accompany, including giving
the source for the data. Relying on explanations in the surrounding text rarely works.
Ideals cannot always be met and very long captions are likely to put off the reader,
but the whole point of a graphic is to present information concisely and directly.
A compromise where the caption outlines the information in the graphic and a more
detailed description can be found in the text can be a pragmatic solution. Graphics
which require extensive commentary may be trying to present too much information
at one go.

Legends describe which symbols and/or colours refer to which data groups. Tufte
recommends that this information be directly on the plot and not in a separate legend,
so that the reader’s eyes do not have to jump backwards and forwards. If it can be
done, it should be.

Annotations are used to highlight particular features of a graphic. For reasons of
space there cannot be many of them and they should be used sparingly. They are
useful for identifying events in time series, as Playfair did (Playfair, 2005), or for
drawing attention to particular points in scatterplots.

Union estimates of protest turnout in Fig. 2.8 are larger than the police estimates by
roughly the same factor, except for the two extreme exceptions, Marseille and Paris,
where the disagreement is much greater.

Positioning in Text

Keeping graphics and text on the same page or on facing pages is valuable for practical
reasons. It is inconvient to have to turn pages back and forth because graphics and
the text relating to them are on different pages. However, it is not always possible to
avoid this. Where graphics are placed on a given page is a design issue.

Size, Frames and Aspect Ratio

Graphics should be large enough for the reader to see the information in them clearly
and not much larger. This is a rough guideline, as much will depend on the surround-
ing layout. Frames may be drawn to surround graphics. As frames take up space and
add to the clutter, they should best only be used for purposes of separation, i.e. sep-
arating the graphic from other graphics or from the text.

Aspect ratios have a surprisingly strong effect on the perception of graphics. This
is especially true of time series. If you want to show gradual change, grow the hor-
izontal axis and shrink the vertical axis. The opposite actions will demonstrate dra-
matic change. For a scatterplot example, see Fig. 2.9, which displays the same data
as Fig. 2.6. There is useful advice on aspect ratios in Cleveland (1994), especially the
idea of ‘banking to 45 degrees’ for straight lines.

Colour

Colour should really have been discussed much earlier. It is potentially one of the
most effective ways of displaying data. In practice it is also one of the most difficult
to get right. A helpful check for colour schemes for maps, Colorbrewer by Cynthia
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Brewer, can be found at http://colorbrewer.org. Colorbrewer can give suggestions for
colour schemes that both blend well and distinguish between different categories.

There remain many factors in the choice of colour which have to be borne in mind:
some people are colour blind; colours have particular associations (red for danger or
for losses); colours may not be reproduced in print the way they were intended; and
colour can be a matter of personal taste. Colour is discussed in more detail in other
Handbook chapters.

Higher-dimensional Displays
and Special Structures

2.5.1

2.5.2

Scatterplot Matrices (Sploms)

Plotting each continuous variable against every other one is effective for small num-
bers of variables, giving an overview of possible bivariate results. Figure 2.10 displays
data from emissions tests of 381 cars sold in Germany. It reveals that engine size,
performance and fuel consumption are approximately linearly related, as might be
expected, that CO2 measurements and fuel consumption are negatively correlated in
batches, which might not be so expected, and that other associations are less conclu-
sive. Packing so many plots into a small space it is important to cut down on scales.
Placing the variable names on the diagonal works well, and histograms of the indi-
vidual variables could also be placed there.

Parallel Coordinates

Parallel coordinate plots (Inselberg, 1999) are valuable for displaying large numbers
of continuous variables simultaneously. Showing so much information at once has
several implications: not all information will be visible in any one plot (so that sev-
eral may be needed); formatting and scaling will have a big influence on what can
be seen (so that there are many choices to be made); and some overlapping is in-
evitable (so that a-blending or more sophisticated density estimation methods are
useful).

Figure 2.11 plots the cumulative times of the 147 cyclists at the ends of the 21 stages
of the 2004 Tour de France. The axes all have the same scale, so that differences are
comparable. The best riders take the shortest time and are at the bottom of the plot.
The axes have been aligned at their means, as without some kind of alignment little
could be seen. a-blending has been applied to reduce the overprinting in the early
sprint stages where all riders had almost the same times. If more a-blending is used,
then the individual lines for the riders in the later stages of the race become too faint.
This single display conveys a great deal about the race. In the early stages, at most
a few minutes separates the riders. On the mountain stages there are much larger
differences and individual riders gain both time and places (where a line segment
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Figure 2.10. A scatterplot matrix of the five main continuous variables from a car emissions dataset

from Germany. Source: http://www.adac.de, March 2006

crosses many others downwards). Note that there are relatively few line crossings
over the later stages of the race, which means, perhaps surprisingly, that not many
riders changed their race ranking.

This graphic might be improved in a number of ways: the axes could be labelled
(though there is little space for this); the vertical axes could be drawn less strongly;
scale information could be added (the range of the vertical axes is about 4 h, though
precise values would be better read oft a table of results); and the level of a-blending
might be varied across the display.

Figure 2.11 shows a special form of parallel coordinate plot. Usually each axis has
its own scale and there is no natural ordering of the axes. Other examples of parallel
coordinate plots can be found in other chapters of the Handbook.

Mosaic Plots

Mosaic plots display the counts in multivariate contingency tables. There are various
types of mosaicplot (Hofmann, 2000) and a 5-D example of a doubledecker plot is
displayed in Fig. 2.12. The data are from a study of patterns of arrest based on 5226
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K01.L203 K03.L210  K05.L201 K07.L205 K09.L161  K11.M164 K13.8206 K15.5181 K17.8205 K19.EZ55
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Figure 2.11. Cumulative times for riders in 2004 Tour de France for the 21 stages. The axes have

a common scale and are aligned by their means. Each vertical line represents a stage, and they have
been plotted in date order. Source: http://www.letour.fr

cases in Toronto. Each column represents one combination of the four binary vari-
ables Gender, Employed, Citizen and Colour. The width of a column is proportional
to the number with that combination of factors. Those stopped who were not re-
leased later have been highlighted. Over 90 % of those stopped were male. Some of
the numbers of females in the possible eight combinations are too small to draw firm
conclusions. Each pair of columns represents the variable colour, and the proportion
not released amongst the males is lower amongst the whites for all combinations of
other factors. The general decline in the level of highlighting across the male columns
shows that the proportion not released is lower if the person is a citizen and lower still
if they are employed. Figure 2.12 shows the difficulties in displaying data of this kind
in a graphic for presentation. Colour, aspect ratio and size can make a big difference,
but labelling is the main problem.

Small Multiples and Trellis Displays

One way to avoid overloading a single large plot with information is to use a set of
smaller, comparable plots instead. This can be effective for subgroup analyses [e.g.
trellis displays for conditioning (Becker et al., 1996)] or for geographic data [cf. mi-
cromaps Carr (2001)]. A simple example is given in Fig. 2.13. The boxplots on their
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Figure 2.12. A doubledecker plot of Toronto arrest data. Source: Fox (2003)

own show that diesel cars have generally lower fuel consumption (in Europe con-
sumption is measured in litres/100 km). The barchart on the left shows that little at-
tention should be paid to the (Natural) Gas and Hybrid groups as few of these cars
were measured. Should these two groups have been left out or perhaps be replaced
by dotplots? Small groups are always a problem. It should also be noted that the units
for natural gas cars are different (kg/100 km) from the others.

Small multiples can work well, but careful captioning is necessary to ensure that
it is clear which smaller plot is which, and common scaling is obviously essential.
Figure 2.14 is a trellis display of emissions data for the 374 petrol or diesel cars. They
have been grouped by engine type (rows) and engine size (columns). An equal count
grouping has been used for engine size, which is why the shaded parts of the cc bars
have different lengths. Engine size seems to make little difference as the plots in each
row are similar to one another. The type of engine makes more difference, with diesel
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Figure 2.13. Boxplots of fuel consumption by engine type data from Germany. The barchart shows the

relative numbers of cars involved. The total number was 381. Source: http://www.adac.de, March 2006
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Figure 2.14. Trellis display of car emissions data from Germany. Each panel is a scatterplot of two
pollution measures. Rows: type of engine; columns: engine size. Source: http://www.adac.de, March
2006

engines in particular being different from the other two types. There are a few local
outliers amongst the petrol cars.

When several plots of the same kind are displayed, they can be plots of subsets of
the same data, as in trellis displays, or plots of different variables for the same dataset,
as in a parallel coordinates plot. It should always be obvious from the display which
is the case.

Time Series and Maps

Time Series
Time series are special because of the strict ordering of the data, and good displays
respect temporal ordering. It is useful to differentiate between value measurements
at particular time points (e.g. a patient’s weight or a share price) and summary mea-
surements over a period (e.g. how much the patient ate in the last month or how
many shares were traded during the day).

Time scales have to be carefully chosen. The choice of time origin is particularly
important, as anyone who looks at the advertised performance of financial funds will
know. Time points for value measurements may not match the calendar scale (e.g.
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daily share prices only being available on days the market is open). Time units for
summary measurements may be of unequal length (e.g. months). The time period
chosen and the aspect ratio used for a time series plot can make a big difference in
the interpretation of the data (Fig. 2.15).

If several time series are plotted in the same display, then it is necessary to en-
sure that they are properly aligned in time (e.g. two annual economic series may be
published at different times of the year), that their vertical scales are matched (the
common origin and the relative ranges) and that they can be distinguished from one
another. Depending on the data, this can be tricky to do successfully.

Maps

Geographic data are complex to analyse, though graphical displays can be very infor-
mative. Bertin discussed many ways of displaying geographic data in his book, and
MacEachren’s book contains a lot of sound advice (MacEachren, 1995), though more
from a cartographic point of view. The main problems to be solved lie in the fact that
areas do not reflect the relative importance of regions (e.g. Montana has fewer people
than New York City but is much bigger) and spatial distance is not directly associated
with similarity or nearness (e.g. where countries are divided by natural borders, like
mountain ranges). There is a substantial research literature in geography on these
and other display issues, such as how to use colour scales to show values (‘choropleth
maps’) and how to choose colour schemes (e.g. Colorbrewer referred to above). Some
instructive examples can be found in the cancer atlas maps of US health authorities
on the Web and in the book by Devesa et al. (1999). Figure 2.16 shows that cancer
rates are highest along the East Coast and lowest in the Midwest. State Economic
Areas (SEAs) have been chosen because using states oversmooths the data (consider
Nevada in the West with its high cancer rate around Las Vegas, but its lower rate else-
where), while using counties undersmooths. The map on the website is in colour, on
a scale from deep red for high rates to dark blue for low. Naturally, this would not
reproduce well in a grey-scale view, so the webpage provides the alternative version
that is used here. Offering multiple versions of the same image on the Web is read-
ily possible but not often done. This is one of several reasons why the cancer atlas
webpages are exemplary.
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Cancer Mortality Rates by State Economic Area (Age-adjusted 1970 US Population)
All Cancers: White Males, 1970-94

b US = 209,47/100,00

| 230.31-266,33 (highest 10%)
- 225.05-230.30
e 219.74-225.04
214.47-219.73
209.47-214.46
205.26-209-46
200.10-205.25
193.42-200.09

182.88-193.41
131.61-182.87(lowest 10%)

Figure 2.16. Cancer mortality rates for white males in the USA between 1970 and 1994 by State
Economic Area. The scale has been chosen so that each interval contains 10 % of the SEAs. Source:

http://www3.cancer.gov/atlasplus/

Practical Advice

2.6.1

Software

For a long time all graphics had to be prepared by draftsmen by hand. The volumes
of the Album de Statistique Graphique produced towards the end of the 19th cen-
tury contain many exceptional displays which must have taken much painstaking
preparation. Such graphics may be individually designed with special features for
the particular data involved. Nowadays graphics are produced by software, and this
has tended to mean that certain default displays are adopted by many as a matter of
course. Ifit takes a few minutes to prepare a graphic that is standard in your field, why
bother to prepare something novel? This has advantages - standards avoid possible
gross errors and are readily understood by readers familiar with them - and disad-
vantages — not all data fit the existing standards and interesting new information may
be obscured rather than emphasized by a default display. As software becomes more
sophisticated and user interfaces become more intuitive, this may change. Currently
(in 2006), there are software packages which give users substantial control over all
aspects of the displays they wish to draw, but these are still only for experts in the
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software (Murrell, 2005). It is reasonable to assume that there will be a steady pro-
gression to a situation where even non-experts will be able to draw what they wish.
Whether good graphics are the result will depend on the users’ statistical good sense
and on their design ability. Like the quality of a scientific article, the quality of a data
visualization graphic depends on content and presentation. How has the quality of
scientific articles changed since scientists have been able to prepare their own drafts
with sophisticated text preparation software?

Bad Practice and Good Practice (Principles) 2.6.2

Sometimes it is easier to see what has gone wrong than to explain how to do some-
thing right. Take the simple task of preparing a barchart to display univariate cate-
gorical data. What could possibly go wrong? The bars may be too thin (or too fat); the
gaps between the bars may be too narrow (or too wide): the labelling of the bars may
be unclear (because it is difficult to fit long category names in); the order of the bars
may be confusing; the vertical scale may be poorly chosen; there may be superfluous
gridlines; irrelevant 3-D effects may have been used; colours or shading may have
been unnecessarily added; or the title may be misleading and the caption confusing.
Doubtless there are even more ways of ruining a barchart.

It is not possible to give rules to cover every eventuality. Guiding principles like
those outlined in this chapter are needed.

And Finally 2.7

The lack of formal theory bedevils good graphics. The only way to make progress is
through training in principles and through experience in practice. Paying attention
to content, context and construction should ensure that sound and reliable graphics
are produced. Adding design flair afterwards can add to the effect, so long as it is
consistent with the aims of the graphic.

Gresham’s Law in economics states that ‘bad money drives out good. Fortunately
this does not seem to apply to graphics, for while it is true that there are very many
bad graphics displays prepared and published, there are also many very good ones.
All serious data analysts and statisticians should strive for high standards of graphical
display.
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This chapter describes the requirements for a modern statistical graphics system for
the production of static plots. There is a discussion of the production of complete
plots, customizing plots, adding extra output to plots and creating entirely new plots.

Statistical graphics is described as an extension of a general graphics language.
There is an emphasis on the importance of support for sophisticated graphics facili-
ties such as semitransparent colours, image compositing operators and the complex
arrangement of graphical elements.

Static displays of information continue to be the primary graphical method for the
display and analysis of data. This is true both for presentation purposes, where the
vast majority of data displays produced for articles and reports are still static in na-
ture, and for data exploration, where many important statistical discoveries have been
made based simply on static displays (e.g. Cleveland’s barley data discovery using
Trellis plots; Cleveland, 1993). The recent advances in dynamic and interactive dis-
plays (e.g. Swayne et al., 2003; Theus, 2002) provide us with wonderful additional
tools, but static displays still play a fundamental role in the presentation of data.

There are very many software packages (some of them statistical) that provide
ways to produce static displays of data. This is good, because these computer pro-
grams allow us to produce more complex graphics, and graphics in greater volumes,
than was ever possible when working just with pen and paper. But how good is the
software for displaying data? More importantly, how good could the software be?
What should we expect from our statistical graphics software?

This chapter addresses these questions by discussing the important features which
software for the static display of data should provide. In addition, there are descrip-
tions of ways to provide those features. For each topic, there will be an abstract discus-
sion of the issue followed by concrete examples implemented in R (R Development
Core Team, 2005). The use of R is natural for me due to my personal familiarity with
the system, but it is also justified by the fact that R is widely acknowledged as being
pretty good at producing static displays of data, and, to my knowledge, some of the
ideas can only be demonstrated in R.

The Grammar of Graphics

A comprehensive overview of statistical graphics is provided by Wilkinson’s Gram-
mar of Graphics (Wilkinson, 1999, 2004). Wilkinson outlines a system in which statis-
tical graphics are described in a high-level, abstract language and which encompasses
more than just static graphical displays.

This chapter provides a different view, where statistical graphics is seen as an ex-
tension of a general graphics language like PostScript (Inc., 1990) or SVG (Ferraiolo
et al.,, 2003). This view is lower level, more explicit about the basic graphical elements
which are drawn and more focused on static graphics.

To emphasize the difference, consider a simple barplot of birth rate for three dif-
ferent types of government (Fig. 3.1). A Grammar of Graphics description (or part
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Figure 3.1. A simple barchart of birth rate for three different types of government

thereof) for the barplot would be a statement of the following form (from p. 88 of the
Grammar of Graphics, 1st edn. Wilkinson, 1999):

FRAME: gov*birth
GRAPH: bar()

A description consistent with this chapter would involve a description of the coor-
dinate systems and graphical shapes that make up the plot. For example, the barplot
consists of a plotting region and several graphical elements. The plotting region is
positioned to provide margins for axes and has scales appropriate to the range of the
data. The graphical elements consist of axes drawn on the edges of the plotting region,
plus three rectangles drawn relative to the scales within the plotting region, with the
height of the rectangles based on the birth rate data.

Complete Plots 3.1

We will start with the most obvious feature of statistical graphics software: the user
should be able to produce graphical output. In other words, the user should be able to
draw something. In most cases, the user will want to draw some sort of plot consisting
of axes, labels and data symbols or lines to represent the data. Figure 3.2 shows an
example consisting of a basic scatterplot.

This is one distinction between statistical graphics software and a more general
graphics language such as PostScript. The user does not just want to be able to draw



3.1.1

82 Paul Murrell

Main Title
o
o 44 O (0]
OOD - (o] [¢]
_ (o] o
2 8
©
-
L e} )
Z
> 7
o o
(o] (o]
o
(9]
(o] o
o o
[¢] (o]
o 4 0 o O
T T T T T
-10 -5 0 5 10
X Axis Label
Sub-title

Figure 3.2. A basic scatterplot consisting of axes, labels and data symbols

lines and rectangles (though he may also want to do that; see Sect. 3.2.3). The user
wants to be able to create an entire plot. To be even more explicit, the user wants to
be able to draw an entire plot with a single command (or via a single menu selection).
This is so far quite uncontroversial, and all statistical software packages provide
this feature in one way or another (though they may differ in terms of the range of
different sorts of plots that can be produced). In R, the following command usually
does the trick (where the variable somedata contains the data values to plot).
> plot (somedata)

Sensible Defaults

Take another look at the basic plot in Fig. 3.2. As we have mentioned, it consists of
a standard set of components: axes, labels and data symbols. But there are other im-
portant aspects to this plot. For a start, these components are all in sensible locations;
the title is at the top and, very importantly, the data symbols are at the correct loca-
tions relative to the axes (and the scales on the axes ensure that there is sufficient
room for all of the data points).

Some of these aspects are inevitable; no one would use a program that drew data
symbols in the wrong locations or created axis scales so that none of the data could
be seen. However, there are many aspects that are less obvious.
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Why should the title be at the top? Did you notice that the title uses a sans serif
font? Why is that? Something else the software has done is to position the tick marks
at sensible locations within the range of the data. Also, the axes have their tick marks
and tick labels pointing away from the region where the data are plotted (other soft-
ware may do this differently). Does that matter?

In some of these cases, there are clear reasons for doing things a certain way (e.g.
to improve clarity or visual impact; Cleveland, 1993,1985; Robbins, 2005; Tufte, 1989).
In other cases, the choice is more subjective or a matter of tradition. The main point
is that there are a number of ways that the software could do these things. What is
important is that the software should provide a good default choice.

Trellis Plots

A good example of a graphics system that provides sensible defaults is the Trellis sys-
tem (Becker et al., 1996). The choice of default values in this system has been guided
by the results of studies in human perception (Cleveland and McGill, 1987) so that
the information within a plot will be conveyed quickly and correctly to the viewer.
In R, the lattice package (Sarkar, 2002) implements Trellis plots. Figure 3.3 shows
a Trellis version of a basic scatterplot. One subtle, but well-founded, difference with
Fig. 3.2 is the fact that the labels on the tick marks of the y-axis are horizontal so
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Figure 3.3. A basic Trellis scatterplot, which has a different default appearance from the scatterplot in
Fig. 3.2
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that they are easier to read. The subtitle of Fig. 3.3 is also more heavily emphasized
by using a bold font face. The Trellis defaults extend to selections of plotting symbols
and colours in plots of multiple data series, which are chosen so that different data
series can be easily distinguished by the viewer.

User Interface

A sometimes controversial aspect of statistical graphics software is the user interface.
The choice is between a command line, where the user must type textual commands
(or function calls), and a graphical user interface (GUI), consisting of menus and
dialogue boxes. A batch system is considered to be a command-line interface; the
important point is that the user has to do everything by typing on the keyboard rather
than by pointing and clicking with a mouse. Often both a command line and a GUI
will be offered.

The interface to a piece of software is conceptually orthogonal to the set of features
that the software provides, which is our main focus here. Nevertheless, in each section
of this chapter we will briefly discuss the user interface because there are situations
where the interface has a significant impact on the accessibility of certain features.

For the purpose of producing complete plots, the choice of user interface is not
very important. Where one system might have an option on a GUI menu to produce
a histogram, another system can have a command or function to do the same thing.

With R, the standard interface is a command line, but a number of GUI options
exist, notably Rcmdr (Fox, 2005), JGR (Helbig et al., 2004) and the standard GUI on
the Mac platform (Iacus and Urbanek, 2004).

Customization

3.2.1

Let us assume that your statistical software allows you to produce a complete plot
from a single command and that it provides sensible defaults for the positioning and
appearance of the plot. It is still quite unlikely that the plot you end up with will be
exactly what you want. For example, you may want a different scale on the axes, or the
tick marks in different positions, or no axes at all. After being able to draw something,
the next most important feature of statistical graphics software is the ability to control
what gets drawn and how it gets drawn.

Setting Parameters

For any particular piece of output, there will be a number of free parameters that
must be specified. As a very basic example, it is not sufficient to say something like
‘T want to draw a line’; you must also specify where the line should start and where
it should end. You might be surprised how many free parameters there are in even
simple cases like this; in order to fully specify the drawing of a single straight line, it is
necessary to provide not only a start and end point, but a colour, a line style (perhaps
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dashed rather than solid), how thick to draw the line and even a method for how to
deal with the ends of the line (should they be rounded or square?).

When producing plots, you deal with more complex graphical output than just
a single line, and more complex graphical components have their own sets of param-
eters. For example, when drawing an axis, one parameter might control the number
of tick marks on the axis and another might control the text for the axis label. When
drawing a complete plot, an important parameter is the data to plot(!), but there may
also be parameters to control whether axes are drawn, whether a legend (or key) is
provided, and so on.

Wherever there is a parameter to control some aspect of graphical output, the user
should have the ability to provide a value for that parameter.

In R, each graphics function provides a set of parameters to control aspects of the
output. The following code shows how a plot can be created with no axes and no
labels by specifying arguments for axes and ann respectively. A line is added to the
plot with control over its location and its colour, line type and line width.

> plot(1:10, axes=FALSE, ann=FALSE)
> lines(1:10, col="red", lty="dashed", 1lwd=3)

Graphical Parameters
There is a common set of ‘graphical’ parameters that can be applied to almost any
graphical output to affect the appearance of the output. This set includes such things
as line colour, fill colour, line width, line style (e.g. dashed or solid) and so on. This
roughly corresponds to the concept of graphics state in the PostScript language.

In order to be able to have complete control over the appearance of graphical
output, it is important that statistical graphics software provides a complete set of
graphical parameters. Examples of parameters that may sometimes be overlooked

v
N4

Figure 3.4. Line join and line ending styles. Three thick lines have been drawn with different line end

and line join styles. The top line has ‘square’ ends and ‘mitre’ joins, the middle line has ‘round’ ends and
‘round’ joins, and the bottom line has ‘butt’ ends and ‘bevel joins. In each case, the three points that the

line goes through are indicated by black circles
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are semitransparent colours, line joins and endings (Fig. 3.4) and full access to a va-
riety of fonts. Edward Tufte has recommended (Tufte, 2001) the use of professional
graphics software such as Adobe Illustrator to achieve quality results, but even better
is the ability to provide the control within the statistical graphics software itself.

In R there is a large set of graphical parameters that allow control over many as-
pects of graphical output, such as colours, line types and fonts (see the previous ex-
ample code demonstrating the control of colour, line type and line width), but this
could be extended further to include any of the basic drawing parameters and oper-
ators that you will find in a sophisticated graphics language such as SVG. Examples
are gradient fills (where a region is filled with a smoothly varying colour), general
pattern fills and composition of output.

An example of the use of composition operators is the addition of a legend to a plot,
both of which have a transparent background, but where the plot has grid lines. If we
do not want the grid lines to appear in the legend background, one way to achieve

legend plot
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Figure 3.5. Composing graphical elements on a white background. There are three elements being
composed: two legends, one with a transparent background and one with a white background (top left),
and a plot with a transparent background (top right). In the bottom left, the legend with a transparent
background is drawn over the plot and the grid lines in the plot are visible behind the legend. In the
bottom right, the legend with a white background is drawn over the plot and the grid lines in the plot are
not visible behind the legend
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that is to combine the legend with the plot in such a way that the legend output com-
pletely replaces the plot output over the region that the legend is drawn. Figure 3.5
shows how just drawing the legend on top of the plot produces the wrong result (there
are grid lines visible behind the legend). Using an opaque background in the legend
does the job as long as we can anticipate the background colour that the overall plot
will be drawn on (Fig. 3.5). However, this is not a good general solution because it
fails badly if a different background colour is encountered (Fig. 3.6). A general solu-
tion involves more complex image manipulations, such as negating the alpha channel
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Figure 3.6. Composing graphical elements on a grey background to show that the use of an opaque
background for a legend (as in Fig. 3.5) is not suitable if the background of the final image is a different
colour. There are three elements being composed: two legends, one with a transparent background and
one with a white background (top left in Fig. 3.5), and a plot with a transparent background (top right
in Fig. 3.5). In the top left in this figure, the legend with a white background is drawn over the plot and
the grid lines in the plot are not visible behind the legend, but the white background of the legend does
not match the background of the plot, so the result is unpleasant. In the top right, the legend with

a transparent background has had its alpha channel (opacity) negated, so that the background is the
only part that is opaque. In the bottom left, the negated legend is composited with the plot using an ‘out’
operator, thereby creating a ‘hole’ in the plot. In the bottom right, the (untransformed) legend with

a transparent background is drawn over the plot with a hole and the grid lines in the plot are not visible

behind the legend, but the background of the final image is still grey, which is the desired result
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(inverting the opacity) of the legend and using a Porter-Duft (Porter and Duff, 1984)
‘out’ compositing operator to create a ‘hole” for the legend within the plot (Fig. 3.6).

Arranging Plots

Where several plots are produced together on a page, a new set of free parameters
becomes available, corresponding to the location and size of each complete plot. It is
important that statistical graphics software provides some way to specify an arrange-
ment of several plots.

In R, it is easy to produce an array of plots all of the same size, as shown by the
code below.
> par (mfrow=c (2, 2))

It is also possible to produce arrangements where plots have different sizes. The fol-
lowing code gives a simple example (Fig. 3.7):
> layout (rbind(c (1, 2),

c(0, 0),

c(3, 3)),

heights=c(1.5, lcm(0.5), 1))

The idea of arranging several plots can be generalized to the arrangement of arbitrary
graphical elements; we will discuss this more in Sect. 3.3.

Annotation

A more complex sort of customization involves the addition of further graphical out-
put to a plot. For example, it can be useful to add an informative label to one or more
data symbols in a plot.

Graphical Primitives
The first requirement for producing annotations is the ability to produce very basic
graphical output, such as simple text labels. In this way, statistical graphics software
needs to be able to act like a generic drawing program, allowing the user to draw
lines, rectangles, text and so on. In other words, it is not good if the software can
‘only’ draw complete plots.

In R, there are functions for drawing a standard set of graphical primitives. The
following code demonstrates how rectangles, lines, polygons and text can be added
to a basic plot (Fig. 3.8):
> X <- rnorm(20)
> plot(x)
> polygon(c(l, 1:20, 20), c(0, x, 0),

col="grey", border=NA)
> rect(l, -0.5, 20, 0.5,
col="white", lty="dotted")
> lines (x)
points(x, pch=16)
> text(c(0.7, 20.3), 0, c("within", "control"), srt=90)

\
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Figure 3.7. Two arrangements of multiple plots on a page. In the top example, all of the plots have the
same size; in the bottom example, several plots of different sizes are arranged
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Figure 3.8. Basic scatterplot with extra rectangles, lines, polygons and text added to it

Some slightly more complex primitives (not currently natively supported by R) are
spline curves, arbitrary paths (as in PostScript or SVG) and polygons with holes,
which are useful for drawing maps. An example of a polygon with a hole is an is-
land within a lake within an island, where both islands are part of the same country
or state and so are usefully represented as a single polygon.

Coordinate Systems

One of the most important and distinctive features of statistical graphics software is

that it is not only capable of producing many pieces of graphical output at once (lots

of lines, text, and symbols that together make up a plot), but that it is also capable of
positioning the graphical output within more than one coordinate system. Here are

some examples (Fig. 3.9):

= The title of a plot might be positioned halfway across a page. That is, the title is
positioned relative to a ‘normalized’ coordinate system that covers the entire page,
where the location 0 corresponds to the left edge of the page and the location 1
corresponds to the right edge.

— The data symbols in a scatterplot are positioned relative to a coordinate system
corresponding to the range of the data that only covers the area of the page
bounded by the plot axes.

— The axis labels might be positioned halfway along an axis. That is, the axis labels
are positioned relative to a ‘normalized’ coordinate system that only covers the
area of the page bounded by the plot axes.
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Figure 3.9. Two of the coordinate systems involved in producing a simple scatterplot. A ‘normalized’
coordinate system that covers the whole page is used to centre the plot title, and a coordinate system

based on the range of the data that covers the plot region is used to position the data symbols

Many users of statistical graphics software produce a plot and then export it to a for-
mat which can be easily edited using third-party software (e.g. export to WMF and
edit using Microsoft Office products). This has the disadvantage that the coordinate
systems used to produce the plot are lost and cannot be used to locate or size an-
notations. Furthermore, it makes it much harder to automate or programmatically
control the annotation, which is essential if a large number of plots are being pro-
duced.

When it comes to annotating a plot, it is important that output can be added rela-
tive to the coordinate systems which were used to draw the original plot. For example,
in Fig. 3.8 all additional output is positioned relative to the scales on the plot axes.

Because there are several coordinate systems used in the construction of a graph,
there must be some way to specify which coordinate system to use when adding fur-
ther output.

In R’s traditional graphics, each function for adding additional output to a plot
only works with a single coordinate system. For example, the text () function only
positions text relative to the scales on the axes and the mtext () function only posi-
tions text relative to the plot margins (where the axis labels and plot titles are drawn).
R’s grid package (Murrell, 2002) provides a more general approach; it is described in
more detail in Sect. 3.3.
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Non-Cartesian Coordinates

There are many examples of useful plots and diagrams that require non-cartesian
coordinates, so it is desirable for statistical graphics software to support or at least
allow the construction of a variety of coordinate systems. For example, a number of
data sources suit polar coordinate displays, such as wind diagrams; when plotting
a single categorical variable with exactly three levels, ternary plots can be effective;
hierarchical data are naturally displayed as trees or graphs (with nodes and edges).

The User Interface

The user interface for providing parameters to control graphical output can be ade-
quately provided by either a command line or GUI. In a command-line environment,
function calls can be made with an argument provided for each control parameter;
GUIs tend to provide dialog boxes full of various options.

One issue that arises with statistical graphics is the ‘explosion’ of parameters for
higher-level graphical elements. Consider a matrix of scatterplots: the matrix con-
tains many plots; each plot contains several axes; each axis consists of multiple lines
and pieces of text. How can you provide parameters to control each piece of text in
every axis on every plot? That is a lot of parameters. The problem essentially is one
of being able to uniquely specify a particular component of an overall plot.

A mouse input device provides a very good way of specifying elements in an im-
age. Itis very natural to point at the element you want. However, there are issues when
selecting components of a plot because there is often ambiguity due to the hierarchi-
cal structure inherent in a plot. If you click on a piece of text on an axis tick mark, it is
not clear whether you want to select just the text, or the entire axis, or even the entire
plot. The advantage of using a command line to select objects is that, although it may
be less convenient, you can typically be more expressive, or more precise. For exam-
ple, in the grid graphics system in R, the text for a particular axis might be expressed
as the following ‘path: "plotl: :xaxis::label".

Another problem with the GUI approach is that it is hard to capture a particular
editing operation. For example, if the same editing operation is required on another
plot, the same series of actions must be repeated by the user. In a command-line
environment, operations can be captured and repeated easily.

Extensibility

The ability to produce complete plots, control all aspects of their appearance and
add additional output represents a minimum standard for what statistical graphics
software should provide. A more advanced feature is the ability to extend the system
to add new capabilities, such as new types of plots.

In some respects, creating a new sort of plot is just an extreme version of cus-
tomization, but there are two distinguishing features: you are starting from a blank
slate rather than building on an existing plot as a starting point (i.e. it is not just anno-
tation) and, more importantly, extensibility means that the new plot that you create
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is made available for others to use in exactly the same way as existing plots. To be
more explicit, in an extensible system you can create a new menu item or function
that other users can access.

So what sorts of features are necessary or desirable to support the development
of new plots? For a start, the system must allow new functions or menu items to be
added, and these must be able to be added by the user. The next most important fea-
tures are that low-level building blocks must be available and there must be support
for combining those building blocks into larger, coherent graphical elements (plots).

Building Blocks

What are the fundamental building blocks from which plots are made? At the low-
est level, a plot is simply basic graphical shapes and text, so these must be available
(see ‘Graphical Primitives’ in Sect. 3.2.3). In addition, there must be some way to de-
fine coordinate systems so that graphical elements can be conveniently positioned
in sensible locations to make up a plot. Surprisingly, that’s about it. Given the ability
to draw shapes and locate them conveniently, you can produce a huge variety of re-
sults. Controlling coordinate systems is a special case of being able to define arbitrary
transformations on output, such as is provided by the current transformation matrix
in PostScript or transform attributes on group elements in SVG.

We have already seen that R provides basic graphical elements such as lines and
text (Sect. 3.2.3). R also provides ways to control coordinate systems; this discussion
will focus on the features provided by the grid system because they are more flexible.

The grid system in R provides the concept of a ‘viewport, which represents a rect-
angular region on the page and contains several different coordinate systems. View-
ports can be nested (positioned within each other) to produce quite complex arrange-
ments of regions. The following code provides a simple demonstration (Fig. 3.10).
First of all, we create a region centred on the page, but only 80 % as wide and high as
the page.
> pushViewport (viewport (width=0.8, height=0.8,

xscale=c (0, 3), yscale=c(0, 10)))
This now is where drawing occurs, so rectangles and axes are drawn relative to this
viewport.
> grid.rect (gp=gpar (fill="1ight grey"))
> grid.xaxis(at=1:2, gp=gpar(cex=0.5))
> grid.yaxis (gp=gpar (cex=0.5))
Now we define a new viewport, which is located at (1,4) relative to the axis scales
of the first viewport. This also demonstrates the idea of multiple coordinate systems;
the width and height of this new viewport are specified in terms of absolute units,
rather than relative to the axis scales of the previous viewport.
> pushViewport (viewport (unit (1, "native"),

unit (4, "native"),

width=unit (1, "cm"),

height=unit (1, "inches")))

3.3.1
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Figure 3.10. A demonstration of grid viewports. The overall data region (bounded by the axes) is

a viewport, each overall thermometer is another viewport, and the black region within each
thermometer is yet another viewport. The white text within each thermometer is also drawn within its

own (clipped) viewport

We draw a rectangle around this new viewport and then draw the word ‘thermome-
ter”
> grid.rect (gp=gpar (fill="white"))
> grid.text ("thermometer",

v=0, just="left", rot=90)
We create yet another viewport, which is just the bottom 30 % of the second viewport,
and draw a filled rectangle within that.
> pushViewport (viewport (height=0.3, y=0,

just="bottom"))

> grid.rect (gp=gpar (fill="black"))
Finally, we create a viewport in exactly the same location as the third viewport, but
this time with clipping turned; when we draw the word ‘thermometer’ again in white,
it is only drawn within the filled black rectangle.
> pushViewport (viewport (clip=TRUE))
> grid.text ("thermometer",

v=0, just="left", rot=90,

gp=gpar (col="white"))
A second thermometer has been drawn in a similar manner in Fig. 3.10 (code not
shown).

This sort of facility provides great power and flexibility for producing complex

plots such as the Trellis plots produced by the lattice system (Fig. 3.11) and more be-
sides.
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Figure 3.11. Example of a complex Trellis plot. The data are yields of several different varieties of barley

at six sites, over 2 years. The plot consists of 12 panels, one for each year at each site. Each panel consists
of a dotplot showing yield for a particular site in a particular year and a strip showing the year and the

name of the site
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Graphical Layout

The production of a complex plot involves positioning multiple elements within mul-
tiple coordinate systems. The arrangement of output within a coordinate system is
typically very explicit; for example, a data symbol is drawn at a precise location and
is a fixed proportion of the plotting region in size. By contrast, the arrangement of
coordinate systems (or entire plots) relative to each other is more implicit. These ar-
rangements are more along the lines of a number of rows and columns of plots (and
let the software figure out exactly what that means in terms of the size and location
of the plots on the page). These sorts of arrangements have echoes of typesetting or
page-layout operations like those in ETEX (Lamport, 1994) or HTML (Raggett et al.,
1999), or even the generation of GUI components such as Java layout managers (Us-
ing Layout Managers, 2005). It is therefore useful for a statistical graphics system to
provide a means for defining implicit arrangements of elements.

In R there is the concept of a ‘layout’ (Murrell, 1999) (a simple example was given
in Sect. 3.2.2). A layout divides a rectangular region into rows and columns, each with
a different height or width if desired. In the grid system, a viewport can be positioned
relative to a layout rather than via an explicit location and size. For example, the
following code creates a viewport with a layout that defines a central region so that
the margins around the central region are guaranteed to be identical on all sides and
are one quarter of the minimum of the width and height of the central region.

> pushViewport (viewport (layout=grid.layout (3, 3,
widths=c (1, 4, 1),

heights=c(1, 4, 1),

respect=rbind(c(1, 0, 1),
c(0, 0, 0),
c(l, 0, 1)))))

This next code shows another viewport being positioned in the central region of the
layout (Fig. 3.12). The location and size of this viewport will depend on the size and
shape of the parent viewport that defined the layout.
> pushViewport (viewport (layout.pos.col=2,

layout.pos.row=2))
With the ability to nest viewports, it is possible to specify complex implicit arrange-
ments of graphical elements in R (this is how the panels are arranged in a lattice
plot).

Transformations in Statistical Graphics

An important difference between transformations in a general graphics language and
transformations in statistical software is that statistical software does not apply trans-
formations to all output. This arises from the difference between statistical graphics
and general graphics images (art). A good example is that in PostScript or SVG the
current transformation applies to text as well as all other shapes. In particular, if the
current transformation scales output, all text is scaled. This is not desirable when
drawing a statistical plot because we would like the text to be readable, so in statisti-
cal graphics, transformations apply to the locations of output and the size of shapes
such as rectangles and lines, but text is sized separately (Fig. 3.13).
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Central Central
Region Region

Figure 3.12. Two views of a layout that defines a central region with equal-sized margins all around
(indicated by the grey rectangles). The location and shape of the central region depend on the size and
shape of the ‘page’ which the layout is applied to; the left-hand page is tall and thin and the right-hand

page is short and wide

Text to be read
not just G
to look pretty

Figure 3.13. The difference between transformations in statistical graphics (left) and a general graphics
language (right). In statistical graphics, the location of the text depends on the coordinate system, but
the size of text is controlled separately from coordinate-system transformations. In a general graphics
system, all output, including text size, is affected by the current transformation; in this case, the text

gets flipped upside down and drawn one-quarter of the size of normal text

Combining Graphical Elements

In addition to allowing the user to compose basic graphics shapes and position them
flexibly, a statistical graphics system should allow the user to ‘record’ a composition
of graphics shapes. For example, the user should be able to write a function that en-
capsulates a series of drawing operations. This does two things: the complete set of
operations becomes easily available for other people to use, and the function repre-
sents a higher-level graphical element that can be used as part of further composi-
tions.

3.3.2
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The User Interface

Extending a system is one area where the user interface is crucial. In almost all cases,
an extensible system must provide a language for developing new graphics. In other
words, you must write code (type commands) to extend a system. This is not to say
that it is impossible to produce a graphical programming interface (see, for example,
the ViSta system; Young, 1996), but a command line offers by far the best environment
for power and flexibility. As an absolute minimum, a GUI must provide some way to
record code equivalents of GUI actions.

Another detail is that the language for extending the system should ideally be the
same language that is used to develop the system. This has two implications: first, the
user has full access to the graphics system and, second, a scripting language, such as R
or Python, is preferable to a ‘heavy-duty’ language such as C or Java because scripting
languages are easier to get started with.

Other Issues

3.4.1

34.2

This section draws together a number of issues that overlap with the production of
static graphics but are described in more detail elsewhere.

3-D Plots

Static 3-D plots have limited usefulness because 3-D structures are often difficult to
perceive without motion. Nevertheless, it is important to be able to produce 3-D im-
ages for some purposes. For example, a 3-D plot can be very effective for visualizing
a prediction surface from a model.

R provides only simple functionality for drawing 3-D surfaces via the persp ()
function, but the rgl (Adler, 2004) add-on package provides an interface to the
powerful OpenGL 3-D graphics system (Schreiner, 1999).

Speed

In dynamic and interactive statistical graphics, speed is essential. Drawing must be
as fast as possible in order to allow the user to change settings and have the graphics
update in real time. In static graphics, speed is less of an issue; achievability of a par-
ticular result is more important than how long it takes to achieve it. It is acceptable
for a plot to take on the order of seconds to draw rather than milliseconds.

This speed allowance is particularly important in terms of the user interface. For
example, in R a lot of graphics code is written in interpreted R code (which is much
slower than C code). This makes it easier for users to see the code behind graphics
functions, to possibly modify the code, and even to write their own code for graphics.



Static Graphics 99

Nevertheless, a limit is still required because the time taken to draw a single plot
can be multiplied many times when producing plots of a large number of observa-
tions and when running batch jobs involving a large number of plots.

In R, complex plots, such as Trellis plots produced by the lattice package, can be
slow enough to see individual panels being drawn, but most users find this acceptable.
The entire suite of figures for a medium-sized book can still be generated in much
less than a minute.

Output Formats

When producing plots for reports, it is necessary to produce different formats de-
pending on the format of the report. For example, reports for printing are best pro-
duced using PostScript or PDF (Bienz and Cohn, 1993) versions of plots, but for pub-
lication on the World Wide Web, it is still easiest to produce some sort of raster for-
mat such as PNG. There are many excellent pieces of software for converting between
graphics formats, which reduces the need for statistical graphics software to produce
output in many formats; simply produce whatever format the statistical graphics soft-
ware supports and then convert it externally.

Nevertheless, there are still some reasons for statistical graphics software to sup-
port multiple formats. One example is that software can raise the bar for the lowest-
common-denominator format. For example, R performs clipping of output for for-
mats that do not have their own clipping facilities (e.g. the FIG format; Sutanthav-
ibul, 1985). Another example is that some formats, especially modern ones, provide
features that are unavailable in other formats, such as transparency, hyperlinks and
animation. It is not possible to convert a more basic format into a more sophisticated
format without adding information. Essentially this says that if you are going to aim
for a single format, aim high.

Finally, it is worth noting that a description of a plot in the original language of
a statistical graphics software system is a viable and important persistent storage op-
tion. For example, when producing plots with R, it is advisable to record the R code
that was used to produce the plot in addition to saving the plot in any ‘traditional’
formats such as PDF or PostScript. One important advantage with retaining such
a high-level format is that it is then possible to modify the image using high-level sta-
tistical graphics concepts. For example, an extra text label can be positioned relative
to the scales on a plot by modifying the original R code, but this sort of manipulation
would be inconvenient, inaccurate and hard to automate if you had to edit a PDF or
PostScript version of the plot.

Data Handling

The description of statistical graphics software in this chapter has largely ignored
the issue of where the data come from. On one hand, this is deliberate because by
separating data from graphics there is a greater flexibility to present any data using
any sort of graphic.

3.4.3

3.44
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However, we should acknowledge the importance of functionality for generating,
importing, transforming and analysing data. Without data, there is nothing interest-
ing to plot.

In an ideal situation, statistical graphics facilities are provided as part of a larger
system with data-handling features, as is the case with R.

3.5 Summary

Statistical graphics software should provide a straightforward way to produce com-
plete plots. It should be possible to customize all aspects of the plot, add extra output
to the plot and extend the system to create new types of plots.

Statistical graphics software can be thought of as an extension of a sophisticated
graphics language, providing a fully featured graphics system, a programming lan-
guage and extensions to specifically support statistical graphics.
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4.1 Introduction

The amount of data and information collected and retained by organizations and
businesses is constantly increasing, due to advances in data collection, computeri-
zation of transactions, and breakthroughs in storage technology. Further, many at-
tributes are also recorded, resulting in very high-dimensional data sets. Typically,
the applications involve large-scale information banks, such as data warehouses that
contain interrelated data from a number of sources. Examples of new technologies
giving rise to large, high-dimensional data sets are high-throughput genomic and
proteomic technologies, sensor-based monitoring systems, etc. Finally, new appli-
cation areas such as biochemical pathways, web documents, etc. produce data with
inherent structure that cannot be simply captured by numbers.

To extract useful information from such large and structured data sets, a first step
is to be able to visualize their structure, identifying interesting patterns, trends, and
complex relationships between the items. The main idea of visual data exploration is
to produce a representation of the data in such a way that the human eye can gain in-
sight into their structure and patterns. Visual data mining techniques have proven to
be of particularly high value in exploratory data analysis, as indicated by the research
in this area (Eick and Wills 1993a, b).

In this exposition, we focus on the visual exploration of data through their graph
representations. Specifically, it is shown how various commonly encountered struc-
tures in data analysis can be represented by graphs. Special emphasis is paid to cate-
gorical data for which many commonly used plotting techniques (scatterplots, paral-
lel coordinate plots, etc.) prove problematic. Further, a rigorous mathematical frame-
work based on optimizing an objective function is introduced that results in a graph
layout. Several examples are used to illustrate the techniques.

4.2 Data and Graphs

Graphs are useful entities since they can represent relationships between sets of ob-
jects. They are used to model complex systems (e.g., computer and transportation
networks, VLSI and Web site layouts, molecules, etc.) and to visualize relationships
(e.g., social networks, entity-relationship diagrams in database systems, etc.). In statis-
tics and data analysis, we usually encounter them as dendrograms in cluster analysis,
as trees in classification and regression, and as path diagrams in structural equation
models and Bayesian belief diagrams. Graphs are also very interesting mathematical
objects, and a lot of attention has been paid to their properties. In many instances,
the right picture is the key to understanding. The various ways of visualizing a graph
provide different insights, and often hidden relationships and interesting patterns are
revealed. An increasing body of literature is considering the problem of how to draw
a graph [see for instance the book by Di Battista et al. (1998) on graph drawing, the
Proceedings of the Annual Conference on Graph Drawing, and the annotated bib-
liography by Di Battista et al. (1994)]. Also, several problems in distance geometry
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Pib1

Figure 4.1. Graph representation of a small protein interaction network, with nodes corresponding to

proteins and links to their physical interactions

and in graph theory have their origin in the problem of graph drawing in higher-
dimensional spaces. Of particular interest in this study is the representation of data
sets through graphs. This bridges the fields of multivariate statistics and graph draw-
ing.

Figure 4.1 shows the graph representation of the protein interaction network im-
plicated in the membrane fusion process of vesicular transport for yeast (Ito et al.,
2000), with the nodes representing the proteins and the links the physical interac-
tions between them.

However, graphs are also capable of capturing the structure of data commonly
encountered in statistics, as the following three examples show. The first example
deals with a contingency table (Table 4.1 and Fig. 4.2), where the nodes correspond
to the categories and the weighted links represent the frequencies.

The second example deals with a small correlation matrix (Table 4.2 and Fig. 4.3),
which can also be represented by a weighted graph, with the nodes representing the
variables and the links the strength of the correlation.

Table 4.1. Contingency table of 5387 school children form Caithness, Scotland, classified according to

two categorical variables, hair and eye color (Fisher, 1938)

Hair color
Eye color Fair Red Medium Dark Black
Light 688 116 584 188
Blue 326 38 241 110 3
Medium 343 84 909 412 26

Dark 98 48 403 681 85
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Figure 4.2. Weighted graph representation of a contingency table

Table 4.2. A small correlation matrix for four variables

Var 1 Var 2 Var 3 Var 4
Var 1 1.00
Var 2 0.72 1.00
Var 3 0.43 0.84 1.00
Var 4 0.96 0.57 0.05 1.00
0.72
Var 1 Var 2
0.57
0.96 0.84
0.43
Var 4 . Var 3
0.05

Figure 4.3. Representation of a small correlation matrix by a weighted graph

Another interesting data structure that can be represented successfully by a graph
is that corresponding to a multivariate categorical data set, as the following example
attests (Table 4.3). The data on 21 sleeping bags and their characteristics come from
Prediger (1997) and have also been discussed in Michailidis and de Leeuw (2001).

Graph Layout Techniques

The problem of graph drawing/layout has received a lot of attention from various
scientific communities. It is defined as follows: given a set of nodes connected by a set
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Table 4.3. The superindicator matrix representation (Gifi, 1990) of a categorical data set

2 5 13 & =
5 2 & g =
g ] o g & < &
g 5 = & E 8 -
O Z 3 A 2 O < M
Sleeping Bag Price Fiber Quality
1 One Kilo Bag 1 0 0 0 1 1 0 0
2 Sund 1 0 0 0 1 0 0 1
3 Kompakt Basic 1 0 0 0 1 1 0 0
4 Finmark Tour 1 0 0 0 1 0 0 1
5 Interlight Lyx 1 0 0 0 1 0 0 1
6 Kompakt 0 1 0 0 1 0 1 0
7 Touch the Cloud 0 1 0 0 1 0 1 0
8 Cat’s Meow 0 1 0 0 1 1 0 0
9 Igloo Super 0 1 0 0 1 0 0 1
10 Donna 0 1 0 0 1 0 1 0
1 Tyin 0 1 0 0 1 0 1 0
12 Travellers Dream 0 1 0 1 0 1 0 0
13 Yeti Light 0 1 0 1 0 1 0 0
14 Climber 0 1 0 1 0 0 1 0
15 Viking 0 1 0 1 0 1 0 0
16 Eiger 0 0 1 1 0 0 1 0
17 Climber light 0 1 0 1 0 1 0 0
18 Cobra 0 0 1 1 0 1 0 0
19 Cobra Comfort 0 1 0 1 0 0 1 0
20 Foxfire 0 0 1 1 0 1 0 0
21 Mont Blanc 0 0 1 1 0 1 0 0

of edges, identify the positions of the nodes in some space and calculate the curves
that connect them. Hence, in order to draw a graph, one has to make the following
two choices: (i) selection of the space and (ii) selection of the curves. For example,
grid layouts position the nodes at points with integer coordinates, while hyperbolic
layouts embed the points on a sphere. Most graph drawing techniques use straight
lines between connected nodes, but some use curves of a certain degree (Di Battista
et al., 1998).

Many layout algorithms are based on a set of aesthetic rules that the drawing needs
to adhere to. Popular rules are that nodes and edges must be evenly distributed, edges
should have similar lengths, edge crossings must be kept to a minimum, etc. Some
of these rules are important in certain application areas. Further, many of these rules
lead to a corresponding optimization problem, albeit intractable in certain cases. For
example, the edge-crossing minimization is provably NP-hard and hence computa-
tionally intractable (Di Battista et al., 1998). In many cases, a basic layout is obtained
by a computationally fast algorithm, and the resulting drawing is postprocessed to
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Figure 4.4. Graph representation of the sleeping bag data set presented in Table 4.2, with the left set of
nodes corresponding to the objects (sleeping bags), the right set of nodes to the categories of the three
attributes (price, fiber, quality), and selected edges capturing the relationship between objects and
categories.

adhere to such aesthetic rules. The latter strategy proves particularly useful in the
presence of large graphs and is adopted by several graph drawing systems, such as
Nicheworks (Wills, 1997), GVF (Herman et al., 2000), and H3Viewer (Muentzer,
1998). Many systems also allow manual postprocessing of the resulting layout; see
for example the Cytoscape visualization system (www.cytoscape.org).

The general problem of graph drawing discussed in this paper is to represent the
edges of a graph as points in R? and the vertices as lines connecting the points. Graph
drawing is an active area in computer science, and it is very ably reviewed in the recent
book by Di Battista et al. (1998). The choice of R” is due to its attractive underlying
geometry and the fact that it renders the necessary computations more manageable.



Data Visualization Through Their Graph Representations 109

There are basically two different approaches to making such drawings. In the met-
ric or embedding approach, one uses the path-length distance defined between the
vertices of the graph and tries to approximate these distances by the Euclidean dis-
tance between the points. The area of embedding graph-theoretical distances is re-
lated to distance geometry, and it has been studied a great deal recently. In this paper,
we adopt primarily the adjacency model, i.e., we do not emphasize graph-theoretical
distances, but we pay special attention to which vertices are adjacent and which are
not. Obviously, this is related to distance, but the emphasis is different. We use ob-
jective (loss) functions to measure the quality of the resulting embedding.

Force-directed Techniques

The class of graph-drawing techniques most useful for data visualization are force-
directed techniques. This class of techniques borrows an analogy from classical physics,
with the vertices being bodies with masses that attract and repel each other due to
the presence of springs, or because the vertices have electric charges. This implies
that there are ‘physical” forces pulling and pushing the vertices apart, and the opti-
mal graph layout will be one in which these forces are in equilibrium. An objective
(loss) function that captures this analogy is given next:

QUXIAB) = 323 aij¢(dij (X)) - 33 by (dis (X)), (41)

i=1 j=1 i=1 j=1

where the 7 x p matrix X contains the coordinates of the n vertices in R? and d;;(X)
denotes the distances between points with coordinates x; and x;. The weights a;;
correspond to those in the adjacency matrix A of the graph G, while the pushing
weights B = {b;;} could be derived either from the adjacency matrix or from an ex-
ternal constraint. Finally, the functions ¢(-) and (+) are transformations whose role
is to impose some aesthetic considerations on the layout. For example, a convex ¢
function will reinforce large distances by rendering them even larger and thus en-
able one to detect unique features in the data, while a concave transformation will
dampen the effect of isolated vertices. Notice that this framework can accommodate
both simple (i.e., a;; € {0,1}) and weighted (i.e., a;; > 0) graphs. A popular force-
directed technique that employs this pull-push framework is discussed in Di Battista
et al. (1998), where the pulling is done by springs obeying Hooke’s law (i.e., the force
is proportional to the difference between the distance of the vertices and the zero-
energy length of the spring), while the pushing is done by electrical forces following
an inverse square law. Variations on this physical theme are used in several other
algorithms (Fruchterman and Reingold 1991 and references therein).

Another way of incorporating a pushing component in the above objective func-
tion is through a normalization constraint. For example, one can require that
7(X) =1, and then the objective function takes the form by forming the Lagrangian:

Q(X[A) = 3" asjp(dis (X)) = A(n(X) ~1). (42)

i=1 j=1

4.3.1
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It then becomes clear that the constraint term in the Lagrangian corresponds to the
push component of Q(+). Examples of #(X) include #(X) = trace(X'X) or n(X) =
det(X’'X). Other possibilities include requiring the orthonormality of the points in
the layout, such as X'X = I, or even fixing some of the Xs (Tutte, 1963).

Finally, this formulation allows one to incorporate into the force-directed frame-
work the metric approach of graph drawing, where one works not with the adjacency
matrix of the graph but with a distance matrix defined on the graph G. The goal then
becomes to approximate graph-theoretic distances by Euclidean distances. Hence,
the goal becomes to minimize

QXIW) = 33 wisp(dis(X)). (43)

i=1 j=1

where

p(dij(X)) = (n(8ij) = n(dij(X)))*, (4.4)

where W = {w;;} is a set of weights. The §;; correspond to path-length distances de-
fined on the graph G, whereas the transformation # is usually the identity, the square,
or the logarithm. Obviously p(d(X)) is not increasing and does not pass through
zero; nevertheless, by expanding the square it becomes clear that it is equivalent to
minimizing Q(X|W) with ¢(d) = n*(d), y(d) = n(d), and b;; = 25(8;;)w;. Thus,
all points are pulling together, but points with large path-length distances are being
pushed apart.

Next we examine in more detail the metric or embedding approach and the pulling
under constraints model, which have proved particularly useful for drawing graphs
obtained from data.

Multidimensional Scaling

The metric approach previously discussed corresponds to one version of multidi-
mensional scaling (MDS). MDS is a class of techniques where a set of given dis-
tances is approximated by distances in low-dimensional Euclidean space. Formally,
let {8, i,j =1,...,n} be a set of distances. The goal is to identify the coordinates
of n points x; in R? such that the Euclidean distance d(x;,x;) = d;;(X) is approxi-
mately equal to J;;.

As mentioned before, for graph-drawing purposes, the §;; correspond to the short-
est path distances defined on a graph G. A discussion of MDS as a graph-drawing
technique is provided in Buja and Swayne (2002), where in addition other choices
beyond Euclidean space are studied for the embedding space. The least-squares-loss
(fit) function (known in the literature as Stress) introduced in Kruskal (1964) has the
form

0(X) = 32 3 w84 - diy (X))? (4.5)

i=1 j=1
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that is minimized over X. The w;; are weights that can be chosen to reflect variabil-
ity, measurement error, or missing data. This is precisely the objective function (4.3)
derived from the general framework of force-directed techniques previously intro-
duced and discussed.

A number of variations of (4.5) have appeared in the literature. In McGee (1966),
the loss function has weights 6;7. The loss function is interpreted as the amount of
physical work that must be done on elastic springs to stretch or compress them from
an initial length J;; to a final length d;;. On the other hand, the following choice of
weights w;; = 6171 is discussed in Sammon (1969).

Minimization of the loss function (4.5) can be accomplished either by an iterative
majorization algorithm (Borg and Groenen 1997; De Leeuw and Michailidis 1998) or
by a steepest descent method (Buja and Swayne 2002). The latter method is used in
the implementation of MDS in the GGobi visualization system (Swayne et al., 1998).
A 2-D MDS solution for the sleeping bag data is shown in Fig. 4.5. It can be seen that
the solution spreads the objects in the data set fairly uniformly in the plane, and edge
crossings are avoided.

We discuss next a fairly recent application of MDS. In many instances, the data ex-
hibit nonlinearities, i.e., they lie on a low-dimensional manifold of some curvature.
This has led to several approaches that still rely on the embedding (MDS) approach
for visualization purposes but appropriately alter the input distances {J;;}. A pop-
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Figure 4.5. MDS representation of sleeping bag data set based on y?-distances. Due to the discrete
nature of the data, multiple objects are mapped onto the same location, as shown in the plot. Further,
for reference purposes, the categories to which the sleeping bags belong have been added to the plot at

the centroids of the object points
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Figure 4.6. [This figure also appears in the color insert.] Top panel: original data (2000 data points)
arranged along a nonlinear surface (Swiss Roll). Middle panel: 2-D MDS representation based on

a complete weighted graph. Bottom panel: 2-D MDS representation based on 20 nearest-neighbor graph
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ular and fairly successful nonlinear embedding technique is the Isomap algorithm
(Tenenbaum et al., 2000). The main algorithm computes for each point in the data
set a K-nearest neighbor graph and then stitches them together in the adjacency ma-
trix. It then calculates distances using the resulting graph and then applies MDS. The
main idea in the first step of the construction is to capture well the local geometry of
the data. An illustration of the idea based on the Swiss Roll data set is shown next.
Specifically, 2000 random points lying on a roll have been generated and their Eu-
clidean pairwise distances computed. In addition, a graph that connects data points
only with their closest 20 neighbors in the Euclidean metric was computed and short-
est path distances calculated. Subsequently, MDS was applied to both distance matri-
ces and a 2-D embedding obtained. The coloring scheme shows that straightforward
MDS does not capture the underlying geometry of the roll (since the points do not
follow their progression on the roll, blue, cyan, green, etc.), whereas the first dimen-
sion using the Isomap algorithm recovers the underlying structure. The hole in the
middle is mostly due to the low density of orange points.

The Pulling Under Constraints Model

In this model, the similarity of the nodes is important. In the case of a simple graph,
only connections between nodes are taken into consideration, whereas in a weighted
graph, edges with large weights play a more prominent role. However, the normal-
ization constraint, as discussed in Sect. 3, pushes points apart and avoids the triv-
ial solution of all points collapsing to the origin. This model, under various dis-
tance functions, has been studied in a series of papers by Michailidis and de Leeuw
(2001, 2004, 2005). We examine next the case of squared Euclidean distances, where
#(d(X)) = dfj (X)/2, which turns out to be particularly interesting from a data visu-
alization point of view. Some algebra shows that the objective function can be written
in the following matrix algebra form:

Q(X|A) = trace(X'LX), (4.6)

where L = D—A is the graph Laplacian (Chung, 1997), with D being a diagonal matrix
containing the row sums of the adjacency matrix A. It can be seen that by minimizing
(4.6), nodes sharing many connections would be pulled together, whereas nodes with
few connections would end up on the periphery of the layout. For a weighted graph,
the larger the weights, the stronger the bond between nodes and hence the more
pronounced the clustering pattern.

A normalization constraint that leads to a computationally easy-to-solve problem
is X'DX = I,. Some routine calculations show that minimizing (4.6) subject to this
constraint corresponds to solving a generalized eigenvalue problem. Further, notice
that the solution is not orthogonal in Euclidean space, but in weighted (by D) Eu-
clidean space. Figure 4.7 shows the graph layout for the small protein interactions
network shown in Fig. 4.1. It can be seen that proteins PIB1 and BET1 that have very
few interactions are located on the periphery of the layout. Moreover, the ‘hub’ pro-

433
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Figure 4.7. Two-dimensional layout of the small protein interaction network shown in Fig. 4.1

teins TLG1 and YIP1 are positioned close to the center of the plot, signifying their
central role in this network.

The next example comes from the UCI machine learning repository. The data set
consists of features of handwritten numerals (0-9) extracted from a collection of
Dutch utility maps. There are 200 patterns per class, and 240 variables characterizing
the pixel intensity of the underlying digital image of the digit have been collected.
The pixel intensities are categorical and take values in the 0 to 7 range. This is an ex-
ample where linear techniques such as principal component analysis fail to separate
the classes (see top panel of Fig. 4.8).

The next set of plots in Fig. 4.9 shows the layouts of a few large graphs that have
been used for testing graph partitioning algorithms (Walshaw, 2003). The first graph
is comprised of 4720 vertices and 13722 edges, the second of 10240 vertices and
30380 edges, and the third of 4253 vertices and 12 289 edges. They are derived from
computational mechanics meshes and characterized by extreme variations in the
mesh density and the presence of “holes.” The layouts shown are based on weighted
graphs that were built by considering for each vertex its ten nearest neighbors in the
Euclidean metric and calculating exponentially decreasing weights. It can be seen
that the layouts capture, to a large extent, the underlying structure of the graphs in
terms of density and the presence of “holes.”

Bipartite Graphs

As noted in Sect. 2, the graph representation of a contingency table and of a categori-
cal data set has some special features, namely, the node set V can be partitioned into
two subsets. For example, in the case of a contingency table, the categories of one
variable form the first subset and those of the other variable the second one. Notice
that there are only connections between members of these two subsets. An analogous
situation arises in the case of categorical data, where the first subset of nodes corre-
sponds to the objects (e.g., the sleeping bags) and the second subset to the categories
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Figure 4.8. [This figure also appears in the color insert.] PCA layout of digits dataset (top panel) and
the 3-D graph layout (bottom panel)

of all the variables. These are two instances where the resulting graph representation
of the data gives rise to a bipartite graph. A slight modification of the Q(-) objective
function leads to interesting graph layouts of such data sets. Let X = [Z" Y'], where
Z contains the coordinates of the first subset of the vertices and Y those of the second
subset. The objective function for squared Euclidean distances can then be written as
(given the special block structure of the adjacency matrix A)

Q(Z,Y|A) =trace(Z'D;Z + Y'DyY - 2Y'AZ), (4.7)

where Dy is a diagonal matrix containing the column sums of A and D another
diagonal matrix containing the row sums of A. In the case of a contingency table,
both Dy and D7 contain the marginal frequencies of the two variables, while for
a multivariate categorical data set Dy contains again the univariate marginals of all
the categories of all the variables and D = ]I is a constant multiple of the identity
matrix, with J denoting the number of variables in the data set. A modification of
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Figure 4.9. Layouts of large graphs derived from computational mechanics meshes and characterized
by varying degrees of mesh density
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the normalization constraint to this setting, namely, Z'D;Z = I,,, gives the following
solution, which can be obtained through a block relaxation algorithm (Michailidis
and de Leeuw, 1998):

Z=]'AYand Y = D;/A'XZ.

Hence, the optimal solution satisfies the centroid principle (Gifi, 1990), which says that
the category points in the optimal layout are at the center of gravity of the objects that
belong to them. The above graph-drawing solution is known in multivariate analysis
for contingency tables as correspondence analysis and for multivariate categorical
data sets as multiple correspondence analysis (Michailidis and de Leeuw, 1998).

Figure 4.10 shows the graph layout of the sleeping bags data set. The solution cap-
tures the basic patterns in the data set, namely, that there are good-quality, expensive
sleeping bags filled with down fibers and cheap, bad-quality sleeping bags filled with
synthetic fibers. Further, there exist some sleeping bags of intermediate quality and
price filled with either down or synthetic fibers. Notice that the centroid principle
resulting from the partitioning of the vertex set proves useful in the interpretation
of the layout. Further, the resulting layout is less ‘uniform’ than the one obtained
through MDS and thus better captures features of the data.

It is interesting to note that the choice of the distance function coupled with a par-
ticular normalization has a significant effect on the aesthetic quality of the resulting
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Figure 4.10. Graph layout of sleeping bags data based on objective function (4.7). Due to the discrete
nature of the data, multiple objects are mapped on the same location, as shown in the plot. Further, for
reference purposes, the categories to which the sleeping bags belong have been added to the plot at the
centroids of the object points
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graph layout. An extreme case occurs when ¢(d(X)) = d;;j(X) corresponds to Eu-
clidean distances. Then, under the orthonormality constraint, the solution is rather
uninteresting and consists of exactly p + 1 points, where p is the dimensionality of
the embedding space. A mathematical explanation of this result is given for the 1-D
case (p =1) in de Leeuw and Michailidis (2004) and is also illustrated for the higher-
dimensional case (p > 2) in Michailidis and de Leeuw (2005).

4.4 Discussion and Concluding Remarks

In this paper, the problem of data visualization through layouts of their graph rep-
resentations is considered. A mathematical framework for graph drawing based on
force-directed techniques is introduced, and several connections to well-known mul-
tivariate analysis techniques such as multidimensional scaling, correspondence, and
multiple correspondence analysis are made.

Several extensions that may improve the quality of the graph layout are possible
within this general framework. For example, logistic loss functions are explored in de
Leeuw (2005), together with the arrangement of the nodes along Voronoi cells. The
visualization of several related data sets through multilevel extensions of multiple
correspondence analysis are explored in Michailidis and de Leeuw (2000). Finally,
a version of multidimensional scaling for data that change over time is discussed in
Costa et al. (2004).

Acknowledgement. This work was partially supported by NIH grant 5P41RR018627-03. The
author would like to thank Jan de Leeuw for many fruitful discussions and suggestions on the
topic over the course of the last 10 years and the editors of the Handbook for many comments
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Introduction

5.2

This chapter will cover the uses of graphs for making graphs. This overloading of
terms is an unfortunate historical circumstance that conflated graph-of-a-function
usage with graph-of-vertices-and-edges usage. Vertex-edge graphs have long been
understood as fundamental to the development of algorithms. It has become increas-
ingly evident that vertex-edge graphs are also fundamental to the development of
statistical graphics and visualizations.

One might assume this chapter is about laying out graphs on a plane, in which
vertices are represented by points and edges by line segments. Indeed, this problem
is covered in the chapter. Nevertheless, we take the point of view of the grammar of
graphics (Wilkinson 2005), in which a graphic has an underlying model. Thus, we
assume a graph-theoretic graph is any graph that maps aspects of geometric forms
to vertices and edges of a graph.

We begin with definitions of graph-theoretic terminology. These definitions are
assumed in later sections, so this section may be skipped and used later as a glossary
by those not interested in details.

Definitions

A graph is a set V together with a relation on V. We usually express this by saying that
a graph G = (V,E) is a pair of sets, V is a set of vertices (sometimes called nodes),
and E is a set of edges (sometimes called arcs or links). An edge e(u,v), with e € E
and u,v € V, is a pair of vertices.

We usually assume the relation on V induced by E is symmetric; we call such
a graph undirected. If the pair of vertices in an edge is ordered, we call G a directed
graph, or digraph. We denote direction by saying, with respect to a node, that an edge
is incoming or outgoing.

A graph is weighted if each of its edges is associated with a real number. We con-
sider an unweighted graph to be equivalent to a weighted graph whose edges all have
a weight of 1.

A graph is complete if there exists an edge for every pair of vertices. If it has n
vertices, then a complete graph has n(n —1)/2 edges.

A loop is an edge with u = v. A simple graph is a graph with no loops. Two edges
(u,v) and (s, t) are adjacent if u = s or u = t or v = s or v = t. Likewise, a vertex v is
adjacent to an edge (u,v) or an edge (v, u).

A path is a list of successively adjacent, distinct edges. Let (ej,...,ex) be a se-
quence of edges in a graph. This sequence is called a path if there are vertices (v, ...,
vy ) such that e; = (v;_,v;) fori=2,... k.

Two vertices u, v of a graph are called connected if there exists a path from vertex
u to vertex v. If every pair of vertices of the graph is connected, the graph is called
connected.



Graph-theoretic Graphics 123

A path is cyclic if a node appears more than once in its corresponding list of edges.
A graph is cyclic if any path in the graph is cyclic. We often call a directed acyclic
graph a DAG.

A topological sort of the vertices of a DAG is a sequence of distinct vertices (vy,. . .,
V). For every pair of vertices v;, v; in this sequence, if (v;, v;) is an edge, then i < j.

A linear graph is a graph based on a list of n vertices; its n—1edges connect vertices
that are adjacent in the list. A linear graph has only one path.

Two graphs G; = (Wi, E;) and G, = (Va, E,) are isomorphic if there exists a bijec-
tive mapping between the vertices in V; and V; and there is an edge between two ver-
tices of one graph if and only if there is an edge between the two corresponding ver-
tices in the other graph. A graph G, = (V;, E;) is a subgraph of a graph G, = (V3, E;)
ifVicVyand E; S E; n(Vp x V).

The graph-theoretic distance (or geodesic distance) between connected nodes u and
v is the sum of the weights of the edges in any shortest path connecting the nodes. This
distance is a metric, namely, symmetry, identity, and the triangle inequality apply.

The adjacency matrix for a graph G with n vertices is an n x n matrix with entries
a;; having a value 1 if vertex i is adjacent to vertex j and zero otherwise. The set
of eigenvalues of this matrix is called the graph spectrum. The spectrum is useful
for identifying the dimensionality of a space in which a graph may be embedded or
represented as a set of points (for vertices) and a set of connecting lines (for edges).

A geometric graph G, = [f(V), g(E), S] is a mapping of a graph to a metric space
S such that vertices go to points and edges go to curves connecting pairs of points. We
will discuss various types of geometric graphs in this chapter. When the meaning is
clear, we will omit the subscript and refer to G as a geometric graph. The usual map-
ping is to Euclidean space. Sometimes we will measure and compare the Euclidean
distance between points to the graph-theoretic distance between the corresponding
vertices of the graph.

A proximity graph G, = [V, f(V)] is a graph whose edges are defined by a prox-
imity function f (V') on pointsin a space S. The range of f (V') is pairs of vertices. One
may regard f (V) as an indicator function in which an edge exists when g(u,v) < d,
where d is some nonnegative real value and g() is a real-valued function associated
with ().

A random graph is a function defined on a sample space of graphs. Although ran-
dom graphs are relevant to statistical data, this chapter will not cover them because
of space limitations. Marchette (2004) is a standard reference.

Trees

A tree is a graph in which any two nodes are connected by exactly one path. Trees are
thus acyclic connected graphs. Trees may be directed or undirected. A tree with one
node labeled root is a rooted tree. Directed trees are rooted trees; the root of a directed
tree is the node having no incoming edges.

A hierarchical tree is a directed tree with a set of leaf nodes (nodes of degree 1)
representing a set of objects and a set of parent nodes representing relations among
the objects. In a hierarchical tree, every node has exactly one parent, except for the

5.2.1
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root node, which has one or more children and no parent. Examples of hierarchical
trees are those produced by decision-tree and hierarchical clustering algorithms.

A spanning tree is an undirected geometric tree. Spanning trees have n — 1 edges
that define all distances between # nodes. This is a restriction of the n(n—1)/2 edges
in a complete graph. A minimum spanning tree (MST) has the shortest total edge
length of all possible spanning trees.

Ultrametric Trees

If the node-to-leaf distances are monotonically nondecreasing (i.e., no parent is closer
to the leaves than its children are), then a hierarchical tree is ultrametric. An ultra-
metric is a metric with a strong form of the triangle inequality, namely,

d(x,y) <max[d(x,z),d(y,z)] .

In an ultrametric tree, the graph-theoretic distances take at most n — 1 possible val-
ues, where 7 is the number of leaves. This is because of the ultrametric three-point
condition, which says we can rename any x, y, z such that

d(x,y) <d(x,z) =d(y,z).

Another way to see this is to note that the distance between any two leaves is deter-
mined by the distance of either to the common ancestor.

Additive Trees

Let D be a symmetric n by n matrix of distances d;;. Let T be a hierarchical tree with
one leaf for each row/column of D. T is an additive tree for D if, for every pair of leaves
(i, tj), the graph theoretic distance between the leaves is equal to d;;. Additive trees
rest on a weaker form of the triangle inequality than do ultrametric trees. namely,

d(x,y) <[d(x,2) +d(y,2)] .

5.3 Graph Drawing

A graph is embeddable on a surface if it can be drawn on that surface so that edges
meet only at vertices. A graph is planar if it is embeddable on a sphere (and, by impli-
cation, the unbounded plane). We can use a theorem by Euler to prove a particular
graph is not planar, but we can prove a particular graph is planar only by drawing it
without edge crossings. Drawing graphs is more than a theoretical exercise, however.

Finding compact planar drawings of graphs representing electrical circuits, for ex-
ample, is a critical application in the semiconductor industry. Other applications in-
volve metabolic pathways, kinetic models, and communications and transportation
networks. Spherical applications involve mapping the physical nodes of the Internet
and world trade routes.



Graph-theoretic Graphics 125

The graph-drawing (or graph-layout) problem is as follows. Given a planar graph,
how do we produce an embedding on the plane or sphere? And if a graph is not pla-
nar, how do we produce a planar layout that minimizes edge crossings? The standard
text on graph drawing is Di Battista et al. (1999), which is a comprehensive bibliog-
raphy. Kruja et al. (2001) give a history of the problem. See also the various years
of the Proceedings of the International Symposium on Graph Drawing, published by
Springer.

Different types of graphs require different algorithms for clean layouts. We begin
with trees. Then we discuss laying out networks and directed cyclic graphs. In most
examples, the basic input data are nonnumeric. They consist of an unordered list of
vertices (node labels) and an unordered list of edges (pairs of node labels). If a graph
is connected, then we may receive only a list of edges. If we have a weighted graph,
the edge weights may be used in the loss function used to define the layout. We will
discuss other forms of input in specific sections.

Hierarchical Trees

Suppose we are given a recursive list of single parents and their children. In this list,
each child has one parent and each parent has one or more children. One node, the
root, has no parent. This tree is a directed graph because the edge relation is asym-
metric. We can encapsulate such a list in a node class:
Node({

Node parent;

NodeList children;
}
Perhaps the most common example of such a list is the directory structure of a hi-
erarchical file system. A display for such a list is called a tree browser. Creating such
a display is easy. We simply walk the tree, beginning at the root, and indent children
in relation to their parents. Figure 5.1 shows an example that uses the most common
vertical layout. Figure 5.2 shows an example of a horizontal layout. Interestingly, the
“primitive” layout in Fig. 5.1 has been found to be quite effective when compared to
more exotic user-interface tree layouts (Kobsa 2004).

Suppose now we are given only a list of edges and told to lay out a rooted tree. To lay
out a tree using only an edge list, we need to inventory the parent—child relationships.
First, we identify leaves by locating nodes appearing only once in the edge list. We
then assign a layer value to each node by finding the longest path to any leaf from
that node. Then we begin with the leaves, group children by parent, and align parents
above the middle child in each group. After this sweep, we can move leaves up the
hierarchy to make shorter branches. Figure 5.3 shows an example using this layout
algorithm. The data are adapted from weblogs of a small website. The thicknesses of
the branches of the tree are proportional to the number of visitors navigating between
pages represented by nodes in the tree.

If the nodes of a tree are ordered by an external variable such as joining or splitting
distance, then we may locate them on a scale instead of using paternity to determine
ordering. Figure 5.4 shows an example of this type of layout using a cluster tree. The

5.3.1
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Figure 5.3. Layout of a website tree

data consist of FBI-reported murder rates for US states in 1970. A single linkage clus-
ter analysis with leaves ordered by murder rates produced the tree.

This is an interesting example for several reasons. First, we ordinarily do not think
of clustering a set of objects on a single variable. Clustering in one dimension is equiv-
alent to mode hunting or bump hunting, however. Hierarchical clustering (as in this
example) can yield a 1-D partitioning into relatively homogeneous blocks. We are
seeking intervals in which observations are especially dense. We see, for example,
that there are clusters of southern and midwestern states whose murder rates are
relatively similar. The mode tree (Minnotte and Scott 1993) is another instance of
a tree representation of a 1-D dataset. This tree plots the location of modes in the
smoothed nonparametric density estimator as a function of kernel width. Second,
a topological sort on a total order is the same as an ordinary sort. That is, by sorting
the leaves of this tree on murder values, we have produced a topological sort. For
hierarchical clustering trees on more variables there exist more than one topological
sort to help organize a tree for viewing. Wilkinson (1999) discusses some of these
strategies.

Hierarchical trees with many leaves can become unwieldy in rectangular layouts.
In Fig. 5.5 we lay out the same cluster tree in polar coordinates. Other types of cir-
cular layouts (e.g. Lamping et al. 1995) can accommodate even larger trees. Circular
layouts are popular in biological applications involving many variables because of
their space-saving characteristics. It is best, of course, if the polar orientation has an
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intrinsic meaning, but sometimes making room for labels and other information is
sufficient justification.

In some cases, the nodes of hierarchical trees may represent nested collections
of objects. Classification and regression trees, for example, hierarchically partition
a set of objects. For these applications, Wilkinson (1999) invented a tree display called
a mobile. Figure 5.6 shows an example using data on employees of a bank. Each node
contains a dot histogram; each dot represents a bank employee. The dot histograms
are hierarchical; a parent histogram aggregates the dots of its children. The horizontal
branches represent a beam balancing two sibling dot histograms. By using this model,
we highlight the marginality of splits. That is, outlying splits are shifted away from the
bulk of the display. This layout is relatively inefficient with regard to space, and it is
not well suited to a polar arrangement because the balance metaphor has no meaning
in that context.

Figure 5.7 shows an alternative display for classification trees (Urbanek 2003). This
form uses the width of branches to represent the size of subsplits. This tree is similar
to earlier graphics shown in Kleiner and Hartigan (1981), Dirschedl (1991), Lausen
et al. (1994) and Vach (1995).
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Figure5.6. [This figure also appears in the color insert.] Mobile of bank employee data

Suppose we have a directed geometric tree with one root having many children.
Such a tree may represent a flow from a source at the root branching to sinks at the
leaves. Water and migration flows are examples of such a tree. Phan et al. (2005)
present a suite of algorithms (including hierarchical cluster analysis and force-direc-
ted layout) for rendering a flow tree. The data consist of the geographic location of the
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source and the locations of the sinks. There is one edge in the tree for each sink. Fig-
ure 5.8 shows an example using Colorado migration data from 1995 to 2000. Notice
that edges are merged as much as possible without compromising the smoothness

and distinctness of the terminal flows.
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Spanning Trees

It makes sense that we might be able to lay out a spanning tree nicely if we approxi-
mate graph-theoretic distance with Euclidean distance. This should tend to place ad-
jacent vertices (parents and children) close together and push vertices separated by
many edges far apart. The most popular algorithm for doing this is a variant of mul-
tidimensional scaling called the springs algorithm. It uses a physical analogy (springs
under tension represent edges) to derive a loss function representing total energy in
the system (similar to MDS stress). Iterations employ steepest descent to reduce that
energy.

Laying out a Simple Tree
Figure 5.9 (Wilkinson 2005) shows an example using data from a small website.
Each node is a page and the branches represent the links between pages; their thick-
ness represents traffic between pages (this website has no cross-links). It happens
that the root is located near the center of the display. This is a consequence of the
force-directed algorithm. Adjacent nodes are attracted and nonadjacent nodes are
repelled.

The springs algorithm brings to mind a simple model of a plant growing on a sur-
face. This model assumes branches should have a short length so as to maximize
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Figure5.9. Force-directed layout of a website tree

5.3.2
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Figure 5.10. A rooted tree, otherwise known as Knotweed (Polygonum arenastrum). Photo courtesy of
Bill Hosken

water distribution to the leaves and assumes leaves should be separated as much as
possible so as to maximize exposure to sunlight. Figure 5.10 shows an example. Given
a planar area for uninhibited growth and uniform sunshine, this weed has assumed
a shape similar to the web tree in Fig. 5.9.

Laying out Large Trees

Laying out large spanning trees presents special problems. Even in polar form, large
trees can saturate the display area. Furthermore, the springs algorithm is computa-
tionally expensive on large trees.

One alternative was developed by Graham Wills (Wills 1999), motivated by the
hexagon binning algorithm of Carr (Carr et al. 1987). Wills uses the hexagon layout
to make edges compact and improve computation through binning. Figure 5.11 shows
an example based on website resources (Wills 1999).

Additive Trees

Additive trees require rather complex computations. We are given a (presumably ad-
ditive) distance matrix on # objects and are required to produce a spanning tree in
which the graph-theoretic distances between nodes correspond as closely as possible
to the original distances. Figure 5.12 shows an example from White et al. (1998). The
gray rectangles highlight three clusters in the data. The article notes that the angles
between edges are not significant. The edges are laid out simply to facilitate tracing
paths.
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Figure 5.11. Wills hexagonal tree
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Networks

Networks are, in general, cyclic graphs. Force-directed layout methods often work
well on networks. There is nothing in the springs algorithm that requires a graph
to be a tree. As an example, Fig. 5.13 shows an associative network of animal names
from an experiment in Wilkinson (2005). Subjects were asked to produce a list of
animal names. Names found to be adjacent in subjects’ lists were considered adjacent
in a graph.

Directed Graphs

Directed graphs are usually arranged in a vertical (horizontal) partial ordering with
source node(s) at top (left) and sink node(s) at bottom (right). Nicely laying out a di-
rected graph requires a topological sort. We temporarily invert cyclical edges to con-
vert the graph to a directed acyclic graph (DAG) so that the paths-to-sink can be
identified. Then we do a topological sort to produce a linear ordering of the DAG
such that for each edge (u, v), vertex u is above vertex v. After sorting, we iteratively
arrange vertices with tied sort order so as to minimize the number of edge cross-
ings.

Minimizing edge crossings between layers is NP-hard. We cannot always be sure
to solve the problem in polynomial time. It amounts to maximizing Kendall’s 7 cor-
relation between adjacent layers. Heuristic approaches include using direct search,
simulated annealing, or constrained optimization.

Figure 5.14 shows a graph encapsulating the evolution of the UNIX operating sys-
tem. It was computed by the AT&T system of graph layout programs.

pig
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/ \ tiger —— bear

horse
dog— _
\ zebra
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cat lion
bird/ glraffe
shake
mouse

elephant

monkey

Figure5.13. Cyclic graph of animal names
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Figure 5.14. Evolution of UNIX operating system; directed graph layout produced by Graphviz
(Pixelglow software), courtesy Ian Darwin, Geoff Collyer, Stephen North and Glen Low

Treemaps

Treemaps are recursive partitions of a space. The simplest form is a nested rectan-
gular partitioning of the plane (Johnson and Shneiderman 1991). To transform a bi-
nary tree into a rectangular treemap; for example, we start at the root of the tree.
We partition a rectangle vertically; each block (tile) represents one of the two chil-
dren of the root. We then partition each of the two blocks horizontally so that the
resulting nested blocks represent the children of the children. We apply this algo-
rithm recursively until all the tree nodes are covered. The recursive splits alternate
between vertical and horizontal. Other splitting algorithms are outlined in Bederson
et al. 2002).

If we wish, we may color the rectangles using a list of additive node weights. Oth-
erwise, we may use the popular device of resizing the rectangles according to the
node weights. Figure 5.15 shows an example that combines color (to represent poli-
tics, sports, technology, etc.) and size (to represent number of news sources) in a vi-
sualization of the Google news site. This map was constructed by Marcos Weskamp
and Dan Albritton.

5.3.5
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5.4
—

Geometric Graphs

Geometric graphs form the basis for many data mining and analytic graphics meth-
ods. The reason for this is the descriptive richness of geometric graphs for character-
izing sets of points in a space. We will use some of these graphs in the next section,
for example, to develop visual analytics.

Given a set of points in a metric space, a geometric graph is defined by one or
more axioms. We can get a sense of the expressiveness of this definition by viewing
examples of these graphs on the same set of points in this section; we use data from
the famous Box-Jenkins airline dataset (Box and Jenkins 1976), as shown in Fig. 5.16.
We restrict the geometric graphs in this section to:

Undirected (edges consist of unordered pairs)

Simple (no edge pairs a vertex with itself)
Planar (there is an embedding in R? with no crossed edges)
Straight (embedded edges are straight-line segments)

B W N -

There have been many geometric graphs proposed for representing the “shape” of
aset of points X on a plane. Most of these are proximity graphs. A proximity graph (or
neighborhood graph) is a geometric graph whose edges are determined by an indicator
function based on distances between a given set of points in a metric space. To define
this indicator function, we use an open disk D. We say D touches a point if that point
is on the boundary of D. We say D contains a point if that point is in D. We call the
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Figure5.16. Airline dataset

smallest open disk touching two points D,; the radius of this disk is half the distance
between the two points and the center of this disk is halfway between the two points.
We call an open disk of fixed radius D(r). We call an open disk of fixed radius and
centered on a point D(p, r).

Disk Exclusion

Several proximity graphs are defined by empty disks. That is, edges exist in these
graphs when disks touching pairs of points are found to be empty.

Delaunay Triangulation
— Ina Delaunay graph, an edge exists between any pair of points that can be touched
by an open disk D containing no points.

The Delaunay triangulation and its dual, the Voronoi tessellation, are powerful struc-
tures for characterizing distributions of points. While they have higher-dimensional
generalizations, their most frequent applications are in two dimensions. There are
several proximity graphs that are subsets of the Delaunay triangulation:

Convex Hull

A polygon is a closed plane figure with n vertices and n — 1 faces. The boundary of
a polygon can be represented by a geometric graph whose vertices are the polygon
vertices and whose edges are the polygon faces. A hull of a set of points X in Euclidean
space R? is a collection of one or more polygons that have a subset of the points in
X for their vertices and that collectively contain all the points in X. This definition
includes entities that range from a single polygon to a collection of polygons each
consisting of a single point. A polygon is convex if it contains all the straight-line
segments connecting any pair of its points.

5.4.1
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Figure 5.17. Delaunay triangulation

Figure 5.18. Convex hull

— The convex hull of a set of points X is the intersection of all convex sets contain-
ing X.

There are several algorithms for computing the convex hull. Since the convex hull

consists of the outer edges of the Delaunay triangulation, we can use an algorithm

for the Voronoi/Delaunay problem and then pick the outer edges. Its computation
thus can be O(nlogn).

Nonconvex Hull

A nonconvex hull is a hull that is not a convex hull. This class includes simple shapes
like a star convex or monotone convex hull, but it also includes some space-filling,
snaky objects and some that have disjoint parts. In short, we are interested in a gen-
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Figure 5.19. Alpha shape

eral class of nonconvex shapes. Some of these shapes are complexes (collections of

simplexes). We take the hull of these shapes to be the collection of exterior edges of

these complexes.

= In an alpha-shape graph, an edge exists between any pair of points that can be
touched by an open disk D(«) containing no points.

Complexes
There are several subsets of the Delaunay triangulation that are complexes useful for
characterizing the density of points, shape, and other aspects.

Figure 5.20. Gabriel graph
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Figure 5.21. Relative neighborhood graph

Figure 5.22. Minimum spanning tree

— In a Gabriel graph, an edge exists between any pair of points that have a D, con-
taining no points.

— In a relative neighborhood graph, an edge exists between any pair of points p and
q for which r is the distance between p and g and the intersection of D(p, ) and
D(gq,r) contains no points. This intersection region is called a lune.

= A beta skeleton graph is a compromise between the Gabriel and relative neighbor-
hood graphs. It uses a lune whose size is determined by a parameter 5. If § = 1,
the beta skeleton graph is a Gabriel graph. If f = 2, the beta skeleton graph is
a relative neighborhood graph.

— A minimum spanning tree is an acyclical subset of a Gabriel graph.
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Disk Inclusion

Several proximity graphs are defined by disk inclusion. That is, edges exist in these

graphs when predefined disks contain pairs of points. These graphs are not generally

subsets of the Delaunay triangulation.

— In a k-nearest-neighbor graph (KNN), a directed edge exists between a point p
and a point q if d(p, q) is among the k smallest distances in the set {d(p, j) | 1<
j < n, j+ p}. Most applications restrict KNN to a simple graph by removing
self loops and edge weights. If k = 1, this graph is a subset of the MST. If k > 1,
this graph may not be planar. Figure 5.23 shows a nearest-neighbor graph for

Figure 5.24. 5-Nearest-neighbor graph

54.2
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the airline data. Figure 5.24 shows a 5-nearest-neighbor graph on the same set of
points.

— In a distance graph, an edge exists between any pair of points that both lie in
a D(r). The radius r defines the size of the neighborhood. This graph is not always
planar and is therefore not a subset of the Delaunay.

= In a sphere-of-influence graph, an edge exists between a point p and a point q if
d(p,q) < dun(p) + dun(q), where d,,,(.) is the nearest-neighbor distance for
a point.

Figure 5.25. Distance graph

-

Figure 5.26. Sphere-of-influence graph
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Graph-theoretic Analytics 5.5

Some graph-analytic procedures naturally lend themselves to visualization or are
based on geometric graphs. We discuss a few in this section.

Scagnostics 5.5.1

A scatterplot matrix, variously called a SPLOM or casement plot or draftman’ plot, is
a (usually) symmetric matrix of pairwise scatterplots. An easy way to conceptualize
asymmetric SPLOM is to think of a covariance matrix of p variables and imagine that
each off-diagonal cell consists of a scatterplot of n cases rather than a scalar number
representing a single covariance. This display was first published by John Hartigan
(1975) and was popularized by Tukey and his associates at Bell Laboratories.

Large scatterplot matrices become unwieldy when there are many variables. First
of all, the visual resolution of the display is limited when there are many cells. This
defect can be ameliorated by pan and zoom controls. More critical, however, is the
multiplicity problem in visual exploration. Looking for patterns in p(p —1)/2 scat-
terplots is impractical for more than 25 variables. This problem is what prompted the
Tukeys’ solution.

The Tukeys reduced an O(p?) visual task to an O(k?) visual task, where k is a small
number of measures of the distribution of a 2-D scatter of points. These measures in-
cluded the area of the peeled convex hull of the 2-D point scatters, the perimeter
length of this hull, the area of closed 2-D kernel density isolevel contours, the perim-
iter length of these contours, the convexity of these contours, a modality measure of
the 2-D kernel densities, a nonlinearity measure based on principal curves fitted to
the 2-D scatterplots, the median nearest-neighbor distance between points, and sev-
eral others. By using these measures, the Tukeys aimed to detect anomalies in density,
distributional shape, trend, and other features in 2-D point scatters.

After calculating these measures, the Tukeys constructed a scatterplot matrix of
the measures themselves, in which each point in the scagnostic SPLOM represented
a scatterplot cell in the original data SPLOM. With brushing and linking tools, un-
usual scatterplots could be identified from outliers in the scagnostic SPLOM.

Wilkinson et al. (2005) extended this procedure using proximity graphs. This ex-
tension improved scalability, because the graph calculations are O(nlogn), and al-
lowed the method to be applied to categorical and continuous variables. Wilkinson
et al. (2005) developed nine scagnostics measures: Outlying, Skewed, Clumpy, Con-
vex, Skinny, Striated, Stringy, Straight and Monotonic.

Figure 5.27 shows the output of the program developed in Wilkinson et al. (2005).
The dataset used in the example is the Boston housing data cited in Breiman et al.
(1984). The left SPLOM shows the data. The larger scagnostics SPLOM in the mid-
dle of the figure shows the distribution of the nine scagnostics. One point is high-
lighted. This point is an especially large value on the Outlying scagnostic statistic.
Its corresponding scatterplot is shown in the upper-right plot superimposed on the
scagnostics SPLOM. This plot involves a dummy variable for whether a tract bounds
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Figure 5.27. Scagnostics

the Charles River (CHAS) and proportion of residential land zoned for lots over
25000 ft>. (ZN). The scagnostic Outlying measure flagged the few cases that bounded
the Charles River. The locations of this scatterplot point in the other scagnostics
SPLOM characterize the plot as relatively skewed, skinny, striated, and stringy, but
not convex.

Sequence Analysis

A sequence isalist of objects, e.g. (x, ¥, z). The ordering of the list is given by an order
relation. In many applications of sequence analysis, objects are represented by tokens
and sequences are represented by strings of tokens. In biosequencing, for example,
the letters A, C, T and G are used to represent the four bases in a DNA strand.

Suppose we are given a length » string of tokens and want to find the most fre-
quently occurring substrings of length # in the string (m < n). A simple (not espe-
cially fast) algorithm to do this involves generating candidate substrings and testing
them against the target string. We begin with strings of length 1, each comprised of
adifferent token. Then we build candidate subsequences of length 2. We count the fre-
quency of each of these subsequences in the target string. Using any of these length 2
subsequences with a count greater than zero, we build candidate subsequences of
length 3. We continue the generate-and-test process until we have tested the can-
didates of length m or until all counts are zero. This stepwise procedure traverses
a subset of the branches of the tree of all possible subsequences so we do not have as
many tests to perform.

Embedding a sequence analysis in a graph layout often gives us a simple way to
visualize these subsequences. The layout may be based on known coordinates (as in
geographic problems) or on an empirical layout using adjacency in the sequence list
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Figure 5.28. Animal name sequences

as edge information. Figure 5.28 shows an example using the same data represented
in Fig. 5.13. We have superimposed the sequences using arrows.

Comparing Sequences
Suppose we have two sequences of characters or objects and we wish to compare
them. If the sequences are of length #, we can construct an # by # table of zeroes and
place a1 in a diagonal cell if the value in each sequence at the corresponding posi-
tion is the same. We would have an identity matrix if both sequences were identical
and we can plot this matrix as a square array of pixels. With real data, however, we
are more likely to encounter matching runs of subsequences that occur in different
locations in each sequence. Consequently, we more often see subsequences as runs
oft the diagonal.

Figure 5.29 (Altschul et al. 2001) shows an example of this type of plot. Subse-
quences appear in the plot as diagonal runs from upper left to lower right. The longer
the diagonal bars, the longer the matching subsequences.

Critical Paths

Suppose we have a directed acyclic graph (DAG) where the vertices represent tasks
and an edge (u,v) implies that task u must be completed before task v. How do we
schedule tasks to minimize overall time to completion? This job-scheduling problem
has many variants. One customary variant is to weight the edges by the time it takes
to complete tasks. We will mention two aspects of the problem that involve graph-
ing. First, how do we lay out a graph of the project? We use the layout for a directed
graph and flip the graph to a horizontal orientation. The result of our efforts is called
a CPM (critical path method)) graph. Second, how do we identify and color the crit-
ical path? Identifying the critical path is easy if the edges are not weighted. We sim-
ply do a breadth-first search of the DAG and keep a running tally of the path length.
Finding the shortest path through a weighted graph requires dynamic programming.
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Figure 5.29. Comparing two sequences (courtesy Steven Altschul)
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Figure 5.30. CPM chart

Graph layouts of large projects can become messy. Even without edge crossings,
alarge CPM graph can be difficult to interpret. An alternative to this display is called
a Gantt chart. The horizontal axis measures time. The length of a bar represents the
duration of a task. The vertical axis separates the tasks. The coloring categorizes tasks.
The original form of the chart did not have the benefit of the graph theory behind
CPM, but modern incarnations have blended the bars of the Gantt chart with the
information on the critical path. Most computer project management packages com-
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Figure 5.31. Gantt chart

pute the critical path with graph-theoretic algorithms and display the results in some
variety of the Gantt chart.

Graph Matching

Given two graphs, how do we determine if there is an isomorphism between them?
And if they are not isomorphic, can we identify isomorphic subgraphs or compute an
overall measure of concordance? These questions have many answers; we will cover
only a few.

Matching graphs has many applications in biology, chemistry, image processing,
computer vision, and search engines. To the extent that a body of knowledge can be
represented as a graph (a set of vertices and relations among them), graph matching is
a core application. It provides, for example, the foundation for searching a database
of graphs for a particular graph. If images and other material can be represented
as graphs, then graph matching provides a powerful indexing mechanism for large
databases of disparate materials. Indeed, since a relational table can be represented as
a graph, matching can be used to identify congruent tables of primitives in a database.
Given the topic of this chapter, however, we will focus on matching 2D geometric
graphs.

Exact Graph Matching

Exact graph matching consists of identifying the isomorphism between two graphs.
This amounts to finding (1) a vertex in one graph for every vertex in the other (and
vice versa) and (2) an edge in one graph for every edge in the other (and vice versa). If
both graphs are connected, then the second condition suffices to establish the isomor-
phism. Because this is a standard sorting-and-searching problem, it has polynomial
complexity.

The problem is more general, however, because we are usually interested in finding
isomorphisms under a permutation transformation. That is, we seek a vertex relabel-
ing of G, such that an isomorphism between G; and G, exists after the relabeling.
This more general matching problem has unknown complexity. For planar graphs,
however, Hopcroft and Wong (1974) prove linear time complexity. Skiena (1998) and
Shasha et al. (2002) discuss this topic further and review software for graph matching.

553
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Figure 5.32. Medial axes (courtesy Thomas Sebastian, Philip Klein and Benjamin Kimia)

Approximate Graph Matching

Approximate graph matching consists of maximizing an index of concordance be-
tween two graphs under relabeling. Many indices have been proposed. Early ap-
proaches computed simple graph-theoretic measures and used these to compute dis-
tance or correlation coefficients. The cophenetic correlation, for example, is a Pearson
correlation between the entries of a distance matrix and the corresponding ultra-
metric distances derived from a hierarchical clustering tree. This approach implies
a matching index based on correlating ultrametric distances from two different trees
(possibly after relabeling).

More recent approaches use other measures to derive concordance measures. The
most famous example is the Google search engine (Brin and Page 1998), which uses
a graph spectral measure to assess similarity. In the field of shape recognition, prox-
imity graphs have been constructed from polygons by using disks similar to those we
discussed in the previous section. Klein et al. (2001), for example, developed a shape-
matching procedure using a derivative of the medial axis. The medial axis of a polygon
is the locus of the centers of maximal circles that touch the polygon boundary more
than once. Figure 5.32 shows an example.

Klein et al. (2001) used an edit distance measure to evaluate matching of medial
axis graphs. Edit distance is the number of elementary operations needed to trans-
form one graph into another. In the simple case, there are two editing operators:
delete an edge, and relabel an edge. By subjecting the topology of the medial axis
representations of shape to a specific edit distance measure, Klein et al. (2001) were
able to characterize 2D projections of 3D shapes with a high degree of accuracy, re-
gardless of orientation or scale. Torsello (2004) extended these methods.

Any proximity graph can be applied to the shape-recognition problem using edit
distance or measures of similarity. Gandhi (2002), for example, measured the shape
of leaves by recording turning angles at small steps along their perimeters. This mea-
sure transformed a shape into a single time series. Gandhi (2002) then used dynamic
time warping (Sakoe and Chiba 1978) to compute a distance measure between leaf
shapes.

Conclusion

This chapter has covered only a fraction of the visualization applications of graph
theory. Graph-theoretic visualization is a rapidly developing field because only in the
last few decades have the connections between data representation and graph theory
been made explicit. Tukey and Tukey (1985) anticipated the role graph theory would
play in visualization and John Tukey was especially interested in convex hulls, mini-
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mum spanning trees, and other graphs for characterizing high-dimensional data. But
as Tukey said many times, more powerful computing environments would be needed
to realize the power of these methods. That time has arrived.
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One of the biggest challenges in data visualization is to find general representations
of data that can display the multivariate structure of more than two variables. Sev-
eral graphic types like mosaicplots, parallel coordinate plots, trellis displays, and the
grand tour have been developed over the course of the last three decades. Each of
these plots is introduced in a specific chapter of this handbook.

This chapter will concentrate on investigating the strengths and weaknesses of
these plots and techniques and contrast them in the light of data analysis problems.

One very important issue is the aspect of interactivity. Except for trellis displays,
all the above plots need interactive features to rise to their full power. Some, like the
grand tour, are only defined by using dynamic graphics.

6.1 Introduction

It is sometimes hard to resist the problem that is captured in the phrase “if all you
have is a hammer, every problem looks like a nail” This obviously also holds true for
the use of graphics. A grand tour expert will most likely include a categorical variable
in the high-dimensional scatterplot, whereas an expert on mosaicplots probably will
try to fit a data problem as far as possible into a categorical framework.

This chapter will focus on the appropriate use of the different plots for high-dimen-
sional data analysis problems and contrast them by emphasizing their strengths and
weaknesses.

Data visualization can roughly be categorized into two applications:

1. Exploration
In the exploration phase, the data analyst will use many graphics that are mostly
unsuitable for presentation purposes yet may reveal very interesting and impor-
tant features. The amount of interaction needed during exploration is very high.
Plots must be created fast and modifications like sorting or rescaling should hap-
pen instantaneously so as not to interrupt the line of thought of the analyst.

2. Presentation
Once the key findings in a data set have been explored, these findings must be
presented to a broader audience interested in the data set. These graphics often
cannot be interactive but must be suitable for printed reproduction. Further-
more, some of the graphics for high-dimensional data are all but trivial to read
without prior training, and thus probably not well suited for presentation pur-
poses — especially if the audience is not well trained in statistics.

Obviously, the amount of interactivity used is the major dimension to discriminate
between exploratory graphics and presentation graphics.

Interactive linked highlighting, as described by Wills (2008, Chapter I1.9 same
volume), is one of the keys to the right use of graphics for high-dimensional data.
Linking across different graphs can increase the dimensionality beyond the number
of dimensions captured in a single multivariate graphic. Thus, the analyst can choose
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the most appropriate graphics for certain variables of the data set; linking will pre-
serve the multivariate context.

Although much care has been taken to ensure the best reproduction quality of
all graphics in this chapter, the reader may note that the printed reproduction in
black and white lacks clarity for some figures. Please refer to the book’s website for
an electronic version that offers full quality.

Mosaic Plots 6.2

Mosaic plots (Hartigan and Kleiner, 1981; Friendly, 1994; Hofmann, 2000) are prob-
ably the multivariate plots that require the most training for a data analyst. On the
other hand, mosaicplots are extremely versatile when all possible interaction and
variations are employed, as described by Hofmann (2008, Chapter II1.13 same vol-
ume).

This section will explore typical uses of mosaicplots in many dimensions and move
on to trellis displays.

Associations in High-dimensional Data 6.2.1

Meyer et al. (2008, Chapter IIL.12 same volume) already introduced techniques for
visualizing association structures of categorical variables using mosaicplots. Obvi-
ously, the kind of interactions we look at in high-dimensional problems is usually
more complex. Although statistical theory for categorical data often assumes that all
variables are of equal importance, this may not be the case with real problems. Us-
ing the right order of the variables, mosaicplots can take the different roles of the
variables into account.

Example: Detergent data
For an illustration of mosaicplots and their applications, we chose to look at the 4-D
problem of the detergent data set (cf. Cox and Snell, 1991). In this data set we look at
the following four variables:
1. Water softness

(soft, medium, hard)
2. Temperature

(low, high)

3. M-user (person used brand M before study)
(yes, no)

4. Preference (brand person prefers after test)
X, M)

The major interest of the study is to find out whether or not preference for a deter-
gent is influenced by the brand someone uses. Looking at the interaction of M-user
and Preference will tell us that there is an interaction, but unrelated to the other two
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variables. Looking at the variables Water Softness and Temperature we will find some-

thing that is to be expected: harder water needs warmer temperatures for the same

washing result and a fixed amount of detergent.

Mosaic plots allow the inspection of the interaction of M-user and Preference con-
ditioned for each combination of Water Softness and Temperature, resulting in a plot
that includes the variables in the order in which they are listed above. Figure 6.1 shows
the increasing interaction of M-user and Preference for harder water and higher tem-
peratures.

Several recommendations can be given for the construction of high-dimensional
classical mosaicplots:
= The first two and the last two variables in a mosaicplot can be investigated most

efficiently regarding their association. Thus the interaction of interest should be
put into the last two positions of the plot. Variables that condition an effect should
be the first in the plot.

— To avoid unnecessary clutter in a mosaicplot of equally important variables, put
variables with only a few categories first.

— If combinations of cells are empty (this is quite common for high-dimensional
data due to the curse of dimensionality), seek variables that create empty cells at
high levels in the plot to reduce the number of cells to be plotted (empty cells at
a higher level are not divided any further, thus gathering many potential cells into
one).

= If the last variable in the plot is a binary factor, one can reduce the number of
cells by linking the last variable via highlighting. This is the usual way to handle
categorical response models.
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Figure 6.1. The interaction of M-user and Preference increases for harder water and higher

temperatures
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— Subsets of variables may reveal features far more clearly than using all variables at
once. In interactive mosaicplots one can add/drop or change variables displayed
in a plot. This is very efficient when looking for potential interactions between
variables.

Response Models

In many data sets there is a single dependent categorical outcome and several cat-
egorical influencing factors. The best graphical representation of such a situation is
to put all influencing factors in a mosaicplot and link the dependent variable with
a barchart. This setup is shown in Fig. 6.2 for the Caesarean data set (cf. Fahrmeir
and Tutz, 1994). The data set consists of three influencing factors — Antibiotics, Risk
Factor, and Planned and one dependent categorical outcome, Infection, for 251 cae-
sarean births. The question of interest is to find out which factors, or combination of
factors, have a higher probability of leading to an infection.

At this point it is important to rethink what the highlighted areas in the mosaicplot
actually show us. Let us look at the cases were no caesarean was planned, a risk fac-
tor was present, and no antibiotics were administered (the lower left cell in Fig. 6.2,
which is highlighted to a high degree). In this combination, 23 of the 26 cases got an
infection, making almost 88.5 %. That is

P(Infection| Antibiotics A Risk Factor A Planned) = 0.8846.

But there is more we can learn from the plot. The infection probability is highest
for cases with risk factors and no antibiotics administered. There is also one oddity

Antibiotics

=

yes

Risk Factors

§ Infection
Type 1
Type Il -
Y
n yes

[o]
Planned
Figure 6.2. The categorical response model for the caesarean birth data is visualized using a mosaicplot
for the influencing factors and a barchart for the response variable. Infection cases have been
highlighted

6.2.2



6.2.3

156 Martin Theus

in the data. Whereas the fact of a planned caesarean reduces the infection risk by
around half, we do not have a single infection case for unplanned caesareans without
risk factors and antibiotics - although at least three would be expected. Note that
the chosen order is crucial for seeing this feature most easily. All these results can be
investigated by looking at Fig. 6.2 but are harder to find by using classical models -
nonetheless, they should be used to check significance.

Models

Meyer et al. (2008, Chapter II1.12 same volume) presents a method for displaying
association models in mosaicplots. One alternative to looking at log-linear models
with mosaicplots is to plot the expected values instead of the observed values. This
also permits the plotting of information for empty cells, which are invisible in the
raw data but do exist in the modeled data. In general, a mosaicplot can visualize any
continuous variable for crossings of categorical data, be it counts, expected values of
amodel, or any other positive value. Figure 6.3 shows the data from Fig. 6.1 with the
two interactions Water Softness and Temperature and M-user and Preference included.
Remaining residuals are coded in red (negative) and blue (positive). The feature we
easily found in Fig. 6.1 - an increasing interaction between M-user and Preference -
would call for a four-way interaction or at least some nonhierarchical model. Neither
model can be interpreted easily or communicated to nonstatisticians. Furthermore,
the log-linear model including the two two-way interactions has a p-value far greater
than 0.05, suggesting that the model captures all “significant” structure. A more de-

Water Softness
hard medium soft

warm

Temperature

cold

Figure 6.3. A model of the Detergent data with the interactions of Water Softness and Temperature and
M-user and Preference included. The residuals are highlighted in red (darker shade) and blue (lighter
shade). A very faded color indicates a high p-value
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tailed discussion on log-linear models and mosaicplots can be found in Theus and
Lauer (1999).

Trellis Displays 6.3
I

Trellis displays (called Lattice Graphics within the R package) also use conditioning

to plot high-dimensional data. But whereas mosaicplots use a recursive layout, trellis

displays use a gridlike structure to plot the data conditioned on certain subgroups.

Definition 6.3.1

Trellis displays were introduced by Becker et al. (1996) as a means to visualize mul-
tivariate data (see also Theus, 1999). Trellis displays use a latticelike arrangement to
place plots onto so-called panels. Each plot in a trellis display is conditioned upon
at least one other variable. To make plots comparable across rows and columns, the
same scales are used in all the panel plots.

The simplest example of a trellis display is probably a boxplot y by x. Figure 6.4
shows a boxplot of the gas mileage of cars conditioned on the type of car. Results can
easily be compared between car types since the scale does not change when visually
traversing the different categories. Even a further binary variable can be introduced
when highlighting is used, which would be the most effective way to add a third
(binary) variable to the plot.

In principle, a single trellis display can hold up to seven variables at a time. Nat-
urally five out of the seven variables need to be categorical, and two can be contin-
uous. At the core of a trellis display we find the panel plot. The up to two variables
plotted in the panel plot are called axis variables. (The current Lattice Graphics imple-
mentation in R does actually offer higher-dimensional plots like parallel coordinate
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Figure 6.4. A boxplot y by x is a simple form of a trellis display
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plots as panel plots, which is only a technical detail and not relevant for data analy-
sis purposes). In principle the panel plot can be any arbitrary statistical graphic, but
usually nothing more complex than a scatterplot is chosen. All panel plots share the
same scale. Up to three categorical variables can be used as conditioning variables to
form rows, columns, and pages of the trellis display. To annotate the conditioning
categories of each panel plot, the so-called strip labels are plotted atop each panel
plot, listing the corresponding category names. The two remaining variables — the
so-called adjunct variables — can be coded using different glyphs and colors (if the
panel plot is a glyph-based plot).

Trellis displays introduce the concept of shingles. Shingling is the process of di-
viding a continuous variable into (possibly overlapping) intervals in order to convert
this continuous variable into a discrete variable. Shingling is quite different to con-
ditioning with categorical variables. Overlapping shingles/intervals leads to multiple
representations of data within a trellis display, which is not the case for categorical
variables. Furthermore, it is hard to judge which intervals/cases have been chosen to
build a shingle. Trellis displays show the interval of a shingle using an interval of the
strip label. This is a solution which does not waste plotting space, but the informa-
tion on the intervals is hard to read from the strip label. Nonetheless, there is a valid
motivation for shingling, which is illustrated in Sect. 6.3.3.

In Fig. 6.4 we find one conditioning variable (Car Type) and one axis variable (Gas
Mileage). The panel plot is a boxplot. Strip labels have been omitted as the categories
can be annotated traditionally.

An example of a more complex trellis display can be found in Fig. 6.5. For the
same cars data set as in Fig. 6.4, the scatterplot of MPG vs. Weight is plotted. Thus the
panel plot is a scatterplot. The axis variables are MPG and Weight. The grid is set up
by the two conditioning variables Car Type along x and Drive along y. A fifth variable
is included as adjunct variable. The Number of Cylinders is included by coloring the
points of the scatterplots. The upper strip label shows the category of Drive, the lower
strip label that of Car Type. In Fig. 6.5 we find a common problem of trellis displays.
Although the data set has almost 400 observations, 3 of the 18 panels are empty, and
3 panels have fewer than 4 observations.

Trellis Display vs. Mosaic Plots

Trellis displays and mosaicplots do not have very much in common. This can be seen
when comparing Figs. 6.1 and 6.6. Obviously the panel plot is not a 2-D mosaicplot,
which makes the comparison a bit difficult. On the other hand, the current imple-
mentations of trellis displays in R do not offer mosaicplots as panel plots, either.

In Fig. 6.6 the interaction structure is far harder to perceive than in the original
mosaicplot. In a mosaicplot the presence of independence can be seen by a straight
crossing of the dividing gaps of the categories (in Fig. 6.1 the user preference and
the prior usage of product M can be regarded as independent for soft water and low
temperatures; see lower right panel in the figure). But what does independence look
like in the conditioned barchart representation of the trellis display of Fig. 6.62 Two
variables in the panel plot are independent iff the ratios of all corresponding pairs of
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Figure 6.6. A trellis display of the detergent data from Figs. 6.1 and 6.3

levels of two variables are equal, i.e., the two barcharts are identical except for a scal-
ing factor. Thus the only independence can be found in the panel for low temperature
and soft water. Obviously it is hard to compare the ratios for more than just two lev-
els per variable and for large absolute differences in the cell counts. Furthermore, it
is even harder to quantify and compare interactions. This is because it is nontrivial
to simultaneously judge the influence of differences in ratio and absolute cell sizes.
Nonetheless, there exist variations of mosaicplots (see Hofmann, 2008, Chapter
II1.13 same volume) that use an equal-sized grid to plot the data. Mosaic-plot vari-
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Figure 6.7. A mosaicplot in multiple multiple-barchart variation of the detergent data set that conforms

exactly to the representation used in the trellis display of Fig. 6.6




High-dimensional Data Visualization 161

ations using an equal-sized grid to plot data are same bin size, fluctuation diagrams,
and multiple barcharts.

Figure 6.7 shows a mosaicplot in multiple multiple-barchart view with splitting
directions x, y, x,x. The way the information is plotted is exactly the same as in
Figs. 6.6 and 6.7. Flexible implementations of mosaicplots offering these variations
can be found in Mondrian (Theus, 2002) and MANET (Unwin et al., 1996).

Trellis Displays and Interactivity

The conditional framework in a trellis display can be regarded as static snapshots of
interactive statistical graphics. The single view in a panel of a trellis display can also
be thought of as the highlighted part of the graphics of the panel plot for the con-
ditioned subgroup. This can be best illustrated by looking at the cars data set again.
Figure 6.8 shows a screenshot of an interactive session. Selecting a specific subgroup
in a barchart or mosaicplot is one interaction. Another interaction would be brush-
ing. Brushing a plot means to steadily move a brush, i.e., an indicator for the selection
region, along one or two axes of a plot. The selected interval from the brush can be
seen as an interval of a shingle variable. When a continuous variable is subdivided
into, e.g., five intervals, this corresponds to five snapshots of the continuous brushing
process from the minimum to the maximum of that variable. For the same scatter-
plot shown in Fig. 6.8, Fig. 6.9 shows a snapshot of a brush selecting the lowest val-
ues of the conditioning variables Engine Size and Horsepower. Now the motivation of
shingle variables is more obvious, as they relate directly to this interactive technique.
Brushing with linked highlighting is certainly far more flexible than the static view
in a trellis display. On the other hand, the trellis display can easily be reproduced in
printed form, which is impossible for the interactive process of brushing.
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Figure 6.8. Selecting the group of front-wheel-drive sedans in the mosaicplot in multiple-barchart view
(left), one gets the corresponding panel plot (scatterplot on right) from Fig. 6.5 in the highlighted
subgroup
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Figure 6.9. Brushing in the conditioning scatterplot (left), one gets the panel plot (scatterplot on right)
from Fig. 6.5 in the highlighted subgroup

Visualization of Models

The biggest advantage of trellis displays is the common scale among all plot panels.
This allows an effective comparison of the panel plots between rows, columns, and
pages, depending on the number of conditioning variables and the type of panel plot.
Trellis displays are most powerful when used for model diagnostics. In model diag-
nostics one is most interested in understanding for what data the model fits well and
for which cases it does not.

In a trellis display the panel plot can incorporate model information like fitted
curves or confidence intervals conditioned for exactly the subgroup shown in the
panels. For each panel, the fit and its quality can then be investigated along with
the raw data. Figure 6.10 shows the same plot as in Fig. 6.5 except for the adjunct
variable. Each scatterplot has a lowess smoother superimposed. One problem with
trellis displays is the fact that it is hard to judge the number of cases in a panel plot. For
example, in Fig. 6.10 it would be desirable to have confidence bands for the scatterplot
smoother in order to be able to judge the variability of the estimate across panels.

Wrap-up

As can be seen from the examples in this section, trellis displays are most useful for
continuous axis variables, categorical conditioning variables, and categorical adjunct
variables. Shingling might be appropriate under certain circumstances, but it should
generally be avoided to ease interpretability.

The major advantage of trellis displays over other multivariate visualization tech-
niques is the flat learning curve of such a display and the possibilities of static re-
production as current trellis display implementations do not offer any interactions.
Trellis displays also offer the possibility of easily adding model information to the
plots.
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Nevertheless, interactive linked graphics are usually more flexible in exploratory
data analysis applications. Linking the panel plot to barcharts or mosaicplots of the
conditioning variables and/or adjunct variables or brushing over a shingle variable
is more flexible, though these techniques lack the global overview and the possibility
of static reproduction.

Parallel Coordinate Plots

6.4

I
Parallel coordinate plots, as described by Inselberg (2008, Chapter II1.14 same vol-
ume), escape the dimensionality of two or three dimensions and can accommodate
many variables at a time by plotting the coordinate axes in parallel. They were intro-
duced by Inselberg (1985) and discussed in the context of data analysis by Wegman
(1990).

6.4.1 Geometrical Aspects vs. Data Analysis Aspects

Whereas in Inselberg (2008, Chapter II1.14 same volume), the geometrical prop-
erties of parallel coordinate plots are emphasized to visualize properties of high-
dimensional data-mining and classification methods, this section will investigate the
main use of parallel coordinate plots in data analysis applications. The most interest-
ing aspects in using parallel coordinate plots are the investigation of groups/clusters,
outliers, and structures over many variables at a time. Three main uses of parallel
coordinate plots in exploratory data analysis can be identified as the following:
= Overview
No other statistical graphic can plot so much information (cases and variables)
at a time. Thus parallel coordinate plots are an ideal tool to get a first overview of
a data set. Figure 6.11 shows a parallel coordinate plot of almost 400 cars with 10
variables. All axes have been scaled to min-max. Several features, like a few very
expensive cars, three very fuel-efficient cars, and the negative correlation between
car size and gas mileage, are immediately apparent.
— Profiles
Despite the overview functionality, parallel coordinate plots can be used to visu-
alize the profile of a single case via highlighting. Profiles are not only restricted to
single cases but can be plotted for a whole group, to compare the profile of that
group with the rest of the data.
Using parallel coordinate plots to profile cases is especially efficient when the co-
ordinate axes have an order like time.
Figure 6.12 shows an example of a single profile highlighted - in this case, the
most fuel-efficient car.
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Figure 6.11. Parallel coordinate plot for 10 variables on almost 400 cars

= Monitor

When working on subsets of a data set parallel coordinate plots can help to relate
features of a specific subset to the rest of the data set. For instance, when looking
at the result of a multidimensional scaling procedure, parallel coordinate plots
can help to find the major axes, which influence the configuration of the MDS.
Figure 6.13 shows a 2-D MDS along with the corresponding parallel coordinate
plot. Querying the leftmost cases in the MDS shows that these cars are all hy-
brid cars with very high gas mileage. The top right cases in the MDS correspond
to heavy cars like pickups and SUVs. Obviously, similar results could have been
found with biplots.

Horsepower Highway Miles Per Gallon Wheel Base (inches) Width (inches) Dealer Cost (USD)

1

Engine Size (liters) City Miles Per Gallon ‘Weight (Pounds) Length Suggested Retail Price (USD)
Figure 6.12. PCP from Fig. 6.11 with the most fuel-efficient car (Honda Insight 2dr.) highlighted
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Figure 6.13. MDS (bottom) and parallel coordinate plot (top) of the cars data set. The four cars in the
lower right of the MDS are highlighted and happen to be the most expensive and most powerful cars in
the data set

Limits

Parallel coordinates are often overrated with respect to the insight they provide into
multivariate features of a data set. Obviously scatterplots are superior for investigat-
ing 2-D features, but scatterplot matrices (SPLOMs) need far more space to plot the
same information as PCPs. Even the detection of multivariate outliers is not some-
thing that can usually be directly aided by parallel coordinates. Detecting features
in parallel coordinates that are not visible in a 1-D or 2-D plot is rare. On the other
hand, parallel coordinate plots are extremely useful for interpreting the findings of
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multivariate procedures like outlier detection, clustering, or classification in a highly
multivariate context.

Although parallel coordinate plots can handle many variables at a time, their ren-
dering limits are reached very soon when plotting more than only a few hundreds of
lines. This is due to overplotting, which is far worse than with scatterplots, since par-
allel coordinate plots only use one dimension to plot the information and the glyph
used (a line) prints far more ink than the glyphs in a scatterplot (points). One solu-
tion to coping with overplotting is to use a-blending. When a-blending is used, each
polygon is plotted with only a% opacity, i.e., (1 — a)% transparency. With smaller «
values, areas of high line density are more visible and hence are better contrasted to
areas with a small density.

Figures 6.11 to 6.13 use a-blending to make the plots better readable or to empha-
size the highlighted cases. In the cars data set we only look at fewer than 400 cases,
and one can imagine how severe the overplotting will get once thousands of poly-
lines are plotted.

Figures 6.14 and 6.15 show two examples of how useful a-blending can be. The
so-called “Pollen” data used in Fig. 6.14 come from an ASA data competition in the
late 80s. The data are completely artificial and have the word “E U R E K A” woven
into the center of the simulated normal distributions. The almost 4000 cases in five
dimensions produce a solid black band without any «-blending applied. Going down
to an alpha value of as little as 0.005 will reveal a more solid thin line in the center of
the data. Zooming in on these cases will find the word “Eureka,” which just increases
the simulated density in the center enough to be visible.

The data in Fig. 6.15 are real data from Forina et al. (1983) on the fatty acid content
of Italian olive oil samples from nine regions. The three graphics show the same plot
of all eight fatty acids with a-values of 0.5, 0.1, and 0.05. Depending on the amount
of a-blending applied, the group structure of some of the nine regions is more or less
visible.

Note that it is hard to give general advice on how much a-blending should be
applied because the rendering system and the actual size of the plot may change its

Nub Weight Nub Weight

Ridge Crack Density Ridge Crack Density

Figure 6.14. The “Pollen” data with a =1 (left) and « = 0.005 (right)
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Figure 6.15. The “Olive Oils” data with a = 0.5 (top), a = 0.1 (middle), and a = 0.05 (bottom)
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appearance substantially. As with many exploratory techniques, the user should ex-
periment with different settings until he or she feels comfortable enough with the
insight gained.

Sorting and Scaling Issues

Parallel coordinate plots are especially useful for variables which either have an order
such as time or all share a common scale. In these cases, scaling and sorting issues
are very important for a successful exploration of the data set.

Sorting

Sorting in parallel coordinate plots is crucial for the interpretation of the plots, as
interesting patterns are usually revealed at neighboring variables. In a parallel coor-
dinate plot of k variables, only k — 1 adjacencies can be investigated without reorder-
ing the plot. The default order of a parallel coordinate plot is usually the sequence
in which the variables are passed to the plotting routine, in most cases the sequence
in the data file itself. In many situations this order is more or less arbitrary. Fortu-
nately, one only needs [%J different orderings to see all adjacencies of k variables
(see Wegman, 1990).

Whenever all, or at least groups of, variables share the same scale, it is even more
helpful to be able to sort these variables according to some criterion. This can be
statistics of the variables (either all cases or just a selected subgroup) like minimum,
mean, range, or standard deviation, the result of a multivariate procedure, or even
some external information. Sorting axes can reduce the visual clutter of a parallel
coordinate plot substantially.

If data sets are not small, sorting options have to be provided both manually and
automatically.

Scalings

Besides the default scaling, which is to plot all values over the full range of each axis
between the minimum and the maximum of the variable, several other scalings are
useful. The most important scaling option is to either individually scale the axes or
to use a common scale over all axes. Other scaling options define the alignment of
the values, which can be aligned at:

— The mean

— The median

— A specific case

= A specific value

For an aligned display, it is not obvious what the range of the data should be when an
individual scale is chosen. For individual scales, a 3¢ scaling is usually a good choice
to map the data onto the plot area.

Alignments do not force a common scale for the variables. Common scaling and
alignments are independent scaling options.

Figure 6.16 shows a parallel coordinate plot for the individual stage times of the
155 cyclists who finished the 2005 Tour de France bicycle race. In the upper plot we

6.4.3
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Figure 6.16. Three scaling options for the stage times in the Tour de France 2005: Top: all stages are
scaled individually between minimum and maximum value of the stage (usual default for parallel
coordinate plots) Middle: a common scale is used, i.e., the minimum/maximum time of all stages is
used as the global minimum/maximum for all axes (this is the only scaling option where a global and
common axis can be plotted) Below: common scale for all stages, but each stage is aligned at the
median value of that stage, i.e., differences are comparable, locations not
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see the default min-max scaling. Except for some local groups, not much can be seen
from this plot. The middle plot shows the common scaling option for the same data.
Now the times are comparable, but due to the differences in absolute time needed
for a short time trial and a hard mountain stage, the spread between the first and the
last cyclist is almost invisible for most of the stages. Again, except for some outliers,
there is hardly anything to see in this representation. The lower plot in Fig. 6.16 shows
the same data as the upper two plots, but now each axis is aligned at its median (the
median has the nice interpretation of capturing the time of the peloton). Note that
the axes still have the same scale, i.e., time differences are still comparable, but now
are aligned at the individual medians. This display option clearly reveals the most
information.

For a better description of the race as a whole, it is sensible to look at the cumula-
tive times instead of the stage times. Figure 6.17, left, shows a parallel coordinate plot
for the cumulative times for each of the 155 cyclists who completed the tour for the
corresponding stage. The scaling is the typical default scale usually found in parallel
coordinate plots, i.e., individually scaled between minimum and maximum of each
axis. All drivers of the team “Discovery Channel” are selected. Although this scaling
option gives the highest resolution for these data, it is desirable to have a common
scale for all axes. A simple common scale won't do the trick here, as the cumulative
times keep growing, dwarfing the information of the early stages. Figure 6.17, right,
uses a common scale, but additionally each axis is aligned at the median of each vari-
able. (Time differences at early stages are not very interesting for the course of the
race). Figure 6.17, right, now shows nicely how the field spreads from stage to stage
and how the mountain stages (e.g., stages 14 to 16 are stages in the Alps) spread the
field far more than flat stages. The drivers of the team “Discovery Channel” are also
selected in this plot, showing how the team was separated during the course of the
race, although most of the cyclists remained in good positions, supporting the later
winner of the race.

The development of the race can be compared in Fig. 6.18, where the plot from
Fig. 6.17, right, is shown along with two profile plots. The upper profile plot shows
the cumulative category of the stage, which is the sum of 5 minus the category of
a mountain in the stage. The peaks starting at stages 8 and 14 nicely indicate the
mountain stages in the Pyrenees and the Alps. The lower profile plot gives the av-
erage speed of the winner of each stage. Obviously both profiles are negatively cor-
related.

Wrap-up

Parallel coordinate plots are not very useful “out of the box,” i.e., without features
like a-blending and scaling options. The examples used in this chapter show how
valuable these additions are in order to get a sensible insight into high-dimensional
continuous data. Highlighting subgroups can give additional understanding of group
structures and outliers.

6.4.4
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Figure 6.17. Results from 2005 Tour de France. Left: each axis shows the cumulative results for all 155
cyclists who finished the tour. Right: common scaling applied and axes aligned at medians of each stage.

(The eight riders from team “Discovery Channel” are selected)

6.5 Projection Pursuit and the Grand Tour

The grand tour (see Buja and Asimov, 1986) is by definition (see Chen et al., 2008,
Chapter I11.2) a purely interactive technique. Its basic definition is:
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Figure 6.18. The same plot as Fig. 6.17, right, shown in the middle, with a profile plot of the cumulative
category of the mountains in the stage (fop) and the average speed (of the winner) of each stage
(bottom)

A continuous 1-parameter family of d-dimensional projections of p-dimensional
data that is dense in the set of all d-dimensional projections in R?. The pa-
rameter is usually thought of as time.

For a 3-D rotating plot, parameter p equals 3 and parameter d equals 2. In contrast
to the 3-D rotating plot, the grand tour does not have classical rotational controls but
uses successive randomly selected projections. Figure 6.19 shows an example of three
successive planes P1, P2, and P3 in three dimensions.
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Figure 6.19. Example path of a grand tour

The planes between the randomly selected base planes are interpolated to get
a smooth pseudorotation, which is comparable to a physical 3-D rotation. A more
technical description of the grand tour can be found in Buja et al. (1999). Although
the human eye is not very well trained to recognize rotations in more than three di-
mensions, the grand tour helps reveal structures like groups, gaps, and dependencies
in high-dimensional data, which might be hard to find along the orthogonal projec-
tions.

Although projections are usually monitored using a scatterplot, any other plot like
a histogram or parallel coordinate plot can be used to display the projected data (see,
e.g., Wegman, 1991).

Projection pursuit is a means to get more guidance during the rotation process.
A new projection plane is selected by optimizing a projection pursuit index, which
measures a feature like point mass, holes, gaps, or other target structures in the data.

Grand Tour vs. Parallel Coordinate Plots

The grand tour is a highly exploratory tool, even more so than the other methods
discussed in this chapter. Whereas in classical parallel coordinate plots the data are
still projected to orthogonal axes, the grand tour permits one to look at arbitrary
nonorthogonal projections of the data, which can reveal features invisible in orthog-
onal projections. Figure 6.20 shows an example of three projections of the cars data
set using the grand tour inside ggobi (see Swayne et al., 2003). The cases are colored
according to the number of cylinders. Each plot has the projection directions of the
11 variables added at the lower left of the plot. Obviously these static screenshots of
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Figure 6.20. Three example screenshots of three different projections of the cars data set. The cases are
colored according to the number of cylinders. The rightmost plot has the least discrimination of the

groups but the strongest separation of an outlier, the “Porsche GT”

the projections are not very satisfactory unless they reveal a striking feature. Whereas
the parallel coordinate plot of the same data (cf. Fig. 6.11) can at least show the uni-
variate distributions along with some bivariate relationships, the grand tour fails to
do so, and focuses solely on the multivariate features, which may be visible in certain
projections.

The grand tour can help to identify the geometry of variables beyond the limits of
the three dimensions of a simple rotating plot. Nevertheless, examples of structures
in more than five dimensions are rare, even when using the grand tour. In these cases
the fixed geometrical properties of parallel coordinate plots seem to be an advantage.

Monitoring the projected data in parallel coordinates instead of a simple scatter-
plot is a promising approach to investigating data beyond ten or even more dimen-
sions. Unfortunately, only very few flexible implementations of the grand tour and
projection pursuit exist, which limits the possibility of a successful application of
these methods.

Recommendations

This chapter showed the application, strengths, and weaknesses of the most impor-
tant high-dimensional plots in statistical data visualization. All plots have their spe-
cific field of application, where no other method delivers equivalent results. The fields
of application are broader or narrower depending on the method. All four methods
and techniques discussed in this chapter, i.e., mosaicplots, trellis displays, parallel co-
ordinate plots, and the grand tour and projection pursuit, need a certain amount of
training to be effective. Furthermore, training is required to learn the most effective
use of the different methods for different tasks.
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Some of the plots are optimized for presentation graphics (e.g., trellis displays),
others, in contrast only make sense in a highly interactive and exploratory setting
(e.g., grand tour).

The high-dimensional nature of the data problems for the discussed plots calls
for interactive controls — be they rearrangements of levels and/or variables or differ-
ent scalings of the variables or the classical linked highlighting — which put different
visualization methods together into one framework, thus further increasing the di-
mensionality.

Figure 6.21 illustrates the situation. When analyzing high-dimensional data, one
needs more than just one visualization technique. Depending on the scale of the vari-
ables (discrete or continuous) and the number of variables that should be visual-
ized simultaneously, one or another technique is more powerful. All techniques -
except for trellis displays — have in common that they only rise to their full power
when interactive controls are provided. Selection and linking between the plots can
bring the different methods together, which then gives even more insight. The re-
sults found in an exploration of the data may then be presented using static graph-
ics. At this point, trellis displays are most useful to communicate the results in an
easy way.

Finally, implementations of these visualization tools are needed in software. Right
now, most of them are isolated features in a single software package. Trellis displays
can only be found in the R package, or the corresponding commercial equivalent

Parallel

Selection
&
Linking

Exploration

Presentation

Trellis

Displays

Figure 6.21. Diagram illustrating the importance of interactivity and linking of the high-dimensional

visualization tools in statistical graphics
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S-Plus, and grand tour and projection pursuit only in the ggobi package. It would be
desirable to have a universal tool that could integrate all of the methods in a highly
interactive and tightly linked way.
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Introduction

7.2

In the context of data visualization, a glyph is a visual representation of a piece of
data where the attributes of a graphical entity are dictated by one or more attributes
of a data record. For example, the width and height of a box could be determined by
a student’s score on the midterm and final exam for a course, while the box’s color
might indicate the gender of the student. The definition above is rather broad, as it can
cover such visual elements as the markers in a scatterplot, the bars of a histogram,
or even an entire line plot. However, a narrower definition would not be sufficient
to capture the wide range of data visualization techniques that have been developed
over the centuries that are termed glyphs.

Glyphs are one class of visualization techniques used for multivariate data. Their
major strength, as compared to techniques such as parallel coordinates, scatterplot
matrices, and stacked univariate plots, is that patterns involving more than two or
three data dimensions can often be more readily perceived. Subsets of dimensions
can form composite visual features that analysts can be trained to detect and classity,
leading to a richer description of interrecord and intrarecord relationships than can
be extracted using other techniques.

However, glyphs do have their limitations. They are generally restricted in terms of
how accurately they can convey data due to their size and the limits of our visual per-
ception system to measure different graphical attributes. There are also constraints
on the number of data records that can be effectively visualized with glyphs; exces-
sive data set size can result in significant occlusion or the need to reduce the size of
each glyph, both of which make the detection of patterns difficult, if not impossi-
ble. Thus glyphs are primarily suitable for qualitative analysis of modest-sized data
sets.

This paper describes the process of glyph generation - the mapping of data at-
tributes to graphical attributes — and presents some of the perceptual issues that can
differentiate effective from ineffective glyphs. Several important issues in the use of
glyphs for communicating information and facilitating analysis are also discussed,
including dimension order and glyph layout. Finally, some ideas for future directions
for research on visualization using glyphs are presented.

Data

Glyphs are commonly used to visualize multivariate data sets. Multivariate data, also
called multidimensional or n-dimensional data, consist of some number of items or
records, #, each of which is defined by a d-vector of values. Such data can be viewed
as a dxn matrix, where each row represents a data record and each column repre-
sents an observation, variable, or dimension. For the purpose of this paper, we will
assume a data item is a vector of scalar numeric values. Categorical and other nonnu-
meric values can also be visualized using glyphs, though often only after conversion
to numeric form (Rosario et al., 2004). Nonscalar values can also be incorporated by
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linearizing the embedded vectors or tensors. We also assume that a data set consists
of one or more of such data items/records and that for each position in the vector we
can calculate a minimum and maximum value. This allows us to normalize the data
to facilitate mapping to graphical attributes.

Variables/dimensions can be independent or dependent, which might imply that
some ordering or grouping of dimensions could be beneficial. They can be of homo-
geneous type, such as a set of exam grades, or of mixed/heterogeneous types, such as
most census data. This might suggest the use of a consistent mapping (e.g., all dimen-
sions map to line lengths) or separation based on type so that each distinct group of
related dimensions might control one type of mapping.

Mappings 7.3
I
Many authors have developed lists of graphical attributes to which data values can be
mapped (Cleveland and McGill, 1984; Cleveland, 1993; Bertin, 1981). These include
position (1-, 2-, or 3-D), size (length, area, or volume), shape, orientation, material
(hue, saturation, intensity, texture, or opacity), line style (width, dashes, or tapers),
and dynamics (speed of motion, direction of motion, rate of flashing).
Using these attributes, a wide range of possible mappings for data glyphs are pos-
sible. Mappings can be classified as follows:
— One-to-one mappings, where each data attribute maps to a distinct and different
graphical attribute;
= One-to-many mappings, where redundant mappings are used to improve the ac-
curacy and ease at which a user can interpret data values; and
— Many-to-one mappings, where several or all data attributes map to a common
type of graphical attribute, separated in space, orientation, or other transforma-
tion.

One-to-one mappings are often designed in such a way as to take advantage of the
user’s domain knowledge, using intuitive pairings of data to graphical attribute to
ease the learning process. Examples include mapping color to temperature and flow
direction to line orientation. Redundant mappings can be useful in situations where
the number of data dimensions is low and the desire is to reduce the possibility of
misinterpretation. For example, one might map population to both size and color to
ease analysis for color-impaired users and facilitate comparison of two populations
with similar values. Many-to-one mappings are best used in situations where it is
important to not only compare values of the same dimension for separate records,
but also compare different dimensions for the same record. For example, mapping
each dimension to the height of a vertical bar facilitates both intrarecord and inter-
record comparison. In this paper, we focus primarily on one-to-one and many-to-
one mappings, although many of the principles discussed can be applied to other
mappings.
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7.4 Examples of Existing Glyphs

The following list (from Ward, 2002) contains a subset of glyphs that have been de-
scribed in the literature or are in common use. Some are customized to a particular
application, such as visualizing fluid flow, while others are more general purpose. In
a later section we examine many of these mappings and try to identify some of their
strengths and weaknesses.

Profiles (du Toit, 1986): height and color of bars (Fig. 71a).

Stars (Siegel et al., 1972): length of evenly spaced rays emanating from center
(Fig. 71b).

Anderson/metroglyphs (Anderson, 1957; Gnanadesikan, 1977): length of rays
(Fig. 7.1b).

Stick figures (Pickett and Grinstein, 1988): length, angle, color of limbs (Fig. 7.1¢).
Trees (Kleiner and Hartigan, 1981): length, thickness, angles of branches; branch
structure derived from analyzing relations between dimensions (Fig. 7.1¢).
Autoglyph (Beddow, 1990): color of boxes (Fig. 7.1d).

Boxes (Hartigan, 1975): height, width, depth of first box; height of successive
boxes (Fig. 7.1d).

Hedgehogs (Klassen and Harrington, 1991): spikes on a vector field, with variation
in orientation, thickness, and taper.

Faces (Chernoff, 1973): size and position of eyes, nose, mouth; curvature of mouth;
angle of eyebrows (Fig. 7.1e).

Arrows (Wittenbrink et al., 1996): length, width, taper, and color of base and head
(Fig. 71f).

Polygons (Schroeder et al., 1991): conveying local deformation in a vector field via
orientation and shape changes.

Dashtubes (Fuhrmann and Groller, 1998): texture and opacity to convey vector
field data.

Weathervanes (Friedman et al., 1972): level in bulb, length of flags (Fig. 7.1f).
Circular profiles (Mezzich and Worthington, 1978): distance from center to ver-
tices at equal angles.

Color glyphs (Levkowitz, 1991): colored lines across a box.

Bugs (Chuah and Eick, 1998): wing shapes controlled by time series; length of
head spikes (antennae); size and color of tail; size of body markings.

Wheels (Chuah and Eick, 1998): time wheels create ring of time series plots, value
controls distance from base ring; 3-D wheel maps time to height, variable value
to radius.

Boids (Kerlick, 1990): shape and orientation of primitives moving through a time-
varying field.

Procedural shapes (Rohrer et al., 1998; Ebert et al., 1999): blobby objects con-
trolled by up to 14 dimensions.

Glyphmaker (Ribarsky et al., 1994): user-controlled mappings.

Icon Modeling Language (Post et al., 1995): attributes of a 2-D contour and the
parameters that extrude it to 3-D and further transform/deform it.
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Alo s

Variations on Profile glyphs Stars and Anderson/metroglyphs Sticks and Trees
Autoglyph and box glyph Face glyphs Arrows and Weathervanes

Figure 7.1. Examples of multivariate glyphs (from Ward, 2002)

The list above is ample evidence that a significant number of possible mappings exist,
many of which have yet to be proposed or evaluated. The question then becomes
determining which mapping will best suit the purpose of the task, the characteristics
of the data, and the knowledge and perceptual abilities of the user. These issues are
described in the sections below.

Biases in Glyph Mappings

One of the most common criticisms of data glyphs is that there is an implicit bias
in most mappings, i.e., some attributes or relationships between attributes are easier
to perceive than others. For example, in profile or star glyphs, relationships between
adjacent dimensions are much easier to measure than those that are more separated,
and in Chernoff faces, attributes such as the length of the mouth or nose are perceived
more accurately than graphical attributes such as curvature or radius.

In this section I attempt to isolate and categorize some of these biases, using both
results from prior studies on graphical perception as well as our own empirical stud-
ies. It is clear, however, that much more substantial work is needed in measuring and
correcting for these biases when designing and utilizing glyphs in data analysis.
Perception-based bias Certain graphical attributes are easier to measure and com-

pare visually than others. For example, Cleveland (1993) reports on experiments
that show length along a common axis can be gauged more accurately than, say,
angle, orientation, size, or color. Figure 7.2 shows the same data with three differ-
ent mappings. Relationships are easier to see with the profile glyphs (length on
a common base), followed by the star glyphs (length with different orientations).
The pie glyph fares the worst, as the user is required to compare angles. Thus in
mappings that are not many-to-one (i.e., those that employ a mixture of graphi-
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Figure7.2. Profile, glyphs, and pie glyphs of a subset of data regarding five economic indicators, as

generated with SpiralGlyphics (Ward and Lipchak, 2000). Features within and between glyphs are
generally easier to compare with profile glyphs

cal attributes), there is an inherent difference in our ability to extract values from
different data dimensions.

Proximity-based bias In most, if not all, glyphs, relationships between data dimen-
sions mapped to adjacent features in a glyph are easier to perceive and remember
than those mapped to nonadjacent features. To the best of my knowledge, no one
has performed experiments to quantify the degree of this bias, although Chernoft
and Rizvi (1975) reported as much as 25 % variance in results by rearranging data
mappings within Chernoft faces. It is likely that the amount of bias will depend
as well on the type of glyph used, as comparing lengths of bars with a common
baseline will be easier than comparing the lengths of rays in a star glyph.

Grouping-based bias Graphical attributes that are not adjacent but may be seman-
tically or perceptually grouped may result in the introduction of bias as well. For
example, if we map two variables to the size of the ears in a face, the relationship
between those variables may be easier to discern than, say, mapping one to the
shape of the eye and the other to the size of the adjacent ear.

7.6 Ordering of Data Dimensions/Variables

I
Each dimension of a data set will map to a specific graphical attribute. By modify-
ing the order of dimensions while preserving the type of mapping, we will generate
alternate “views” of the data. However, barring symmetries, there are N! different
dimension orderings, and thus distinct views. An important issue in using glyphs is
to ascertain which ordering(s) will be most supportive of the task at hand. In this
section, I will present a number of dimension-ordering strategies that can be used
to generate views that are more likely to provide more information than random
ordering.
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Correlation-driven

Many researchers have proposed using correlation and other similarity measures
to order dimensions for improved visualization. Bertin’s reorderable matrix (Bertin,
1981) showed that by rearranging the rows and columns of a tabular display, groups
of related records and dimensions could be exposed. Ankerst et al. (1998) used cross-
correlation and a heuristic search algorithm to rearrange dimensions for improved
interpretability. Friendly and Kwan (2003) introduced the notion of effect ordering,
where an ordering of graphical objects or their attributes would be decided based on
the effect or trend that a viewer seeks to expose. In particular, they showed that by
ordering the dimensions of a star glyph based on their angles in a biplot (basically
each dimension is represented by a line whose angle is controlled by the first two
eigenvectors), related dimensions would get grouped together. This is related to the
method reported by Borg and Staufenbiel (1992), where they compared traditional
snow flake and star glyphs with what they called factorial suns, which display each
data point using the dimension orientations generated via the first two eigenvectors
rather than uniformly spaced angles. Their experiments showed significant improve-
ment by naive users in interpreting data sets.

Symmetry-driven

Gestalt principles indicate we have a preference for simple shapes, and we are good
at seeing and remembering symmetry. In Peng et al. (2004), the shapes of star glyphs
resulting from using different dimension orders were evaluated for two attributes:
monotonicity (the direction of change is constant) and symmetry (similar ray lengths
on opposite sides of the glyph). The ordering that maximized the number of simple
and symmetric shapes was chosen as the best. User studies showed a strong prefer-
ence for visualizations using the ordering optimized in this fashion. We conjecture
that simple shapes are easier to recognize and facilitate the detection of minor shape
variations; for example, shapes with only a small number of concavities and con-
vexities might require less effort to visually process than shapes with many features.
Also, if most shapes are simple, it is much more apparent which records correspond
to outliers. More extensive formal evaluations are needed to validate these conjec-
tures, however. See Fig. 7.3 for an example.

Data-driven

Another option is to base the order of the dimensions on the values of a single record
(base), using an ascending or descending sorting of the values to specify the global
dimension order. This can allow users to see similarities and differences between the
base record and all other records. It is especially good for time-series data sets to
show the evolution of dimensions and their relationships over time. For example,
sorting the exchange rates of ten countries with the USA by their relative values in
the first year of the time series exposes a number of interesting trends, anomalies,
and periods of relative stability and instability (Fig. 7.4). In fact, the original order is
nearly reversed at a point later in the time series (not shown).

7.6.1

7.6.2

7.6.3
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Figure 7.3. Star glyphs for a subset of the cars data set using a random dimension ordering and one
based on shape analysis. More simple shapes can be seen in the second version than the first, which we

believe can facilitate detection of groups of similar shapes as well as outliers

7.6.4 User-driven

As a final strategy, we can allow users to apply knowledge of the data set to order and
group dimensions by many aspects, including derivative relations, semantic simi-
larity, and importance. Derivative relations mean that the user is aware that one or
more dimensions may simply be derived through combinations of other dimensions.
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Figure 7.4. [This figure also appears in the color insert.] Exchange rate data using the original ordering
of dimensions and then ordered by the first data record. Significant features in the ordered version,
such as the sudden rise in value of one of the lower currencies during the third year and the progressive
alignment of several of the inner currencies, are difficult to detect in the original ordering
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These derivative relations might or might not get exposed in correlation-based order-
ing. Semantic similarities indicate dimensions that have related meanings within the
domain; even if the values do not correlate well, users might logically group or or-
der them to help in their analysis task. Finally, some dimensions are likely to have
more importance than others for a given task, and thus ordering or assigning such
dimensions to more visually prominent features of the glyph (or, in some cases, the
features the user is likely to examine first, such as the leftmost bar of a profile glyph)
will likely have a positive impact on task performance.

Glyph Layout Options

7.7.1

The position of glyphs can convey many attributes of data, including data values or
structure (order, hierarchy), relationships, and derived attributes. In this section I will
describe a taxonomy of glyph layout strategies, presented in detail in (Ward, 2002),
based on the following considerations:

— Whether the placement will be data driven, e.g., based on two or more data di-
mensions, or structure driven, such as methods based on an explicit or implicit
order or other relationship between data points.

— Whether overlaps between glyphs will be allowed. This can have a significant im-
pact on the size of the data set that can be displayed, the size of the glyphs used,
and the interpretability of the resulting images.

— The tradeoff between optimized screen utilization, such as found in space-filling
algorithms, versus the use of white space to reinforce distances between data
points.

— Whether the glyph positions can be adjusted after initial placement to improve
visibility at the cost of distorting the computed position. Overlapping glyphs can
be difficult to interpret, but any movement alters the accuracy of the visual de-
piction. We need to know, for the given domain, what the tradeoffs are between
accuracy and clarity.

Data-driven Placement

Data-driven glyph placement, as the name implies, assumes a glyph will be posi-
tioned based entirely on some or all of the data values associated with the corre-
sponding record. We differentiate two classes of such techniques based on whether
the original data values are used directly or whether positions are derived via com-
putations involving these data values. An example of the first would be the position-
ing of markers in a scatterplot using two dimensions (Fig. 7.5), while an example of
the second would be to use PCA to generate the x and y coordinates of the result-
ing glyph (Fig. 7.6). More complex analysis has also been used in glyph placement.
Several researchers (Globus et al., 1991; Helman and Hesselink, 1991) have proposed
methods for placing glyphs at critical points within flow fields from fluid dynamics
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Figure 7.5. Example of positioning glyphs according to two dimensions. In this case, the cars data set
displayed with star glyphs using MPG and horsepower to specify position. Groupings of similar shapes

and some outliers are visible

simulations. The advantages of using the direct method is that position has an easily
interpreted meaning and can act to emphasize or even replace two of the data di-
mensions. The derived methods can add to the information content of the display
and draw the user’s attention to implicit relationships between data records.

Data-driven methods almost always result in some overlap between glyphs, which
can lead to misinterpretation and undetected patterns. Many methods have been de-
veloped to address this problem via distorting the position information. Random
jitter is commonly added to positions in plotting, especially for data that take on
only a small number of possible values. Other methods use spring- or force-based
methods to minimize or eliminate overlaps while also minimizing the displacement
of glyphs from their original positions (Keim and Hermann, 1998). Woodruff et al.
(1998) proposed a relocation algorithm that attempts to maintain constant density
across the display. Since distortion introduces error into the visual presentation, it is
best to allow users to control the amount of distortion applied by either setting the
maximum displacement for an individual glyph or the average among all glyphs or
by using animation to show the movement of glyphs from their original positions to
their distorted positions.

Structure-driven Placement

Structure-driven glyph placement assumes the data have some implicit or explicit
structural attribute that can be used to control the position. A common type of struc-
ture is an ordering relationship, such as in time-series or spatial data. Ordering can
also be derived via one or more dimensions (Fig. 7.7). This is different, however, from
data-driven placement algorithms in that the data values only define the ordering re-
lationship, which is then used in generating the position. A related structure is a cyclic

7.7.2
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Figure 7.6. Example of positioning glyphs using derived dimensions. In this case, the breakfast cereal
data set is shown using the first two principal components to generate the positions. Again, groups of

similar shapes are clearly visible

relationship, where on top of the linear ordering is a cycle length, which implies that
each glyph is related not only to the adjacent glyphs in the sequence but also the
glyphs in the previous and following cycles. Examples of such cyclic placement are
shown in Fig. 7.8.

Another type of structure that can be used for positioning is hierarchical or tree-
based structures (Ward and Kein, 1997). These may be a fixed attribute of the data
(e.g., a computer file system) or computed via, say, a hierarchical clustering algo-
rithm. A wide range of options exist for computing the positions given such a hi-
erarchical structure, as can be seen in the tree-drawing literature (Di Battista et al.,
1999). Hierarchically structured glyphs allow easy access both to the raw data as well
as aggregation information (Fig. 7.9). Finally, data records might have a network or
graph-based structure, such as geospatial data or the web pages associated with an
organization. Again, methods from the graph-drawing community can be used to
generate the positions for glyphs.

Different structure-driven placement strategies will have different degrees of over-
lap; a grid layout of ordered data records can assure no overlaps, while tree and graph
layouts for dense data sets can result in significant overlap. In cases of overlap, distor-
tion methods are quite common, as structure may be easily preserved and visible even
with significant movement of glyphs. Most nonlinear distortion (lens) techniques
(Leung and Apperley, 1994) allow the user to view one region of the data space in
greater detail than others, shifting the distribution of screen space to provide more
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Figure7.7. Example of ordering glyphs according to one dimension. In this case, the data set is a subset
of the cars data, sorted by the MPG variable (top to bottom corresponds to low to high MPG). The
highlighted (dark) glyphs represent four-cylinder cars. A clear grouping of shapes is visible. A few

outliers can be seen near the bottom of the figure, which represent six-cylinder cars with good MPG

room for the user’s focus region(s). This usually enables users to see subsets of the
data without the problem of occlusion. Distortion can also be used to enhance sep-
aration of subsets of data into groups. Thus in an order-based layout, gaps between
adjacent glyphs can be set proportional to a similarity metric. In a sense, this can be
seen as a combination of structure and data-driven methods (Fig. 7.10).

Evaluation

Evaluation of the effectiveness of glyphs for information presentation and analysis

can be performed in a number of different ways. In this section, I describe several

such assessment processes, including:

— Evaluation based on ranking of human perceptual abilities for different graphical
attributes;

— Evaluation based on the speed and accuracy of users performing specific tasks;

— Evaluation based on ease of detection of data features in the presence of occlusion
and clutter; and
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Figure 7.8. Examples of cyclic data glyph layouts, as generated by SpiralGlyphics (Lipchak and Ward,
1997; Ward and Lipchak, 2000). The data consist of five economic indicators over 5 years. In the first
layout, each row constitutes a cycle, while in the second, each ring of the spiral is one cycle. While both
allow the user to see both intracycle and intercycle variations in the data, the spiral more easily allows
comparison of the end of one cycle and the beginning of the next. In addition, space appears to be

more effectively utilized in the spiral layout for long cycles
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Figure 7.9. Profile glyphs of a hierarchically clustered subset of the Iris data. Nonterminal nodes are
computed as the average values of their descendents. The clustering algorithm appears to have done

a reasonable job, though a few outliers exist, such as the cluster associated with the fifth node in the
third row
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Figure 7.10. Star glyphs of Iris data set, ordered by one dimension and positioned with horizontal
spacing proportional to the distance between adjacent data points. This nonoverlapping layout makes it

easy to identify both clusters and large gaps in the N-D distance where the values for the ordering
dimension are similar to each other
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— Evaluation based on the scalability of techniques in terms of number of records
and dimensions.

A large number of evaluation studies on glyphs and other forms of multivariate data
analysis have been carried out over the years. Some of these have been rather ad hoc,
or based just on the opinions and observations of the authors, while others have in-
volved detailed and carefully orchestrated user studies.

Cluff et al. (1991) evaluated and categorized 12 methods of multivariate data pre-
sentation, including several forms of glyphs. Their evaluation criteria fell into three
groups: objectives, information level and dimension capacity, and global criteria. Un-
der the objectives group they considered accuracy, simplicity, clarity, appearance, and
design. In the information level and dimensional capacity criterion, visualizations are
classified as to what extent they retain the level of information present in the data. At
the lowest level (elementary) is the ability to convey the individual data values, while
at the intermediate level, relationships among subsets of the data can be seen. The
highest level (overall) provides linkages between multiple relationships and allows
users to understand the data sufficiently to solve real tasks. The global criteria group
includes flexibility, interpretability, visual impact, time to mastery, and computa-
tional tractability. For each visualization method, each of these criteria was classified
(subjectively by the authors) as 1 = does not sufficiently meet objective, 2 = meets ob-
jective satisfactorily, and 3 = meets objective in an excellent manner. While the results
of the classifications lack statistical significance due to the small sample size, the cat-
egorization of evaluation criteria was far more extensive than in most other studies.

Lee etal. (2003) analyzed the effectiveness of two glyph techniques (Chernoff faces
and star glyphs) and two spatial mappings, where each data record was simply rep-
resented by a marker whose position was based on similarity to other data records.
Binary data was used, and 32 subjects were asked a range of questions regarding re-
lationships between records (both local and global). Results showed that the sub-
jects answered many of the questions more quickly and accurately, and with more
confidence, using the spatial mappings. This confirmed the hypothesis of many re-
searchers, which is that glyph interpretation can be quite slow for tasks that involve
a significant scanning and comparison. However, questions regarding the values of
particular data features could not readily be answered with the spatial mappings. The
implication is that, given a known set of questions, it may be possible to assign posi-
tions of simple points to facilitate a task. For general tasks, however, a combination
involving positioning of glyphs based on data relationships, as suggested in the glyph
layout section of this paper, would likely be most effective.

As mentioned earlier, Borg and Staufenbiel (1992) compared snowflake and star
glyphs with factorial suns, with the angles of the lines conveying relationships be-
tween dimensions. In their experiment, they used the classification of 44 prototypical
psychiatric patients across 17 attributes into 4 categories, as determined by 11 experts.
Then, using each of the 3 glyph types, they generated drawings of each of the 44 cases.
Thirty beginning psychology students were asked to group the drawings into 4 cate-
gories based on shape similarity. They then studied the frequency with which draw-
ings of the same category (according to the experts) were grouped together by the
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students. The results showed a significantly greater success rate with factorial suns as
compared to snowflakes and star glyphs.

Several evaluations of Chernoft faces have been reported since their introduction.
One interesting set of experiments was reported in Morris et al. (1999), who focused
on studying the effectiveness and preattentiveness of different facial features. Sub-
jects were shown images containing varying numbers of faces, and they were asked
to determine if a face with a designated feature existed. The amount of time required
to complete each task was measured and analyzed. Not surprisingly, the amount of
time needed was proportional to the number of glyphs on the screen. However, the
authors determined that it is not likely that preattentive processing was involved, as
tests done with short duration, even with small numbers of glyphs, yielded poor re-
sults. Their conclusion was that, because glyph analysis with Chernoftf faces was be-
ing done sequentially, they are unlikely to provide any advantage over other types of
multivariate glyphs.

A study that placed Chernoff faces ahead of several other glyph types was reported
by Wilkinson (1982). In this study, subjects were asked to sort sets of glyphs from most
similar to least similar. The glyphs used were Chernoft faces (Chernoft, 1973), Blobs
(Andrews, 1972), castles (Kleiner and Hartigan, 1981), and stars (Siegel et al., 1972).
The results were that faces produced results with the best goodness of fit to the real
distances, followed by stars, castles, and blobs. The author felt that the memorability
of the faces helped users to better perform this type of task.

Summary

Glyphs are a popular, but insufficiently studied, class of techniques for the visualiza-
tion of data. In this paper, we've discussed the process and issues of glyph formation
and layout, including the identification of problems of bias due to perceptual limi-
tations and dimension ordering. We also presented techniques for evaluating the ef-
fectiveness of glyphs as a visualization method and some results obtained from eval-
uation.

Many avenues exist for future development and application of glyphs for data and
information visualization. There is a continuing need for glyph designs that mini-
mize bias while maximizing the accuracy of communicating data values. While the
majority of recent designs have been tailored to particular domains and tasks, we be-
lieve there is still room for work on general-purpose glyph designs. Scalability is also
a big issue, as most glyph methods in use are limited either by the number of data
records or data dimensions that can be easily accommodated. Given the growth in the
size and dimensionality of common data sets, novel mechanisms are needed to enable
users to explore larger and larger amounts of data. Work on aggregation glyphs (Yang
etal,, 2002) or other multiresolution strategies may be the key to the problem of scale.
Finally, rigorous evaluation is essential to help identify the strengths and weaknesses
of each proposed glyph in terms of user perception, analysis tasks, and data charac-
teristics. Most efforts at evaluation to date have been ad hoc or very limited in scope.
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Visual Exploration by Linked Views

The basic problem in visualization still is the physical limitation of the 2-D presen-

tation space of paper and computer screens. There are basically four approaches to

addressing this problem and to overcoming the restrictions of two-dimensionality:

1. Create a virtual reality environment or a pseudo-3-D environment by rotation
that is capable of portraying higher-dimensional data at least in a 3-D setting.

2. Project high-dimensional data onto a 2-D coordinate system by using a data-
reduction method such as principal component analysis, projection pursuit, mul-
tidimensional scaling, or correspondence analysis.

3. Useanonorthogonal coordinate system such as parallel coordinates which isless
restricted by the two-dimensionality of paper.

4. Link low-dimensional displays.

The idea of linked views has been around for quite some time in order to escape the
limitations of 2-D paper or, as Tufte (1990) puts it, “the 2-D poverty of endless flat-
lands of paper and computer screen.” Identical plot symbols and colors are a com-
mon way to indicate that different displays refer to identical cases. This has been
widely used in the development of static displays; see Tufte (1983) and Diaconis and
Friedman (1983). In McDonald (1982) this concept of linked graphics was first imple-
mented in a computer program to connect observations from two scatterplots. Still
by now, the linking in scatterplots and scatterplot matrices, also known as “scatterplot
brushing” as promoted by Becker et al. (1987), is the most prominent case of linked
views.

The main advantages of linked views are the easiness of the underlying graphical
displays and the speed and flexibility with which different aspects of the data can be
portrayed — three features that are essential in the exploratory stage of data analysis.
Linking a barchart with a histogram, for example, provides the opportunity to com-
pare not only those groups that are defined by each particular category but also those
that originate from uniting similar categories without actually changing the under-
lying data. Figure 8.1 shows in the background an average shifted histogram for the
total population and in the foreground the average shifted histogram for a selected
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Figure 8.1. Does students reading behavior have an impact on their performance in mathematics? The
distribution for those students who do not read at all outside school falls below the overall distribution
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Figure 8.2. Does students reading behavior have an impact on their performance in mathematics? The

distribution for those students who read more than 3 h a day is shifted toward the higher scores

subgroup. In Fig. 8.2 three categories are selected at the same time and the resulting
conditional distribution is displayed in the histogram. The data used here and in most
other examples which follow are a subset of the Third International Mathematics and
Science Study, an international survey to assess the level of and possible influences
on the mathematics and science achievements of 13- and 14-year-old students. The
dataset used here consists of a German sample of 5763 students. The dataset is rather
typical for surveys in the social sciences and contains a few continuous variables, like
the scores on the mathematics and science test, and a large number of categorical
variables originating from a questionnaire using a five-point Likert scale.

Another main advantage of linked views is the applicability to complex data struc-
tures. The linking concept comes quite naturally with geographically referenced data
by connecting the measurements with the geographic location at which the measure-
ments were made. Figure 8.3 shows a map of Bavaria that indicates those counties
with a high percentage of forestry.!

Anselin (1999), Wills (1992) and Roberts (2004) provide a comprehensive discus-
sion of linking in spatial data exploration.

The main application focus of linked displays is in statistical exploration of datasets,
in particular, addressing issues such as
— Investigating distributional characteristics,

— Finding unusual or unexpected behavior, and
= Detecting relationships, structure, and patterns.

A particular asset of linked views comes with categorical data and the easy availability
of conditional views. Figure 8.4 shows the conditional distribution of the variable
reading for pleasure for male students. Since the number of students in the group of
students who read outside school is in inverse relation to the amount of time spent
reading, it is difficult to see whether the males show a particular pattern.

By switching the barchart on the right to a spine plot (Hummel, 1996), we can see
the proportions of males falling into each category of reading habits. Here it becomes
immediately obvious that males are underrepresented in the medium class. Male stu-

"' The dataset used here is from the Bavarian Office of Statistics and includes information
about land usage for the 96 counties in Bavaria.
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Figure 8.3. Land usage on the county level in Bavaria. Highlighted are those counties with a high

percentage of forestry

dents tend to spend less time reading than females, but in the class of reading addicts
the share of males equals the share of females.

As we have seen with the previous examples, visual exploration of data requires
a flexible and adaptive framework of software ingredients to enable the user to inves-
tigate possibilities in a quick and intuitive manner. While flexibility is a virtue on one
hand, a stabilizing element is needed on the other hand that makes plots compara-
ble and ensures that the patterns seen in the linked displays are in fact data features
and not visual artifacts. The general paradigm of linked views to be described in the
following sections provides a systematic approach to flexible and adaptive visualiza-
tion tools while at the same time offering guidelines and principles for the infor-
mation exchange between plots and the user. In the following sections, the general
paradigm of linked views will be explained pointing to the essential characteristics

[ p—

1 2 3 4 5
Figure 8.4. Barchart of gender linked to barchart displaying student reading habits. As you move to

the right, the bars indicate a higher percentage of time spent by students on reading outside school.

(1 = female students, 2 = male students)



Linked Views for Visual Exploration 203

1 2 3 4 5
Figure 8.5. Instead of a barchart as in Fig. 8.4 a spine plot is used to portray a different reading

behavior. The share of males first decreases but then increases again for the groups of students who
spend a lot of their spare time reading

that are needed for linked views so that their concept can be used for a successful
exploration of datasets.

Theoretical Structures for Linked Views 8.2

As a general paradigm, linking views means that two or more plots share and ex-
change information with each other. To achieve the exchange of information, a link-
ing procedure needs to establish a relationship between two or more plots. Once a re-
lation between two plots has been established, the question is which information is
shared and how the sharing of information can be realized? To explore the wide range
of possibilities of linking schemes and structures, we use the separation of data dis-
plays in their components as proposed in Wilhelm (2005). According to this defini-
tion, a data analysis display D consists of a frame F, a type, and its associated set of
graphical elements G as well as its set of scale representing axes sg, a model X and
its scale sy, and a sample population Q, i.e., D = (F, (G, sg), (X,sx), Q). The pair
((X,sx), Q) is the data part and (F, (G, sg)) is the plotting part.

To effectively put the idea of linked views into practice, a communication scheme
between the plots has to be established. The (external) linking structure controls the
exchange and transfer of information between different plots. In principle, informa-
tion from all plots may be used and combined; in practice it is reasonable to label
one plot “the active plot,” while all other plots are labeled “passive” This distinc-
tion is analogous to the notions “sender” and “receiver” in communication theory.
The active plot sends a message to all passive plots, which act accordingly. The def-
inition of data displays and the abstract concept of linking opens the possibility of
defining a linking structure as a set of relations among any two components of the
two displays. However, only relations between identical layers of the data displays
are of practical relevance. The diagram in Fig. 8.6 illustrates the possible linking
schemes between the active display D; = (Q, &}, Gy, F1) and the passive display
D, = (Q2,X,,G,, F>) under this restriction.
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Figure 8.6. A general view on possible linking structures between the active plot D; and the passive

plot D, assuming that information sharing is only possible among identical plot layers

Thus, four types of linking structures can be distinguished: linking frames, linking
types, linking models, and linking sample populations. At the type and at the model
level the linking structures can be further differentiated into data linking and scale
linking, the latter being used when scales or scale representing objects are involved
in the linking process.

Sharing and exchanging information between two plots can now be resolved in
two different ways. The one involves using the direct linking scheme from one layer in
display D; to the corresponding layer in display D,. The other is a combined scheme
that first propagates the information internally in the active plot to the sample pop-
ulation layer; then the sample population link is used to connect the two displays,
and the linked information is then internally propagated in the passive plot to the
relevant layers. Hence the most widely used and most important linking structure is
sample population linking.

Linking Sample Populations

Sample population linking connects two displays and provides a general platform for
all different kinds of user interactions. In general, sample-population-based linking
for two data displays D; and D, can be defined as a mapping m : Q; — Q, that maps
the elements of the sample population space ; to some elements of the space ;.
Sample population linking is usually used to create subsets of a dataset and to look at
conditional distributions. From this point of view it is intrinsically necessary that the
relation between €); and Q, generates a joint sample space such that the conditional
distributions to be investigated are properly defined. Some natural sample population
linking structures encompass this property by default.
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Identity Linking

The easiest and most common case of sample population linking, which is also known
as empirical linking, uses the identity mapping id : Q — Q. This linking scheme orig-
inates from the goal to visualize the connection between observations that have been
taken at the same individual or case. It provides the means to use the natural connec-
tion between features observed on the same set of cases. It is intrinsically built into
the common data matrices used in statistics in which each row represents one case
and each column a variable that has been measured for this case. Identity linking is
not necessarily restricted to identical sample populations. Whenever two variables
have the same length they can be bound together in a single data matrix and then
all software programs will treat the variables as if they have been observed with the
same individuals. However, one has to be careful when interpreting such artificially
linked variables.

Hierarchical Linking

In practice, databases to be analyzed come from different sources and use different
units of analysis. Nevertheless, data bases that are to be analyzed together typically
show some connection between the various sample populations. A quite common
case is some kind of hierarchy for the various sample populations. This hierarchy can
result from different aggregation levels ranging from the micro level of individual
persons via different social groups up to the macro level of different societies. Simi-
lar situations arise quite common with spatial data which are measured on different
geographical grids, like on the local, the regional, the country and the continental
level. For such kind of data it is convenient to visualize the connection obtained by
the hierarchical aggregation also in the displays. The connection between the sample
population spaces has then to be established by a relation m : Q; — Q, for which
each element of (); is mapped to an element of Q0 in such a way that some kind of
filtration is generated.

Neighborhood or Distance Linking

A special case arises when we work with geographic data where quite often the most
important display is a (chorochromatic) map and the focus is on investigating local
effects. It is thus quite often desirable to see differences between one location and its
various neighbors. So here the linking scheme points also toward the same display
and establishes a self-reference to its sample population. A variety of neighborhood
definitions are used in spatial data analysis, each one leading to a somewhat different
linking relation of thekind m : Q) - Q,, m(w*) = {w € Q, : dist(w*, w) < d}.Each
definition of neighborhood or distance leads to a new variant of linking relation, but
the main principles remain the same.

Linking Models

As presented in Wilhelm (2005) models are symbols for variable terms and define the
set of observations that shall be represented in the displays. Models are the central

8.2.2
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part of the data display definition and describe exactly the amount of information that
is to be visualized. The histogram of a quantitative variable, for example, is based on
the categorization model. This model is determined by a vector C = (Cy,...,C.) of
real values that segments the range of a variable A. For each segment the frequencies
of observations that fall into the category are counted and stored. The scale compo-
nent of the histogram model consists of the categorization vector C, the ordering 7,
of the values in C (due to the ordered nature of real values only two orderings make
sense, ascending or descending, and the ascending one is the standard used for his-
togram representations), and the maximum number of counts for any bin. This also
implicitly assumes that the vertical axis of the histogram starts at 0 and shows the full
range of values from 0 to the maximum number of counts in a category. Notationally,
the categorization model can be written as:

ABC=|[Cy,C1],(C1,Cal,...,(Ceoy, Cc s

count(AC) := > count(A;),..., > count(A;)
i:Co<A;<Cy i:Ce1<A;<C.

sx = (C, ., max (count(AC))) .

A model link for this example can now be established either via the set of observations
A @ C or the scale sy. Linking scales for the above example of the categorization
operator yields three different cases: linking the categorization vector C, linking the
ordering of the categorization values, and linking the maximum count for one bin.
Assuming that the categorization operator model is represented by a histogram, the
third case basically links the scales used for the vertical axes of the histograms, and
the other two link the scales of the horizontal axes, in particular, the bin width and
the anchor point.

Linking histogram scales is implemented, for example, in MANET. In Fig. 8.7 two
histogram scales are linked. The plot to the right is the active plot that propagates its
scale to the one at the left. For the plot at the left also the frame size is adjusted. The

F N

Figure 8.7. Two histograms with linked scales. Both histograms start with the same anchor point, have

the same bin width, and use the same scaling for the vertical axes. The plot on the right does not fully
extend to the upper border of the plot because the maximum number of counts for a bin is smaller than
the one for the left plot. Hence it becomes clear that in this instance, the left plot is the active plot.
Otherwise, the largest bins of the left plot would exceed the frame boundaries of the plot



Linked Views for Visual Exploration 207

O

Al

Figure 8.8. Three histograms for the same variable. The two plots on the right have the same frame size,

but different scales. The plot in the top right uses the same scale as the plot on the left. The differences
in the visual impact are only due to the different uses of frame size or scales

histogram definition in MANET specifies five parameters, the lower and upper limit
of the horizontal scale, the bin width, the number of bins, and the maximum height
of a bin. Any two of the first four parameters combined with the fifth one are suffi-
cient for a complete specification of a histogram. Via linking all these parameters can
be shared. Moreover, the user has the choice of adjusting the frame size as well. For
a proper comparison, it is essential to also use the same frame size and not only the
same scales. Figure 8.8 shows three histograms for the same variable. The plot on the
left is the active one, the plot on the bottom right is not linked at all, and the one on the
top right has the same scales as the active one, but a different frame size. These simple
examples of linked scales point toward the importance of linking scale information
in general. A very widespread use of linking scales is in the form of sliders. Sliders
are 1-D graphical representations of model parameters, which the user can change
dynamically. Moving the slider yields a change of the underlying model parameter
that is then automatically propagated to all plots that display the model. Sliders are
a widely used tool to provide a visual representation for dynamic queries (Shneider-
man, 1994) to filter and dissect the data into manageable pieces following the visu-
alization mantra: overview first, zoom, and filter, then details on demand (Shneider-
man, 1997). Another common application for such sliders is interactively controlling
Box-Box transformations or checking various lags for time-series analyses.

The order of the categorization values is of less importance for continuous data
displayed in a histogram. This scale component becomes more important for nomi-
nal categories that do not have a clearly defined natural ordering. Linking this scale
parameter is common and helpful for barcharts and mosaicplots. For the histogram,
the categorization vector C actually belongs to both the observation component and
the scale component. Using the same categorization vector could thus also be seen
as a form of linking the observations of a model. In general, however, it is more ap-
propriate to restrict the concept of linking observations to the variables that are used
in the model and not the categorization vector. In this sense, linking models means
that plots share the same variables. In Fig. 8.8 all three plots are in principle linked
via the model observations because all three plots represent the same variable. In
this static form, this kind of linking does not really provide a particular achievement.
However, using this form of linking in a prespecified cluster of graphical displays can
give a rather complete picture of a dataset. Young et al. (1993) have created a system



8.2.3

208 Adalbert Wilhelm

in which various views of the same dataset are combined in one window. One plot -
typically a scatterplot matrix — controls which variables are displayed in all the other
plots included in the window. Clicking a cell in the scatterplot matrix shows marginal
views for these variables, for example. The aim of such a system - called empirical
linking in Young et al. (1993) - is to create multiple views that act as a single visu-
alization of the data space and provide a complete picture by offering a magnitude
of view points and visual aspects. The major benefit lies in the fact that the user can
routinize and partially automatize the exploration of a dataset. Once interesting and
appropriate plots have been found for one variable, the user can investigate similar
or related variables from the same angles by simply exchanging the variables in the
control plot.

The model layer of a data display is flexible enough to comprise also more com-
plex models such as regression models, grand tours, and principal components. For
these models, a straightforward model link consists of a system of intertwined plots
that display the raw observations, the model, and residual information. Young et al.
(1993) had introduced such a form in the context of grand tour plots. They designed
a spread plot consisting of a rotating plot and two scatterplots presenting residual
information for the main components. Similarly, in MANET each biplot is accompa-
nied by two scatterplots of residuals showing the residuals against the first and sec-
ond principal component; see Hofmann (2001). Changes in the model, as for example
initiated by rotating the point cloud in a spread plot, results in an immediate update
of the residual information. Young et al. (1993) called this form of linking algebraic
linking.

Linking Types

The type layer covers most of the visible components in a graphical display and aims
at representing the model as well as possible. The distinction between type level and
model level basically lies in the fact that, due to the limited plot space and screen
resolution, not all models can be visualized without loss of information. The close
connection between the two layers also means that congruities at the type level of
two displays almost always is a consequence of linked models. For example, it is clear
that two histograms that use the same categorization operator also have the same bin
widths. A direct link between the type levels of two displays without having a cor-
responding linkage between the models is rather uncommon. Color and size are at-
tributes of graphical elements that can be linked, in most cases either with or without
establishing a corresponding model link. Pie charts, for example, use different colors
for the slices to enhance the differentiation between the various categories. These
colors are typically assigned individually for each plot and do not carry any intrin-
sic meaning. Colors could be linked on a type level by assigning identical colors to
the first slice in each plot, the second slice, and so on. As long as the ordering of the
slices does not reflect information of the model level, the linking will be on the type
level only. Alternatively, if the slices are ordered alphabetically or by size, the color
also carries some model information and linking via colors could be a realization of
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a model link. A similar situation might arise with color maps. Whether these link-
ages of color constitute a meaningful information exchange depends on the context.
At least using an identical color scheme reduces the effect of misinterpretation due
to color effects. Linking axis information typically comes down to the fact that all
linked displays use the same axis parameters. Also for the axis information it can
be said that in most instances the axis parameters are identical to the correspond-
ing scale parameters. For histograms, for example, the limits of the axes are typically
depending on the scale specified in the model. Differences between scales and axes
usually yield an inefficient usage of the available plot space because part of the plot
remains deliberately unused. This can be intended if, for example, observations that
are expected to fall in a similar range cover completely different portions of the obser-
vation space. If the axes are adjusted to match exactly the scales, one would not notice
this feature immediately. If the same axes are used, the different range of the obser-
vations becomes clearly visible. A similar situation can also occur with choropleth
maps and their corresponding color scheme. Linking type information is usually an
essential ingredient for proper comparisons between various plots. The prototypes
of incorrect visual representations that can be found in many books (e.g., Wainer,
1997; Monmonier, 1996; Tufte, 1983) are all based on adjusting the axis parameters
too closely to the corresponding scale parameters and then interpreting the visual
differences in the plots independently of the scales.

Linking Frames 8.2.4

The frame level is the coarsest level of a data display and basically determines the
general shape and size of a plot window. Linking the size of frames is not only relevant
for a screen-space-saving layout of displays, but it is also one of the prerequisites
for a correct comparison of graphical displays, as has been already seen in Fig. 8.8.
Using different frame sizes distracts the analyst and can lead to wrong conclusions.
Linking of other attributes, such as background color, printing black on white or
white on black, is not directly important for correct interpretations and comparisons.
However, a common framework to set and change these parameters is convenient,
especially for creating different scenarios of data analysis.

Visualization Techniques for Linked Views 8.3

The linking paradigm advocates the sharing of information between displays. This
can happen whenever a new display is created by making use of the information
that is available in the current displays. A second instance for information sharing is
present in interactive environments whenever the user makes changes to a plot while
investigating and exploring the data. While the first case is typically easily realized by
creating an additional plot window, the second case introduces the question of where
the information goes and how the information can be best represented. Roberts et al.
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(2000) distinguish three different strategies of exploration: replacement, overlay, and
replication.

Replacement

In the replacement mode, old information is typically lost and gets replaced by new
information. While this strategy is reasonable for plot parameters, it is rather useless
for the subsetting and conditioning approach because the important information on
the marginal distributions is lost. It only works fine when we have individual plot
symbols for each observation, as in scatterplots for example, where some attributes
are changed by the user interaction. But even when replacing plot parameters the
user loses the possibility to compare the current plot with previous versions. The
user can only compare the current image with a mental copy of the previous image
and hence the comparison might get distorted. Especially in the exploratory stage of
data analysis for which interactive graphics are designed, it is helpful to keep track of
changing scenarios and the different plot versions. A history system that stores the
history of plot changes as they are implemented in some geovisualization systems
(Roberts, 2004) is very helpful.

Overlaying

In the realm of direct manipulation graphics, overlaying is the typical strategy when
looking at conditional distributions in area plots. In Fig. 8.9 a histogram is linked to
a barchart. The two classes to the left of the barchart are selected and a histogram
for these data points is overlaid on the original plot. The representation of the con-
ditional distribution inherits the plot parameters of the original plot. This eases the
comparison between the conditional distribution and the marginal distribution. It
also provides a common framework for a comparison of two conditional distribu-
tions if the user changes the selection of the conditioning set.

1 2

3 4 5 8

Figure 8.9. Two categories in the barchart are selected. This selection is propagated to the histogram in
which a histogram representing the selected subset is overlaid. The overlaid histogram uses the same
axis, scale, and plot parameters as the original display and hence establishes comparability between the

subgroup and the total sample
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Figure 8.10. Overlaying a boxplot for the selected group covers part of the graphical elements of the

original box plot. To minimize the confusion and the loss of information, a slightly different style is
used for drawing the subgroup boxplot

Overlaying creates two kinds of problems: the one is a basic restriction in the free-
dom of parameter choice for the selected subset since the plot parameters are inher-
ited from the original plot; the other is the problem of occlusion or overplotting.
Part of the original display might become invisible due to the fact that the new plot
is overlaid. This can occur in particular when the data representing objects on the
type level differ substantially for the subset and the total sample. While this problem
might not be present for most area-based displays and while it is rather unimportant
for scatterplots, it is essential for more complex plots such as boxplots (Fig. 8.10).

Repetition

Repetition is the third strategy of visualizing linked interactions. Here, the displays
are repeated and different views of the same data are available at the same time. The
advantage is a rather comprehensive picture of the data; the user has a complete
overview on all different representations and can clearly observe the impact of pa-
rameter changes and other user interactions. The disadvantage is that the user might
get lost in the multitude of slightly changed and adapted views. The repetition strat-
egy requires an easy way to keep track of the various changes and adaptations that
have been issued by the user. It also requires an easy and powerful system to arrange
the displays on a computer screen. A condensed form of the repetition strategy that
works very well for the purpose of subsetting is juxtaposition. This means placing
the plot for the selected subgroup not directly on top of the original plot but close
to it to the side. Juxtaposition avoids masking important features of the original plot
and still allows easy comparison between the two representations. The comparative

70+
60 1 selected subgroup
S0+

40

30+

20 + all observations
Figure 8.11. Instead of overlaying the plot for the selected subgroup, it is placed next to the original one

such that no overlapping occurs

8.3.3
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frame of the original plot remains available and the subset is clearly visible as well.
Juxtaposition is well known for static plots but has not yet gained acceptance in inter-
active graphical systems. There seems to be a psychological barrier that prevents the
use of juxtaposition because usually it requires rearrangement of the original plot to
make space for the additional plot. It also means that each plot has to be fully redrawn
after each user interaction, which can be quite demanding depending on the size of
the dataset and the complexity of the graphical display. But current computer power
should render the interactive creation of juxtaposed plots possible. Juxtaposition also
opens the possibility of seeing a full sequence of user interactions and thus allows
one to meticulously inspect the flow of subsetting. Juxtaposition also is a worthwhile
representation scheme for dynamic animations. The principle of juxtaposition can
be straightforwardly extended from graphical displays to statistical model displays.
Having calculated a statistical model for the whole sample, we might be interested in
particular subsets. Interactively specifying a subset of the sample population should
then run the model for the selected subgroup only. The new results could then be
juxtaposed to the original ones to allow for easy model comparison.

Special Forms of Linked Highlighting

Different problems occur when the linking scheme is not a simple 1-to-1 linking but
a more complex form such as m-to-1 linking as occurs in hierarchical linking. As-
sume that there are two levels in the hierarchy: the aggregated macro level, a set of
counties for example, and the micro level, a set of towns in these counties. When-
ever some but not all towns in a county are selected, it would be nice to represent
this partial selection of the county by a partial highlighting. If the representation of
the macro level is based on regular shapes, the partial highlighting can be done by
subdividing this shape into a selected and a nonselected component to indicate the
amount of selected objects on the micro level. The more general approach, however,
is to use different intensities of the filling color of graphical elements to represent the
various selected proportions. This is not only recommended for displays with graph-
ical elements that have a nonrectangular layout, but it is the more general approach
that is usually easier to decode. Figure 8.12 refers to the Bavaria dataset of Fig. 8.3 and
shows two maps, the left map portraying the micro level of 96 counties, the right map
showing the macro level of 7 regions in Bavaria. The selection of some elements of
the micro level in the left map is propagated to the right plot and portrayed there. The
varying intensities of the filling color reflect the proportion of highlighted counties
in a region.

Although the general linking schemes in this paper have been introduced under
the restriction of a directed linking process, a few comments shall be made on bidi-
rectional linking, which allows the mutual exchange and sharing of information be-
tween plots. Such bidirectional links would be useful when linking plot parameters
that govern the general layout and size of a display. In the unidirectional case, one
plot inherits the axis limits from the other. These boundaries might be too small for
the passive plot and hence lead to a misrepresentation in the linked plot. It would be
much better in such instances to change both sets of plot parameters in such a way
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Figure 8.12. Visualization of a hierarchical linking scheme for two maps. The map on the right
constitutes a coarser grid of geographic locations than the map on the left. Selection of some counties
in the left map are represented by varying intensities in the regions of the right map. The darker

a region is colored, the more counties in this region are selected in the left plot

that both plots represent their model in a meaningful way, e.g., by choosing the joint
axis parameters as the minimum and the maximum of the individual limits. A bidi-
rectional link based on the selection of a subset in a plot is implemented in MANET for
the trace plot. The linking scheme that is used there is a combination of 1-to-# linking
and m-to-1linking. When a region in the map is selected, then all points in the trace
plot are highlighted that depend on the value observed at the selected region. When
a point in the trace plot is selected, then all regions that contribute to this value are
highlighted. This highlighting action is then returned to the trace plot and all points
are highlighted that depend on the currently highlighted regions (Wilhelm, 2005).

Software 8.4

Although linked views are readily available in many statistics research software pack-
ages, e.g., LIsPSTAT (Tierney, 1990), Data DEsk (Velleman, 2000), MONDRIAN (Theus,
2002), or MANET (Unwin et al., 1996; Hofmann and Theus, 2000), they have not yet
been widely included in the major commercial statistics programs. However, some
features of linking, usually in a noninteractive realization, can be found in the com-
mercial flagships, like SPSS and SAS. The principles of the linking paradigm laid out
in this text have been mostly inspired by Data DEsk and MANET. Lately, interactive
features have been added to the R project (Urbanek and Theus, 2003). With respect
to software it is also worthwhile mentioning that the increasing size of datasets puts
challenges to most of the software in terms of speed. While MANET works pretty fast
with datasets of up to 10 000 cases, it slows down significantly for datasets with 80 000
cases. As large datasets might acquire the new standard, implementation might im-
prove. However, for research software this might require a complete reprogramming.
DATA DEsK is more robust in this respect and works even with datasets of one million
cases fairly quickly.
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8.5 Conclusion

The use of multiple linked views is a well-known concept in interactive statistical
graphics. By establishing a close connection between plots that show different aspects
of related data, the analyst can explore the data in an easy and flexible way. Linking
simple low-dimensional views enables the user to understand structures and patterns
of more complex datasets. Multiple linked views are an essential contribution to the
field of visual data mining and can provide the required human-computer interac-
tion (Fayyad et al., 1996) to understand the hidden structures and relations. Embed-
ded in efficient software systems, the paradigm of linked views is a powerful tool to
explore a broad range of data. The simplicity of the individual plots combined with an
intuitive, easy-to-use, and flexible user interface is especially rewarding when using
it for consulting experts in the data domains. Applied researchers are familiar with
most of the displays used as ingredients in linked systems. Hence a broad audience
can easily use and interpret these plots.

Linking procedures become particularly effective when datasets are complex, i.e.,
they are large (many observations) and/or high-dimensional (many variables), con-
sist of a mixture of categorical and continuous variables, and have a lot of incomplete
observations (missing values). Generalization of linking aims to give consistent views
of data, consistent not only for each individual point but also for a plot as a whole. To
offer consistent comparisons of visual displays, plots should have the same scale and
should allow one to compare proportions. The interactive spirit of an analysis offers
a way to build in prior knowledge and metadata. Impressive results have been ob-
tained in the exploratory analysis of spatial data; the same can be expected for other
areas.
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The linked views paradigm is a method of taking multiple simple views of data and
allowing interactions with one to modify the display of data in all the linked views.
A simple example is that selecting a data case in one view shows that data case high-
lighted in all other views. In this section we define the underlying methodology and
show how it has been applied historically and how it can be extended to provide
enhanced power. In particular we focus on displays of aggregated data and linking
domain-specific views such as graph layouts and maps to statistical views.

9.1 Motivation: Why Use Linked Views?

A “data view” can be thought of as anything that gives the user a way of examin-
ing data so as to gain insight and understanding. A data view is usually thought of as
abarchart, scatterplot, or other traditional statistic graphic, but we use the term more
generally, including “views” such as a display of the results of a regression analysis,
a neural net prediction, or a set of descriptive statistics. A plot of geographic infor-
mation, such as a map of a country, is a data view. A node and edge graph displaying
interrelationships between relatives (more commonly known as a “family tree”) is
a data view. A printout of the R? value from a regression is a data view, albeit a very
simple one. Views of data are also known as graphs, charts, diagrams, plots, and visu-
alizations, but each of those terms has connotations that can restrict how we think of
a linked view. Thus, in this chapter, we use the simple term “data view” — something
that allows us to view data.

A linked data view is a data view that communicates with another view. If a mod-
ification is made to one of the views, the other view will change its appearance in
reaction to the modification. A simple example of linked data views is a scroll bar in
a text editor that is linked to the text view. The scroll bar has a “thumb” that shows
which part of the document is being displayed. When the user modifies the scroll
bar by dragging the thumb around, the text view updates to show that portion of
the document. This example is presented first to highlight the ubiquity of the linked
views approach; the linked views paradigm is used in standard user interfaces (Apple
Computer, 1992; Microsoft, 1999) and in game software (Maxis, 1985) as well in more
specifically data-analytic software.

Figure 9.1 shows a more directly data-analytic version of linked views. The dataset
used is described in the appendix, which gives details of the data used to generate each
figure in this chapter. The data are taken from an archive of baseball statistics collected
1871 and 2004. In this figure we are interested in comparing players’ salaries to their
performance and so create a scatterplot showing the relationship between salary and
batting average (the single most commonly used measure of a player’s batting ability).
We create a histogram of the year for this dataset (which incidentally shows us that
salary data only became available starting in 1985) and then select the histogram bars
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Figure 9.1. Simple linking between a barchart and a scatterplot. The left view is a histogram of the
number of players in baseball by year, and the right view is a scatterplot of players’ salaries (on a log
scale) against their batting average. A quadratic curve has been imposed on the salary data to show level

differences between the selected and unselected groups; it is not intended to be a good fit to the data

for years 2000 through 2004. In both the histogram and the scatterplot, those selected
data elements are shown in black and the unselected ones in light gray.

The linking between the views is achieved by allowing the user to select part of
one view, in this example using a rectangular selection device, which has the effect of
selecting the graphic elements that intersect that rectangle. In Fig. 9.1 above, the link-
ing shows us that there is a level effect for years on salaries, but there is no evidence
that it affects the basic relationship between batting average and salary.

A fundamental question for any visualization technique that should always be
asked is: “Why should I use this?” or “Why should I need to link views together -
what benefit do I get from this?” From the analyst’s point of view, if the analyst has
created a view of the data and seen something of interest (or, as can also often occur,
not seen something of interest when they expected to), then they will want to explore
further. They will want to know, for example, if data form clusters under a particular
projection of the grand tour or if there is a change in the relationship between salary
and years playing baseball when the latter is above a given threshold? When they see
something interesting, they want to explain it, usually by considering other data views
or by including additional variables. With some types of view, it is not hard to add in
variables and see if those variables can explain the feature, or indeed if they have any
effect whatsoever. In a regression analysis, you can add a variable to the set of explana-
tory variables (taking due care with respect to multicollinearity and other confound-
ing factors). If a histogram of X shows something of interest, you can “add” a variable
Y to it by making a scatterplot of X against Y. If you want to explain something in
a scatterplot, then it is possible to turn it into a rotating point cloud in 3-D. Using
projection pursuit or grand tour techniques, you can go to still higher dimensions.
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Despite the undoubted utility of this approach, it does present some problems that
prevent it from being a complete solution. The main ones are:

— Asplots become increasingly complex, they become harder to interpret. Few peo-
ple have problems with 1-D plots. Scatterplots, tables, and grouped boxplots or
other displays involving two dimensions are easily learnable. But the necessity of
spinning and navigating a 3-D point cloud or understanding the contributions
to a multivariate projection make views that contain many variables intrinsically
less intuitive.

— It is harder for monolithic data views to accommodate differences in the basic
types of data. High-dimensional projection techniques assume the variables are
numeric, as do techniques that display multivariate glyphs and, to a large extent,
parallel-axis techniques. Given a table of two categorical variables, adding a nu-
meric variable requires changing to a quite different type of view, such as a trellis
display.

— Data that are of a type specific to a particular domain can be impossible to add
directly. Exploring relationships in multivariate data collected at geographical lo-
cations, on nodes of a graph, or on parts of a text document is very hard because
of the difficulty of building views that correlate the statistical element and the
structural element of the data. Often, two completely different packages are used
for the analysis, with results from one package mangled to fit the input form of
the other package - a frustrating situation to be in.

The linked views paradigm can be used to overcome these problems. The idea is sim-
ple; instead of creating one complex view, create several simpler views and link them
together so that when the user interacts with one view the other views will update
and show the results of such an interaction. This allows the user to use views that
require less interpretation and views that are directly aimed at particular combina-
tions of data. It also allows the easy integration of domain-specific views; views of
networks or maps can easily be linked to more general-purpose views.

It should not be argued that linked data views are a uniformly superior method to
that of monolithic complex views mentioned above. That is not the case, as there are
examples where a single multivariate technique is necessary to see a given feature,
and multiple simpler views simply won't do. It is also generally harder to present the
results of an interactive view exploration to another person than it is to present the
results if displayed as a single view. Having said that, for many problems, especially
those where conditional distributions are of interest, the linked data views technique
works extremely effectively.

In Fig. 9.2, we have changed the variable being displayed in the histogram to be
the number of years in the league. (0 indicates a rookie, 1 indicates one previous year
of experience, etc.). The shape of the histogram fits our intuition by being close to
a Poisson distribution. We select those players with 5 years of experience or greater
in the league and see that not only do they have a higher salary on average, but the
relationship between batting average and log(salary) is much closer to linear. For the
younger players, a reasonable case might be made that performance has no strong
effect on pay unless the batting average of a player is itself better than average.
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Figure 9.2. Changing variables in one view. The right view is similar to Fig. 9.1, with the addition of
2 99.9 % confidence interval for the mean fitted value. The left view has been left unchanged in
definition, except that a different base variable has been used; the histogram is now of the number of

years a player has been in the league

The Linked Views Paradigm 9.2

In Sect. 9.1, we showed examples of the linked views paradigm. In this section we will
define it more exactly and detail how a linked views paradigm may be implemented.

To implement a linked views system, the fundamental need is an interactive en-
vironment. Linking is an interaction mechanism and therefore requires a computer
or other system for interaction with graphical representations of data. Given such an
environment, a linked views environment needs to have more than one view, and the
views available to the user must satisty the following conditions:

1. At least one view must be capable of detecting user interaction and translating
that user interaction into a measure of the degree of interest that user has in the
data being displayed in that view. The degree of interest must be able to distin-
guish between subsets of the data based on the user’s interaction.

2. A mechanism is needed to propagate the degree of interest measures created in
view (1) to other views in the system.

3. At least one view that is not the view described in (1) should be capable of re-
sponding to the measure of interest propagated to it under (2). The response
should be to change its visual appearance so as to show the degree of interest
measures as they relate to the data being displayed by this view.

The concept of “degree of interest” is worth considering in more detail. It is intended
to measure the degree to which the user finds any subset of data interesting. By se-
lecting the bars corresponding to five or more years in the league in Fig. 9.2, the
user indicates which portion of the data they are interested in, namely rows where
the number of years in the league is 5 or more. The degree-of-interest measure should
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return some value in a known range for every possible subset of the data; this is neces-

sary when displaying results in aggregated views. An aggregated view is a view where

a single graphic item represents multiple cases of data, as is the case for a histogram

or barchart where a single bar summarizes multiple data rows. In contrast, an unag-

gregated view is one where each row of the data gets a separate visual representation,
as is the case for scatterplots. In this section we use the terms data case and data row
interchangeably, defined as a single observation of data, typically encoded as a row
in a data table. A graphic item is slightly harder to define but should be thought of as

a visually distinct representation that is perceived as a distinguishable unit. A bar in

a barchart, a glyph in a scatterplot, and a 3-D surface are all graphic items. A segment

of a path is not; the path is a perceptual whole and is thought of and manipulated as

a single entity.

In practice, a simplified form of degree of interest can be used where each row of
data (each data “case”) is given a degree of interest value, and the measure of a subset
is defined as a summary function of the degrees of interest of the cases comprising
the subset. Throughout this chapter, we use a degree of interest for the cases in the
range [0, 1], where “0” corresponds to “no interest whatsoever” and “1” corresponds to
“maximal interest” For a subset, we will use the mean value summary to summarize
the values in the subset. This remains in the range [0, 1] and has the useful property
that subsets of different sizes that have the same distribution of measures of interest
on their cases will have similar measures of interest. However, it should be noted
that other summaries can be useful for certain tasks. For example, the maximum
summary function will highlight subsets that have any selected items in them. This
will be very useful for spotting outliers, as typically outliers are small in number, so
using the mean summary when outliers are the source of a degree-of-interest measure
will result in most subsets having zero or near-zero measure of interest, whereas the
maximum summary statistic will show immediately any subset containing one or
more outliers.

An additional simplification we can make is to state that any view that defines
a degree-of-interest value for each case must define it as either zero or one. In other
words, the process of interacting with a data view to perform linking will result in
a split into selected cases (1s) and unselected cases (0s). This technique is by far the
most commonly implemented technique, but there are cases where the more general
version is useful. In Sect. 9.5, we explore distance-based linking, and in Sect. 9.6 we
show examples of how multiple views can create nonbinary degrees of interest for
cases.

For requirement (1) above, we need a means for the user to indicate what is of
interest to them. There are multiple means of doing so, the most common of which
are:

Brushing. In the brushing paradigm, the user has a fixed shape (typically a rectangle
or circle) that they drag over a view of data. As this brush moves over graphic
items in the view, it paints them. This is defined as setting the degree of interest to
1 for those items and then typically using colour to code the degree of interest in
all linked views. In Sect. 9.3 we give more details on scatterplot brushing, which
was one of the earliest implementations of linked views.
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Rectangle or rubber-band selection. For this selection mechanism, the user clicks and
drags with the mouse to define a rectangle (or other shape, such as a circle) and,
on releasing the mouse, the graphic items intersecting the shape are considered
selected and their associated cases’ degree of interest set to 1.

Lassoing. For this mechanism, the user clicks and drags to create a polygon selection
shape, either by clicking and dragging to define a shape or by successive clicks to
define a polygon. When completed, either by releasing the mouse or by complet-
ing the polygon, the graphic items intersecting the lasso/polygon are considered
selected and their associated cases’ degree of interest set to 1.

To fulfill requirement (3), a view must be capable of displaying the base data for the
view together with a representation of the degree of interest. If we think of the degree
of interest as a variable, then we can imagine it being used in the same way as any
other variable. Using the language of the Grammar of Graphics (Wilkinson, 1999),
we can use a variable such as:

— A positional variable, used to define the geometry of the view;

= An aesthetic variable, used to modify the appearance of a graphic element;

=— A faceting variable, used to define a paneling of the view.

In Fig. 9.3 below, barcharts showing the three basic methods are displayed. Note that
for the 3-D barchart, the degree of interest could easily have been a continuous vari-
able; the locations along the z-axis would have been well defined. For the aesthetic
version, we split each bar in two to show the relative proportion of selected and non-
selected data. This requires the degree of interest to be at worst a finite number of

a1
4
g
=
H:
=
E|
E)
3

O O g o T X3 ®”
m I m m »

a1
<t
g
E|
H:
=
E|
El
S

=
=

=N W
o W W

pejosjes

Figure 9.3. Three basic methods for displaying a degree of interest. The basic chart is a barchart of
counts of players at different fielding positions. The left view adds a “z” position variable to the bar
chart, splitting the dataset along the z-axis. The center view sets the brightness of bars by the degree of
interest, with the “interesting” bars shown in black. The right view facets (panels) views by the degree of
interest (although there are two facets, we term this a single “view”). The data show players’ fielding
positions in baseball, and we have selected those players with more putouts than assists. Clearly this is

highly correlated with the fielding position
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Figure 9.4. Faceting and degree of interest. The left view shows players since 1900, faceted by the league
in which they played. Note the brief existence of the Federal League (FL: 1914-1915). On the right

a binned scatterplot of the putout-to-assist ratio is shown. After selecting players playing post-1945 in
the left panel, the left view shows the interesting cases in black, whereas the right view uses degree of
interest to define the vertical paneling (“interesting” cases are in the lower row) and uses brightness to

show the counts of points in the binned scatterplot

categories and works best with binary variables. Systems for displaying aggregated
data elements are discussed in Sect. 9.3. We could have used a summary function
instead to display the mean degree of interest, mapping it to a brightness scale. Sec-
tion 9.9 gives details on the dataset being displayed, with notes on the meanings of
the variables used.

The rightmost view in Fig. 9.3 splits the data into two panels, one for the selected
and one for the unselected subsets. This faceting should not be considered a special
functionality but should fit into existing faceting schemes, so that, for example, a trel-
lis view would simply incorporate the degree of interest as another variable within
the tablelike structure. As a further example, Fig. 9.4 shows how a binary selection
status is incorporated into the faceting structure. Baseball has had many different
leagues over its history, which are separate pools of teams; each team is a member of
one league only in any year and plays almost exclusively members of its league. Note
that post-1945, the putout-assist scatterplot resolves itself into two clusters, whereas
pre-1945 there is good evidence for at least another cluster. We investigate that more
closely later.

Brushing Scatterplot Matrices
9.3 and Other Nonaggregated Views

One of the earliest linked views works to achieve wide attention was the scatterplot
brushing technique of Becker, Cleveland, and Wilks (Becker et al. 1987). By arranging
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scatterplots of n variables in a table so that all the #n(n-1) ordered combinations of axes
are present, the eye can quickly scan a row or column and see how a given variable
depends on every other variable. This useful arrangement technique is enhanced by
the use of a brush as described in Sect. 9.2. As in typical later scatterplot brushing
tools, the data points brushed over are painted in a different colour, both in the panel
in which the brush is active and in all other panels of the matrix. In our terminology,
the brush is the mechanism that creates the degree of interest “variable” that links the
scatterplot data views.

One of the reasons this technique is effective is that in each linked view, there is
a one-to-one correspondence between cases of the data matrix and graphical repre-
sentations of these cases, so that in each scatterplot we have complete freedom as to
what colour or glyph to use to represent this data item. Linking scatterplots do not
require considerations of aggregation; each data row maps directly to a single glyph
in the scatterplot. This simplicity can be seen in Figs. 9.1 and 9.2, where we selected
bars and linked to the scatterplot; if we had reversed the direction of interaction, we
would have been left with bars that were partially selected. Deciding how to display
such views requires some thought and will be discussed in Sect. 9.4.

Even when restricted to data views that display distinct graphical elements for
each case, linking is a powerful tool. An example of a successful tool in this area is
XGobi (Swayne et al. 1991). XGobi is an X-Windows-based tool that presents the user
with several glyph-based views (dotplots, scatterplots, rotating plots, grand tour, and
projection pursuit tours) and uses brushing to link the views along the above lines.
The latest incarnation of this software is GGobi (Swayne et al. 2003).

Scatterplots and dotplots are the most obvious examples of unaggregated views.
Raw tables of data can also be considered unaggregated. One useful technique is to
show a table of only those data that have been selected. This is often termed a “drill-
down” view but is actually a simple example of linked views. Selection in one view
leads to a second view where the “visibility” aesthetic is used to code the degree of
interest — only the selected rows are shown.

Parallel coordinates views are a relatively novel form of view introduced by Insel-
berg (1985). They work well only for relatively small numbers of cases as they show
an n-dimensional point as a line in 2-D, taking up a lot of display space for each row.
However, within this limitation, they are an ideal candidate for linked views, as they
are unaggregated and encourage the user to spot differences between the selected and
unselected lines.

Figure 9.5 below shows data for players in the 2004 season. Even restricting our-
selves to a few thousand players makes this chart hard to read, but we can see the
higher values on each scale are in the selected group and the ones at the bottom are
in the unselected group. For this many lines it is hard to distinguish them either by
colour or by dashing style and the result is not illuminating. In Sect. 9.7 we will show
more compelling uses for parallel coordinates for linking to maps and hierarchical
clustering plots.

One interaction feature that is important for brushing is that of the brush mode or
paint mode. In transient mode, where the user drags the brush over the plot, when
the brush moves away from an item, the item reverts to unselected state. In additive
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Figure 9.5. Faceting and parallel coordinates. For the 2004 season, the left view shows a histogram of
salary on a log scale. Players earning over $1,000,000 were selected and are shown in the linked parallel
coordinates plot as dashed line. The parallel coordinates view shows four major measures of

performance: batting average, on-base percentage, home-run rate, and slugging average

mode, the brush leaves the item in a selected “painted” state. In subtractive mode,
the brush is used to change state from selected to unselected, “unpainting” the items.
These modes are examples of the general case, in which we have two possible ini-
tial states (selected and unselected) and a brush or other selection mechanism states
whether or not an item was indicated by the user. For each of the 4 combinations of
states there are two possible outputs (selected or unselected), and so we have 24 dif-
ferent possible modes. However, some of these modes, such as the mode that simply
selects everything, or the mode that ignores the user’s input, are of little use. Wills
(2000) argues that the useful modes are:

Replace: the original state is ignored; the selection defines the output exactly. This is
equivalent to the transient mode.

Toggle: the new state is an exclusive OR of the original state with the selection status.
This is what happens when we control-click on files in the Windows operating
system, for example.

Add: the new state is an inclusive OR of the original state and the selection status.
This is the additive mode for brushing scatterplot matrices.

Subtract: the new state is an AND of the original state with the negation of the se-
lection status. This is the subtractive mode for brushing scatterplot matrices.

Intersect: the new state is an AND of the original state with the selection status.
This mode is not common but has a strong advantage for data analysis in that it
allows repeated conditioning in an interactive environment. In Sect. 9.6 we use
it for multiple linked views.
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Generalizing to Aggregated Views 9.4

The unaggregated approach runs into problems with more than small amounts of
data. If you have tens of thousands of points, often you want to look at views that ag-
gregate the data, such as barcharts, histograms, and frequency tables. In this chapter,
we use a reasonably sized dataset to examine linking; there are about 16 000 play-
ers represented over a total of ca. 86 000 player seasons. A quick review of Figs. 9.1
through 9.5 should convince the reader that the summary views are easier to use than
the unaggregated views for these numbers. Therefore, in this section, we consider
techniques for linking aggregated views.

One of the first commonly available tools to feature linking was the statistical anal-
ysis package Data Desk (Velleman, 1988). It was originally built as a teaching tool but
is now a full-featured statistical package that has linked views designed in at the core.
Brushing works with aggregated views such as barcharts and histograms as well as
within unaggregated views, and the outputs of analyses such as regression and corre-
lation analysis can be visualized and are linked to the other views. If a user spots some
unusual cases in a view of residuals from an analysis, they can brush those points, see
if there is anything that might explain it in other variables, modify the model, and
instantly see the residual view update to reflect the new model. By incorporating
model results as linkable views, Data Desk provides a rich set of linking paradigms.
In this section we consider simply the way it performs linking to aggregated views.
Figure 9.6 shows an example of such linking. This figure is similar to Fig. 9.1, except
that the linking is being performed in the reverse direction - from the scatterplot to
the barchart.

As in Fig. 9.3, the degree of interest for a bar has been represented by dividing the
bar into two sections; one for the selected subset and one for the nonselected subset.
An alternative method is used by LispStat (Tierney, 1990), in which each data item
is assigned its own place in the bar and that section of the bar has an appropriate
brightness. This solution is very close to the “one-to-one” relationship method in the
previous section, as under this display system each bar is really a set of stacked rect-

Country Bar Chart

Gry Japan Other USA

Figure 9.6. Linked views in Data Desk. Points selected in a scatterplot of miles per gallon vs. weight are
highlighted in the country barchart. Selecting the points in the low end of the weight scale shows which
country makes the lightest cars
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angles, one for each case. Both drawing and brushing over the bars is handled as if
the bars were a collection of separate little boxes.

One of the more powerful novel features of LispStat is its implementation in Lisp —
as an interpreted language, the user is free to write any function that can link views
together, and indeed can write any desired data view. If you want to interactively
colour items in a scatterplot based on their distance from the center of the brush (as
we do in Sect. 9.5), it is an easy job for Lisp programmers.

So for bars one technique is to stack sections of the bar on top of each other - either
grouping all the selected items together or leaving them in a fixed location on the
bar. Then we can use an aesthetic (typically colour or pattern) to colour the separate
sections. Another technique was alluded to in Sect. 1; instead of dividing a bar up,
we use a summary function to create a single value for the bar that summarizes the
cases it contains and then map that to an aesthetic. This approach is more general
in that it can handle numeric degrees of interest beyond the 0-1 binary selection
needed for stacked bars, and it is also generalizable to graphical objects that cannot
be as conveniently split into components, such as lines and paths. Both techniques
are valuable and should be considered for use in any set of linked views. Figure 9.7
shows both techniques in action.

This figure combines five different variables for over 80 000 cases — aggregation is
clearly needed and a monolithic view that would adequately show the data is not ob-
vious. In the bottom left panel we show a hexagonal binning of the data and represent
each bin with a circle. The mean summary statistic has been applied to the degree of
interest for the cases in the bin, each of which is either 0 or 1. This effectively gives
us the fraction of the elements that are selected. Figure 9.8 below shows two alterna-
tive ways of displaying the information, using the size aesthetic and by dividing up
the glyph. In both cases the mean degree of interest maps to a circle area, not radius,
facilitating a better mental model of the distribution.

Although Fig. 9.7 is easier to interpret for most people, Fig. 9.8 might be preferred
in certain circumstances. For example, if we wished to use hue to encode another
characteristic, the mind has a tendency to combine hue and brightness into a gestalt
colour, which would make a colour aesthetic added to the scatterplot of Fig. 9.7
a more confusing view than if we added colour to either view of Fig. 9.8. Conversely,
we might want to show the distribution of heights and weights rather than just the
fraction of designated hitters in each bin. To do that we might use a size aesthetic to
show the count of players in each bin and apply that aesthetic to the scatterplot of
Fig. 9.7.

From Fig. 9.7 we can see that, although designated hitters tend to be of average
height, with relatively few very short or tall players, they are well over average weight.
This makes intuitive sense if we consider their role. They are players who do not
field or pitch. Their only role is to bat when the pitcher would otherwise be batting,
replacing him in the batting order. The designated hitter position was introduced
because the gap between the pitcher’s ability to hit the ball and the rest of his team’s
ability is generally large. Therefore, rather than have a known poor performance on
every rotation through the team, one league, the American League (AL), decided
to introduce this position. It is a “power hitter” position. The designated hitter has
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Figure 9.7. Multiple linked aggregated views. Top left view: barchart of players’ fielding positions. The
“designated hitter” position has been selected. Below is a hex-binned scatterplot showing players” height
and weight, with the brightness indicating the fraction of designated hitters in each bin. On the right is
a paneled view of league against year, with each bar’s size proportional to the count of the number of
players in the league for that year. Each bar is split into designated hitters and other positions. The

selected cases (designated hitters) are drawn in black throughout

exactly one job - to hit the baseball hard - and so the players are powerful players,
as the height-weight scatterplot shows.

On the right-hand side of Fig. 9.7, a modified faceted barchart represents the num-
ber of players in the various different baseball leagues since 1870. The flurry of early
leagues settled down into the National League (NL) in 1876, which then shrank as
players were raided to form the American League in 1901. Both these leagues then
grew in size, with the Federal League a minor blip on the way. The degree of interest,
here representing the presence of designated hitters, has been represented by splitting
the bars and setting the brightness of the sections corresponding to the two subsets.
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Figure 9.8. Degree of interest for aggregated points. The left view shows the mean degree of interest
mapped to the size aesthetic. The right view divides each circle into a selected area and an unselected

area

You can clearly see the appearance of the designated hitter starting in 1973. Seeing the
position also appear in the NL in recent years was at first a surprise for the author. The
reason is that only in recent years have there been regular-season games between the
two existing leagues. Previously, two teams from different leagues would only meet
in the World Series. Now it is common for NL players to play AL players. When they
do so at an AL ballpark, they play under their rules and so must field a designated
hitter. Thus we have statistics for designated hitters in the NL.

The Grammar of Graphics (Wilkinson, 1999) provides a useful list of basic ele-
ments that are used in graphics. All elements can be used in an augmented coordi-
nates system where one coordinate is used for the degree of interest variable, and all
may be faceted by a categorical degree of interest variable. For our final choice - us-
ing an aesthetic — we have already discussed points and intervals (bars). Since lines
and paths are hard to split into parts, we will generally use a summary statistic for
them or draw two different elements superimposed, one for selected and one for un-
selected. Areas and polygons (maps, for example) will similarly require a summary
operation. Areas have the additional advantage of being able to be displayed with se-
lected and unselected subsets stacked on top of each other in a similar fashion to bars
(e.g., Fig. 9.3).

The schema element — defined in the Grammar of Graphics as a composite elem-
ent - is trickier. Examples of schemas are boxplots and Chernoft faces. For these ele-
ments, superimposition is hard to interpret; the elements generally look too confus-
ingly overlaid. A better choice is to add a dimension to differentiate between selected
and unselected subsets, as in Fig. 9.9 below.

Figure 9.9 is similar to Fig. 9.5, with the boxplots replacing the parallel coordinates
plot. It is much easier to compare the performance of highly paid players; they ap-
pear not to be paid for average batting and getting on base, but for power hitting -
home runs and slugging. The linked boxplots allow us to compare distributions more



Linked Data Views 231

Bonds
)

100 *

Suzuki Bonds Bonds
Bonds [}

[

80 _

I \iirH';emn
Berkma
T as e
‘Rolls
Guiel "

avg obp hr slg

Glaus

unn, E‘;onds
dmor)ds ujol

eltre

Number of Players

NSL$
noz$

Salary

Figure 9.9. Faceting and boxplots. For the 2004 season, the left view shows a histogram of salary on
a log scale. Players earning over $1000 000 were selected and are also shown in the linked boxplot,
which shows four major measures of performance: batting average, on-base percentage, home-run rate,

and slugging average

efficiently than the linked parallel coordinates plot, but, with the exception of Barry
Bonds, who is an outlier in all stats, it does not allow us to see individuals’ statistics
in each category. We have no idea from this chart whether high on-base percentage
implies a high home-run rate. Both parallel coordinates views and multiple boxplots
views are useful, but they facilitate different analytic goals.

Distance-based Linking 9.5

In Sect. 9.2 we proposed a simplification to the general implementation in which
the degree-of-interest value for each case must be either zero or one. Although this
is the most common implementation, other methods have been proposed that relax
this condition. One of particular interest is distance-based linking. In distance-based
linking, instead of defining a region of the screen that is used for selection and using
that to define a zero-one variable, a location in the data display is indicated, and the
degree of interest measures how close each item is to that location. We demonstrate
a simple version of it below in Fig. 9.10.

Interested by the relationship between body shape (height and weight) and field-
ing position, the analyst creates a chart of the two major fielding statistics and links
it with the height/weight hex-binned scatterplot. Distance linking is used to relate
the two together, with a brightness scale used to map the mean degree of interest in
the binned scatterplot. Players in this cluster with more assists than putouts tend to
be short and light. Other variations on distance-based linking are possible. In this
example, we used the distance between items’ graphical representations to define the
distance. An alternative might be to use a distance measure based directly on the
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Figure 9.10. Distance-based linking. The view on the right shows a scatterplot of the two major fielding
statistics. The user has clicked at approx. the (2, 3.5) coordinate to investigate this cluster and the degree
of interest is set to reflect the closeness to this point in this plot. The left view shows a hex binning of
the players” physical statistics, and the mean degree of interest for a bin is coded using the same
brightness coding as the other plot. In both cases we are using a brightness scale with black mapping to

100 % selected (complete interest) and light gray mapping to 0 % selected (no interest)

data — defining a location in the data space based on the view and then using dis-
tance as measured in the data space. Normalization of the data dimensions would
also probably be necessary for this. The transfer function that converts distance into
degree of interest is also important. The choice of function involves similar issues as
are found with choice of kernel and bandwidth for kernel density estimation. The
function should give a value of one at a distance of zero and should decrease to zero
as the distance increases, so that the point selected is given complete interest and
points further away are assigned decreasing degrees of interest. Following are some
choices that have been found effective in practice. No research has been done into the
optimality of any of the following possibilities; they have been chosen in an ad hoc
manner. The third method was used in the creation of Fig. 9.10 above.

= Dol = max(0,1-d / C), for some constant C.

— Dol=1-d/(d+1)

— Dol =1/(d + C), for some constant C.

9.6 Linking from Multiple Views

In Sect. 9.3 we discussed how to combine an existing degree-of-interest measure with
anew selection, in the case of a binary degree of interest. The goal was to allow users
to repeatedly modify the degree of interest by successive interactions with the same
view. The same principle can be used to link multiple views together. We term this



Linked Data Views 233

a memoryless system. In a memoryless system, no history is kept of previous selec-
tions; only the current degree of interest is kept track of, with no knowledge of how
that state was achieved. Thus when a selection interaction is performed, only the pre-
vious degree of interest and the view selection are used to create the resulting degree
of interest. By contrast, in a system with memory, each selection operation is remem-
bered and changing one selection runs through all existing selection operations to
determine the final selection. An example is Ahlberg and Shneiderman’s implemen-
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Figure 9.11. Multiple linked views with memory. The left barcharts show counts of number of players

by fielding position and by year. The scatterplot shows the relationship between putouts and assists —

two measures of fielding effectiveness. The user has selected sections of both barcharts independently;

in each chart the bars corresponding to that selection are displayed with a hash pattern. The top left

view has the catcher (C) position selected; the lower view has years before 1935 selected. The

intersection of those selection states defines the degree of interest, which is displayed in all views in
black



234 Graham Wills

tation of dynamic queries in the FilmFinder (Ahlberg and Shneiderman, 1994). Here,
each variable maintains its own selection state (for example, 1990 > year > 1980 or
actor = Connery) and the overall selection is defined as the intersection of the indi-
vidual variable selections. In Fig. 9.1 below, we show memory-based linking applied
to the baseball data.

In the discussion of Fig. 9.4, we noted the extra cluster in the fielding scatterplot
and the linking in that figure showed the cluster appearing only pre-1945. Figure 9.11
was created to follow up on this cluster. The position bar chart was added, as it is
known that fielding position and fielding statistics are related! The linked views have
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Figure 9.12. Multiple linked views with memory and nonbinary degree of interest. This figure is similar
to Fig. 9.11, with the hashed bars showing the user’s selection as in that figure. In this figure, however,
the degree of interest is not a binary variable but takes three values: 0, when a case is completely
unselected; 1/2, when it is selected in one of the two bar charts; and 1, when it is selected in both

barcharts. The mapping from degree of interest to brightness is: 0=light gray, 1/2=medium gray, 1=black
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been set up to have memory, so the user was able to select the critical year range more
closely, and then each bar was successively selected in the position bar chart. When
the catcher position was selected, the intersection with the year histogram identified
the cluster in the scatterplot. It appears that catchers had a fundamentally different
method of fielding prior to 1935.

The advantage of a system with memory is that it allows the user to make a query
involving a number of variables with little effort, and is forgiving; if you make an
error in adjusting one selection, it is easy to change it. The advantage of a memo-
ryless system is in power and adaptability. It is hard to generalize a memory-based
system while retaining an intuitive interface (imagine the difficulties in coordinating
selections from a map, a scatterplot and a network view, for example), and it makes
choosing different selection operations difficult as the method of combination of the
different selections is typically fixed. From observation of existing systems, it appears
that the memory-based approach is particularly good for directed queries and an-
swering the question “Which objects satisty this description?” and the memoryless
approach is better for discovering structure in the data and answering the question
“Are there unusual features in these data?”

Figure 9.12 is the most complex figure in this chapter. Each barchart keeps track of
its own selection and displays that selection using a hash pattern. We are also defining
a nonbinary degree of interest, in this case with three levels. As well as showing the
black cluster that was the focus of the investigation, we can also see an interesting
gap in the linear feature along the bottom of the scatterplot. A putout ratio of about
eight putouts per game was rarely observed prior to 1935 and was not observed for
catchers ever. The use of a nonbinary degree of interest, while more complex to use,
shows additional information that would have been missed otherwise.

Linking to Domain-specific Views 9.7

One of the attractions of the linked views paradigm is that it makes it easy to integrate
aview that is useful only for a particular form of data into a general system. All that is
needed is that a view be able to fulfill requirements (1) and/or (3) of Sect. 9.2 and the
view can be added directly into the general system. For spatial data, Unwin and Wills
built a system that combined a number of statistical views with geographical views.
REGARD (Haslett et al. 1990) allowed the user to manipulate maps of geographical
information, containing layers of data representing sets of geographical information
(towns, rivers, countries, etc.). These different layers contain entities with statistical
data, so that users can create data views on one or more of these variables and use
the linking system to tie the views together.

Figure 9.13 shows the simplest and most intuitive way to add a geographic view
to a linked views system. We simply code the selection by brightness to give the well-
known choropleth map. This method will work for nonbinary degrees of interest and
is an intuitive view. In this figure, we can see that there is a strong relationship between
marriage patterns and spatial location. It is left as an exercise to the reader to guess
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Figure 9.13. Map linking. Left: choropleth map of states of the United States, with the brightness
indicating degree of interest. Right: parallel coordinates view of four variables, each of which indicates
the percentage of people married at four different age categories. States where fewer people marry
young were selected for this view

which state is the one defined by the line at the top of the parallel coordinates plot,
having uniformly higher marriage rates than all other states at all age groups.

REGARD also pioneered view linking in networks, which was further developed
in NicheWorks (Wills, 1999). Here the domain-specific data consist of information on
nodes and links of a graph, and the goal is to use the linking mechanism to facilitate
exploration of relationships between the two sets of data, as in Fig. 9.14. A variation
on distance-based linking was used in this application, with distance being defined
in terms of data as the graph-theoretic distance between nodes. So selecting an in-
dividual node would give it a degree of interest of 1, and then the degree of interest
would flow along the graph, so nodes # steps away might have degree of interest rn,
for some r < I.

A final and important domain that we will discuss is the domain of modeling re-
sults. In Sect. 9.4, we noted that Data Desk incorporated text descriptions of models
within the linking paradigm. It is also useful to develop model-specific views and in-
corporate them within a framework. Consider hierarchical clustering, for example.
Hierarchical clustering clusters data using similarities and has a natural tree repre-
sentation. Figure 9.15 shows a representation of such a model for the data of Fig. 9.13,
namely, the marriage patterns of states.

In the hierarchical clustering view, a leaf node has a degree of interest of either 0
or 1, depending on the selection propagated from the parallel coordinates view. Each
parent node created by the clustering algorithm is defined as containing all its chil-
dren and has been displayed using the mean summary method, displayed as a bright-
ness scale between black (all data rows in this cluster were selected) and light gray (no
data rows in this cluster were selected). This continuous degree of interest allows the
clustering to be explored in the context of the original data, and, by selecting clusters
and showing the linking in the parallel coordinates view, it allows users to understand
what those clusters represent.
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Figure 9.14. Linking between a node-edge graph and a barchart. The graph represents web pages. The
barchart shows the type of the page, with the largest bar representing “normal” pages (not images or
queries/scripts) selected

16-24 25-34 35-59 60+

Figure 9.15. Linking between hierarchical clustering and a barchart. The right graph is a parallel
coordinates view of marriage percentages for four different age ranges. The view on the left is a linked
hierarchical clustering view showing aggregations into groups. As usual, the brightness scale represents

degree of interest, with black representing 100 % interest and light gray 0 % interest

We are not even tied down to one particular representation of the clustering tree.
In Fig. 9.16 we show several different representations of the same clustering tree.

The polar version is a simple transformation of the tree view shown in Fig. 9.15. The
treemap in the bottom two views was invented by Shneiderman (1992). It is a space-
filling design reminiscent of mosaic displays. In a treemap, we repeatedly subdivide
a rectangular area in proportion to the size of the children of a node. Thus the total
space is represented by the whole rectangle, which is then split into two sections (the
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Figure 9.16. Different linked hierarchical clustering views. Top right: original parallel coordinates view.
Top left: tree view of Fig. 9.15, rendered in polar coordinates. Bottom: two treemap views of the tree, in

two and three dimensions

hierarchical clustering algorithm used produces a binary tree). Each of those is then
split up based on the number of children they contain, and so on until leaf nodes
are encountered. In this display a gap has been added between children to allow the
inclusion to be seen more clearly.

9.8 Summary

I
The power of the linking technique lies in its ability to display data in one view con-
ditionally on a user’s interaction with a second view. It is therefore most useful for
goals that involve comparisons of a subset of data to the remainder. Questions like
“How are these outliers different?”, “If X is high, what effect does that have on the
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relationship between Y and Z?”, and “My clustering algorithm made these items into
a group. Now what does this group actually look like?” are some of the questions for
which this technique is highly suitable. Linked views is also a powerful system for in-
tegrating domain-specific views into a general-purpose system. Designing a linked
view, or modifying an existing view to fit the paradigm, is typically simple and, most
importantly, does not require many changes to a specific view that is known to work
well. This chapter has presented the necessary techniques and decisions that need to
be considered to implement or use a system of linked views. We have demonstrated
both simple and advanced versions of the linking environment using real-world data
with sizes up to 85000 records. Linked views is a general technique that is widely ap-
plicable, works for all types and sizes of data, and is as robust as the views that it links
together. It has been implemented in several systems and with increasing computer
power, and it is anticipated that it will continue to advance as a standard analysis
technique.

Data Used in This Chapter 9.9

The baseball dataset is taken from The Baseball Archive, version 2.0, November 18,

2004, collected by Sean Lahman, which is available at http://www.baseballl.com/.

Access to the dataset is provided free of charge (although donations are suggested)

and has been available for many years. It contains 21 different tables, indexed to allow

database joins. The tables used in this chapter are:

Master table: data about players including name, height, weight, handedness, birth-
place, and birthdate.

Batting table: detailed data about how a player batted in a given regular season: at-
bats, hits, runs, multibase hits, stolen bases, etc.

Fielding table: detailed data about how a player fielded in a given regular season:
assists, putouts, errors, games played, etc.

Salary table: how much a player was paid in a given season.

Baseball players can be divided into two groups. Pitchers, who throw the ball, and
batters, who attempt to hit the ball and score runs by doing so. In this section we con-
sider only batters. The statistics for games(G) and at-bats measure how often a batter
played. The other batting statistics measure how well they performed during their
appearances.

Batters also play a defensive role when the opposition team is batting. They field
the ball in an attempt to limit runs and to dismiss the opposition batters. A fielder
has a designated position to play, with infielders [1B (first base), 2B (second base), 3B
(third base), and SS (shortstop)] playing close to the opposition batters and outfielders
playing further away and seeing less action in a game. An important special position
is the designated hitter - DH. A player at this position is not required to field and
has no role on the team except to attempt to hit the ball. Effectively he will have no
fielding statistics. The putout statistic counts the number of times a fielder dismisses
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an opponent, and the assists statistic counts the number of times a player throws
the ball to another player who then puts an opposition batter out. Errors count the
number of plays that should have resulted in a putout but did not. The decision on
whether a play is an error is made by game officials.

There is a considerable amount of missing data, especially for earlier time periods.
Also, when calculating rates, some players played too few games for the results to be
meaningful. Therefore the following filters were applied:

— For batting data, we limit the figures to player seasons for which at least 100 at-bats
were recorded.

— Fielding data are similarly restricted to player seasons for which at least 20 games
were recorded.

— Salary data are only known from 1985 onwards. Any figure with salary data is
restricted to the years for which salary data are available (1985-2004)

Figures 9.13, 9.15, and 9.16 use data from the US 2000 census, aggregated by the census
bureau to the state level.
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Introduction

10.2

Tree-based models provide an appealing alternative to conventional models for many
reasons. They are more readily interpretable, can handle both continuous and cat-
egorical covariates, can accommodate data with missing values, provide an implicit
variable selection, and model interactions well. Most frequently used tree-based mod-
els are classification, regression, and survival trees.

Visualization is important in conjunction with tree models because in their graph-
ical form they are easily interpretable even without special knowledge. Interpretation
of decision trees displayed as a hierarchy of decision rules is highly intuitive.

Moreover tree models reflect properties of the underlying data and have other
supplemental information associated with them, such as quality of cut points, split
stability, and prediction trustworthiness. All this information, along with the com-
plex structure of the trees themselves, gives plenty of information that needs to be
explored and conveyed. Visualization provides a powerful tool for presenting differ-
ent key aspects of the models in a concise manner that allows quick comparisons.

In this chapter we will first quickly introduce tree models and present techniques
for visualizing individual trees. Those range from classical hierarchical views up to
less widely known methods such as treemaps and sectioned scatterplots.

In the next section we will use visualization tools to discuss the stability of splits
and entire tree models, motivating the use of tree ensembles and forests. Finally we
present methods for displaying entire forests at a glance and other ways for analyzing
multiple tree models.

Individual Trees

The basic principle of all tree-based methods is a recursive partitioning of the covari-
ates space to separate subgroups that constitute a basis for prediction. This means that
starting with the full dataset at each step a rule is consulted that specifies how the data
are split into disjoint partitions. This process is repeated recursively until there is no
rule defined for further partitioning.

Commonly used classification and regression trees use univariate decision rules in
each partitioning step, that is, the rule specifying which cases fall into which partition
evaluates only one data variable at a time. For continuous variables the rule usually
creates two partitions satisfying the equations x; < s and x; > s, respectively, where s
is a constant. Partitions induced by rules using categorical variables are based on the
categories assigned to each partition. We refer to a partitioning step often as split and
speak of the value s as the cut point.

The recursive partitioning process can be described by a tree. The root node corre-
sponds to the first split and its children to subsequent splits in the resulting partitions.
The tree is built recursively in the same way as the partitioning and terminal nodes
(also called leaves) represent final partitions. Therefore each inner node corresponds
to a partitioning rule and each terminal node to a final partition.
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Each final partition has been assigned a prediction value or model. For classifi-
cation trees the value is the predicted class, for regression trees it is the predicted
constant, but more complex tree models exist such as those featuring linear models
in terminal nodes. In what follows we will mostly use classification trees with binary
splits for illustration purposes, but all methods can be generalized for more complex
tree models unless specifically stated otherwise. We call a tree consisting of rules in
inner nodes regardless of the type of prediction in the leaves a decision tree.

Hierarchical Views

Probably the most natural way to visualize a tree model is to display its hierarchical
structure. Let us describe more precisely what it is we want to visualize. To describe
the topology of a tree, we want to borrow some terminology for the graph theory.
A graph is a set of nodes (sometimes called vertices) and edges. There a tree is defined
as a connected, acyclic graph. Topologically, decision trees are a special subset of
those, namely, connected directed acyclic graphs (DAGs) with exactly one node of
indegree 0 (the root - it has no parent) and outdegrees other than 1 (i.e., at least two
children or none at all).

To fully describe a decision tree, additional information is associated with each
node. For inner nodes this information represents the splitting rule; for terminal
nodes it consists of the prediction. Plots of tree models attempt to make such infor-
mation visible in addition to displaying the graph aspect of the model. Three different
ways to visualize the same classification tree model are shown in Fig. 10.1.

The tree model is based on the Italian olive oil dataset (Forina et al. 1983), which
records the composition of Italian olive oils from different regions of Italy. Each co-
variate corresponds to the proportion (in 1/10 000th) of a fatty acid (in the order of
concentration): oleic, palmitic, linoleic, stearic, palmitoleic, arachidic, linolenic, and
eicosenoic acid. The response variable is categorical and specifies the region of ori-
gin. The goal is to determine how the composition of olive oils varies across re-
gions of Italy. For illustration purposes we perform a classification using five regions:
Sicily, Calabria, Sardinia, Apulia, and North (the latter consolidating regions north
of Apulia).

Although the underlying model is the same for all plots in Fig. 10.1, the visual
representation is different in each plot. Visualization of a tree model based on its
hierarchical structure has to contemplate the following tasks:

— Placement of nodes

— Visual representation of nodes
— Visual representation of edges
— Annotation

Each task can be used to represent additional information associated with the model
or data. Visual representation of a node is probably the most obvious way to add such
information. In the first (top left) plot, a node consists solely of a tick mark with an
annotation describing the split rule for the left child. In the second (top right) plot,
a node is represented by a rectangle whose size corresponds to the number of cases

10.2.1
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Figure10.1. Different ways to visualize a classification tree model

of the training data falling into that node. The annotation describes the split variable.
Finally, in the third (bottom) plot, each node is represented by a rectangle of the
same size, but the colors within show the proportions of classes falling into a given
node.

Advanced techniques known from area-based plots can be used in hierarchical
views as well if we consider nodes as area-based representations of the underlying
data. Figure 10.2 illustrates the use of censored zooming in conjunction with tree node
size.

The top plot shows node representation without zoom, that is, the size of the root
node corresponds to all data. All subsequent splits partition these data, and hence the
node area, until terminal nodes are reached. If plotted truly proportionally, the last
two leaves split by the stearic variable would be hardly visible. Therefore a minimal
size of a node is enforced, and the fact that this representation is not truly propor-
tional is denoted by a red border.

To provide a truly proportional comparison of small nodes, we can enlarge all
nodes by a given factor. In the bottom plot a factor of four was used. Now those
small nodes can be distinguished along with the class proportions, but large nodes
would need to be four times as big as in the first plot, obscuring large portions of the
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Figure10.2. Censored zoom of nodes. Bottom plot: censored zoom (x4) of top plot. Nodes that would
appear too large are censored at a maximum allowed size and flagged by a red line

plot and possibly other nodes. Therefore we also enforce a maximal size of a node.
Again, to denote nodes that are not shown proportionally due to upper censoring,
we use a red line along the top edge of the node.

The placement of nodes is a task that has been discussed intensely in the graph visu-
alization community. For small trees, simple approaches, such as a bottom-up space
partitioning, work well. As the trees grow larger, node layout becomes more challeng-
ing. For tree model visualization, however, associated information is in most cases
more important than differences in local topology, especially where the structure is
imposed by the tree-growing algorithm. Therefore interactive approaches, allowing
the user to explore the tree model by local magnification while retaining global con-
text, are recommended for large tree models.

In the above examples, basic lateral placement is performed by an equidistant par-
tition of the available space. Only the first plot uses nonequidistant placement of
nodes in the direction of tree depth, namely, the distance of two nodes in this di-
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rection is proportional to the impurity decrease and thus in a sense to the “quality”
of the split. The third plot uses special placement in that it is rotated 90° counter-
clockwise relative to the usual representation and all terminal nodes are aligned to
facilitate easy comparison of the class proportions.

The visual representation of edges is usually restricted to drawing direct or orthog-
onal lines. Nevertheless, more elaborate representation of edges, such as polygons
whose width is proportional to the number of cases following that particular path, is
another possibility, creating a visual representation of the “flow” of data through the
tree.

Annotations are textual or symbolic representations displayed along the nodes or
edges. In Fig. 10.1 annotations describe predictions and splitting rules. Although an-
notations can be useful, they should be used with caution because they can easily
clutter the plot and thus distract from the key points to be conveyed.

Overloading plots with information can offset the benefits of the plot, in particular
its ability to provide information at a glance. When the representation of a node is too
large, because it, e.g., includes a list of statistics or additional plots, it will consume so
much space that it is only possible to display very few levels of the tree on a screen.
The same applies to a printed version, because the size of a sheet of paper is still
limited. Therefore additional tools are necessary to keep track of the overall structure
in order not to get lost. Most of these tools, such as zoom, pan, overview window, or
toggling of different labels, are available in an interactive context only. Especially for
an analysis, a visualization of additional information is required. There are basically
two possibilities for providing such information:

— Integrate the information in the tree visualization.
— Use external linked graphics.

Direct integration is limited by the spatial constraints posed by the fixed dimension
of a computer screen or other output medium. Its advantage is the immediate impact
on the viewer and therefore easier usage. It is recommended to use this kind of visu-
alization for properties that are directly tied to the tree. It makes less sense to display
a histogram of the underlying dataset directly in a node because it displays derived
information that can be more comfortably displayed outside the tree, virtually linked
to a specific node. It is more sensible to add information directly related to the tree
structure, such as the criterion used for the growth of the tree.

External linked graphics are more flexible because they are not displayed directly
in the tree structure for each node but are only logically linked to a specific node. Spa-
tial constraints are less of a problem because one graphic is displayed instead of many
for each node. The disadvantage of linked graphics is that they must be interpreted
more carefully. The viewer has to bear in mind the logical link used to construct the
graphics as it is not visually attached to its source (node in our case).

There is no fixed rule as of what kind of information should be displayed inside or
outside the tree structure. A rule of thumb says that more complex graphics should
use the external linked approach, whereas less complex information directly con-
nected with the tree structure should be displayed in the tree visualization.
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Recursive Views

In the introduction we described tree models as recursive partitioning methods. Con-
sequently it is only natural to display partitions induced by the tree, resulting in an
alternative way of visualizing tree models. In what follows we will describe visualiza-
tion methods that are based on the partitioning aspect of the models instead of the
hierarchical structure.

Sectioned Scatterplots
Splitting rules are formulated in the covariate space; therefore a way to visualize a tree
model is to visualize this space along with the induced partition boundaries. For uni-
variate partitioning rules those boundaries lie on hyperplanes parallel to the covariate
axes.

Due to this fact we can use something as simple as a scatterplot as a 2-D projection.
In this view, all splits featuring any of the two plotted variables are clearly visible. Such
sectioned scatterplot featuring the first two split variables is shown in Fig. 10.3 along
with the associated tree.

It is the same model as in Fig. 10.1. Each region is denoted by a particular color in
the scatterplot, and partition boundaries are added based on the tree model.

The first split of the tree uses an eicosenoic variable to separate oils originating in
northern Italy and Sardinia from other regions. It is clearly visible in the sectioned
scatterplot that this split is indeed very distinctive.
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Figure10.3. [This figure also appears in the color insert.] Sectioned scatterplot (left) showing root splits
and splits in its children of a classification tree (right)
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Both of the following inner nodes use a linoleic variable to further separate Sar-
dinian oils from northern parts of Italy and on the right-hand side Apulian oils from
Sicily and Calabria. Further splits are no longer visible in this projection because
they feature other variables and are thus parallel to the visible plane. Nevertheless, it
is possible to analyze such subsequent splits, especially in an interactive context, by
a succession of sectioned scatterplots using drill-down techniques, following a few
basic rules.

Sectioned scatterplots should be preferably created using variables that are adja-
cent in the tree, that is, using split variables of nodes that are connected by an edge.
This ensures that both splits are visible in the projection.

Also, the plotted data should be restricted to the data falling in the node closer
to the root. In Fig. 10.3 we have used the entire dataset, since we were interested
in showing splits of the root node and its children. Figure 10.4 presents a sectioned
scatterplot based on data further down the tree, namely, the partition in the bottom-
right part of the scatterplot in Fig. 10.3.

Sectioned scatterplots are useful for investigating the vicinity of a cut point. Some
cut points are placed in a noisy area, while others are much more clear, as is illus-
trated in Fig. 10.3. However, they cannot capture more than two covariates used in
subsequent splits and thus remain suitable mainly for local analysis of a tree model.
In an interactive setting, however, it is possible to quickly “drill-down” from Fig. 10.3
to Fig. 10.4. Linked highlighting further helps to retain the context, especially with
the help of a linked hierarchical view.
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Figure10.4. Drill-down using a sectioned scatterplot based on a subgroup induced by the tree model
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A generalization to multiple dimensions is not straightforward. Although a ro-
tating 3-D scatterplot with splits as hyperplanes represented by meshes proves to be
useful, higher dimensions are beyond reach.

Several extensions to sectioned scatterplots are useful in specific situations. In
cases where the same variable is used in the tree several times at different depths,
it is advisable to vary the opacity or luminance of the partition boundary lines ac-
cording to their depth, making more “deep” splits lighter. This provides a visual aid
when interpreting the plot.

Another technique involves shading of the plot background based on either the
depth of the visible partition (depth denoted in shades of gray: depth-shading) or the
predicted value (semitransparent category color or hue of the predicted value: predic-
tion shading). The latter emphasizes misclassified cases or outliers with high absolute
residual value because correctly predicted cases blend better into the background.

Scatterplots are primarily useful for continuous variables. If a tree model uses cat-
egorical variables, alocal treemap can prove useful. Such a plot is in principle similar
to mosaicplots, but categories falling into the same node are grouped together. We
will discuss treemaps in the following section.

Treemaps

One way of displaying all partitions is to use area-based plots where each terminal
node is represented by a rectangle. Treemaps belong to this plot category. The main
idea is to partition available rectangular plot space recursively in the same way that
the tree model partitions data. Therefore treemaps are data-driven representations of
the model.

The rectangular area of the treemap corresponds to the full dataset. In the first step
this area is partitioned horizontally according to the proportions of cases passed to
each child node. In the next step each such partition is partitioned vertically corre-
sponding to case proportions in its children. This process is repeated recursively with
alternating horizontal and vertical partitioning directions, as illustrated in Fig. 10.5,
until terminal nodes are reached.

In the resulting plot each rectangle corresponds to a terminal node. The area of
each rectangle is proportional to the number of cases falling into that terminal node.

Step 1 Step 2 Step 3

Figure10.5. Construction of a treemap consisting of three subsequent binary splits
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Figure10.6. Treemap with stacked bars representing response classes. Color coding and data are the
same as in Fig. 10.3

It is helpful to adjust spaces between partitions to reflect the depth at which a given
partitioning took place, showing splits closer to the root with larger gaps.

Treemaps are useful for assesing the balance of a tree model. In very noisy scenar-
ios trees tend to attempt splitting off small, reasonably homogenous subgroups, while
leaving a large chunk of cases in one node that is hard to separate. Such behavior is
easily detected in treemaps as large terminal nodes.

Moreover, treemaps are suitable for highlighting or brushing, allowing the com-
parison of groups within terminal nodes. A treemap of the model from Fig. 10.1 with
colors stacked by group is shown in Fig. 10.6.

It is clearly visible that the tree model is able to split off large homogenous groups
successfully, but more subsequent splitting is necessary for nodes visible in the upper-
left part of the plot.

Treemaps described here are an extension of those used in computer science in-
formation visualization of hierarchically stored contents. They are also related to mo-
saicplots. More precisely a mosaicplot is a treemap of a decomposition tree, that is,
a tree whose splits of the same depth use the same categorical splitting variable and
have as many children as there are categories in the data.

The main advantage of treemaps is their very efficient use of display space. They
allow absolute comparison of nodes and subgroup sizes while maintaining context
of the tree model. They scale well with both increasing dataset size and tree model
complexity. What they cannot show is information about splitting criteria, and they
do not allow direct relative comparison of groups within nodes. An alternative visu-
alization technique exists for the latter task.

Spineplots of Leaves

Another useful plot for tree model visualization is the spineplot of leaves (SPOL). By
not alternating the partitioning direction as in treemaps, but constantly using hori-
zontal partitioning, we obtain a plot showing all terminal nodes in one row.
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L A

Figure10.7. [This figure also appears in the color insert.] Spineplot of leaves brushed by response
categories with superimposed tree model. The associated tree is sketched on fop for easier identification

of individual leaves

Due to the fixed height, it is possible to visually compare sizes of the terminal
nodes that are proportional to the width of the corresponding bar. Moreover, relative
proportions of groups are easily comparable when using highlighting or brushing.

A sample spineplot of leaves is shown in Fig. 10.7. The displayed data and model are
the same as in Fig. 10.6, as well as the color brushing. Each bar corresponds to a leaf,
and the width of each bar is proportional to number of cases in that particular node.

We can clearly see relative proportions of groups within each node. In addition, it
is possible to add a simple annotation on top of the plot in the form of a dendrogram
of the represented tree. As with treemaps, it is advantageous to choose the size of gaps
between bars according to the depth of the split.

SPOLs are mainly useful for comparing group proportions within terminal nodes.
They are similar to spineplots, which allow the comparison of groups within cate-
gories of a variable. They differ in that a “category” is in fact membership of a partic-
ular terminal node and uses different rules for gaps between bars.

In this section we have discussed several alternative techniques for visualizing tree
models based on the idea of recursive partitioning. The shown methods focus on the
visualization of splits, their sequence, and the application of the model to data. One
important property of all visualization techniques presented is their applicability to
arbitrary subsets of the data. Although most illustrations used training data and the
corresponding fitted tree model, it is also feasible to visualize test data instead. Where
a view of the training data highlights the adaptability of the model, the view of test
data focuses on stability and overfitting. Moreover, it is possible to compare both
views side by side.

This leads us to further important aspects of a tree model - the credibility and
quality of the splits and the entire model. In the next section we want to briefly dis-
cuss tree model construction and present visualization methods that incorporate in-
formation about split quality into both existing and new plots.
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Fitting Tree Models

So far we have discussed methods for visualizing tree models on their own and in-
cluding data the models are applied to. There is, however, more information associ-
ated with each node that waits to be visualized. In order to understand tree models
better, we need to know more about the process of fitting tree models.

Although a tree model is straightforward to interpret and apply, its construction
is not trivial. In theory, we would like to consider all possible tree models and pick
the one that fits the given data best, based on some loss function. Unfortunately this
proves to be unfeasible save for trivial examples because the computational cost in-
creases exponentially with tree size.

Therefore several other approaches have been suggested for fitting tree models.
The most commonly used algorithm CART (Classification and Regression Trees) was
introduced by Breiman et al. (1984). It performs a greedy local optimization as fol-
lows: for a given node, consider all possible splits and choose the one that reduces the
relative impurity of the child nodes most relative to the parent node. This decrease of
impurity (and hence increase of purity) is assessed using an impurity criterion. Such
a locally optimal split is then used and the search is performed recursively in each
child node.

The growth is stopped if one of the stopping rules is met. The most common stop-
ping rules are a minimal number of cases in a node and a minimal requirement on the
impurity decrease. In practice it is common to relax the stopping rule and use prun-
ing methods; however, discussion of pruning methods is beyond the scope of this
chapter. Nevertheless, visualization can be useful for pruning, especially in an inter-
active context where pruning parameters can be changed on the fly and reflected in
various displays.

Measures of impurity can be any arbitrary convex functions, but the commonly
used measures are entropy and Gini index, which have theoretical foundations (cf.
Ripley, 1996). It is important to note that this search looks for a local optimum only.
It has no way to “look ahead” and consider multiple splits at once. Nevertheless, it
is computationally inexpensive compared to a full search and performs considerably
well in practice.

The consequence of committing to a local optimum at each split point is a poten-
tial instability of the model. Small changes in the training data can cause a different
split to be chosen. Although the alternate split may lead to a very similar decrease of
impurity, the resulting partition can be entirely different. This will have a big impact
on any following splits and thus produce an entirely different tree model. We want to
present a visualization technique that allows us to learn more about decisions made
at the node level during tree model fitting.

Mountain Plots

The basic idea of a mountain plot (Urbanek, 2003) is to visualize the decrease of im-
purity over the entire range of the split variable. This is illustrated on a binary clas-
sification problem in Fig. 10.8. In this particular example a binary response denotes
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Figure10.8. Stacked dotplot side by side with split variable (Age) and target variable (Recover) along
with the corresponding mountain plot showing the impurity decrease for each cut point. The optimal
cut point is denoted as a solid red line, runner-up splits as dotted red lines

whether a patient was able to recover from a diagnosed meningitis disease, whereas
the predictive variable Age refers to the patient’s age at the time of the diagnosis.

The top part of the figure shows a stacked dotplot of the split variable grouped by
binary response. The bottom part of the plot shows a mountain plot. The value of
the empirical impurity measure is constant between data points and can change only
at values taken by the data. The value of the impurity decrease is by definition zero
outside the data range.

In the presented example it is clearly visible that there are three alternative splits
that come very close to the “optimal” cut point chosen by the greedy algorithm.

The competition for the best split is not limited to a single variable. Figure 10.9 il-
lustrates a competition among two different variables in a regression tree. The models
are based on the Boston housing dataset by Harrison and Rubinfeld (1978).

Although both splits have almost identical impurity-decrease maxima, the data
show different patterns. The relationship seen in the left part of the plot is probably
better modeled by a linear model, whereas on the right-hand side we see a change in
behavior around the chosen cut point.

By plotting mountain plots of candidate variables on the same scale, we can assess
the stability of a split. If there is a dominating covariate with a clear optimum, the
split will be stable. On the other hand the presence of competing splits in the range
of the optimal split indicates possible instability. Mountain plots also show which re-
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Figure10.9. Two mountain plots of variables Rooms and LowStat and corresponding scatterplots vs.
response variable. Red lines: optimal splits; gray lines in scatterplots: means for each partition

gions of competing variables are in the vicinity of the optimum, thus allowing domain
knowledge to be taken into account.

The name “mountain” plots is derived from the fact that the plots usually resem-
ble a profile of a mountain range. They are mainly useful for assessing the quality of
a split along with potential competing splits. This information can be used to inter-
actively influence the tree construction process or to construct multiple tree models
and compare their behavior.

Visualizing Forests

So far we have been discussing visualization of individual tree models. We have shown,

however, that there is an inherent volatility in the choice of splits that may affect the

stability of a given model. Therefore it is useful to grow multiple trees. In what follows
we will briefly introduce tree ensemble methods and present visualization methods
for forests consisting of multiple tree models.

There are two main approaches to generating different tree models by making
changes to:

Training data: changes in the training data will produce different models if the orig-
inal tree was unstable. Bootstrapping is a useful technique to assess the variability
of the model-fitting process.

Splits: allow locally suboptimal splits that create different partitions in order to pre-
vent the greedy algorithm from getting stuck in a local optimum, which may not
necessarily be a global optimum.
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Model ensemble methods leverage the instability of individual models to improve
prediction accuracy by constructing a predictor as an aggregate of multiple individual
models. Bagging (Breiman, 1996) uses bootstrapping to obtain many tree models and
combines their prediction results by aggregation: majority voting for classification
trees and averaging for regression trees. In addition, random forests (Breiman, 1999)
add randomness by choosing candidate split variables from a different random set in
each node.

Split Variables

Bootstrapping models provide a useful tool to analyze properties of the fitted models
and therefore shed more light on the underlying data. One of the many advantages
of tree models is their ability to perform implicit variable selection. Given a dataset,
atree-growing algorithm will create a hierarchical structure of splits forming the tree.
Only variables used in the splits will be evaluated by the model; therefore any other
variables are implicitly dropped. In the following discussion we want to illustrate the
visualization of forests on Wisconsin breast cancer data (Mangasarian and Wolberg,
1990).

For this purpose we generate 20 trees using bootstrapping. In each bootstrap itera-
tion we grow a tree using the regular CART algorithm. Let us first concentrate on the
variables used in the models. A global overview is given in the left plot of Fig. 10.10.
Each bar displays how often the corresponding variable was used in the models. The
most often used variable is UCS (20 times) and the least often used variable is Mts,
which was used just once. Due to the rather small number of variables to choose
from, there is no variable omitted by all models.

Clearly this view is very coarse, because it does not take into account what role the
variable plays in the models. The number of splits can double with increasing depth,
whereas the number of involved cases decreases. Therefore the fact that a variable is
used often does not necessarily mean that it is really important, especially if it used
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Figure10.10. Left: frequency of use of individual variables in 20 bootstrapped tree models. Right:
cumulated deviance gain in splits featuring the corresponding variable
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mainly in the fringe for small groups. Therefore it is advisable to weight the contri-
bution of each split by a cumulative statistic such as the decrease of impurity.

The cumulative value of impurity decrease for each variable of the 20 bootstrapped
trees is displayed in the right plot of Fig. 10.10. The variables in each plot are ordered
by the bar height, representing their importance. We see that UCS is by far the most
influential variable, followed by UCH and BN:i.

When making inference on the displayed information, we need to be cautious
and keep the tree properties in mind. Variable masking can heavily influence the
results of such analyses. Given two highly correlated variables, it is very likely that
they will produce very similar split results. Therefore the CART algorithm guided
by the bootstrap will pick one of them at random. Since the decision was made, the
other variable is not likely to be used anymore. If one of the variables is “weaker,” it
will hardly appear in any model, even though in the absence of the stronger variable
it may still perform the best out of all the other variables.

To analyze that behavior, but also to see how different the tree models are, it is
necessary to take both the variable and the individual tree into account. Two-dimen-
sional weighted fluctuation diagrams showing trees and split variables are shown in
Fig. 10.11. Variables are plotted on the y-axis, the models on the x-axis. The area of
each rectangle is proportional to the cumulative impurity decrease of all splits using
a specific variable in the tree model. In general, fluctuation diagrams are useful for
detecting patterns and comparisons in both the x and y directions.

Focusing on the largest gains, we can distinguish four different model groups. In
15 models, UCS is the most influential variable, followed by UCH with 3 models and
BNi and BCn with one model each. Looking at the large group of 15 models we can
also spot several patterns. In 8 cases, UCH is also used, although not contributing as
heavily as in its dominant position, but then we see another 7 cases where UCH is
not used at all. Visually we get the impression that BNi replaces UCH in those cases,
which hints at variable masking. We see a similar behavior with UCS and UCH, too.
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Figure 10.11. Fluctuation diagram of trees and variables displaying cumulated deviance gain of splits

featuring that combination of tree and split variable
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This overall impression indicates that bootstrapping indeed produces very different
models, and we see a confirmation of the tree model instability for this dataset.

With large numbers of trees, an alternative representation based on parallel co-
ordinate plots can be used. Each coordinate corresponds to a tree and each case to
avariable. The value of the cumulative gain for each combination of tree and variable
is then plotted on the axes. The ordering of axes is important to obtain a coherent pic-
ture. Some possible heuristics include ordering by the value of the most influential
variable and distance measures based on the global weight of each variable.

Data View

The importance and use of variables in splits is just one aspect of the tree models to
consider. In Sect. 10.2.2, we discussed another way of visualizing trees that allowed
an assessment of cut point in the data context, sectioned scatterplots. Fortunately,
sectioned scatterplots can also be used for the visualization of forests, preferably using
semitransparent partition boundaries.

Such a sectioned scatterplot of a forest is shown in Fig. 10.12. To make the classi-
fication more difficult, we have increased the granularity of the response variable of
the olive oil data to nine regions. The sectioned scatterplot displays variables linoleic
vs. palmitoleic and partition boundaries of 100 bootstrapped trees. The use of semi-
transparent boundaries allows us to distinguish between occasionally used cut points
that are shown as very faint lines and frequently used cut points shown in dark blue.
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Figure10.12. [This figure also appears in the color insert.] Sectioned scatterplot of a forest of 100 trees
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In contrast to sectioned scatterplots for individual trees, we do not have the conve-
nient ability of a drill-down, unless several models agree on the same subset. There-
fore the aim of the visualization technique described in the next section is to show
all trees and their splits at a glance.

Trace Plot

The aim of a trace plot is to provide a plot that allows comparison of arbitrarily many
trees with respect to splits, cut points, and the hierarchical structure. This is not pos-
sible using any of the visualization methods described so far.

The basis of the trace plot is a rectangular grid consisting of split variables as
columns and node depths as rows. Each cell in this grid represents a possible tree
node. To distinguish actual split points, each cell contains a glyph representing pos-
sible split points. For continuous variables it consists of a horizontal axis, and a split
point is represented by a tick mark. Categorical variables are shown as boxes cor-
responding to possible split combinations. Every two adjacent inner nodes are con-
nected by an edge between their split points.

A classification tree and its trace plot is shown in Fig. 10.13. The root node features
a split on the variable palmitoleic, which is represented by the rightmost column. Its
child nodes use splits on the variables linoleic and oleic, hence the two edges leading
from the root node to the next row of splits. There are no further inner nodes as
children of the linoleic split; therefore the branch ends there. Analogously, all inner
nodes are drawn in the trace plot until terminal nodes are reached.

Itis evident that all splits of the tree can be reconstructed from its representation in
the trace plot because every cut point is shown in the trace plot. Equally, it is possible
to reconstruct the hierarchical structure of the tree due to the presence of edges in
the trace plot.

Moreover, the trace plot removes an ambiguity known from hierarchical views:
the order of the child nodes is irrelevant for the model, whereas swapping left and
right children in the hierarchical view produces quite different hierarchical plots. In
a trace plot the order of the child nodes is defined by the grid and therefore fixed for
all trees in the plot.

One important advantage of trace plots is the ability to display multiple tree mod-
els simultaneously, superimposing all models on the same grid. A trace plot of 100
bootstrapped classification trees is shown in Fig. 10.14. This confirms the ability of
bootstrapping to produce models that deviate from certain local optima.

To prevent overplotting, we use semitransparent edges. Consequently, often used
paths are more opaque than infrequently used paths. We can clearly see that the first
split always uses the palmitoleic variable. In the next step, however, there are several
alternatives for the splits. Some patterns seem to be repeated further down the tree,
indicating a rather stable subgroup that can be reached in several different ways along
the tree. In this particular example we can recognize substructures that affirm the
partial stability of the tree models.
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Figure10.13. A classification tree and its trace plot

The remaining instability in this particular example is in most cases given by the
sequence in which the subgroups are separated. This is partially due to the fact that we
are dealing with a multiclass problem; thus the reduction of impurity can be achieved
by splitting off an arbitrary class or a group of classes. Nevertheless, our tree specimen
from Fig. 10.13 is a rather rare one, as we see in the trace plot in Fig. 10.14, because its
trace does not match with the main, opaque paths.
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Figure10.14. Trace plot of 100 bootstrapped trees

10.4 Conclusion

Tree models are very rich and versatile. Equally rich is the variety of possible visu-
alization techniques that provide various views of trees, each time shedding light on
different properties of the models.

Hierarchical views are the most commonly used graphical representations and
highlight the sequence of splits. They are easy to interpret even by untrained per-
sonnel. Node placement and representation can convey additional information as-
sociated with the model or data. Size of nodes can be intuitively associated with the
size of the data passed into that node. Highlighting and brushing is easily possible in
this context, which facilitates interpretation in conjunction with available data. Hier-
archical views often allow for additional annotation and supplemental information,
such as split quality. Complemental methods are available for large trees and data,
such as censored or context-preserving local zoom.

A less known group of tree model visualization techniques are those based on the
recursive partitioning aspect. Direct view of the partition boundaries in the observa-
tion space can be obtained using sectioned scatterplots. The focus here lies on the cut
points and their relative position in the data space. They are limited in terms of the
number and types of covariates used but prove to be useful as a drill-down technique
for local analysis of subgroups throughout the tree model.
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Other methods based on recursive partitioning of the plot space are treemaps and
spineplots of leaves. Both allow a concise view of all terminal nodes while retaining
hints of the splitting sequence. In conjunction with highlighting and brushing, the
main focus here is on the model behavior with respect to data points. As such the plots
can be created using training and test data separately and compared. Treemaps are
more suitable for absolute comparisons and large, complex trees, whereas spineplots
of leaves can be used for relative comparison of groups within terminal nodes up to
moderately complex trees.

Tree models are possibly unstable, that is, small changes in the data can lead to
entirely different trees. To analyze the stability of splits it is possible to visualize the
optimality criterion for candidate variables using mountain plots. Competing splits
within a variable become clearly visible and the comparison of mountain plots of
multiple candidate variables allows a quick assessment of the magnitude and cause
for potential instability.

The instability of a tree model can be used to obtain additional insight in the data
and to improve prediction accuracy. Bootstrapping provides a useful method for the
analysis of model variation by creating a whole set of tree models. Visualization of the
use of covariates in the splits as weighted barcharts with aggregate impurity criterion
as weight allows quick assessment of variable importance. Variable masking can be
detected using weighted fluctuation diagrams of variables and trees. This view is also
useful for finding groups of related tree models.

Sectioned scatterplots also allow the visualization of partition boundaries for mul-
tiple trees. The resulting plot can no longer be used for global drill-down due to the
lack of shared subgroups, but it provides a way of analyzing the “fuzziness” of a cut-
point in conjunction with the data.

Finally, trace plots allow us to visualize split rules and the hierarchical structure
of arbitrarily many trees in a single view. They are based on a grid of variables and
tree levels (nodes of the same depth) where each cell corresponds to a candidate split
variable, corresponding to a potential tree node. Actually used cells are connected in
the same way as in the hierarchical view, thus reflecting the full structure of the tree.
Multiple trees can be superimposed on this grid, each leaving its own “trace” The
resulting plot shows frequently used paths, common subgroups, and alternate splits.

All plots in this chapter have been produced using R software for statistical com-
puting and KLIMT interactive software for visualization and analysis of trees and
forests. Visualization methods presented in this chapter are suitable for both presen-
tation of particular findings and exploratory work. The individual techniques com-
plement each other well by providing various different viewpoints on the models and
data. Therefore they can be successfully used in an interactive framework. Trace plots,
for example, represent a very useful overview that can be linked to individual hierar-
chical views. Subgroups defined by cells in the trace plot can be linked to data-based
plots, its edges to sectioned scatterplots.

The methods presented here were mostly illustrated on classification examples,
but they can be equally used for regression trees and mostly for survival trees as well.
Also, all methods described here are not limited to binary trees, even though those
represent the most commonly used models. The variety of tree models and further
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development of ensemble methods still leaves room for enhancements or new plots.
For exploratory work it is of benefit to have a big toolbox to choose from; for presen-
tation graphics it is important to have the ability to display the “key point” we want
to convey.
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1.1 Introduction

Over the last decade, researchers have developed many improvements to make sta-
tistical graphics more accessible to the general public. These improvements include
making statistical summaries more visual and providing more information at the
same time. Research in this area involved converting statistical tables into plots (Carr,
1994; Carr and Nusser, 1995), new ways of displaying geographically referenced data
(Carretal.,1992), and, in particular, the development of linked micromap (LM) plots,
often simply called micromaps (Carr and Pierson, 1996; Carr et al., 1998, 2000a). LM
plots, initially called map row plots as well as linked map-attribute graphics, were
first presented in a poster session sponsored by the American Statistical Association
(ASA) Section on Statistical Graphics at the 1996 Joint Statistical Meetings (Olsen
etal., 1996). More details on the history of LM plots and their connection to other re-
search can be found in these early references on micromaps. More recent references
on LM plots (Carr et al., 2000b; Carr, 2001) focused on their use for communicating
summary data from health and environmental studies.

The basic idea behind LM plots is to link geographic region names and their val-
ues, as shown in quality statistical graphics such as row-labeled dotplots, with their
locations, as shown in a sequence of small maps, called micromaps. This provides
the opportunity to see patterns in a geospatial context as well as in the traditional
statistical graphics context. Figure 1.1 shows a simple example of LM plots. This fig-
ure shows the 25 US states with the highest white female lung and bronchus cancer
mortality rates for 2002. The states are sorted in descending order by the mortality
rates and partitioned into groups of five to promote focused comparisons. The left-
hand column consists of linked micromaps with one micromap for each group of five
states. The top micromap has five regions with black outlines. Within each group of
five states, the shade of grey fill for a region links to the shade of grey in the dot beside
the region’s name and to the shade of grey in the dot indicating the region’s mortal-
ity rate. The same five shades of grey or distinct hues in color plots are links within
each group of five states. The linking is basically horizontal within groups of five. The
right column of Fig. 1.1 has familiar dotplot panels showing US state mortality rates
estimates and 95 % confidence intervals. The data are from the US National Cancer
Institute (NCI) Web site http://www.statecancerprofiles.cancer.gov/micromaps, fur-
ther discussed in Sect. 1.4.3.

Figure 1.1 shows a useful variant of linked micromaps that accumulates states out-
lined in black. That is, states featured in previous groups of five are outlined in black
and shown with a white fill or with a sixth distinctive hue in color versions. The black
outline brings the outlined states into the foreground and creates a contour composed
of state polygons. The bottom micromap contour includes states with values above 42
deaths per 100 000. While the political boundaries are less than ideal for accurately
communicating geospatial patterns of local mortality rates, the progression of con-
tours and the visible clusters in the bottom micromap are much more informative
geospatially than the values in a table or a dotplot.
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Lung and Bronchus Cancer: White Female Mortality 2002
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Figurel.1. LM plots, based on data from http://www.statecancerprofiles.cancer.gov/micromaps,
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showing lung and bronchus cancer mortality rates for white females in 2002. The left column shows five
micromaps, with five states highlighted in different colors in each of the maps. The same color
information is used to link to the names of the US states in the middle column and to the data in the
right column. This data column displays US state mortality rates estimates (dots) and 95 % confidence

intervals (lines)

Many statistical graphics, such as dotplots, means with confidence bounds, box-
plots, and scatterplots, start with a strong foundation toward quality by encoding
information using position along a scale. Position along a scale encoding has a high
perceptual accuracy of extraction (Cleveland and McGill, 1984). Quality statistical
graphics often represent estimate uncertainty and reference values using position
along scale encodings, provide grid lines to reduce distance effect problems in judg-
ing values against a scale, and follow the guidance of Tufte (1990) and others for
visually layering information. Good visual layering makes the most important in-
formation the most salient. Estimates are generally more important than confidence
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bounds and should be layered within the foreground. Grid lines always belong in
the background. There are many factors related to statistical graphics quality, start-
ing with content and context, and extending to additional visual considerations, such
as perceptual grouping and sorting. While specific instances of LM plots may pro-
vide opportunities for improvement, the paradigm can incorporate much knowledge
about quality statistical graphics design.

LM plots often provide a good alternative to displaying statistical information us-
ing choropleth maps. Choropleth maps use the color or shading of regions in a map to
represent region values. Choropleth maps have proved very popular but have many
problems and limitations as indicated by writers such as Robinson et al. (1978), Dent
(1993), and Harris (1999). Reviewing these problems helps to indicate why LM plots
are a good alternative.

There are two kinds of choropleth maps, called unclassed and classed. Unclassed
maps use a continuous color scale to encode continuous values (statistics). This is
problematic because perception of color is relative to neighboring colors and because
color has poor perceptual accuracy of extraction in a continuous context. Classed
choropleth maps ameliorate this problem and dominate in the literature.

Classed choropleth maps use class intervals to convert continuous estimates into
an ordered variable with a few values that can be represented using a few colors.
When a few colors are easily discriminated and regions are sufficiently large for color
perception, color identification problems are minimal. The color scheme also needs
to convey the class ordering based on values. Brewer (1997) and Brewer et al. (1997)
provided results evaluating different color schemes in a mapping context. The Web
site http://colorbrewer.org (see Leslie, 2002, for a short description) contains guid-
ance on ordered color schemes and additional issues such as suitable schemes for
people with color vision deficiencies and for different media. Perfect examples on
how colors should be used in choropleth maps can be found in the 1996 “Atlas of
United States Mortality” (Pickle et al., 1996).

Even with a good color scheme, three key problems remain for classed choropleth
maps. The first problem relates to region area. As suggested above, some map re-
gions can be too small to effectively show color. Examples include Washington, DC,
on a map of the United States (US) and Luxembourg on a European map. Map carica-
tures, such as Monmonier’s state visibility map (Monmonier, 1993), can address this
problem, by enlarging small regions in a way that maintains region identifiability
and shows each region touching the actual neighboring regions. Another facet of the
area problem is that large areas have a strong visual impact while in many situations,
such as in the mapping of mortality rates, the interpretation should be weighted by
the region population. Dorling (1995) addressed this problem by constructing car-
tograms that changed region shapes to make areas proportional to population. Is-
sues related to this approach are region identifiability, and map instability over time
as their shapes change with changing populations. Area related problems persist in
choropleth maps.

A second key problem is that converting a continuous variable into a variable with
a few ordered values results in an immediate loss of information. This loss includes
the relative ranks of regions whose distinct values become encoded with the same
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value. The task of controlling conversion loss has spawned numerous papers about
proposing methods for defining class intervals. Today, guidance is available based on
usability studies. Brewer and Pickle (2002) indicated that quintile classes (roughly
20 % of regions in each class) tend to perform better than other class interval methods
when evaluated across three different map-reading tasks. Still, the best of the class
interval selection approaches loses information.

The third key problem is that it is difficult to show more than one variable in
a choropleth map. MacEachren et al. (1995, 1998) were able to clearly communi-
cate values of a second binary variable (and indicator of estimate reliability) by plot-
ting black-and-white stripped texture on regions with uncertain estimates. However,
more general attempts such as using bivariate colors schemes have been less success-
ful (Wainer and Francolini, 1980). Thus, choropleth maps are not suitable for showing
estimate standard errors and confidence bounds that result from the application of
sound statistical sampling or description. It is possible to use more than one map to
show additional variables. However, Monmonier (1996, p. 154) observed that when
plotting choropleth maps side by side it can easily happen that “similarity among large
areas can distort visual estimates of correlation by masking significant dissimilarity
among small areas” The change blindness (Palmer, 1999, p. 538) that occurs as the
human eyes jump from one map to another makes it difficult to become aware of all
the differences that exist in multiple choropleth maps and hard to mentally integrate
information in a multivariate context.

Carr proposed the use of micromaps and the LM plots design in response to An-
thony R. Olsen’s [from the US Environmental Protection Agency (EPA), Corvallis,
OR] challenge to extend traditional statistical graphics called row-labeled plots in
Carr (1994) to include geospatial context. As indicated earlier, traditional statistical
graphics often use position along scale encodings for continuous values and can read-
ily show estimates and confidence intervals together. Olsen, Carr, Courbois, and Pier-
son unveiled this new design with a 4 x 8 foot poster at 1996 JSM. The map regions
were 78 Omernik ecoregions for the continental US. The various ecoregion barplots
and boxplots summarized detailed elevation information and detailed land class in-
formation derived from multiple advanced high-resolution radiometer (AVHRR) re-
mote sensing images over time.

The first example in the literature of LM plots (Carr and Pierson, 1996) showed
state values for the US. This example adapted the state visibility map of Monmonier
to address the visibility problems for small regions. That paper presented a micromap
plot of unemployment by state with two data columns (unemployment rate with
95 % confidence interval and total number of unemployed persons). The LM plots
paradigm supports the display of different kinds of statistical panels, such as dotplots,
barplots, boxplots, binned scatterplots, time series plots, and plots with confidence
bounds. In particular, Carr et al. (1998) presented three micromap plots: (i) CO2
emissions in the Organization for Economic Cooperation and Development (OECD)
states with one data column (annual time series), (ii) wheat prices by state with two
data columns (average price and monthly time series), and (iii) an improved version
of the micromap plot from Carr and Pierson (1996). Carr et al. (2000a) presented
four micromap plots based on the Omernik ecoregions: (i) three data columns with
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boxplots, (ii) bivariate binned boxplots, (iii) time series plots, and (iv) line height
plots. The level 2 Omernik ecoregion micromaps involved large US regions, so re-
gion visibility was not a problem. However, highly detailed boundaries lead to a slow
graphics production. Faster production in the context of more numerous ecoregions
and over 3000 US counties as opposed to 50 US states also motivated the develop-
ment of generalized micromaps. Geographers traditionally use the best encoding,
position along a scale, to show region boundaries. However, they also desire to show
statistics more precisely, and thus static LM plots soon appeared in the geographic
literature (Fonseca and Wong, 2000) as well.

In this chapter, we continue with a motivational example in Sect. 1.2 that shows the
same data via choropleth maps and LM plots. In Sect. 1.3, we discuss design issues for
LM plots and outline their main purposes. All of the early examples of LM plots were
created as static plots to be displayed as printed pages or as large posters. In Sect. 1.4
we discuss how micromaps can be used interactively on the Web. We return to pro-
duction resources for static LM plots via statistical software packages in Sect. 1.5. We
finish with a discussion and comparison of LM plots with other graphical tools in
Sect. 1.6.

1.2 A Motivational Example

Figure 1.2 shows two variables, the soybean yield and acreage from the 1997 Cen-
sus of Agriculture for the US, displayed in two choropleth maps. Five equal-size
class intervals were chosen for each of the maps. A “6-class sequential2 Greys” color
scheme, obtained from http://colorbrewer.org and reprinted in Table 1.1, was chosen,
with the lightest grey representing states where no soybeans were planted. The maps
in this figure were produced with the Geographic Information System (GIS) Arc-
View 3.2. We obtained the data from the US Department of Agriculture-National
Agricultural Statistics Service (USDA-NASS) Web site http://www.nass.usda.gov/
research/apydata/soyapy.dat. Section 1.4.2 provides further details on these data and
the USDA-NASS Web site.

The two choropleth maps in Fig. 1.2 indicate that the highest yields and highest
acreages for soybeans occur in the Midwest. There seems to be some spatial trend,
i.e., some steady decrease for both variables from the Midwest to the Southeast. Over-

Value 1 Value 2 Value 3 Table1.1. Values fo.r the “6-class sequential2 Greys”
color scheme, obtained from http://colorbrewer.org,

0 0 247 for use in ArcView 3.2. Instead of breaking down the
range of possible values (0 to 255) into equally wide

0 0 217 intervals, the chosen values represent similar

0 0 189 perceptual differences. The first triple (0, 0, 247)

0 0 150 represents the lightest grey, the last triple (0, 0, 37)
the darkest grey. When represented as red, green,

0 0 99 and blue (RGB) values, the zeros will be replaced by

0 0 37 the nonzero value, i.e., (0, 0, 247) will become (247,

247, 247) and so on
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Figure1.2. Choropleth maps of the 1997 Census of Agriculture, showing the variables soybean yield (in
bushels per acre) and acreage (in millions of acres) by state. The data represent the 31 US states where

soybeans were planted

all, there appears to be a positive correlation between these two variables since high
yields/high acreages and low yields/low acreages seem to appear in the same geo-
graphic regions. The correlation coefficient between yield and acreage is only 0.64,
suggesting departures from linearity that would be better revealed using scatterplots
or LM plots.

The LM plots paradigm sorts the list of regions based on their values or names and
partitions the list into perceptual groups of size five or less, which is further discussed
in Sect. 1.3. The micromap design assigns a distinct color to each region in a group.
The same color is used for plotting the region polygon in the micromap, the dot by
the region name, and the region values in one or multiple statistical panels. Figure 1.3
provides a LM plot example with 31 US states and shows three statistical panels with
dotplots for three variables: yield, acreage, and production. This example is accessi-
ble at http://www.nass.usda.gov/research/gmsoyyap.htm. In fact, Fig. 1.3 shows the
LM plots of the same two variables as Fig. 1.2, plus a third statistical panel for the
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variable production. Data are available for 31 of the 50 US states only. An identical
color links all of the descriptors for a region. Successive perceptual groups use the
same set of distinct colors. In Fig. 1.3, the sorting is done (from largest to smallest)
by soybean yield in those 31 US states where soybeans were planted. Here, the points
within a panel are connected to guide the viewer’s eyes and not to imply that inter-
polation is permitted. The connecting lines are a design option and can be omitted
to avoid controversy or suit personal preferences. The list of 31 US states is not evenly
divisible by five. Two perceptual groups at the top and two groups at the bottom con-
tain four states, while three perceptual groups in the middle contain five states. The
middle groups require the use of a fifth linking color. Using distinct hues for linking
colors works best in full-color plots. For grey-level plots, colors need to be distinct
in terms of grey level. Figure 1.3 shows different shades of green and is suitable for
production as a grey-level plot. Readers new to LM plots sometimes try to compare
regions with the same color across the different perceptual groups, but they quickly
learn the linkage is meaningful only within a perceptual group.

While the micromaps in Fig. 1.3 are not ideally suited to show geospatial patterns,
the statistical panels nevertheless are more revealing than the choropleth maps in
Fig. 1.2. It is immediately obvious from this graphical display that there is a positive
correlation between the two variables yield and acreage (high values for yield are as-
sociated with high values for acreage while low values for yield are associated with
low values for acreage). However, there were some considerable spatial outliers that
could not be detected easily in the two choropleth maps in Fig. 1.2. Wisconsin (in
a favorable geographic region for soybeans, neighboring Iowa, Illinois, and Indiana)
had a high yield, but only a very small acreage was used for soybeans. On the other
hand, Arkansas, with a relatively low yield (similar to its neighboring states in the
Central South), used a surprisingly high acreage for soybeans. Geographically, the
highest yields for soybeans were obtained in the Midwest, with a spatially declin-
ing trend toward the Southeast. When visually comparing acreage and production,
these two variables almost perfectly correlate. Overall, the LM plots in Fig. 1.3 pro-
vide a much better and simpler geographic reference to the underlying data than the
two choropleth maps in Fig. 1.2.

Design Issues and Variations
13 on Static Micromaps

Figure 1.3 shows one possible partitioning of 31 regions into perceptual groups of size
five or less. However, for different numbers of regions there may exist more than just
one meaningful partitioning. Table 1.2 shows different ways to partition regions into
groups of size five or less. In fact, the partitioning in Fig. 1.3 is called Partitioning 2
in Table 1.2. An algorithm, coded in S-Plus (Becker et al., 1988), produces symmetry
about the middle panel or the pair of middle panels (Partitioning 1). It puts small
counts in the middle. For complete data situations, a single region appearing in the
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Soybean Statistics by State, 1997 Census of Agriculture
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Figure1.3. [This figure also appears in the color insert.] LM plots of the 1997 Census of Agriculture,
showing soybean yield (in bushels per acre), acreage (in millions of acres), and production (in millions
of bushels) by state. The data are sorted by yield and show the 31 US states where soybeans were
planted. The “US Average” represents the median, i.e., the value that splits the data in half such that half
of the states have values below the median and the other half of the states have values above the
median. For example, Tennessee is the state with the median yield. This figure has been republished
from http://www.nass.usda.gov/research/gmsoyyap.htm without any modifications (and ideally should

contain much less white space in the lower part)
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middle panel shows the median value for the variable used in sorting. Carr et al.
(1998) exploit this in a special design for the 50 US states plus Washington, DC. In
other situations, it might be preferable to avoid creating groups with few regions.
The right column (Partitioning 2) in Table 1.2 is also symmetric, but it avoids small
counts where possible. The visual appeal of symmetry is lost when there are too many
groups to display in one page or one screen image. In this case, it suffices to fill all
panels except a single panel that contains the leftover regions modulo the grouping
size. It does not seem to matter whether the partially filled panel appears at the top,
near the middle, or at the bottom of the page.

The micromaps in LM plots are intended to be caricatures that generally serve
three purposes. The first purpose is to provide a recognizable map. Boundary details
are not important here. Boundaries only need to communicate region identity and
neighbor relationships.

The second purpose is to provide a visible color link. Tiny areas do not support
easy color identification. As indicated above, early micromaps for states adapted the
hand-drawn state visibility map of Monmonier (1993). This map simplified bound-
aries and increased the size of small US states such as Rhode Island. The EPA Cumu-
lative Exposure Project (CEP) Web site (Symanzik et al., 2000) made it necessary to
develop an algorithm to generalize boundaries for US states and US counties. Most
of the Web-based micromaps described in Sect. 1.4 use these generalized boundaries
for US states and US counties. New projects may entail the production of map cari-
catures or generalizations when the available boundaries are not suitable.

The third purpose of micromaps is to show geospatial patterns. Figure 1.3 shows
individual perceptual groups of states. This simple version is good as an introduction
and reveals some geospatial grouping. More sophisticated variations on micromaps
have also called attention to contours constructed from region polygons. One ap-
proach shows background states in light grey with white outlines. States highlighted
previously in a perceptual group can appear in an additional color such as light yel-
low and have a black outline. The nongrey black-outlined states then appear as a fore-
ground contour. Examples with two complementary contours for regions above and
below the median will be further discussed in Sects. 1.4.3 and 1.5.1.

1.4 Web-based Applications of LM Plots

Over the last decade, US Federal Agencies and other institutions have increasingly fo-
cused attention on distributing large amounts of geographically referenced statistical
data, either in print or through the Web. The Web-based distribution of data is aimed
at replacing printed tabular displays and at providing access to current data quickly.
Several approaches have been developed that provide a user-friendly Web-based in-
terface to tabular and graphical displays of federal data. The user can interactively
and dynamically query and sort the data, compare different geographic regions, and
look at the data at different spatial resolutions, e.g., at the state or the county level.
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Table1.2. Full symmetry partitionings with targeting groups of size 5. The left column (#) contains the
number of regions. The middle column (Partitioning 1) puts the smallest counts in the middle.
Full-symmetry alternatives that avoid small counts appear in the right column (Partitioning 2).
Abandoning full symmetry can lead to fewer panels. The table ends with 51 regions (the number of US
states plus Washington, DC), but it can be easily extended
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Carr and Olsen (1996) provide examples on the visual appearance of patterns in data
when properly sorted.

The direction of LM plot development shifted from static LM plots toward interac-
tive micromap displays for the Web. Work done for the EPA CEP Web site (Symanzik
etal., 2000) was the first in this regard. This project was soon followed by Web-based
examples of micromaps produced by the USDA-NASS such as in Fig. 1.3.

The Digital Government (dg.o) initiative (http://www.diggov.org) is a major re-
search initiative funded by the National Science Foundation (NSF) and several fed-
eral agencies such as the EPA, the USDA-NASS, the US Census Bureau, the NCI,
the US Bureau of Labor Statistics (BLS), etc. This initiative addresses multiple as-
pects related to federal data such as visualization, access, disclosure, security, etc. One
of the proposals funded under dg.o was the Digital Government Quality Graphics
(DGQG) project that included the development of LM plots (http://www.geovista.
psu.edu/grants/dg-qg/index.html).

In the reminder of this section, we look at four main applications of interactive
Web-based LM plots, three of them on federal Web sites. A short overview of inter-
active micromaps, as well as a micromap of the “Places” data (Boyer and Savageau,
1981), can be found in Symanzik (2004). However, additional details are given in this
section.

Micromaps on the EPA CEP Web Site

The idea of using micromaps on the Web was first considered for the EPA CEP Web
site (previously accessible at http://www.epa.gov/CumulativeExposure/). Initially, the
EPA wanted to provide fast and convenient Web-based access to its hazardous air
pollutant (HAP) data for 1990. In this dataset, concentrations of 148 air pollutants
were estimated for each of the 60 803 US census tracts in the 48 contiguous US states
(Rosenbaum et al., 1999). The EPA Web site was designed to allow the user to easily
move through the dataset to find information on different air pollutants at differ-
ent geographical locations and at different levels of geographic resolution (e.g., state,
county, census tract) via interactive tables and micromaps. Unfortunately, no part of
the interactive CEP Web site was ever published due to concerns that the 1990 data
were outdated on the intended release date in 1998. Only a static version of the CEP
Web site without tables and micromaps was accessible for several years. More de-
tails on the work related to the planned interactive CEP Web site can be found in
Symanzik et al. (1999a,b, 2000).

Micromaps on the USDA-NASS Web Site

The USDA-NASS Research and Development Division released a Web site (http:
/Iwww.nass.usda.gov/research/sumpant.htm) in September 1999 that uses interac-
tive micromaps to display data from the 1997 Census of Agriculture. The USDA-
NASS Web site displays acreage, production, and yield of harvested cropland for corn,
soybeans, wheat, hay, and cotton.
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A user of this Web site can sort the states by acreage or by yield with respect to
a selected crop. Figure 1.3, already discussed in more detail in Sect. 1.2, shows LM
plots from this Web site for soybeans, with states sorted by decreasing yield. It is
possible to select another crop type and to access and download the raw data for
further analysis or additional maps such as the choropleth maps in Fig. 1.2 that are
based on these data. While a user who accesses this Web site gets the impression of
full interactivity, this is not the case. The ten micromaps (5 crops x 2 arrangements)
plus one overview micromap were precalculated in S-Plus (see Sect. 1.5.1 for more
details) and were stored as jpeg images. It is not possible to create any new micromap
display “on the fly” on this Web site. Precalculating all possible micromaps is often
not possible or desirable for all datasets, as we will see in the next section.

Micromaps on the NCI Web Site

The NCl released the State Cancer Profiles Web site in April 2003 that provides inter-
active access to its cancer data via micromaps. This Web site is Java based and creates
micromaps “on the fly” Wang et al. (2002) and Carr et al. (2002) provide more de-
tails on the design of the NCI Web site, http://www.statecancerprofiles.cancer.gov/
micromaps.

LM plots with interactive and dynamic features are the main content on NCI’s
State Cancer Profiles Web site that combines the latest research in data visualization
sponsored by the NSF DGQG initiative with features to ensure accessibility by the vi-
sually impaired. The State Cancer Profiles Web site provides a “quick stop” for cancer-
related statistics for planners, policymakers, and epidemiologists. It was developed by
the NCI in collaboration with the Centers for Disease Control and Prevention (CDC)
and is an integral component of NCI's Cancer Control PLANET, a Web portal that
links to resources for comprehensive cancer control. The Web site provides national
(US), state, and county views of cancer statistics collected and analyzed in support
of annual federal reports. The focus is on eight major cancer types for which there is
evidence of the potential to improve outcomes either by prevention or by screening
and treatment.

Cancer statistics include mortality and incidence counts, rates, and trends by sex
and race/ethnicity. Recent incidence data are available for cancer registries partici-
pating in CDC’s National Program of Cancer Registries (NPCR) that met selected
eligibility criteria. Both historical and recent incidence data are available for cancer
registries participating in NCI’s Surveillance, Epidemiology and End Results (SEER)
program. Prevalence of risk factors and screening, Healthy People 2010 US objectives,
and demographics complete the profiles. The interactive graphic capabilities allow
a user of the Web site to quickly explore patterns and potential disparities. For exam-
ple, the user can easily compare graphs of national (US) or state trends for Whites,
Blacks, Hispanics, Asian or Pacific Islanders, and American Indian/Alaskan Natives.
LM plots provide the primary graphic template for users to explore spatial relation-
ships among the latest rates, percents, and counts for cancer statistics, demographics,
risk factors, and screening.

1.4.3
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Figurel.4. LM plots from the NCI Web page, showing lung and bronchus cancer for the year 2002.

This interactive version of micromaps is accessible at
http://www.statecancerprofiles.cancer.gov/micromaps



Interactive Linked Micromap Plots for the Display of Geographically Referenced Statistical Data 281

Figure 1.4, a screenshot from the NCI Web site, shows LM plots with state names,
lung and bronchus cancer mortality rates, current smoking rates, and micromaps.
This figure illustrates some design changes (e.g., variable selection on the left and
maps on the right) that are specific to the NCI micromap implementation. The ma-
jor design challenge for this Web site arose from taking LM plots from a portrait print
image to a landscape screen image. The change in orientation significantly affected
the number of rows that could be displayed. The requirement for a standard ban-
ner and logos for branding exacerbated the problem by further reducing the vertical
screen real estate. Since only a few panels could simultaneously appear in view, the
revised design provides scrolling within the Java applet that keeps the variable scales
and other context information in view. In the current design, there is no scrollbar for
the browser window if the screen area setting is for 1024 x 768 pixels or more. Usabil-
ity studies identified many health care planners using a 800 x 600 pixel resolution.
A notice now suggests increasing the screen resolution to avoid this problem.

The main features of the NCI micromap Web site are as follows. The scrollbar
to the right of the micromaps in Fig. 1.4 controls a small set of statistical and geo-
graphical panels, leaving the reference information above and below the statistical
and micromap displays in place. The default for the user controllable placement of
micromaps puts them by the scrollbar in the right for easy scanning of contours re-
vealed by the cumulative micromaps. Clicking a triangle above one of the columns
specifies the sort order that determines how the regions accumulate. The panels of-
ten show Healthy People 2010 US target intervals (the green region), estimates, and
confidence intervals.

Moving the mouse over an estimate shows the underlying numerical values. More-
over, moving the mouse over any of the linked items (region name, graph glyphs,
and map region) causes these items to blink. Clicking on a state name invokes a drill-
down to show the counties of the selected state.

Due to the interest in region rankings, the statistical panels have been augmented
with numbers indicating the rank order. The interpretation of “1” is explicitly labeled
since usability assessment found people who interpret “1” as best.

The color selection options for this Web site include one color scheme suitable for
the two most common kinds of color vision deficiencies. There are additional items
including popup overviews that augment the LM plots.

Micromaps at Utah State University

Micromaps and other graphical displays were found to be very useful for the display
and analysis of the geographic spread of the West Nile Virus (WNV) and other dis-
eases (Symanzik et al., 2003) across the US. For this reason, researchers at Utah State
University (USU) obtained the NCI Java micromap code and adapted it for the dis-
play of WNV data (Chapala, 2005). Similar to the NCI micromap application, a user
can now select among WNYV infection rates and counts, and death rates and counts,
starting with the WNV data for the US for the 2002 season. A drill-down into US
counties is possible given that data at the county level are available. New features
of the USU Web site include the plotting of the data for 2 years side by side in one

1.4.4
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Figurel.5. LM plots from the USU WNV Web page, showing WNV death rates and death counts for
the years 2002 (swmall dots) and 2003 (big dots). Red lines indicate an increase and green lines a decrease
from 2002 to 2003. This interactive version of micromaps is accessible at
http://webcat.gis.usu.edu:8080/index.html
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panel and additional sorting criteria such as sorting from the highest increase over
no change to highest decrease in two selected years. The USU WNV micromap Web
site can be accessed at http://webcat.gis.usu.edu:8080/index.html. Figure 1.5 shows
WNV death rates (left data panel) and death counts (right data panel) for the years
2002 and 2003. The data are sorted by highest WNV death rate in 2003. A big dot
represents the year 2003, a small dot the year 2002. Red lines indicate an increase in
the rates/counts from 2002 to 2003 in a state, while green lines indicate a decrease
in the rates/counts from 2002 to 2003. A strong geospatial pattern can be observed,
with highest WNV death rates in 2003 in the Midwestern states. While death rates
(and counts) considerably increased from 2002 to 2003 for most of the states that
are currently visible in this scrollable micromap, the opposite holds for some of the
Central states such as Louisiana, Ohio, Mississippi, and Kentucky.

Constructing LM Plots 1.5
I

While the previous section describes major Web sites that provide access to their ge-

ographically referenced statistical data via LM plots, this section summarizes how

individual micromap plots can be constructed. This can be done using the statistical

software package S-Plus, by providing appropriate data and map files to an applica-

tion based on the software development kit (SDK) nViZn (Wilkinson et al., 2000), or

by using recent Java code developed at the NCI. In particular, when high-resolution

LM plots in postscript (.ps) format are required and a screenshot from a Web site or

one of the Java applications is not sufficient, a user most likely will have to use existing

S-Plus code or will have to make changes to this existing code.

Micromaps via S-Plus 1.5.1

Individual LM plots can best be created via S-Plus. Sample S-Plus code, data files, and
resulting plots can be obtained from Dan Carr’s micromaps Web site at http://www.
galaxy.gmu.edu/~dcarr/micromaps. Included are files related to the early micromap
articles (Carr and Pierson, 1996; Carr et al., 1998) as well as a frontend to S-Plus that
allows the user to create time series micromap plots and dotplot micromap plots. In
fact, the micromaps that are accessible at the USDA-NASS Web site were created by
USDA-NASS personnel using these tools.

S-Plus functions in the rlStateplot library, boundary files, data, and an example
S-Plus script file are also available at Dan Carr’s micromaps Web site introduced
above. This library supports dotplots, dotplots with confidence bounds, barplots, ar-
row plots to show change, and boxplots based on county values. Boundary files are
available for US states and US counties. The datasets are cancer mortality rates from
the NCI. The script file addresses how to obtain more mortality rates over the Web as
well as examples showing different kinds of plots. More general S-Plus functions for
other regions and for times series that may need panel-specific scaling are available
from the second author.
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It seems to be possible to adapt the S-Plus micromap code for use in the R sta-
tistical package (Ihaka and Gentleman, 1996), which can be freely obtained from
http://www.r-project.org/. Although no full implementation of a micromap library
in R exists at this point, the basic panel functions and simple examples of LM plots
have been converted from S-Plus to R by Anthony R. Olsen.

Figure 1.6 is based on data from the NCI micromap Web site and illustrates several
variations of LM plots, implemented via the S-Plus rlStateplot library. This example
uses a special layout for 51 regions that differs slightly from the two suggested par-
titionings in Table 1.2 and calls attention to the middle state after sorting the states
based on one of the variables displayed. Figure 1.6 bases the sorting on white male
lung and bronchus cancer mortality rates during the years 1950 to 1969. Vermont is
the middle (26th) state in the sorted order and thus has the median value. Instead
of showing eleven panels with micromaps as suggested by both partitionings in Ta-
ble 1.2, the micromap panel layout shows the middle state as a sixth highlighted state
in the micromaps immediately above and below the median divider. This layout calls
attention to symmetry and saves space by removing the need for an eleventh mi-
cromap. The US federal agencies produce so many graphics and tables for the 50 US
states plus Washington, DC that it is worthwhile to develop a special layout for rou-
tine use. Other situations such as producing LM plots for the major regions of other
countries may benefit from developing special layouts. Carr (2001) considered special
layouts for the counties of selected states and made first use of the S-Plus functions
assembled in the rlStateplot library. This library was written for students to produce
LM plots such as in Fig. 1.6.

The micromap construction in Fig. 1.6 introduces another useful design feature.
It accumulates states when moving up from the bottom panel or down from the top
panel toward the median divider. After highlighting five states in a micromap panel
with foreground colors and black outlines, this design continues to show the previ-
ously highlighted states with black outlines in panels closer to the median divider.
This black outline lifts the states into the foreground, and the micromap progression
shows a sequence of foreground contours. A cluster of states from the Northwest and
much of the inland US emerges when moving up from the bottom panel. The mi-
cromaps immediately above and below the median divider are duals of each other
except for Vermont, which is in the foreground of both of these micromaps. Human
perception does not treat foreground and background equally, so the logical equiva-
lence of the two panels may not be noticed. The micromap just above the median di-
vider calls attention to most of the US border states other than those in the Northwest.

Full-color LM plots typically use distinct saturated hues to highlight the selected
regions in each panel. The nonhighlighted black-outlined regions are shown in a de-
saturated hue such as light yellow while the background regions are light grey with
white outlines. The grey-level representation of Fig. 1.6 makes it harder to distin-
guish between foreground (black-outlined) states with the lightest colors and the
near-white states highlighted in panels further from the median divider. However,
the reader can still easily look at one of the two micromaps by the median divider,
note whether or not a particular state is in the foreground, based on the black outline,
and know which direction to scan in to find the panel where the state is highlighted.
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The Fig. 1.6 approach of accumulating foreground regions from the ends toward
the center is one of several micromap variations tried over the years. Accumulating
regions from one end to the other has been popular and is easier to explain. One
drawback is that micromaps look more complicated when more than half of the re-
gions appear in the foreground. A second drawback is that the chances increase of
a background region being completely surrounded by outlined states. This will cause
the background region to appear in the foreground. The region color fill will clarify
but may not be noticed. Usability studies could help in ranking the various options.

Figure 1.6 illustrates different kinds of statistical panels. The first statistical panel
shows summary values for the 20-year period 1950 to 1969 as filled dots. It shows
the values for the 25-year period from 1970 to 1994 as arrow tips. Both encodings
are position along scale encodings. Arrow length encodes the difference in rates for
the two time intervals. Length is a good encoding in terms of perceptual accuracy of
extraction. The huge increase in mortality rates for all US states is obvious.

The second statistical panel in Fig. 1.6 shows rate estimates and 95 % confidence
intervals for the 25-year period from 1970 to 1994. Typically, the confidence intervals
are considered secondary information and the rates are plotted on top. In Fig. 1.6,
this totally obscures the confidence intervals except for Alaska, Hawaii, and Wash-
ington, DC. There are various remedies, such as showing 99 % confidence intervals.
Our purpose in Fig. 1.6 is to call attention to how well the state rates are known and
how little this conveys about the geospatial variation within the states.

The third and rightmost statistical panel in Fig. 1.6 shows boxplots of the rate esti-
mates for the 25-year period from 1970 to 1994 for the counties of each US state. The
outliers appear as open circles. The geospatial variation based on 25 years of data is
substantial. Note that the scale has changed from the panel with state rates and con-
fidence intervals. Using the county scale for both columns would better convey the
county variability. Of course, the 25-year state rate estimates are also hiding variation
over time.

In recent years, US federal agencies have placed increasing emphasis on confiden-
tiality. The suppression of data is increasingly common. One approach toward mak-
ing something available to the public has relied on aggregation to obscure details. This
leads to aggregation over important factors such as time, geospatial regions, race,
and sex. There is currently a serious consideration for suppressing all county-level
mortality-rate estimates. Suppression of data is a problem for the public concerned
about human health. There are additional issues related to data that is not collected.
For example, data are not collected on cigarette smoking in terms of packs per day at
the county level.

Micromaps via nViZn

nViZn (Wilkinson et al., 2000) (read en vision) is a Java-based SDK, developed and
distributed by SPSS (http://www.spss.com/visualization/services/). nViZn was in-
spired by the idea of building on the BLS Graphics Production Library (GPL), de-
scribed in Carr et al. (1996), with a formal grammar for the specification of statisti-
cal graphics (Wilkinson, 1999). nViZn was created as a distinct product whose wide
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range of capabilities includes creating interactive tables and linked micromaps. Ex-
periences with nViZn, its advantages and current problems, and its capabilities for
the display of federal data are described in more detail in Jones and Symanzik (2001),
Symanzik and Jones (2001), Symanzik et al. (2002), and Hurst et al. (2003).

While the main application of micromaps under nViZn was intended to be a proof
of concept, based on the original EPA HAP data, the implementation of this applica-
tion is very flexible. When additional data files in the appropriate format are provided,
these data will be immediately usable within the nViZn application. The current ap-
plication uses data at the national (US), state, county, and census tract level.

The micromaps created under the nViZn application are dynamic. The user can
sort the regions in ascending or descending order with respect to the six statistical
criteria minimum, mean, maximum, first quartile, median, and third quartile of the
underlying census tract level. The number of regions that are displayed per micromap
can be changed “on the fly” via a slider, so a user is not restricted to the perceptual
grouping of size five or less that was introduced in Sect. 1.3 and can experiment with
other group sizes. Micromaps and tables of the data can be created by selecting a HAP
and US state in a drill-down map. Multiple LM plots or tabular displays can be viewed
simultaneously.

The nViZn micromap application only works together with nViZn. The micromap
application can be obtained freely from the first author upon request. At this point,
SPSS no longer sells nViZn as a commercial product. However, the nViZn visualiza-
tion service is a free simple service-based Java servlet application, accessible via the
nViZn Web site mentioned above. Users pass GPL statements to the service via http
requests and get a graph in return.

Micromaps via Java and Other Statistical Packages

The NCI recently developed a Java application to make LM plots available to those
who are not familiar with statistical packages. The micromap producer must provide
region boundary files in the form of .gen (or .shp files in the near future) and data
files in the form of comma delimited (.csv) files. The interactive dialog enables the
selection of plot types and the selection of columns from the data file to associate
with the specific plot. For example, a dotplot with precalculated confidence bounds
requires three variables. At the time of this writing, the software is still being tested in
the classroom at George Mason University (GMU) and at other NCI-approved sites
prior to general release. The software will most likely be available to the public before
this chapter is published.

Most major statistical packages are flexible enough to produce LM plots. The basic
issues are availability of boundary files, convenience of production, quality of appear-
ance, and output format. For example, LM plots appeared some time ago in Wilkin-
son (1999), introducing the grammar of graphics. SPSS version 14.0 (http://spss.com/
spss/) provides an implementation of this grammar, so this should make the produc-
tion of LM plots easy for those who are familiar with the grammar of graphics.

The NCI LM plot applet in the State Cancer Profiles Web site, discussed in more
detail in Sect. 1.4.3, provides LM plots to health planners in countries around the

1.5.3
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world. This applet is available with Java Docs to other federal agencies and may be
generally available for other developers as well. In fact, as already stated, the USU
WNYV Web-based micromap application described in Sect. 1.4.4 is based on the NCI
Java code. The places in the Java code to make changes for other applications are iso-
lated. The graphical user interface (GUI) prompts, options, and subsequent database
access need to be modified for boundary files if regions other than the 50 US states
and underlying counties are used. Similarly, the GUI prompts, options, and database
access need to be modified for different data. This is straightforward for experienced
Java programmers. Two GMU students were able to make the modification to obtain
EPATs toxic release inventory data over the Web, and mainly one USU student did the
adaptation for the WNV micromap server.

Implementations of LM plots are appearing in new settings. The Economic Re-
search Service (ERS) of the USDA now has the capability to produce LM plots using
software called Pop Charts. Micromaps recently were created for French régions and
départements and may be included in the exploratory spatial analysis package GeoXP
(http://w3.univ-tlsel.fr/ GREMAQ/Statistique/geoxppageR.htm).

1.6 Discussion

In this chapter, we have demonstrated the use of interactive linked micromap plots
for the display of geographically referenced statistical data. Some of the restrictions of
choropleth maps do not apply for LM plots. It is possible to display multiple variables
at a time in LM plots, provide summary statistics, and maintain the exact ranking of
different subregions. The recent use of interactive LM plots on federal (and other)
Web sites and their use in geographic publications are encouraging indicators for
their widespread acceptance. We want to finish with a comparison of LM plots with
Conditioned Choropleth Maps (CCmaps), introduced in Carr et al. (2000b) and Carr
etal. (2002), and Trellis Graphics, based on ideas used in Cleveland (1993) and further
discussed in Sect. 4.5 in Venables and Ripley (2002).

Carr et al. (2000b) developed conditioned choropleth maps as a way to show three
variables using choropleth maps. The basic idea was to use the conditioning method-
ology described by Cleveland et al. (1993) to partition the regions in a map in a 3x 3
set of panels containing partial maps. Figure 1.7 provides a CCmaps example based
on the data from Fig. 1.3. The top slider in Fig. 1.7 shows boundaries to convert the
1997 soybean production (in bushels) per state into three color classes for use in
a choropleth map. The bottom slider in Fig. 1.7 shows acreage boundaries for par-
titioning states into the columns of the 3x 3 set of map panels. The right slider in
Fig. 1.7 shows the yield boundaries for partitioning states into rows of the map panels.
States with high acreage and high yield appear in the top right panel and, as expected,
have a high number of bushels. The left column of panels highlights states with low
acreage. Maryland and Pennsylvania are in the middle and high yield classes and are
in the middle class in terms of bushels. All the other states in the left column are in
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Figure1.7. CCmaps, based on data from the USDA-NASS Web page. The same three variables
production, acreage, and yield and the same data are shown as in Fig. 1.3; however, production is
conditioned on acreage and yield here

the low class in terms of bushels. Since yield is calculated as production divided by
acreage, there are no big surprises here.

Carr et al. (2005) presented CCmaps in the context of hypothesis generation. Even
in this simple example with just three classes per variable (low, middle, and high), one
may wonder why the high-yield states in the top row are not all in the rightmost panel
with the four high acreage states as shown. Are less-soybean-acreage states smaller
states in terms of total area or do they have less available fertile acreage? Is water an
issue? Are there other crops that are more profitable? The comparative layout encour-
ages thought and the mapping context often provides memory cues to what people
know about the regions shown.

The cautious reader may wonder how much the specific slider settings influence
the visual impression, and the curious reader may also wonder about all the numbers
that appear in Fig. 1.7. Since CCmaps is dynamic software, it is trivial to adjust the
two internal boundaries for each slider to see what happens. The maps change in real
time and so do the numbers. The percents by the sliders indicate the percent of region
weights in each class. In this example, all states involved in soybean production are
weighted equally. For production, 32 % of the states (10 out of 31) with the highest
production are highlighted in dark green across all 9 maps. The next 32% of the
states (10 out of 31) with production in the middle range are highlighted in medium
green across all maps. Finally, the remaining 35 % of the states (11 out of 31) with the
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lowest production are highlighted in light green across all maps. For acreage, 42 % of
the states (13 out of 31) fall into the left column, 42 % (13 out of 31) into the middle
column, and 16 % (5 out of 31) into the right column. Similarly, for yield, 35 % of the
states (11 out of 31) fall into the top row, 35 % (11 out of 31) into the middle row, and
29 % (9 out of 31) into the bottom row. Thus, the four states highlighted in dark green
(i.e., Indiana, Illinois, Iowa, and Minnesota) in the top right map belong to the 32 % of
states with the highest production, 16 % of states with the highest acreage, and 35 %
of states with the highest yield. Wisconsin, one of the spatial outliers identified in
Sect. 1.2, is one of the states highlighted in medium green in the top central map and,
thus, belongs to the 32 % of states with the medium production, 42 % of states with
the medium acreage, and 35 % of states with the highest yield.

Most of the remaining numbers by the sliders indicate the class boundaries with
the units communicated in the slider label. The top and bottom sliders have tails on
the right. This reflects the presence of very large values relative to the body of the data.
The lowest row of labels by each slider gives the minimum value, the upper adjacent
value from a box plot calculation (Cleveland, 1993), and the maximum value. The
slider scale changes more quickly over the tail. This leaves space for greater slider
resolution in the body of the data.

The values in the upper right corner of each map show the weighted means for
production for the states highlighted in those maps. Note that no state is highlighted
in the bottom right map and, thus, no weighted mean is available. The fitting of these
means to state values for the states highlighted in the maps leads to the R-squared
value at the bottom right of Fig. 1.7.

The CCmaps software has several other features such as enlarged views of indi-
vidual maps and the possibility to obtain specific values when the mouse is moved
over a particular region. The software also provides zoom features to focus on a por-
tion of a map and conditioned scatterplot smoothers. It is freely available at http:
/[www.galaxy.gmu.edu/~dcarr/ccmaps.

So, finally, how do LM plots and CCmaps compare? First, the encoding of values in
the Fig. 1.3 LM plots retains much more detail. The CCmaps encoding of three vari-
ables each into three classes loses much detail. Second, LM plots can include many
additional statistics. For example, Fig. 1.6 shows two values for different time periods
in the first statistical panel, rates with a 95 % confidence interval and a reference value
in the second statistical panel, and the boxplots distributional summaries in the third
statistical panel. CCmaps convey just three values per region. Carrying LM plots a bit
turther, Carr et al. (1998) illustrate sorting on one dot plot encoded variable, using
this as the independent variable to obtain a smoothed fit to another variable. A sec-
ond LM plots panel then shows observed and fitted values as well as the smooth in
avertical rank-repositioned smooth. This can help in seeing a functional relationship
and large residuals. CCmaps does provide a separate view to show one-way dynam-
ically conditioned smoothers. Since a similar separate view could be added to LM
plots, this is not really a plus for CCmaps.

The CCmaps software does have a few merits. First, CCmaps scale better to maps
involving more regions. Fairly common CCmaps examples show over 3000 US coun-
ties on the screen. The NCI State Cancer Profiles Web version of LM plots discussed
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in Sect. 1.4.3 will only show counties within a given state, and then only a few coun-
ties are on the screen at one time. Texas has so many counties that the vast majority
of them are out of sight in any view. Refreshing human memory about a big visual
space via a scrollbar that reveals little pieces is not very effective. Second, the par-
titioning sliders in CCmaps are fun to use. If a search starts to get tedious, there is
a built-in option to find initial slider settings with relatively good fits with respect to
the R-squared value. Third, the CCmaps software is useful as educational software as
it emphasizes two-way comparisons and weighted averages, and the sliders even lead
to discussions about the difficulties related to long-tailed univariate distributions.

Trellis Graphics in S-Plus provide another approach to the display of data. Since
Trellis Graphics are programmable, discussion here focuses on what is relatively easy
and what is harder to do with Trellis Graphics. The perceptual grouping in LM plots
can easily be fed to Trellis Graphics as an ordered categorical variable for the control
of panel production. Showing dotplots with confidence bounds is not hard, nor is
showing reference values. However, Trellis Graphics are primarily designed to handle
a single dependent variable. They are poorly suited for showing multiple dependent
variables in side-by-side columns such as the lung and bronchus cancer mortality
and the percent of current smokers as in Fig. 1.4. Trellis Graphics were not designed
to provide a variety of options such as geographic drill-down into subregions and
blinking of linked symbols that are built into the Web-based software that produced
Fig. 1.4. Though Trellis Graphics can provide some alternative views that may be very
useful, they are not ideal for producing LM plots.
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2.1 Introductory Notes

How do we find structure in multidimensional data when computer screens are only

two-dimensional? One approach is to project the data onto one or two dimensions.

Projections are used in classical statistical methods like principal component anal-
ysis (PCA) and linear discriminant analysis. PCA (e.g., Johnson and Wichern 2002)
chooses a projection to maximize the variance. Fisher’s linear discriminant (e.g.,
Johnson and Wichern 2002) chooses a projection that maximizes the relative sep-
aration between group means. Projection pursuit (PP) (e.g., Huber 1985) generalizes
these ideas into a common strategy, where an arbitrary function on projections is
optimized. The scatterplot matrix (e.g., Becker and Cleveland 1987) also can be con-
sidered to be a projection method. It shows projections of the data onto all pairs of
coordinate axes, the 2-D marginal projections of the data. These projection methods
choose a few select projections out of infinitely many.

What is hidden from the user who views only a few static projections? There could
be a lot. The reader may be familiar with an ancient fable from India about the blind
men and the elephant. One grabbed his tail and swore the creature was a rope. An-
other felt the elephant’s ear and yelled it was a hand fan. Yet another grabbed his trunk
and exclaimed hed found a snake. They argued and argued about what the elephant
was, until a wise man settled the fight. They were all correct, but each described dif-
ferent parts of the elephant. Looking at a few static projections of multivariate data is
like the blind men feeling parts of the elephant and inferring the nature of the whole
beast.

How can a more systematic presentation of all possible projections be constructed?
Static projections can be strung together into a movie using interpolation meth-
ods, providing the viewer with an overview of multivariate data. These interpolation
methods are commonly called tours. They provide a general approach to choose and
view data projections, allowing the viewer to mentally connect disparate views, and
thus supporting the exploration of a high-dimensional space. We use tours to ex-
plore multivariate data like we might explore a new neighborhood: walk randomly
to discover unexpected sights, employ a guide, or guide ourselves using a map. These
modes of exploration are matched by three commonly available types of tours. They
are the tours available in the software, GGobi (Swayne et al., 2001), which is used in
this chapter to illustrate the methods.

— In the grand tour, we walk randomly around the landscape discovering unex-
pected sights — the grand tour shows all projections of the multivariate data. This
requires time and we may spend a lot of time wandering around boring places
and miss the highlights.

— Using a PP guided tour, we employ a tour guide who takes us to the features that
they think are interesting. We improve the probability of stopping by the inter-
esting sights by selecting more views that are interesting based on a PP index.

= Manual control takes the steering wheel back from the guide, enabling the tourist
to decide on the next direction. We choose a direction by controlling the projec-
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tion coefficient for a single variable. This allows us to explore the neighborhood of
an interesting feature or to understand the importance of a variable on the feature.

Some Basics on Projections

What is a projection? We can think of a projection as the shadow of an object. Espe-
cially if it is a 2-D projection, then the projection is the shadow the object casts under
a bright light (Fig. 2.1). If the object rotates in the light, we see many different 2-D
shadows and we can infer the shape of the object itself.

Figure 2.1. Projections are like shadows. When many projections are viewed, it is possible to obtain

a sense of the shape of a dataset. What may look like a horse in one projection may be revealed as

a carefully oriented pair of hands by another

2.1.1
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Mathematically, a projection of data is computed by multiplying an 7 x p data ma-
trix, X, having n sample points in p dimensions, by an orthonormal p x d projection
matrix, A, yielding a d-dimensional projection. For example, to project a 3-D object
(3 columns, or variables, of data) onto a 2-D plane (the shadow of the object), we
would use an orthonormal 3 x 2 matrix.

Here is a concrete example. Suppose our data matrix and projection were these:

[0 0 0] [0 0]
0 015 00
0150 10 015
x=0bBD and A; =9 1 then XA, = 015
150 0 15 0
15 0 15 0015, 15 0
1515 0 15 15
(151515 |, (1515 |,
is the first two columns of the data matrix. If instead
o 0 ]
0 12.60
0 o
A;=]0.71 0.42 then XA, =| :
0 084 10.65 —6.30
’ 3x2 10.65 6.30
2130 0
[ 2130 12.60 |,

is a combination of all three variables.

These projections are illustrated in Fig. 2.2. The top row shows the data projections,
XA, and XA,, respectively. The bottom row displays the projection coefficients, A,
and A,. A row in A can also be interpreted as the projection of the coordinate axis
(p-dimensional to d-dimensional) for each variable, and it is represented by a line in
this display. The length and direction of the line displays the contribution each vari-
able makes to the projected data view. In A, the data projection is constructed purely
from variable 1 in the horizontal direction and variable 2 in the vertical direction. In
A, variables 1 and 2 share the horizontal direction, and variable 3 makes no contri-
bution horizontally. Vertically all three variables make a contribution, but variable 3
has twice the contribution of the other two variables. This type of axis display is used
to match structure in a data projection with the variable dimensions of the data and,
hence, enable to the analyst to interpret the data.

We also commonly use 1-D projections in data analysis. With a 1-D projection we
typically use a histogram or density plot to display the data. Consider the 2-D data
in Fig. 2.3 (left plot) and two 1-D projections (middle, right). The projection matrices

are: . f
A= and A, = 21

0 _1

2

respectively.
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Figure 2.2. Two 2-D data projections. The two top plots are the data projections, and the two bottom

plots are illustrations of the projection coefficients
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When we use tours, what are we looking for in the data? We search for data pro-
jections that are not bell-shaped and, hence, not normally distributed, for example,
clusters of points, outliers, nonlinear relationships, and low-dimensional substruc-
tures. All of these can be present in multivariate data but hidden from the viewer
who only chooses a few static projections. Figures 2.4 and 2.5 show some examples.

In Fig. 2.4 a scatterplot matrix of all pairwise plots is shown at left, and a tour
projection is shown at right. The pairwise plots show some linear association between
three variables, particularly between the variables TEMP and PRESS, and TEMP and

2.1.2
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Figure 2.4. The three variables show some association in the scatterplot matrix (all pairwise marginal

projections in left plot), but they are revealed to be almost perfectly related by a tour (right plot)
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CODE. However, viewing the data in a tour reveals that the three variables are really
perfectly related, with perhaps a slight nonlinear association. The projection of the
data revealing the perfect relationship is:

-0.720 0.470 | TEMP
A=|-0.668 —0.671 | PRESS
-0.191 0.573 | CODE
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In Fig. 2.5 (left) the pairwise scatterplots suggest there is some clustering of the data
points in this six-variable dataset. The tour projection (right) reveals three well-separ-
ated clusters. The projection revealing the clusters is:

-0.035 0.801 | tarsl
-0.023 -0.215 | tars2
0.053 —0.032 | head
0.659 —0.398 | aedel
0.748 0.378 | aede2
—0.043 —0.097 ] aede3

which is primarily a combination of three of the six variables: tarsl, aedel, aede2.

Tours 2.2
I
Most of us are familiar with 3-D rotation, which is something we can do in the real
world. We can take an object and rotate it with our hands or walk around an object
to view it from all sides. Views of p-dimensional data can be computed in analogous
ways, by rotating the entire p-dimensional data (Wegman, 1991; Carr et al., 1996; Tier-
ney, 1991) or by moving a d(< p)-dimensional plane through the space and projecting
the data onto it. The latter approach is like looking at the data from different sides.
Movement of a projection plane is achieved by selecting a starting plane and a tar-
get plane and computing intermediate planes using a geodesic interpolation. A geo-
desic is a circular path, which is generated by constraining the planar interpolation
to produce orthonormal descriptive frames. This is the method used in GGobi. It is
more complicated to compute but it has some desirable properties, primarily that
within-plane spin is eliminated by interpolating from plane to plane, rather than
frame to frame. The frame that describes the starting plane is carried through the
sequence of intermediate planes, preventing the data from rotating within the plane
of view. That is, we avoid doing a rotation of the data as in Fig. 2.6. This type of within-
plane rotation is distracting to the viewer, akin to viewing a scene while standing on

0
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Figure 2.6. Two different frames that describe the same plane, and the resulting rotated views of the
data
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a wobbly platform. Planar rotations are discussed in detail in Asimov (1985), more
simply in Buja and Aasimov (1986a), and very technically in Buja et al. (2005), and
in Asimov and Buja (1994), and Buja et al. (1986b) as well.

Differences in the method of selecting the target plane yield different types of
tours. The grand tour uses a random selection of target plane. The guided tour quanti-
fies the structure present in each projection and uses this to guide the choice of target
plane. Manual controls let the user choose the target direction by manipulating the
values of projection coefficients.

Terminology: Plane, Basis, Frame, Projection

It is conventional to use a p-dimensional orthonormal basis:

10...0

01

0 1
pxp

to describe p-dimensional Euclidean space. A d-dimensional plane in p-space can be
defined by an infinite number of d-dimensional orthonormal frames. For example,
consider the d = 2-dimensional frames:

1 1

10 ViV

ap 01 as 11

V2 V2

A= a.u =00 and A, = alzz =l 0 o0
o s W

both of which describe the same 2-D plane. We conventionally use A; as the frame
describing the 2-D plane, but we could just as validly use A,. Figure 2.6 illustrates the
two frames, which result in the same but rotated projections of the data.

In GGobi tours, we generate a new target basis and use this to define the target
plane. But the actual basis used to create the data projection is a within-plane rotation
of the target basis that matches the basis describing the starting plane.

Interpolating Between Projections: Making a Movie

A movie of data projections is created by interpolating along a geodesic path from the

current (starting) plane to the new target plane. The algorithm follows these steps:

1. Given a starting p x d projection A,, describing the starting plane, create a new
target projection A, describing the target plane. It is important to check that
A, and A, describe different planes, and generate a new A, if not. To find the
optimal rotation of the starting plane into the target plane we need to find the
frames in each plane that are the closest.
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2. Determine the shortest path between frames using singular value decomposi-

tion. AJA; = V,AV,, A = diag(); > --- > 1), and the principal directions in

each plane are B, = A,V,, B, = AV, a within-plane rotation of the descriptive

bases A,, A;, respectively. The principal directions are the frames describing the

starting and target planes that have the shortest distance between them. The ro-

tation is defined with respect to these principal directions. The singular values,

Aiyi=1,...,d, define the smallest angles between the principal directions.

Orthonormalize B, on B, giving B, to create a rotation framework.

Calculate the principal angles, 7; = cos™ 1;,i =1,...,d.

5.  Rotate the frames by dividing the angles into increments, 7;(¢), for ¢t € (0,1], and
create the ith column of the new frame, b;, from the ith columns of B, and B,
by b;(t) = cos(7;(t))ba; + sin(7;(t))b.;. When ¢ =1, the frame will be B,.

6. Project the data into A(t) =B(#)V".

7. Continue the rotation until ¢ = 1. Set the current projection to be A, and go back
to step 1.

Ll

Choosing the Target Plane

Grand Tour
The grand tour method for choosing the target plane is to use random selection.
A frame is randomly selected from the space of all possible projections.

A target frame is chosen randomly by standardizing a random vector from a stan-
dard multivariate normal distribution: sample p values from a standard univariate
normal distribution, resulting in a sample from a standard multivariate normal. Stan-
dardizing this vector to have length equal to one gives a random value froma (p—1)-
dimensional sphere, that is, a randomly generated projection vector. Do this twice to
get a 2-D projection, where the second vector is orthonormalized on the first.

Figure 2.7 illustrates the tour path, using GGobi to look at itself. Using GGobi, we
recorded the sequence of 9000 1D projections displayed of 3-D data. This tour path
is a set of 9000 points on a 3-D sphere, where each point corresponds to a projection.
We use a tour to view the path (top left plot). The starting projection is A" = (10 0),
indicated by a large point (@) or solid circle in the display. It is at the center right in
the plot, a projection in the first two variables. The corresponding data projection is
shown at top right. The grand tour path zigzags around the 3-D sphere. The grand
tour can be considered as an interpolated random walk over the space of all planes.
With enough time it will entirely cover the surface of the sphere. The bottom row
of plots shows two views of a grand tour path of 20 000 1-D projections of 6-dimen-
sional data.

Projection Pursuit Guided Tour
In a guided tour (Cook et al.,, 1995) the next target basis is selected by optimizing
a PP index function. The index function numerically describes what is interesting

223
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1D grand tour path in 3D Starting projection
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Figure2.7. Some views of 1-D grand tour paths in 3 dimensions (top left) and 6 dimensions (bottom).
The path consists of a sequence of points on a 2-D and 6-D sphere respectively. Each point corresponds
to a projection from 3 dimensions (or 6 dimensions) to 1 dimension. The solid circle indicates the first
point on the tour path corresponding to the starting frame, yielding the 1-D data projection (top right)
shown for the 3-D path. The solid square indicates the last point in the tour path, or the last projection
computed

in a projection: higher values correspond to more interesting structure in the pro-
jections. Used alone, PP seeks out low-dimensional projections that expose interest-
ing features of the high-dimensional point cloud. In conjunction with the interpola-
tion, a PP guided tour shows many projections to the viewer, in a smooth sequence.
Using a PP index function to navigate the high-dimensional data space has the ad-
vantage over the grand tour of increasing the proportion of interesting projections
visited.

The PP index, f(XA), is optimized over all possible d-dimensional projections of
p-dimensional data, subject to orthonormality constraints on A. The optimization
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procedure is an important part of a PP guided tour. The purpose of PP optimization
is to find all of the interesting projections, so an optimization procedure needs to be
flexible enough to find global and local maxima. It should not doggedly search for
a global maximum, but it should spend some time visiting local maxima.

Posse (1990) compared several optimization procedures and suggest a random
search for finding the global maximum of a PP index. Cook et al. (1995) used a deriva-
tive-based optimization, always climbing the nearest hill, which when merged with
a grand tour was a lot like interactive simulated annealing. Klein and Dubes (1989)
showed that simulated annealing can produce good results for PP.

Lee et al. (2005) use the modified simulated annealing method. It uses two differ-
ent temperatures, one for neighborhood definition and the other (cooling parameter)
for the probability that guards against getting trapped in a local maximum. This al-
lows the algorithm to visit a local maximum and then jump out and look for other
maxima. The temperature of the neighborhood is rescaled by the cooling parameter
enabling escape from the local maximum. The optimization algorithm used in GGobi
follows these steps:

1. From the current projection, A, calculate the initial PP index value, Iy = f(XA,).

2. Generate new projections, A} = A, + cA;, from a neighborhood of the current

projection where the size of the neighborhood is specified by the cooling param-

eter, ¢, and A; is a random projection.

Calculate the index value for each new projection, I; = f(XA).

4. Setthe projection with the highest index value to be the new target, A, = Amax, 1,
and interpolate from A, to A,.

©

Figure 2.8 (top two plots) shows a PP guided tour path (1-D in three dimensions). It
looks very similar to a grand tour path, but there is a big difference: the path repeat-
edly returns to the same projection and its negative counterpart (both highlighted by
large solid black circles). The middle plot traces the PP index value over time. The
path iterates between optimizing the PP function and random target basis selection.
The peaks (highlighted by large solid black circles) are the maxima of the PP index,
and for the most part, these are at the same projection. The corresponding data pro-
jections (approximately positive and negative of the same vector) are shown in the
bottom row. The index is responding to a bimodal pattern in the data.

There are numerous PP indices. Here are a few that are used in GGobi. For sim-
plicity in the formula for holes, central Mass, and PCA indices, it is assumed that X
is sphered using PCA, that is, the mean is zero and the variance-covariance is equal
to the identity matrix. This assumption is not necessary for the LDA index.

Holes:
1- 1 " oex _lyly.
IHoles(A) _ n szl p(d 2YIYI)
1-exp(-%
where XA =Y = [y, y2,-,¥a]" isa n x d matrix of the projected data.
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Figure 2.8. Projection pursuit guided tours. Top: path of 1-D projections in 3 dimensions. Middle: time
trace of PP index. Bottom: data projections corresponding to PP index maxima. The maxima are
highlighted by large solid circles. It is interesting here that the optimization keeps returning the tour to
similar neighborhoods in the projection space, corresponding to bimodal densities in the 1-D

projections



Grand Tours, Projection Pursuit Guided Tours, and Manual Controls 307

Central mass: e L J
w Lic1exp(—3Yiy;) —exp(-%

Icm(A) =
cu(4) 1- exp(—%
where XA =Y = [y, y2,, ¥n "isan n x d matrix of the projected data.
LDA: AWA
I A)=1- ————
1pa(A) |A’(W + B)A|

where B = Z'ig:l }’li(Xl‘. - X)(X, - X”),, W= Zf:l Z;:’l(xl] - Xl)(X,] - X,“),
are the “between” and “within” sum-of-squares matrices from linear discriminant
analysis, g = is the number of groups, n;,i = 1,..., g is the number of cases in
each group.

PCA: This is only defined for d = 1.

1 1Z
Ica(A) = =Y'Y==>"y
n nig
where XA =Y = [y1, ¥2,*, V| "isan n x d matrix of the projected data.
Figure 2.9 shows the results of using different indices on the same data. The holes
index finds a projection where there is a gap between two clusters of points. The
central mass index finds a projection where a few minor outliers are revealed. The
LDA index finds a projection where three clusters can be seen. The PCA index finds
a trimodal data projection.

Manual Controls

Manual controls enable the user to manually rotate a single variable into or out of
a projection. This gives fine-tuning control to the analyst. Cook and Buja (1997) has
details on the manual controls algorithm. It is similar to a method called spiders
proposed by Duffin and Barrett (1994).

Figure 2.10 illustrates the use of manual controls to examine the results of the LDA
index (top left plot, also shown at bottom left in Fig. 2.9). In this view there are three
very clearly separated clusters of points. The projection is mostly PCI (a large posi-
tive coefficient), with smaller coeflicients for PC2 and PC6. The remaining PCs have
effectively zero coeficients. We explore the importance of these small coefficients for
the three-cluster separation. From the optimal projection given by the LDA index
we manually rotate PC6 out of the projection and follow by rotating PC2 out of the
projection:

0.889 0.896 0.938 0.996
0.435 0.439 0.339 0.026
_1 0.040 0.040 0.042 0.045
A=lo0s3| = |oos3| — |oo0ss| — |o0.059
0.033 0.033 0.035 0.037

0.122 0.004 0.004 0.004
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Figure 2.9. One-dimensional data projections corresponding to maxima from four different PP indices
computed on the same data. The interesting feature of the data is the separation of the three classes. Top
left: the holes index finds a projection with a hole in the middle, where one cluster is separated from the
other two. Top right: the central mass index finds a projection where most points are clumped in the
center, revealing a few outliers. Bottom left: LDA, using the class information, finds a separation of all
three clusters. Bottom right: the PCA index finds a projection where all three classes are somewhat

distinct

PC6 is rotated out of the projection first (Fig. 2.10, top right). Note that all the co-
efficients change some because they are constrained by the orthonormality of the
p-dimensional data frame. But notice that the coefficient for PC6 is effectively re-
duced to zero. There is very little change to the projected data, so this variable might
be ignored. Next we explore the importance of PC2 by rotating it out of the projection
(Fig. 2.10, bottom row). A small change in the coeflicient for PC2 results in a blurring
of the gap between the two leftmost clusters (bottom left plot). When PC2 is com-
pletely removed (bottom right plot), the two leftmost clusters are indistinguishable.
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Figure 2.10. Manual controls used to examine the sensitivity of the clustering revealed by the LDA
index to PC6 and PC2 is explored. Top left to top right plots: coeflicient on PC6 reduced from 0.122 to
0.004 gives a smaller gap between clusters, but the clusters are still separable. Bottom left to bottom
right: coefficient for PC2 reduced from 0.439 to 0.026 which removes the cluster structure

-10 1

But the right cluster is still separated. This suggests that PC2 is important for sepa-
rating the two leftmost clusters but not important for separating the right cluster.

Precomputed Choices

One of the simplest choices of target planes that creates a smooth transition from
scatterplot matrices is the little tour (McDonald, 1982) that interpolates between the
frames of a scatterplot matrix of all pairwise marginal projections. Conway et al.
(1996) proposes a method for choosing a fixed number of target planes that are ap-
proximately equispaced. It chooses the target planes using packing methods on poly-

topes and determines a shortest (Hamiltonian) path through the set of targets. Nei-
ther of these methods is implemented in GGobi.
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224 A Note on Transformations

When analyzing data it is common to transform variables to examine them on differ-
ent scales. Transformation plays a useful role prior to PP as well. The most common
transformation before PP is to “sphere” the data. Sphering the data means to com-
pute the principal components of the data and to use the resulting variables instead
of the original variables. The major reason to do this is that we are not interested
in covariance structure. This is adequately captured by PCA. Consequently we com-
monly remove the covariance from the data before running PP and search for other
types of structure in the data. In Fig. 2.9 the labels of the variables in some of the plots
PC1,PC2,... reflect that the data were sphered prior to running the PP guided tour.
Sometimes transformations are performed to relieve the data of outliers or skewness.
When these occur in single variables, they can be detected and addressed before run-
ning PP, but PP is useful for detecting multivariate outliers and nonlinear dependen-
cies in high-dimensional data.

2255 A Note on Scaling

Plots of data are generally constructed by scaling the data using the minimum and
maximum data values to fit the data into a plotting space, on a computer screen win-
dow, or sheet of paper. Axes are provided so the viewer can convert the points into
the original scales.

For high-dimensional data each variable is scaled to a uniform scale using the min-
imum and maximum, packing the data into a p-dimensional hyperrectangle. These
scaled data are projected into a plotting space. It might interesting to think about
scaling the data after a projection is computed, but the effect of this approach is a dis-
continuity from one projection frame to the next. It would be like watching a movie
where the camera lens constantly zooms and pans.

The PP guided tour operates on the unscaled data values. (It may also be important
to transform the data by standardizing variables or sphering before running PP, as
discussed in the previous paragraph.) The process of scaling data into a plotting space
is called the data pipeline and is discussed in detail in Buja et al. (1988), Sutherland
et al. (2000), and in a different sense, in Wilkinson (1999) and Pastizzo et al. (2002).

2.3 Using Tours with Numerical Methods

Tours are useful when used along with numerical methods for certain data analyses,
such as dimension reduction and supervised and unsupervised classification. We'll
demonstrate with an example from supervised classification.

In supervised classification we seek to find a rule for predicting the class of new
observations based on training a classifier using known classes. There are many nu-
merical methods that tackle this problem.
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Figure 2.11. Left plot: scatterplot matrix of three of the important variables for separating the three
classes. A single classification tree usually produces the result to split the three classes based on two
variables, linoleic and eicosenoic. Right: a projection of linoleic and arachidic, along with eicosenoic,

produces a better gap between the classes

For the dataset shown in Fig. 2.11 there are eight variables and three known classes.
A classification tree chooses just two of the variables, eicosenoic and linoleic, to sep-
arate the three classes. For the training sample eicosenoic separates one class (plot-
ted as circles) from the other two, and linoleic separates the remaining two classes
(plusses and triangles). The separation of these last two groups, although difficult to
see in the plot of eicosenoic against linoleic, is real (scatterplot matrix at left). There
is no gap between the groups of points, but it is possible to draw a line with points
from one class on one side of it and the points from the other class on the other
side. By using a tour we would have noticed that there is a big gap between the three
classes using all eight variables, and also that choosing just three provides a very neat
separation. It would be difficult to guess from pairwise plots that arachidic has an
important role, but from the tour we can see that when arachidic is combined with
linoleic the two classes are much better separated (right plot). The tour projection
shows the combination of linoleic and arachidic plotted horizontally that reveals the
gap. The tree solution was simple but inadequate, and a small change to the solution
provides a much better result.

The tree algorithm was hampered by both variable wise operation and greediness.
It did not see the combination of linoleic and arachidic because it could only use
one variable at each step. It also stopped immediately when a separation between the
classes was found, having no sense of a bigger gap elsewhere. All numerical methods
have assumptions or algorithm constraints or complexity that sets limits on the re-
sults. A classical method such as linear discriminant analysis assumes that the classes
in the data arise from a mixture of normal distributions having equal variance-co-
variance. Linear discriminant analysis finds a best separating projection similar to
the tree solution; one group is well-separated and the other two groups slightly over-
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lapped. It is blinded by the assumption that the three classes have equal variance-
covariance. Quadratic discriminant analysis does better in making a rule but cannot
provide a good picture of the solution. The solution of black-box methods such as
forests and neural networks are generally difficult to understand, but by mapping out
a picture of the class structure of these data using a tour we can better understand
how they have worked and the resulting solution.

Tours can help numerical approaches in many ways: to choose which of the tools
at hand works best for a particular problem, to understand how the tools work in
a particular problem, and to overcome the limitations of a particular tool to improve
the solution.

2.4 End Notes

There are numerous recent developments in tours that should be noted. Huh and
Kim (2002) describes a grand tour with trailing tails marking the movement of the
points in previous projections. The tour can be constructed in different projection
dimensions and constraints. Yang (1999) describes a grand tour with 3-D data pro-
jections in virtual environments. The correlation tour described by Buja et al. (1986b),
and available in GGobi, runs two independent tours of 1-D projections on horizontal
and vertical axes. This paper also describes constraining the tour to special subspaces
such as principal components or canonical coordinates. XGobi (Swayne et al., 1998)
contained tools for freezing some axes and touring in the constrained complement
space, and also a section tour, where points outside a fixed distance from the projec-
tion place were erased. Wegman et al. (1998) and Symanzik et al. (2002) discuss a tour
on the multivariate measurements constrained on spatial locations, which is similar
to the multivariate time series tour discussed in Sutherland et al. (2000), where 1-D
projections are shown against a time variable.

In summary, tours support exploring real-valued data. They deliver many projec-
tions of real-valued data in an organized manner, allowing the viewer to see the data
from many sides.
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Suppose dissimilarity data have been collected on a set of n objects or individu-
als, where there is a value of dissimilarity measured for each pair. The dissimilarity
measure used might be a subjective judgement made by a judge, where for example
a teacher subjectively scores the strength of friendship between pairs of pupils in her
class, or, as an alternative, more objective, measure, she might count the number of
contacts made in a day between each pair of pupils. In other situations the dissimilar-
ity measure might be based on a data matrix. The general aim of multidimensional
scaling is to find a configuration of points in a space, usually Euclidean, where each
point represents one of the objects or individuals, and the distances between pairs
of points in the configuration match as well as possible the original dissimilarities
between the pairs of objects or individuals. Such configurations can be found us-
ing metric and non-metric scaling, which are covered in Sects. 2 and 3. A number
of other techniques are covered by the umbrella title of multidimensional scaling
(MDS), and here the techniques of Procrustes analysis, unidimensional scaling, in-
dividual differences scaling, correspondence analysis and reciprocal averaging are
briefly introduced and illustrated with pertinent data sets.

Much of the initial impetus and theory of MDS was developed by mathematical
psychologists who published many of their findings in the journal Psychometrika. Al-
though its roots are in the behavioural sciences, MDS has now become more widely
popular and has been employed in a wide variety of areas of application. This popu-
larity is reflected by its inclusion in many computer-based statistical packages. Books
on the subject include those by Borg and Groenen (1997), Cox and Cox (2001) and
Young (1987).

3.1 Proximity Data

Proximity means nearness in whatever space is under consideration. The “nearness”
of objects, individuals or stimuli needs defining prior to any analysis. In some situa-
tions, such as with simple Euclidean distance, this is straightforward. There are two
types of basic measure of proximity, similarity and dissimilarity, with these being em-
ployed to indicate how similar or dissimilar objects are. The similarity/dissimilarity
measured between two objects is a real function, resulting in similarity s, or dis-
similarity J,; between the rth and sth objects. Usually all measures are taken to be
non-negative. The dissimilarity of an object with itself is taken to be zero, while the
similarity of an object with itself is the maximum similarity possible, with similarities
usually scaled so that the maximum similarity is unity. The choice of proximity mea-
sure will depend on the problem under consideration. Sometimes the measure be-
tween two individuals is not based on any underlying observations and is totally sub-
jective as with the teacher scoring friendship between pupils. In other situations, sim-
ilarities (dissimilarities) are constructed from a data matrix for the objects. These are
then called similarity (dissimilarity) coefficients. Several authors, for example Cor-
mack (1971), Jardine and Sibson (1971), Anderberg (1973), Sneath and Sokal (1973),
Diday and Simon (1976), Mardia et al. (1979), Gordon (1999), Hubalek (1982), Gower
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(1985), Gower and Legendre (1986), Digby and Kempton (1987), Jackson et al. (1989),
Baulieu (1989) and Snijders et al. (1990), discuss various similarity and dissimilarity
measures together with their associated problems. Table 3.1 lists the more popular
dissimilarities for quantitative data, where X = [x,;] denotes the data matrix ob-
tained for n objects on p variables (r =1,...,n;i =1,..., p). The vector for the rth
object is denoted by (x), and so X = [x]]. The {w;} are weights, and these and the
parameter A are chosen as required.

When all the variables are binary, it is customary to construct a similarity coefhi-
cient and then to transform this into a dissimilarity coefficient with a transformation
such as §,; = 1 - s,5. The measure of similarity between objects r and s is based on
Table 3.2. The table shows the number of variables, a, out of the total p variables where
both objects score “1, the number of variables, b, where r scores “1” and s scores “07,
etc. Table 3.3 gives a list of similarity coefficients based on the four counts a, b, ¢, d.
Various situations call for particular choices of coefficients. In practice, more than
one can be tried, hoping for some robustness against choice. Hubalek (1982) gives
a very comprehensive list of similarity coefficients for binary data.

Table 3.1. Dissimilarity measures for quantitative data

Dissimilarity measure Formula

Euclidean distance Ops = {Z,- (%ri — xsi)2}1/2

Weighted Euclidean
Mahalanobis distance
City block metric

Minkowski metric
Canberra metric

Divergence

Bray-Curtis

Soergel

Bhattacharyya distance

Wave-Hedges

Angular separation

Correlation

Ors = {Zi wi(xri = xsi)2}1/2

Ors = {(%ri — x5) =7 (2, — x,) } /2
Ors = X; i = xsil

Ors = {Zi wilxi = xsi|/\}l//‘ A1

8re=3, 2ri = xsil
x,(ixtix—sixsi)z
8o =1 i |%ri = i
Py (%ri + Xsi)
B = é > |xri _xsil
>, max (%, Xs;)

5rs =\ Zi (\/x_rx_ \/-’C_sz)2

P (1_ min(xn-,xsi))

max(xi, Xs; )

6” —1- Zixrixsi
[Z_xz_ Z‘xz- 1/2
S=1— Zi(xri_)-cr)(xsi_xs)
rs =

[Zi(xri - 27)2 Zi(xsi - js)z]l/z
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Table 3.2. Summary of binary totals

Object s
1 0
. 1 a b a+b
Object r 0 c d c+d

a+c b+d p=a+b+c+d

Table 3.3. Similarity coefficients for Binary Data

Coefficient Formula
Braun, Bl a
raun, Blanque S =
e * " max{(a+b),(a+c)}
2a
Czekanowski, Sgrensen, Dice Spg = —————
2a+b+c
a-(b+c)+d
Hamman Spg = ——————
a+tb+c+d
Jaccard coefficient S = 4
at+b+c
a
Kul ki =
ulczynski Srs P
a a
Kulczynski =1 ( N )
ulczynski Srs =3 P
4(ad - b
Michael Sps = M
(a+d)?+ (b+c)?
2
Mountford S = 4
a(b+c) +2bc
b d
Mozley, Margalef S5 = M
(a+b)(a+c)
Ochiai Sy = S —
V(a+b)(a+c)
. ad — bc
Phi Srs =
\/(u +b)(a+c)(b+d)(c+d)
. a+d
Rogers, Tanimoto G = —————
a+2b+2c+d
a
Russell, Rao Spg= ———————
a+b+c+d
+d
Simple matching coefficient Sps = _are
a+tb+c+d
a
Si =
PR °n S nin{(a+ b), (@t o)}
Sokal, Sneath, Anderberg Sps = 4
a+2(b+c)
ad — bc
Yule Srs =

ad + bc
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For categorical data, agreement scores can be used where, for example, if objects
r and s share the same category, then §,; = 0 and §,; = 1 if they do not. Other, more
elaborate, agreement scores can be devised.

When data are mixed, with binary, quantitative and categorical variables, Gower
(1971) suggests using a general similarity coeflicient,

p
Zi=1 WrsiSrsi
Sis = T=p
Zi=1 Wesi

where s,; is the similarity between the rth and sth objects based on the ith variable
alone and wy;is unity if the rth and sth objects can be compared on the ith variable
and zero otherwise. For quantitative variables, Gower suggests s,s; = 1—|x,; — X;|/R;,
where R; is the range of the observations for variable i. For presence/absence data,
Gower suggests s,;; = 1if objects  and s both score “presence,” and zero otherwise,
while w,; = 0 if objects r and s both score “absence,” and unity otherwise. For nom-
inal data Gower suggests s,;; = 1 if objects r and s share the same categorization, and
zero otherwise.

> 3.0

Metric MDS 3.2

Given n objects with a set of dissimilarities {d, }, one dissimilarity for each pair of
objects, metric MDS attempts to find a set of points in some space where each point
represents one of the objects and the distances between points {d,} are such that

drs = f(ars) > (32)

where f is a continuous parametric monotonic function. The function f can either
be the identity function or a function that attempts to transform the dissimilarities
to a distance-like form. The first type of metric scaling described here is classical
scaling, which originated in the 1930s when Young and Householder (1938) showed
that, starting with a matrix of distances between all pairs of the points in a Euclidean
space, coordinates for the points could be found such that distances are preserved.
Torgerson (1952) brought the subject to popularity using the technique for scaling,
where distances are replaced by dissimilarities.
The algorithm for recovering coordinates from distances between pairs of points
is as follows:
1. Form matrix A = [-16%4].
2. Form matrix B = HAH, where H is the centring matrix # = Z - n~'1,1, T, with
1,, a vector of ones.
3. Find the spectral decomposition of B, B = VAVT, where A is the diagonal ma-
trix formed from the eigenvalues of 3, and V is the matrix of corresponding
eigenvectors.
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4. If the points were originally in a p-dimensional space, the first p eigenvalues of
B are nonzero and the remaining n — p are zero. Discard these from A (rename
as A1), and discard the corresponding eigenvalues from V (rename as V).

5. Find X = VlA}/ ?, and then the coordinates of the points are given by the rows
of X.

As an example, rather than use distances between cities and towns in the UK, the
cost of rail travel between all pairs of the following mainland terminus rail stations
were used: Aberdeen, Birmingham, Blackpool, Brighton, Dover (Priory), Edinburgh,
Inverness, Liverpool, London, Newcastle upon Tyne, Norwich, Plymouth, Sheffield,
Southampton, Swansea. Figure 3.1 shows a plot of the stations having obtained the
coordinates using the above algorithm. This solution is not unique since any trans-
lation, rotation or reflection of the configuration of points will give rise to another
solution.

Dove
Brig
Norw
Lond
Inve
Newc
Aber
Sout
Edin
Shef
Birm
Live
Blac
Swan
Plym

Figure 3.1. A map of rail stations using classical scaling
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The plot produces a good representation of the map of the UK. The vertical axis
represents West-East, while the horizontal axis runs South-North. It would appear
that Newcastle upon Tyne has relocated to Scotland!

Had the exact distances between the rail stations been used in the above (and as-
suming the UK is in a 2-D Euclidean space!), coordinates would have been found
for the stations that would have exactly reproduced the pairwise distances between
them. All eigenvalues of 3 would have been zero except for the first two. In general,
rather than using distances or pseudo-distances between points, classical scaling uses
dissimilarities calculated between pairs of objects in place of these distances. The con-
figuration of points obtained in a 2-D space will not usually reproduce the pairwise
dissimilarities exactly, but will only approximate them. This implies that nearly all of
the eigenvalues of 13 are likely to be nonzero, and some might be negative, which will
occur if the dissimilarity measure is not a metric. In practice the largest two (pos-
itive) eigenvalues and their associated eigenvectors are used for the coordinates of
the points. If a 3-D representation is required, then the three largest eigenvalues are
used, and so on. A measure of how well the obtained configuration represents the set
of pairwise dissimilarities is given by

Zf:l Ai Zf:l Ai

. 33
S o > (positive eigenvalues) (3:3)

Incidentally, if the dissimilarities are calculated as Euclidean distances, then classical
scaling can be shown to be equivalent to principal component analysis.

The next example consists of 61 viruses with rod-shaped particles affecting various
crops (tobacco, tomato, cucumber and others) recently employed by Ripley (1996)
and originally described by Fauquet et al. (1988) and analysed by Eslava-Gomez (1989).
There are 18 measurements on each virus, the number of amino acid residues per
molecule of coat protein. The whole data set consists of four groups of viruses, Horde-
viruses (3), Tobraviruses (6), Tobamoviruses (39) and Furoviruses (13). For brevity
the initial four letters of their names will denote the four virus groups. Figure 3.2
shows a classical scaling of the data.

While Tobr and Hord form clear clusters, Furo splits into three clear groups, one
of which is similar to Tobr. Similarly Toba forms two groups, one of which is similar
to Tobr. The first two eigenvalues have values 6912 and 1956. The sum of all 18 sig-
nificant eigenvalues is 13 597 out of a potential of 61 values. The first two dimensions
correspond to 65% and hence provide a reasonable description of the data.

Another metric scaling approach is to minimize a loss function. For a Sammon
map (Sammon 1969), a particular configuration of points with pairwise distances,
{d,s}, representing the dissimilarities {J,}, has loss function

S=>"08,0(drs = 6r5)°] D 65 (3.4)
r<s r<s
A configuration is found that has minimum loss using an appropriate optimization
method such as a steepest descent method. Other loss functions have also been sug-
gested and used. Figure 3.3 shows a Sammon map for the virus data.
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Figure 3.2. Classical scaling of virus data: Hord - Hordeviruses, Tobr — Tobraviruses, Toba —

Tobaviruses, Furo — Furoviruses

While the Sammon mapping produces a structure similar to that obtained using
classical scaling, the clusters are less clear cut. This differing view probably arises
because the mapping is an iterative procedure and is hence dependent on the initial
vector selected and the number of iterations performed.

3.3 Non-metric MDS

A non-metric approach to MDS was developed by Shepard (1962a, b) and further
improved by Kruskal (1964a, b). In summary, suppose there are n objects with dis-
similarities {8, }. The procedure is to find a configuration of n points in a space,
which is usually chosen to be Euclidean, so that each object is represented by a point
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Figure 3.3. Sammon mapping of the virus data: Hord - Hordeviruses, Tobr — Tobraviruses, Toba —

Tobaviruses, Furo - Furoviruses

in the space. A configuration is sought so that distances between pairs of points {d,; }
in the space match “as well as possible” the original dissimilarities { 8, }. Here match-
ing means the rank order of {d,; } matches the rank order of {J, } as best as possible.
The matching of the distances {d,, } to the dissimilarities {8, } for a particular con-
figuration is measured by the STRESS (S), where

S = \J Zr(d )", (3.5)

er d%s
Here, {d, } is the primary monotone least-squares regression of {d, } on {8, }, also

known as isotonic regression. Details of this regression are not entered into here, but
an example can be seen in Fig. 3.5, the Shepard plot. Further details can be found
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in Cox and Cox (2001), Borg and Groenen (1997) and elsewhere. A configuration is
found that minimizes S, usually using a gradient descent approach.

The rail data used for classical scaling were analysed using non-metric MDS. Fig-
ure 3.4 shows the configuration obtained, and again the solution is arbitrary up to
translation, rotation and reflection. The STRESS associated with the optimum so-
lution is 10 %. It should be noted that 1000 randomly selected starting points were
employed to ensure that the true optimum has been obtained.

A Shepard plot may also be utilized to assess the procedure. This is simply a plot of
d,s and d, against &, and is shown in Fig. 3.5 for the rail station data. It shows how
well the distances within the configuration match the original dissimilarities accord-
ing to rank order. It makes the monotonic least-squares regression fit particularly
clear by joining the &,, and d,, pairs.

The next section gives a more detailed example and shows how the quality of the
fit of the model can be investigated.

Aber
Inve Edin
Blac
Live
Plym
Newc ' Swan
Shef Birm
Norw Sout
Lond
Brig
Dove

Figure 3.4. A map of rail stations from non-metric MDS
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Figure 3.5. The shepard plot for the rail station data

Example: Shakespeare Keywords

Cox (2005) uses classical scaling on frequency counts of keywords from 20 Shake-
speare plays. A similar analysis was carried out but using non-metric scaling with dis-
similarity defined by Euclidean distance calculated from the frequencies. Figure 3.6
shows the configuration for the keywords, but where “lord” and “king” have been
excluded from the analysis since their inclusion forced all other words into a single
cluster producing zero STRESS. The STRESS obtained after exclusion was 11%. It is
difficult to plot the configuration in such a small page area, and the only clearly visible
words are related to characters plus “god” and “dead.” Figure 3.7 shows the configura-
tion obtained for plays where the role of keywords and plays has been interchanged.
The STRESS for this configuration is 10%. It would appear that Hamlet is closest to
the historical plays, while the tragedies and comedies are hard to separate.

3.4
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queen
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gentleman
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son hand
men dead
god
love
duke

Figure 3.6. Non-metric MDS of Shakespearean keywords

In practice, the number of dimensions necessary for an informative solution is
often investigated using a plot of STRESS against number of dimensions (scree plot).
This is shown in Fig. 3.8 for the Shakespeare plays and indicates that three or more
dimensions may have been preferable. However, then there is the eternal problem of
displaying the configuration in just two dimensions.

Although not often carried out in practice, it is possible to investigate the MDS
analyses further by looking at outlying or ill-fitting points. Figure 3.9 shows the Shep-
ard plot of d,; and d. against &, for the play data. Two points appear removed from
the main cluster of points showing large values of d,; — ci,s. These are (tim, h41) and
(ham, h41). Figure 3.10 shows a histogram of the values of d,; — d,, showing a normal
type distribution with a few outliers.

Table 3.4 gives the mean squared differences of d, — d. for each play (i.e. averaged
over s for each r). Henry IV, Part 1 appears discordant with the other plays.
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|

Figure 3.7. Nonmetric MDS of Shakespearean plays: (plays colored blue are comedies) asy — As You
Like It, cym — Cymbeline, lov — Love’s Labours Lost, mer — Merchant of Venice, tam — Taming of the
Shrew, tem — The Tempest; (plays colored green are historical plays) h4l - Henry IV, Part 1, h42 -
Henry IV, Part 2, h5 - Henry V; h8 - Henry VIII, r2 - Richard II, r3 - Richard III; (plays colored red
are tragedies) ham — Hamlet, jc - Julius Caesar, mac — Macbeth, oth — Othello, rj - Romeo and Juliet,
tim — Timon of Athens, tit — Titus Andronicus, twe — Twelfth Night

To find the effect of each §,; on the fitting of the configuration, each §, can be left
out of the analysis in turn and the STRESS re-calculated. Also, the resulting config-
uration each time can be matched to the original and the resulting value of the Pro-
crustes analysis (Sect. 5) noted. The lowest STRESS that was obtained was 8.4 % when
the dissimilarity between Timon of Athens and Henry IV, Part 1 was removed. The
next lowest STRESS was 8.6 % when the dissimilarity between Hamlet and Henry IV,
Part 1 was removed. For all other dissimilarities, the STRESS was back to approxi-
mately the original value. A similar exercise was carried out removing whole plays at
a time. Table 3.5 shows the STRESS values obtained each time a play was removed.
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Figure 3.8. Screen plot for Shakespearean data

Table 3.4. Mean (ds — dys)* x 1000 for each Shakespearean play

play

tam
mer
tem
mac
tit
asy
h8
h42
oth
jc

mean

4.5
53
72
7.4
8.8
9.4
9.7
9.8
10.7
11.6

play

12
r3
twe
lov
h5
cym
1j
ham
tim
h41

mean

14.0
14.4
15.3

19.5

19.9

29.0
29.8
421
46.5
69.9

Againif Henry IV, Part 1is removed, then the STRESS is reduced, showing this play
is the worst fitting one. At the other end of the scale, removing Richard III increases
the STRESS to 11 %, showing that that play fits the model well.
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Figure 3.9. Shepard plot of Shakespearean data

Table 3.5. STRESSx100 obtained when each play is removed in turn

Play

h41
tim
cym
ham
1
lov
h5
twe
jc

tit

STRESS

7.24
8.44
8.61
8.69
9.16
9.23
9.30
9.38
9.48
9.51

Play

ort
h42
mac
h8
tem
asy
mer
12
tam
13

STRESS

9.52
9.58
9.60
9.61
9.62
9.64
9.70
9.71
9.76
10.76

450

500
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Figure 3.10. Histogram of d,s — [jrs for Shakespearean data

35 Procrustes Analysis

The classical scaling analysis and the non-metric scaling of the terminal train station
data produced different, but similar, configurations of points. Since arbitrary trans-
lations, rotations and reflections of these configurations give equally valid solutions.
In order to make a clear visual comparison of the two, we need to match one config-
uration with the other. This is achieved using Procrustes analysis. Procrustes analysis
finds the isotropic dilation, translation, reflection and rotation that best match one
configuration to another. A detailed account of this and allied methods is given by
Gower and Dijksterhuis (2004). (According to Greek mythology Procrustes was an
innkeeper living near Athens who would subject his guests to extreme measures to
make them fit his beds. If they were too short, he would stretch them, or if they were
too long, he would cut off their legs.)

Suppose a configuration of n points in a g-dimensional Euclidean space, with co-
ordinates given by the n by g matrix &, is to be matched to another configuration of
points in a p-dimensional Euclidean space (p > g), with coordinates given by the n
by p matrix ). Note, it is assumed that the rth point in the X space is in a one-to-
one correspondence with the rth point in the Y space. First p — g columns of zeros
are added to the end of matrix X" in order to give the matrices the same dimensions.
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A measure of the discrepancy between the two configurations is given by the sum of
squared distances, R?, between corresponding points in the two spaces, i.e.

RZIZ()’r—xr)T(yr_xr)» (3.6)
r=1

where X = [x1,...,%,]T,Y = [y1,..., .| and x, and y, are the coordinate vectors
of the rth point in the two spaces.

The points in the X space are dilated, translated, rotated and reflected to new co-
ordinates, x’, where

xl=pAT(x), +b, (3.7)

p is a dilation, A is an orthogonal matrix giving a rotation and possibly a reflection

and b is a translation. The optimal values of these that minimizes R* are summarized

in the following procedure:

1. (Optimum translation) Place the centroids of the two configurations at the ori-
gin.

2. (Optimum rotation) Find A = (XTJ)J)TX)I/Z(J)TX)_l and rotate X to X' A.

3. (Optimum scaling) Scale the X configuration by multiplying each coordinate by
p=tr(XTYYTX) [tr(XTX).

4. Calculate the Procrustes statistic

R =1-{r(xTyyT )22 Jer (X" 20) e (Y1) (3.8)

The value of R* can be between 0 and 1, where 0 implies a perfect matching of the
configurations. The larger the value of R?, the worse the match.

Procrustes analysis was used on the cost of rail travel data. Figure 3.11 shows the
non-metric scaling result (Fig. 3.4) matched to the metric (Fig. 3.1). In this case the
Procrustes statistic is 0.06, showing that the point configurations are remarkably sim-
ilar.

Extensions to basic Procrustes analysis of matching one configuration to another
include weighting of points and axes, the allowance of oblique axes and the matching
of more than two configurations; see Cox and Cox (2001) or Gower and Dijksterhuis
(2004) for a detailed account of the area.

Unidimensional Scaling

When the space in which the points representing objects or individuals has only one
dimension, the scaling technique becomes that of unidimensional scaling. The loss
function to be minimized is

S=> (8 — |2 —x))* . (3.9)

r<s
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Figure 3.11. Procrustes rotation of metric onto non-metric scaling for rail cost

Minimizing S can be difficult because of the possible large number of local minima.
Various algorithms have been proposed, for example Guttman (1968), Hubert and
Arabie (1986, 1988) and Lau et al. (1998). Here we use the algorithm by Guttman
(1968) for the following example.

The data used to illustrate this method are ratings for World War II politicians
and are the lower triangle given by Everitt and Dunn (1983). Figure 3.12 shows the
resulting unidimensional scaling obtained.

For clarity, the points have been plotted on a diagonal, which represents a linear
axis starting from Mao Tse Tung at 6.75 and ending at Mussolini at 5.67. The countries
the leaders represent have also been added. What is interesting is that Stalin is most
closely identified with Hitler and Mussolini as opposed to his UK/US World War II
allies.
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Mussolini Italy
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Figure 3.12. Unidimensional scaling of World War II political leaders

INDSCAL

Suppose data consist of several sets of dissimilarities between objects, the same ob-
jects in each case. For example, several panellists assess the dissimilarities between
all pairs of a set of products. MDS could be applied to each panelist’s data resulting
in many configurations. A better approach might be to combine the dissimilarities
in some manner.

Carroll and Chang (1970) proposed a metric model comprising two spaces: a group
stimulus space and a subject’s (or individual’s) space, both chosen to be of the same
dimension. Points in the group stimulus space represent the objects or stimuli and
form an “underlying” configuration. The individuals are represented as points in the
subject’s space. The coordinates of each individual are the weights required to give
the weighted Euclidean distances between the points in the stimulus space, the values

3.7
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Figure 3.13. INDSCAL for BP data by country: Aust — Australia, Indo - Indonesia, Braz — Brazil,

Kaza - Kazakhstan, Cana — Canada, Mexi — Mexico, Chin - China, Roma — Romania, Colo -

Colombia, Unit — United Kingdom, Indi - India, USA - USA

Table 3.6. Energy source codes for the BP data

Energy source

Coal - Consumption in millions of tonnes of oil equivalent

Coal - Production in millions of tonnes of oil equivalent

Hydro - Consumption in millions of tonnes of oil equivalent
Natural Gas — Consumption in millions of tonnes of oil equivalent
Natural Gas - Production in millions of tonnes of oil equivalent
Nuclear - Consumption in millions of tonnes of oil equivalent

Oil - Consumption in millions of tonnes

Oil - Production in millions of tonnes

code

ColC
ColP
Hydr
GasC
GasP
NucC
OilC
OilP
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Figure 3.14. INDSCAL for BP data by year

which best represent the corresponding dissimilarities for that individual. Hence the
acronym INDSCAL - INdividual Differences SCALing.

Let there be n objects under study and N subjects producing the dissimilarities.
Let the dimension of the spaces be p and the points in the group stimulus space be
denoted by x,; (r=1,...,m; t =1,..., p). Let the dissimilarity between objects r and
s for the ith subject be §,; ; and the points in the subjects’ space have coordinates w;,
(i=1,...,N; t=1,...,p). Then the weighted Euclidean distance between the rth
and sth points for the ith subject is

P 1/2
dys,i = [ Z Wir(Xpt = xst)2:| . (3.10)
t=1
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Figure 3.15. INDSCAL for BP data by data source

The individual weights {w;;} and coordinates {x,;} are sought which best match
{dys,i } to {8,s,; }. Carroll and Chang (1970) give an algorithm which uses a recursive
least-squares approach to do this.

The data used to illustrate INDSCAL are from the 1995 edition of the BP Statistical
Review of World Energy. The review incorporates additional elements from the BP
Review of World Gas. The review is a compendium of statistics on the primary forms
of energy (BP 1996).

The data are for all years from 1985 to 1995, with energy sources as shown in Ta-
ble 3.6. Data are available for both production and consumption.

Initially dissimilarities were generated for countries and each year, averaging over
the energy sources. The INDSCAL analysis results are given in Figs. 3.13 and 3.14.
Figure 3.13 shows the “group stimulus space” and Fig. 3.14 the “subjects space”

Clearly China and the USA are exceptional. The USA is the largest consumer/pro-
ducer of gas and oil, and also the largest consumer of nuclear. In coal (both produc-
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Figure 3.16. Example plots from INDSCAL for BP data by year

tion and consumption) the USA and China are very close and significantly higher
than the other countries considered.

The years 1985 and 1986 are exceptional; these correspond to a marked percentage
increase in the consumption/production of coal by Indonesia.

A similar analysis may be conducted based on averaging over the countries. The
resulting plots are shown in Figs. 3.15 and 3.16.

Clearly the production and consumption of each energy source are very close in
the plot showing consumption is highly linked to production. What is surprising is
the coincidence of nuclear and hydroelectric energy.

A Procrustes statistic was employed to compare Figs. 3.14 and 3.16, giving a value of
0.59, suggesting the plots are dissimilar. In Fig. 3.16 the years, with slight adjustments,
are in sequential order 1994, 1995, 1993, 1992, 1991, 1990, 1987, 1988, 1986, 1985, the
exception being 1989.
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Correspondence Analysis
3.8 and Reciprocal Averaging

Correspondence analysis represents the rows and columns of a two-way contingency
table as points in Euclidean spaces of dimension usually chosen as two. It can also be
used on any data matrix that has non-negative entries and can also be extended to
higher way tables, but this aspect is not covered here. The technique will be illus-
trated using the contingency table displayed in Table 3.7, which records the number
of papers in a research database which employ specific keywords in their descriptive
fields (title, keywords or abstract) over an 11-year period.

First distances are measured between the rows of the table. Ordinary Euclidean
distance, treating the 11 columns as 11 dimensions for the rows, is not appropriate,
since doubling the size of the sample for any one row will alter the Euclidean distance
dramatically. For contingency tables where only the overall total is fixed, this may be
not be a problem, but it will be for tables where row totals can be chosen arbitrarily.
To overcome this problem, y* distances are used. The y* distance, d;;/, between the
ith and i'th rows is defined by

S YETREY
dii’zz_ — =1 (3.11)

=1 Ci\ Ti rir

where x;; is the entry in the table in the ith row and jth column, 7; is the ith row
sum and ¢; is the jth column sum. A space is now found where points in the space
represent the rows of the table and where Euclidean distance between points equals
the y* distance between the corresponding rows of the table. Greenacre (1984) gives
a comprehensive account of how this space is found, but only a brief summary can
be given here.

Let X denote the table that has been normalized to have overall total equal to
unity. Let D, be the diagonal matrix of the row sums of X, and let D, be the diagonal
matrix of column sums of X Let the generalized singular value decomposition of X

be given by
X =AD,B", (3.12)
Table 3.7. References employing keywords

Keywords 94 95 96 97 98 99 00 01 02 03 04 Total
Reciprocal av. 0 0 4 0 3 3 0 0 0 3 3 16
Correspond. anal. 144 171 186 219 237 246 241 243 278 314 310 2589
Ind. diff. scal. 8 4 6 3 5 4 4 4 3 1 3 45
Classical scaling 5 6 7 5 2 10 7 7 4 5 6 64
Procrustes anal. 5 16 29 20 36 43 4 32 40 70 67 409
Mult. scaling 75 17 125 107 109 137 145 147 166 191 195 1514

Total 247 314 357 354 392 443 438 433 491 584 584 4637
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where ATD;' A = BTD;!B = . Then the space and coordinates for the row points
are given by D' AD,. Note there is a “trivial dimension” which has to be ignored
which corresponds to the singular value of unity with singular vector a vector of ones.
The Euclidean distances between the points in the D' AD, space equal the corre-
sponding y* distances between the rows of the table. However, this space has dimen-
sion equal to one less than the number of columns. As an approximation, only the
first two singular values and corresponding singular vectors are used (ignoring the
trivial dimension). Similarly, a space for the columns can be found as D' BD;, and
distances between points in this space equal the y* distances between corresponding
columns in the table.

Figure 17 shows the space for the rows of the contingency table, and Fig. 3.18 the
space for the columns of the table.

Multidimensional Scaling
g Correspondence Analysis

= Procrustes

O Classical Scaling

O Individual Differences Scaling

Reciprocal Averaging o

Figure 3.17. Keyword plot for references
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The keyword (row) plot shows the similar popularity of correspondence analysis
and multidimensional scaling and how Procrustes analysis is related to them, while
the difference in use of reciprocal averaging, which is used sporadically, becomes
clear. Sometimes the row and column spaces are combined into one space since they
have both arisen from the singular value decomposition of X'. Distances between
row points and column points are not defined, although row points close to column
points will have some association.

The year plot is consistent with a steady increase in the use of correspondence
analysis, Procrustes analysis and multidimensional scaling. Note that the years to the
lower right of the plot are the years that reciprocal averaging makes an entry into the
table.

Reciprocal averaging is used for binary data and is essentially the same as cor-
respondence analysis, although the construction appears different. It can be easily
explained using an ecological example. Suppose n different species of plants are each

2002
1997
2001
1995 2000
2003
2004
1998
1999
1994
1996

Figure 3.18. Year plot for references
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planted at p different sites which vary in exposure to the weather. Let x;; = 1if the
ith species survives at the jth site, and zero if it does not. Let u; be a hardiness score
for the ith species and v; an exposure score for the jth site. It is assumed that the ex-
posure score at the jth site is proportional to the mean hardiness score of the species
at that site. Thus

Vj < Zuixij/ ZX,‘]‘ . (3.13)
i i

Similarly, it is assumed that the hardiness score of species i is proportional to the
mean exposure score of the sites occupied by that species. Thus

Uj o< ZV]‘)CZ'J'/ZXU . (314)
J J
Letr; = 3; xij, ¢j = X; Xij. Reciprocal averaging solves the equations
pui:Zvjxij/ri (i=1L...,n), (3.15)
J
ij:ZMixij/Cj (jzl,...,p), (316)
i

where p is a scaling parameter, to obtain the hardiness and exposure scores.

Reciprocal averaging was used on the Shakespeare data used in Sect. 4, but where
it has been turned into a binary format scoring 0/1 if a word is absent/present in each
of the plays. The resulting plots are shown in Figs. 3.19 and 3.20.

As in Fig. 3.6 it is the personal words (princess, bishop, clown, moor etc.) that
convey most information about the play.

When examining the plays, losing the detail (the word count for each play) has
clearly affected the detail displayed, although certain similarities within the plots can
be seen, for instance the cluster asy, cym, tam, tem, mer seen in Fig. 3.20 is within
a larger cluster within Fig. 3.7.

Large Data Sets
and Other Numerical Approaches 3.9

I

Behind most MDS techniques there is a need for accurate and efficient algorithms for
minimizing functions, but many MDS programs and algorithms cannot cope with
very large data sets, as they suffer from high computational complexity. They cannot
feasibly be applied to data sets over a few thousand objects in size. However, meth-
ods have been proposed to overcome this problem, for example Fast Spring Model-
Visualisation (FSMvis). FSMvis adopts a novel hybrid approach based upon stochas-
tic sampling, interpolation, and spring models. Following Morrison et al. (2003) the
mechanics of the spring model are described.
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Figure 3.19. Reciprocal averaging of Shakespearean keywords

The concept of the “spring model” comes from work by Eades (1984) on a heuristic
approach for graph drawing. Eades described an approach for the layout of a general
graph through the physical analogy of a system of steel rings connected by springs.
A graph consists of vertices and edges, and here each vertex represents one of the
objects under consideration. The graph may be represented by a mechanical system
on replacing the vertices by rings and the edges by springs. Each relaxed spring length
or “rest distance” is set to be the dissimilarity measured between the corresponding
objects. Initially the vertices/rings are placed in random positions and the springs
connecting them are either stretched or compressed. When the system is released,
the forces exerted by the springs move the system to equilibrium, and presumably
to a state of minimal energy. The algorithm employed is iterative, with each iteration
refining the layout of the graph.

This procedure was applied to dissimilarities calculated for a population of women
who were at least 21 years old, of Pima Indian heritage and living near Phoenix, AZ,
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Figure 3.20. Reciprocal averaging of Shakespearean plays

and who were tested for diabetes according to World Health Organization criteria.
The results are displayed in Fig. 3.21. The data were collected by the US National
Institute of Diabetes and Digestive and Kidney Diseases (Hettich et al., 1998). The
raw data consisted of 8 measurements on 768 individuals. The method successfully
partitions the 768 individuals into the 2 groups.

Agrafiotis et al. (2001) present a family of algorithms that combine non-linear
mapping techniques using neural networks. The method employs an algorithm to
project a small random sample and then “learns” the underlying transform using
one or more multilayer perceptrons. This approach captures the non-linear mapping
relationship as an explicit function and allows the scaling of additional patterns as
they become available, without the need to reconstruct the entire map. The approach
is particularly useful for extracting low-dimensional Cartesian coordinate vectors
from large binary spaces, such as those encountered in the analysis of large chem-
ical data sets. Molecular similarity is used to analyse chemical phenomena and can



344 Michael A.A. Cox, Trevor F. Cox

O Diab

X x None

@)

Figure 3.21. Example plot from FSMvis for Pima Indian data

aid in the design of new chemical entities with improved physical, chemical and bio-
logical properties. As a guide the authors report analysing one billion items in around
4h.

Genetic algorithms are an approach to optimization suggested by the biological
process of evolution driven by natural selection. The aim is to derive a parameter set
that minimizes the difference between a model’s expected values and those observed
from the data. For detailed reviews see Charbonneau (1995) and Schmitt (2001). The
procedure employed for our comparisons uses the algorithm developed by Charbon-
neau and Knapp (2005). As expected, when tested on the rail journey cost data, the
results were indistinguishable. In principle this approach admits larger data sets, but
not necessarily of sufficient size to make the approach worthwhile.

Simulated annealing is a suitable approach for large-scale optimization problems.
It is claimed to be ideal for locating an ideal global minimum located among a num-
ber of local minima. This method has been employed to address the famous travelling
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salesman problem. The approach borrows its philosophy from theoretical physics.
By analogy the system is raised to a high temperature in which the individuals move
freely with respect to each other. As cooling occurs this mobility is lost. Some align-
ment occurs between the individuals, and the system approaches a minimum energy
state. To try to achieve the desired global minimum, the cooling must occur slowly.
This procedure has been encapsulated within published algorithms (Goffe et al., 1994;
Corana et al.,, 1987). The approach differs from the conventional gradient descent
method in that an occasional step away from an apparent minimum might be used
to assist in escaping from local minima.

The majorization approach to minimization was first proposed by de Leeuw (1977)
for use with MDS. Essentially, a complicated function f(x) is replaced by a more
manageable auxiliary function g(x, y) such that for each x in the domain of f, f(x) <
g(x, ), for a particular y in the domain of g, and also so that f(y) = g(y, y). The
function g is called the majorizing function. An initial value x, is used and then
g(x,x0) is minimized with respect to x. Let the value of x, which gives rise to the
minimum, be x;. Then g(x, x;) is minimized with respect to x, and so on until con-
vergence.
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Introduction 4.1

Many papers refer to Tukey’s (1977) treatise on exploratory data analysis as the con-
tribution that transformed statistical thinking. In actual fact, new ideas introduced
by Tukey prompted many statisticians to give a more prominent role to data visual-
ization and more generally to data. However, JW. Tukey in 1962 had already begun
his daring provocation when at the annual meeting of the Institute of Mathematical
Statistics he gave his talk entitled “The Future of Data Analysis” (Tukey, 1962).

At the same time, the French statistician J.P. Benzécri brought his paradigm to the
attention of the international scientific community in his paper “L’ Analyse des Don-
nées” (Benzécri, 1976). As with Tukey’s ideas, it appeared totally revolutionary with
respect to the “classical” statistical approaches for two reasons: i) the absence of any
a priori model and ii) the prominent role of graphical visualization in the analysis
of output. Unfortunately most of Benzécri’s papers were written in French. Michael
Greenacre, in the preface to his well-known book Theory and Application of Corre-
spondence Analysis (Greenacre, 1984), wrote: “In 1980 I was invited to give a paper
on correspondence analysis at an international conference on multidimensional graph-
ical methods called ‘Looking at Multivariate Data’ in Sheffield, England. [There] ...
I'realized the tremendous communication gap between Benzécri’s group and the Anglo-
American statistical school.”

These simultaneous and independent stimuli for statistical analysis mainly based
on visualization did not occur by chance but as a consequence of extraordinary de-
velopments in information technology. In particular, technological innovations in
computer architecture permitted the storage of ever larger volumes of data and al-
lowed one to obtain even higher-quality graphical visualization (on screen and pa-
per). These two elements contributed to giving a prominent role to data visualization.
The growth of data volume, on the other hand, determined the need for preliminary
(exploratory) analyses; graphical methods quickly proved their potential in this kind
of analysis. The performance of graphics cards permitted one to obtain more detailed
visualization, and the developments in dynamic and 3-D graphics have opened new
frontiers.

A posteriori we can state that at that time statisticians became conscious of the po-
tential of graphical visualization and of the need for exploratory analysis. However, it
appears quite strange that these two giants of the statistics world, Tukey and Benzécri,
are very rarely mentioned together in data analysis papers. Their common starting
point was the central role of data in statistical analysis; both of them were strong
believers that, in the future, the amount of available data would increase tremen-
dously, although the current abundance of data might be more than even they ex-
pected!

In light of this historical background, the title of the present contribution should
appear more clear to the reader. Our idea is to present visualization in the mod-
ern computer age following the precepts of data analysis theorists. Moreover, note
that the basic principles of data analysis are inspired by the elementary notions of
geometry.
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A key element in the success of data analysis is the strong contribution of visualiza-
tion: it exploits the human capability to perceive the 3-D space. On the other hand, the
role of the geometric approach in mathematics has a centuries-old story. Let us take
into account that many theorems were first enunciated in geometric notation and
mathematically formalized many, perhaps hundreds of years later. The Pythagorean
theorem is a well-known example.

Our perception of the real world is the result of a geometric space characterized by
orthogonal axes, the concept of distance, and the effects of light. The combination of
the first two elements defines a metric space. Cartesian spaces permit one to visualize
positions of a set of dimensionless points. Exploiting capabilities of current graphics
cards acting on brightness, points are enriched by point markers, characterized by
different sizes, shapes, and colors, that add information, helping the user interpret
results more easily and quickly.

Our mathematics based on the decimal system is clearly the result of having ten
fingers; similarly, it is obvious that our geometry, Euclidean geometry, is based on
a system of orthogonal axes due to our perception of the horizon line. As the binary
and hexadecimal numerical systems represent possible alternatives to the decimal
system, similarly there exist different geometries based on nonorthogonal systems
where parallel lines converge in a finite space. However, even if alternative geometries
exist, Euclidean geometry remains the only geometry that we apply in the solution
of real-world problems.

The concepts of far and close are native concepts. It is not necessary to be a mathe-
matician to understand them. Distance represents the measure of closeness in space.

This contribution will introduce the concept of factorial space and of dendro-
grams; it intends to furnish guidelines for giving a correct representation of displayed
data. It will also show how it is possible to obtain enhanced representation where,
thanks to modern graphics cards, it is possible to obtain millions of colors, trans-
parencies, and man-machine interactions.

The Geometric Approach
to the Statistical Analysis

There are several reasons to revisit principal coordinates and dendrograms. When
these methods appeared 30 years ago, the capabilities of computer devices were very
poor. This lack of capability in obtaining satisfactory graphical representations led
to ingenious and original solutions. Text ASCII printers were used to draw factorial
plans using the (base) ASCII character set, and 132-column printers were preferred
to 80-column printers to obtain wider and clearer representations. In some papers
from that time we also find hand-drawn factorial plans and dendrograms. Never-
theless, the data analysis approach prospered despite these technical difficulties and
even more data analysis methods appeared in the specialized literature. The reasons
for this success, presumably, lie behind the very easy interpretation keys. In fact, in-
terpretation is based on the notion of distance, which is a human concept.
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Nowadays many graphical tools permit one to enhance basic information with
many additional elements that transform a 2-D representation into a higher-dimen-
sional representation.

Wainer and Velleman (2001) noted that some concepts of geometry are inconsis-
tently imported in the statistical literature. However, in spite of differences in defi-
nitions and notations, statisticians and mathematicians use visualization techniques
for the same goal: to reveal (hidden) relationships in the data structure (also known
as fitting in statistics).

In the next subsection we separately introduce the notions of Cartesian space,
distance, and metric space. These are the foundations of principal coordinates and
dendrograms. Then, in the following sections, we present innovative visualization
techniques that can be realized by combining the old and the new.

Distance and Metric Space

The method statisticians use to collect multivariate data is the data matrix. An X,, ,
data matrix represents a set of # multidimensional observations, described by a set
of p variables. From a geometric point of view, the generic row vector x; (where
i = 1,...,n) represents a point in the R? Cartesian space. Of course the alterna-
tive representation consists in representing p points (variable) in the n-dimensional
space.

According to Euclidean geometry, Cartesian space refers to a couple of ordered
and oriented orthogonal axes, which admits a definition of a unit measure. In the
year 300 B.C. approximately, the Greek mathematician Euclid formalized the math-
ematical knowledge of his time. His book Elements is considered the second most
popular book in history, after the Holy Bible. The greatness of his contribution is
demonstrated by the fact that most of our current knowledge in geometry is in so-
called Euclidean geometry.

However, we must wait for Descartes for the formalization of the isomorphism
between algebraic and geometric structures. In fact, what we call a Cartesian space
was first introduced by Newton several years later.

The interest and the long story behind the definition of Cartesian space demon-
strates the importance of such a mathematical concept.

Given a set ), any function d : Q x Q) — R* satisfying the following three prop-
erties is a distance:

a) d(Xi,Xj)=0<:>Xi:Xj
b) d(X;,X;)=d(Xj,X;) (symmetry)
C) d(Xi,Xj)Sd(Xi,Xh)-i-d(Xh,Xj),
where {X;, X, X;} € Q (triangular inequality)

We will call Q) a metric space if its elements define a distance.

Looking at the properties of distance, we can easily understand the reasons that
induced statisticians to turn to indexes having the properties of distance. It is impor-
tant to note that the most commonly used methods satisty special cases of minimal
distance.

4.2.1



4.2.2

354 Francesco Palumbo, Domenico Vistocco, Alain Morineau

The need to visualize over Cartesian axes these distances appeared when, thanks
to the capabilities of modern computers (and more specifically to the advent of the
personal computer), statisticians began to treat simultaneously many variables and
thousands of statistical units.

Some examples of the problems arising when plotting p-dimensional data will be
illustrated with the help of the OECD Countries dataset. The last sections of the paper
will show possible solutions when dealing with huge datasets.

The human mind can conceive, but not imagine, graphical representations in or-
thogonal spaces having more than three dimensions.

To overcome this limitation the use of dendrograms permits one to visualize the
distances among a set of statistical units belonging to an R? space (Vp > 1).

The assumption of a system of coordinates permits one to define the concept of
distance. Many common statistical indexes are rigorously bound to the notion of
distance.

OECD Countries Dataset

The data consist of six short-term macroeconomic indicators provided by the Or-

ganisation for Economic Cooperation and Development (OECD). In particular, the

performance indicators are:

GDP: gross domestic product

LI: leading indicator (a composite indicator based on other indicators of economic
activity)

UR: unemployment rate

IR: interest rate

TB: trade balance

NNS: net national savings

The above indicators are observed on 20 OECD countries and are listed in Table 4.1.
After considering many available and well-known datasets, we decided to use the
Vichi and Kiers (2001) dataset. In spite of its small dimensionality, OECD data are
distinguished by features that can be explored using a visual approach. Illustrative
examples from this dataset will allow us to appreciate the capabilities and limits of
multidimensional data analysis. Distortion-free distances displaying any dataset vari-
ables are limited to 2-D Cartesian space: only in this case do distances on the map cor-
respond to actual distances. Any representations involving more than two variables
imply distance distortion and information loss.

Methods presented in the following sections share the same goal: to visualize the
correspondence within a set of variables and difference within a set of multivariate sta-
tistical units in terms of distance. Firstly, attention is devoted to factorial methods that
permit one to linearly combine a set of variables in a subset of latent variables; sec-
ondly a section is dedicated to hierarchical clustering methods and to other cluster-
ing methods allowing for the representation of the difference between (multivariate)
statistical units in terms of distance.
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Table 4.1. Six macroeconomic performance indicators of 20 OECD countries (percentage change from

the previous year, September 1999/2000)

Country Label GDP LI UR IR TB  NNS
Australia A-lia 4.80 8.40 8.10 5.32 0.70 4.70
Canada Can 3.20 2.50 8.40 5.02 1.60 5.20
Finland Fin 390 -1.00 1180 3.60 8.80 7.70
France Fra 2.30 0.70  1L70 3.69 3.90 7.30
Spain Spa 3.60 250  19.00 4.83 1.20 9.60
Sweden Swe 4.10 1.10 8.90 4.20 7.00 4.00
United States USA 4.10 1.40 4.50 559  -140 7.00
Netherlands Net 2.90 1.60 4.20 3.69 700  15.80
Greece Gre 3.20 0.60 1030  1L.70 -8.30 8.00
Mexico Mex 2.30 5.60 320  20.99 0.00 12.70
Portugal Por 280 750 4.90 484 870 14.00
Austria A-tria 110 0.60 4.70 384 -0.60 9.40
Belgium Bel 140 -0.10 9.60 3.64 450 12.40
Denmark Den 1.00 1.50 5.30 4.08 3.30 5.00
Germany Ger 0.80 -2.00 9.50 3.74 1.50 7.70
Italy Ita 0.90 -0.40 12.30 6.08 4.30 8.20
Japan Jap 0.10 5.40 4.20 0.74 120 1510
Norway Nor 1.40 0.90 3.30 4.47 710 1510
Switzerland Swi 110 2.10 3.80 1.84 440  13.20
United Kingdom UK 1.20 4.90 6.40 770 -0.50 4.80

Although we are aware that many innovative visualization methods appear every
year in the specialized literature, we will not discuss the capabilities of these methods
here; instead we will focus our attention on those visualization methods in which the
concept of distance plays a central role.

Factorial Analysis

In statistics, factorial analysis (FA) refers to a set of methods that permit one to re-
duce the dimension of a data matrix with respect to a least-squares criterion (Mizuta,
2004). The geometric formalization of the problem was one of the keys to the great
success and quick dissemination of the methods.

Given a generic data matrix X of order n x p, the aim of the methods is to replace
p original variables with a set of g ordered and orthogonal factors that are obtained
as a linear combination of the original variables, where g < p. Factors are ordered
according to the information they carry. Orthogonality ensures consistent represen-
tations based on Cartesian space and allows us to split the whole variability into an
additive linear model based on independent variables.

Of the factorial methods, principal component analysis (PCA) is probably the best,
most used, and most implemented in statistical software packages. PCA deals with
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quantitative multivariate observations. The method is conceptually founded on the
singular value decomposition approach proposed by Eckart and Young (1936) for
approximating a matrix with another one of lower rank.

Let us denote by X the generic n x p data matrix, where the general term x;;
(i=1,...,mj=1..., p) indicates the value assumed by the ith statistical unit for the
jth variable. From a geometric point of view, rows and columns of X represent points
in the R? and in the R" space, respectively. Without loss of generality, we assume that
columns of data matrix X have been standardized in matrix Y having the same order
of X.

PCA allows one to find a g-dimensional subspace, where (g < p) holds position,
such that the distances among the #n row vectors were approximated in this subspace
in a satisfactory manner. PCA problems allow for more than one formulation. The
following section offers only a brief overview of the geometric formulation of PCA
and mainly reflects the French approach to data analysis.

Readers interested in the PCA formulation problem are referred to, e.g., Hardle
and Simar (2006); Jolliffe (2002); Lebart et al. (1984, 1995) and Mardia et al. (1979).

Principal Component Analysis

PCA was originally proposed by Hotelling (1933) as a method for determining the
major axes of an ellipsoid derived from a multivariate normal distribution. Although
a common interpretation of PCA as one specific type of factor analysis is widespread,
data analysts have a different view of the method. They use PCA as a technique for
describing a dataset without imposing any assumption about distribution or with-
out starting from an underlying statistical model (Benzécri, 1976; Lebart et al., 1984,
1995). In this framework the point of view is then geometrically oriented and PCA
aims to identify a subspace through the optimization of a given algebraic criterion.
Among the potential criteria useful for fitting a set of n points to a subspace, the
classical least squares is undoubtedly the most widespread method.

The problem, in a nutshell, consists in determining the unknown p x p matrix

U = [ul, Up,... U p] that indicates the maximum variance directions. The vector
y; = Yu; represents the coordinates of the n row points over the axis u; (Vj =
L,..., p). The unknown matrix U is determined solving the following eigenanalysis
problem:

Y'Y =UAU’. (4.1

Notice that the previous equation can be alternatively expressed as
Y'YU =UA, (4.2)

where A is a square diagonal matrix of order p having as general element A}, and U
must satisfy the constraint U'U = I. It is straightforward to say that A; and u; are
respectively the generic eigenvalue and eigenvector of the square symmetric matrix
Y'Y. Notice that {A},15,...,A,} are ranked in decreasing order and U defines an
orthonormal basis.
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Taking into account Eq. 4.2 and premultypling the left and the right members of
the equation by Y, we obtain the following expression:

YY'YU=YUA. (4.3)
Let us denote V = YU; (4.3) then becomes
YY'V=VA. (4.4)

The above expression identifies in R” an orthogonal space in which to represent
the p variables.

We call principal components the coordinates of # points in the orthogonal basis
U,. They are defined as ¥ = YU ;. Equivalently, variable coordinates are obtained by
® = Y'V,. Matrices U, and V, are obtained by the first g < p columns of U and V',
respectively.

FA output interpretation is a rather ticklish question. Very frequently we stumble
upon analyses limiting interpretation to the graphical representation of points over
the first or first two factorial plans. Even if this is the most evident aspect of the anal-
ysis, there is nothing worse than ignoring the rest of the output. Distances projected
over factorial plans represent approximations of real distances. A correct interpreta-
tion, hence, should combine graphical and analytical results.

Unbiased output interpretation assumes knowledge of the following two basic
principles: (i) Principal components are orthogonal by construction, so any orthog-
onal space defined by two or more axes represents an additive model. The additivity
of the model allows us to determine the explained inertia associated to each factorial
subspace as the sum of the respective eigenvalues. (ii) Original variables are centered,
so the axes’ origin corresponds to the average statistical unit. Then the distance from
the origin reveals the deviation with respect to the mean vector.

These are very important and remarkable properties.

Taking into account these properties, let us consider the output of the OECD
countries. Figures 4.1 and 4.2 show respectively the configuration of the variables
and statistical units with respect to the first two factors of the OECD data table.

Standardization implies all variables are plotted inside a hypersphere having a ra-
dius equal to one; angles between variables and factors express the correlation. The
first factor has a strength positive association with variables GDP and UR and nega-
tive with the NNS indicator. Indicators IR and TB have respectively direct and inverse
relation with factor 2 and are almost uncorrelated with factor 1. We remark that the
LI indicator does not fit the first factorial plan. Taking into account the variable po-
sitioning with respect to the factors, we interpret the characteristics of the statistical
units according to their positioning. For example, the position of Spain in the lower
right area implies that this country has a UR indicator value significantly greater than
the variable mean. Looking at the data table, we notice that Spain has the greatest
value (19.00).

Figure 4.3 shows the OECD countries with respect to the first three factorial axes.
Notice the position of Portugal with respect to factor 3; it contributes to the orienta-
tion of the third factor and has a coordinate equal to —3.46.
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When the number of variables and statistical units remains moderate, statisticians
very familiar with data analysis have a good opportunity to make correct interpreta-
tions taking into account these aspects. When the number of units and/or variables
increases, it becomes hard and difficult to obtain a good interpretation. However, ba-
sic geometric principles still hold, and we move throughout the interpretation on the
basis of the concepts “close” and “far”. Close points identify units with similar figures,
while far points refer to units with clearly different characteristics.

Supplementary units and supplementary variables

There is a very important property pertaining to all FAs that is rarely commented
upon in textbooks on multivariate analysis: the possibility of representing supple-
mentary units and/or supplementary variables. Having the means to produce inter-
active graphical representations, this functionality allows one to add and remove sub-
sets of statistical units and variables in graphical visualization in order to evaluate
their position with respect to the others. In exploratory analysis, deletion of extreme
points allows the analyst to evaluate the axes’ stability.
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Let us consider the two following matrices: Y" and Y°. We assume that they are
respectively of order n* x p and n x p*. Rows of Y" are centered and reduced with
respect to means and standard deviations of the matrix X, ,, and Y* contains stan-
dardized variables.

Row vectors in Y can be projected as supplementary units and column vectors in
Y¢ as supplementary variables according to the following formulae:

¥ =Y'U,,
=YV,

where U and V are defined in (4.2) and (4.4), respectively.

Anybody with a little practice in FA knows that performing the analysis on the
results of a huge dataset will lose appeal, whereas choosing a subset as a reference
group and projecting other units as supplementary points ensures a much more in-
teresting interpretation. The same holds if we turn our attention to the representation
of variables. This procedure is advantageous to avoid heavy computational efforts on
the whole dataset. Clearly we should be able to recognize in the graphical displays
groups of active and supplementary units. Looking at the factorial plots in Fig. 4.2
and 4.3, we notice that there are two extreme points: Mexico and Portugal. Delet-
ing these points and projecting them as supplementary, the plots in Fig. 4.4 illus-
trate the changes in the variable relationships. As a direct consequence of the dele-
tion, the total inertia associated to the first factorial plan increases from 52.88 % to
59.96 %.

Effects depending on the deletion of Portugal and Mexico are clearly evident on
the first principal plan (Fig. 4.4): Portugal moved through the axes’ origin; the vertical
axis presents a counterclockwise rotation, with no influence by Mexico.

Thus far we have focused our attention on the main features of FA, and we have
provided the reader with guidelines on how to evaluate correct interpretations of
a factorial plan. In the following sections we will show how to exploit FA’s data anal-
ysis capabilities to produce useful exploratory analyses with the help of interactive
tools.

4.4 Distance Visualization in R?

Previous sections showed how FA allows us to graphically evaluate the differences
among statistical units in terms of distances. Obviously, we can represent 2-D or
3-D space, so that this task can be exploited taking into account no more than three
factors simultaneously. The question is: how can we evaluate the differences in terms
of the distance in R? spaces when p > 3? Even if we cannot graphically represent
distances over spaces having more than three dimensions, we can compute distances
in R? (with p > 3) using the Pythagorean theorem. The unresolved issue remains
how to visualize these distances. Hierarchical clustering approaches furnish a good
solution.
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Given a set Q of n statistical units described by p variables, the goal of cluster
analysis is to partition data into k homogeneous groups or clusters (Gordon, 1999).
Groups are defined to have high homogeneity within clusters and high heterogeneity
among clusters. This is accomplished by grouping units that are similar according to
some appropriate distance criterion. The choice of the distance criterion plays there-
fore a leading role in the group’s definition.

Unlike factorial methods, clustering methods involve a data matrix reduction in
the sense of the rows.

There are two main approaches in cluster analysis: nonhierarchical (partitioning)
and hierarchical methods. Methods directly producing a partition of the nts objects
into k clusters belong to the former approach. Many visualization techniques have
been proposed to graphically represent partitions obtained using nonhierarchical al-
gorithms. These displays permit one to understand the extent to which clusters dif-
fer; in fact, they are based on the use of color maps, flags, bubbles, networks, etc.
However, these representations are completely loose with respect to metric space
(Dhillon et al., 1998; Yang, 1999; Kohonen, 2000). Hierarchical methods define in-
stead a unique sequence of nested partitions that can be visualized through dendro-
grams. Dendrograms represent the solution to our problem; they represent distances
on flat surfaces.

Aside from the clustering method used, the effective use of classification requires
interpretation rules to evaluate the heterogeneity of the obtained groups (in terms of
observed variables).

Each group is described by continuous and nominal variables of the original data-
set. Differences of conditional group means indicate the differences of groups and
proper tests can be used to rank the variables according to their discriminant class
power. Taking into account the nominal variables, useful measures to evaluate class
heterogeneity are based on the difference between the proportion of each modality
in classes with the respect to the proportion in the whole dataset.

After a description of hierarchical clustering methods, we focus our attention on
partitioning methods.

Hierarchical Clustering

Given a set of n statistical units and a measure of distance or proximity, the main

steps of a hierarchical classification algorithm are as follows:

Step 1: the n x n square symmetrical distance matrix D is computed,

Step 2: the two points having the minimum distance are aggregated into a cluster;
aggregated points are then treated as a new metapoint,

Step 3: the distance matrix is then updated to a D) matrix having order
(n —=1) x (n —1) by taking into account the new metapoint and disregarding
the aggregated original units.

The previous steps are iterated until all cases are grouped into a single cluster of size n.
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With respect to the distances to compute, the points to classify are reduced by one
unit at each step. There are n singletons to classify at the first step and n— i +1 groups
and singletons at the ith step. Only one group of size n remains at the end of the
algorithm.

The final output is mainly affected by two algorithm parameters: the distance mea-
sure and the linkage or amalgamation criterion to determine the distance between
a point and a group or between two groups. There exist several distance measures
according to the nature of the analyzed data.

Various linkage or amalgamation criteria permit one to determine the two most
similar clusters (groups) to be merged into one new group:

SINGLE LINKAGE (nearest neighbor): the distance between two clusters is deter-
mined by the distance of the two closest objects in the different clusters.

COMPLETE LINKAGE (furthest neighbor): the distance between two clusters is deter-
mined by the distance of the two furthest objects in the different clusters.

AVERAGE LINKAGE: the distance between two clusters is defined as the average dis-
tance between all pairs of objects in the two different clusters.

CENTROID LINKAGE: the distance between two clusters is determined as the differ-
ence between centroids. The centroid of a cluster is the average point in the mul-
tidimensional space defined by the dimensions.

WARD’s METHOD: this method is based on the minimum variance criterion approach
to evaluating the overall heterogeneity increase when collapsing two clusters. In
short, the method aggregates clusters according to the minimum resulting sum
of squares.

The end result of a hierarchical clustering algorithm is a sequence of nested and in-
dexed partitions. The sequence can also be visualized through a tree, also called a den-
drogram, which shows how the clusters are related to each other. The index refers to
the aggregation criterion and indicates the distance between two subsequent groups
(or objects). A dendrogram cut at a given level defines a partition of the data cases
into different k groups, where k increases by one at a time as the aggregation index
decreases. Figure 4.5 shows an example of a simple dendrogram and the resulting
clusters at the shown cutting level.

Choosing the level of the cut, and thus the number of the resulting classes in the
partition, can then be done by looking at the dendrogram: the cut has to be made
above the low aggregations, which bring together the elements that are very close to
one another, and under the high aggregations, which lump together all of the various
groups in the population.

When it has been decided where to cut the dendrogram, the next step is to try to
find out which variables have participated strongly to merge the cases in each cluster.

The dendrogram can therefore be used to provide visual grouping information,
i.e., to read the process of merging the single statistical units into homogeneous clus-
ters, thus playing a complementary role to the numerical algorithms in cluster
analysis.
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Principal Axis Methods and Classification:
a Unified View

The actual knowledge base in numerical analysis and powerful modern PCs allow
us to successfully make use of the computational aspects in multidimensional data
analysis (MDA). However, there are many analysis strategies that, without loss of
efficiency, offer good solutions.

In the previous sections we have shown the centrality of the distance in facto-
rial and clustering methods. This common element has been largely used to perform
two-step analysis, namely, using both factorial and cluster analysis. Automatic classi-
fication techniques are used to group objects described by a set of variables; they do
not make any claim to optimality. Nevertheless, they give relatively fast, economical,
and easily interpretable results. PCA and other factorial methods rarely provide an
exhaustive analysis of a set of data. Therefore, it is useful to perform a clustering of
the observations because this helps to reduce the FA complexity. Additionally, it is of
value to use classification analysis to summarize the configuration of points obtained
from a principal axis analysis. In other words, a further reduction in the dimension-
ality of the data is valuable and leads to results that are easier to analyze. So-called
“tandem analysis” represents a unified approach in which FA and clustering criteria,
both based on the same notion of distance, are simultaneously satisfied in an iterative
model (Vichi and Kiers, 2001).

All methods of multivariate descriptive statistical analysis are used in the same sit-
uation where the user is faced with a rectangular matrix. This matrix may be a contin-
gency table, a binary matrix (with values of 0 or 1 according to whether an object has
a certain attribute), or a matrix of numerical values. The use of automatic classifica-
tion techniques implies some basic underlying concepts with respect to the purpose
of the analysis. Either it is assumed that certain groups must exist among the observa-
tions or, on the contrary, the analysis requires a grouping of the observations. In other
words, a 2-D continuous visualization of the statistical relationships is not enough.
There is also an interest in uncovering groups of individuals or of characteristics.

A given set of results might be reached through different steps and might lead to
different interpretations. For example, the problem may be to discover a partition
that really exists and that was hypothesized before carrying out the statistical analy-
sis. Conversely, it may be useful to employ partitions as tools or as surrogates in the
computations that make it easier to explore the data. In any case, using principal axis
methods in conjunction with classification makes it possible to identify groups and
to determine their relative positions.

Often partitions or tree structures are used to amplify the results of preliminary
principal axis analysis during the exploratory phases of data analysis. There are sev-
eral families of classification algorithms: agglomerative algorithms, in which the clus-
ters are built by successive pairwise agglomeration of objects and which provide a hi-
erarchy of partitions of the objects; divisive algorithms, which proceed by successive
dichotomizations of entire sets of objects and which also provide a hierarchy of parti-
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tions; and, finally, algorithms leading to partitions, such as the methods of clustering
about moving centers or other minimum variance algorithms.

Computational Issues

4.6.1

Computational aspects in statistical data mining are treated comprehensively by Weg-
man and Solka (2005); we refer to their description of computational complexity to
better understand the impact of large and massive datasets in the MDA approaches.

Most critical issues become apparent when applying cluster analysis methods. As
a matter of fact, the necessary computational effort to attain results in FA depends on
the number of variables. Under the common situation in which the number of statis-
tical units is much larger than the number of variables, the computation of a solution
can be carried out on the matrix of order p x p, where p indicates the number of
columns. Looking at (4.2), it is straightforward to notice that the problem in R” has
a very feasible computational complexity, of the order O(p?). With very low com-
putational effort, transition formulae (Lebart et al., 1984) permit one to compute the
results in R”.

Hierarchical clustering algorithms, conversely, are very time consuming, as the
computational effort for such algorithms is of the order O(m?*), where m denotes
the number of entries in the data matrix. According to Wegman and Solka (2005),
using a Pentium IV 1-GHz machine with 1-gigaflop performance assumed, the time
required for clustering a dataset with a medium number of entries (10° bytes) is about
17 min, while about 116 d are required to handle a large number of entries (10% bytes).
When the dataset size rises to 10'° bytes (huge) it takes 3170 years!

Nonhierarchical clustering algorithms offer good performance with decent com-
putation time even with huge datasets. In the following subsections, we briefly intro-
duce partitioning methods and describe a mixed two-step strategy (nonhierarchical
+ hierarchical) largely used in a MDA framework.

In Sect. 4.7 we will show how advanced graphical representations can add useful
information to a factorial plan and how the human-machine interaction helps us to
navigate throughout the data in search of interesting patterns.

Partitioning Methods

Nonbhierarchical clustering attempts to directly decompose a dataset into a set of dis-
joint clusters of similar data items. The partition is obtained through the minimiza-
tion of a chosen measure of dissimilarity. In particular, taking into account the vari-
ance decomposition, the method aims to minimize the ratio
trace(W)
Q=—75 (4.5)
trace(T)
where trace( W) and trace(T) denote the within groups and fotal variance-covari-
ance matrices, respectively. According to the variance decomposition formula,
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minimizing the quantity in (4.5) is equivalent to maximizing the quantity

trace(B)/trace(T). Notice that trace() indicates the trace operator, trace(T) =

trace(W) + trace(B) (Mardia et al., 1979).

The algorithm family known as k-means is the most widely known nonhierarchi-
cal clustering approach; among the different k-means algorithms, that proposed by
Forgy is the most widely implemented in specialized software packages (Hartigan,
1975).

Let us assume partitioning of a set of n units characterized by p variables; the main
steps of a k-means algorithm are the following:

StEP 1: k provisional group centers are randomly determined: c{, ¢3,.. ., ).

STEP 2: a partition P’ = {C{, C},...,C}} of the n objects into k clusters is obtained
using the assignment rule: a unit belongs to CY if it is nearer to ¢} than to all
other centers; an object x; is then assigned to the cluster C? if d(x;, ¢}) = min.

STEP 3: k new cluster centers are determined: ¢}, ¢}, ..., ¢} as the centers of gravity
of the clusters of the partition P°. New centers are then used to define a new par-
tition P' = {C}, C},..., C} } constructed according to the same rules used for P°.

The previous steps are iterated until convergence to a final partition, i.e., when two
succeeding iterations lead to the same partition or when a chosen criterion is ob-
tained that describes the quality of the obtained partition. A further stopping crite-
rion can be based on the number of iterations.

Stable Groups Identification

Although it is based on a relatively slight theoretical basis, the k-means classification
method has an efficacy largely attested to by empirical results (Milligan, 1996). As
a consequence, it is the partitioning method best adapted to large datasets. The k-
means method is used as an adjunct to other methods such as clustering prior to
principal axis analysis or directly as a descriptive tool. The method is particularly
well adapted to large numerical datasets because the data are read directly: the data
matrix is saved on auxiliary memory and is read several times in sequential fashion,
without requiring large amounts of computer memory.

As the within-group variance can only become smaller between two steps of iter-
ations, the algorithm does converge; however, it is not the convergence itself but its
very high rate of convergence that justifies using this method in practice.

Generally, obtained partitions depend on the centers chosen at the first iteration.
The algorithm could converge toward local optima. The procedure of finding stable
groups (Lebart et al., 1984) is a kind of remedy for this situation. Its main advantage
is that it elaborates the results obtained in the rigid framework of a single partition
by highlighting high-density regions of the object points. The technique consists in
performing several partitions starting with different sets of centers and keeping as
stable groups the sets of objects that are always assigned to the same cluster.

Let us consider, as a small illustrative example, partitioning 1000 individuals into
several homogeneous groups. We perform a first basic partitioning into 6 groups
around moving centers (only a few iterations are necessary to ensure stability of the
groups). This procedure is repeated three times.
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Table 4.2. Partition of 1000 units into 6 homogeneous groups

3 partitions into 6 groups 1 2 3 4 5 6

Partition 1 127 188 229 245 151 60 1000
Partition 2 232 182 213 149 114 110 1000
Partition 3 44 198 325 99 130 204 1000

Table 4.3. Stable groups: distribution of units

Stable groups: cardinalities in decreasing order

1-10 168 118 14 107 88 83 78 26 22 16

11-20 15 14 12 12 12 11 10 7 7 7

21-30 6 6 4 4 4 4 3 3 3 3

31-40 3 3 3 2 2 2 2 2 2

41-50 1 1 1
Total 1000

Table 4.2 shows the cardinality of the 6 groups of the 3 successive partitionings.
In fact, this is only the first step to follow in order to pursue stable groups. The three
partitionings are then cross-tabulated, resulting in a subdivision of the 1000 objects
into 6° = 216 cells. The individuals in each of these 216 cells are those who have al-
ways been grouped together in the three partitionings. They constitute the potential
stable groups. In fact, only 50 groups are not empty, and 40 out of these 50 groups
contain less than 15 individuals. The distribution of the individuals is given in Ta-
ble 4.3. In practice the number of stable groups with substantial cardinality is always
much smaller than the number of cells resulting from crossing the basic partitions
(in the example, only 7 cells among 216 have more than 70 individuals, compared to
43 cells that have less than 30 individuals, while all the others are empty). In its first
phase, the method presented below uses a partitioning technique that is designed for
large data tables. The groups obtained from this phase are then clustered through an
agglomerative algorithm. This method combines the advantages of both approaches,
namely:

1. The ability to treat very large matrices;
2. A detailed description of the main clusters;
3. The ability to make a critical choice with respect to the number of clusters.

Mixed Strategy for Very Large Datasets

When a large number of objects are to be classified, the following classification strat-
egy will be used. The idea is to combine the two approaches presented above: find-
ing a partition and then building a classification tree. The first step is to obtain, at
a low cost, a partition of the n objects into k homogeneous groups, where k is far
greater than the “expected” number of groups in the population (say k = 500 when
n = 500,000). The second step is an ascending hierarchical classification, where the
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terminal elements of the tree are the k groups of the preliminary partition. The next

step is to cut the tree at the most appropriate level to obtain an interpretable partition.

This level may be chosen visually or automatically determined (some “Cattell crite-

ria”) (Cattell, 1978). The final partition will be a refinement of this crude partition.

A schema of the mixed strategy follows (Fig. 4.6).

STEP I: preliminary partition
The first step is to obtain rapidly a large number of small groups that are very
homogeneous. We use the partition defined by the stable groups obtained from
cross-tabulating two or three base partitions. Each base partition is calculated
using the algorithm of moving centers (k-means) after reading the data directly
so as to minimize the use of central memory. The calculations are generally per-
formed on the coordinates of the individuals of the first few principal axes of
a principal coordinate analysis. Note that the distance computations are accel-
erated on these orthogonal coordinates, as noise in the data (distributed within
the last coordinates) is eliminated and as principal coordinates may be efficiently
computed using any stochastic approximation algorithms.

STEP 2: hierarchical aggregation of the stable groups
Some of the stable groups can be very close to one another, corresponding to
a group that is artificially cut by the preceding step. On the other hand, the proce-
dure generally creates several small groups, sometimes containing only one ele-
ment. The goal of the hierarchical aggregation phase is to reconstitute the groups
that have been fragmented and to aggregate the apparently dispersed elements
around their original centers.
The tree is built according to Ward’s aggregation criterion, which has the advan-
tage of accounting for the size of the elements to classify as weight in the calcu-
lations of the loss of variance through aggregation. It is a technique of minimum
variance clustering that seeks to optimize, at every step, the partition obtained
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oo oo
ge % 050"
oo a® ==
STEPI
- Moving centers
@ Ea - Stable groups
—————
STEP2
- -

I/
STEP3
s P Cutting the tree
Ul

Rl So . Final paniti()n
ol . (consolidation)
oo ko s (=

Figure 4.6. Mixed strategy for classifying huge datasets
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by aggregating two elements, using criteria linked to variance. The computations
are not time consuming when the clustering is performed after a factorial analy-
sis (PCA or MCA) and the objects to be classified are located by their coordinates
on the first axes of the analysis.
StEP 3: final partition

The partition of the population is defined by cutting the dendrogram. Choosing
the level of the cut, and thus the number of classes in the partition, can be done
by looking at the tree: the cut has to be made above the low aggregations, which
bring together the elements that are very close to one another, and under the high
aggregations, which lump together all the various groups in the population.

Some Considerations on the MIXED strategy

Classifying a large dataset is a complex task, and it is difficult to find an algorithm

that alone will lead to an optimal result. The proposed strategy, which is not entirely

automatic and which requires several control parameters, allows us to retain control
over the classification process. The procedure below illustrates an exploratory strat-
egy allowing the definition of satisfactory partition(s) of data. It is weakly affected by
the number of units and can offer good results in a fairly reasonable time. In MDA ap-
plications on real datasets, especially in cases of huge databases, much experience is

required to effectively tune the procedure parameters (Confais and Nakache, 2004).

A good compromise between accuracy of results and computational time can be
achieved by using the following parameters:

1. The number of basic partitionings, which through cross-tabulation define the
stable groups (usually two or three basic partitionings);

2. The number of groups in each basic partitioning (approximately equal to the
unknown number of “real” groups, usually between 5 and 15);

3. The number of iterations to accomplish each basic partitioning (less than five is
usually sufficient);

4. The number of principal coordinates used to compute any distance and aggre-
gation criterion (depending on the decrease of the eigenvalues of principal axis
analysis: usually between 10 and 50 for a large number of variables);

5. Finally, the cut level of the hierarchical tree in order to determine the number of
final groups (in general, by visual inspection).

Nearest-neighbor-accelerated algorithms for hierarchical classification permit one to
directly build a tree on the entire population. However, these algorithms cannot read
the data matrix sequentially. The data, which usually are the first principal coordi-
nates of a preliminary analysis, must be stored in central memory. This is not a prob-
lem when the tree is built on the stable groups of a preliminary k-means partition
(also computed on the first principal axes). Besides working with direct reading, the
partitioning algorithm has another advantage. The criterion of homogeneity of the
groups is better satisfied in finding an optimal partition rather than in the more con-
strained case of finding an optimal family of nested partitions (hierarchical tree). In
addition, building stable groups constitutes a sort of self-validation of the classifica-
tion procedure.
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Factorial Plans and Dendrograms:
the Challenge for Visualization 4.7

The synergy between computer graphics and visual perception permits one to design
statistical tools for the interactive visual exploration of statistical data (Unwin et al.,
2006). Data visualization is becoming an increasingly important tool in scientific re-
search. Nowadays, the availability of high-performance computing has definitively
changed the role of statistical graphics: they are not only a static view of the past but
also a dynamic partner and a guide to the future (Wainer and Velleman, 2001). Mo-
tivated readers are encouraged to visit the Web site managed by Friendly and Denis
(Visited on Oct. 2005), which presents a historical overview of advances in statistical
graphics and most of the widely used data representations (Friendly, 2000).

Based on psychometric experiments and anatomical considerations, Wegman has
pointed out the human eye’s capabilities in visually processing data. More specifi-
cally, Wegman’s (2003) “recipe” is based on three ingredients: a geometric support,
a projecting function of original data into a suitable graphical space, and interaction
tools. Wegman’s analysis strategy is based on a system of parallel coordinates as visu-
alization support (Inselberg, 1999), a high-dimensional rotation algorithm (Asimov,
1985; Cook et al., 1995; Buja et al.,, 2005), and saturation brushing and color design
(Wegman, 2003).

Linking original data with graphical representation allows the user to have an in-
novative view of the data: by querying objects on the graph, the user directly interacts
with the data and with the analysis parameters.

According to Wegman’s recipe, but using different ingredients, we propose an-
other way to handle data visualization in a statistical context; we like to consider our
approach as a little more statistical and a little less computational.

Parallel-coordinate systems are replaced with Cartesian systems (where axes take
on a very special statistical meaning because they are factors); the similarity between
statistical units in R? is evaluated in terms of distances by the use of dendrograms;
classical brushing and other more or less classical interactive tools that are presented
below ensure a smooth man-machine interaction.

There are many software programs and packages that allow the user to interact
with data: users can select groups of units and change the appearance of the plot.
With respect to classical interactions, the approach proposed by Wegman allows the
user to affect visualization support by changing the analysis parameters.

In other words, the data display changes, either when there are changes in the data
(adding or deleting variables or units) or when the analysis parameters are modified.
In both cases the visualization satisfies a (statistical) criterion.

Interaction capabilities in the visual data exploration phase complete the interac-
tivity analysis toolkit. Results are presented in some visual forms providing insight
into the data, drawing conclusions, and interacting with the data.

A useful task-oriented criterion for pursuing an exploratory approach is the visual
information-seeking mantra (Shneiderman, 1996; Card et al., 1999). The basic steps for
this kind of approach are listed in order of execution below:
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= QOverview
=— Zoom and filter
= Details-on-demand

First, the user needs to get an overview of the data. In the overview phase, the user

identifies interesting patterns and subsets and focuses on one or more of them. Fo-

cusing consists in a distortion of the overview visualization or in using another vi-

sualization technique (Buja et al., 1991). Analyzing the patterns, the user highlights

the most important information, using the drill-down functionality. Finally, access-
ing the (selected) data subsets, the user can retrieve interesting patterns and subsets

in order to perform further detailed exploration (Antoch, 2005).

According to Shneiderman’s (1996) proposal for designing advanced graphical
user interfaces, four more tasks supplement the previous list, namely:

OVERVIEW: the user gains an overview of the data.

ZoowM: the user zooms in on items of interest.

FILTER: the user filters out uninteresting items, by dynamic queries. By allowing
users to control the contents of the display, they can quickly concentrate on in-
teresting patterns. At this aim, the software should offer both controls and rapid
display update.

DETAILS-ON-DEMAND: the user selects an item or a group of items in order to get
details.

RELATE: the user views relationships among data items.

History: undo and replay support allows the user to progressively refine the explo-
ration; the run actionSs history is stored to retrace the followed steps.

ExTrACTION: allows the user to extract subsets through query parameter setting.

The analysis approach in an exploratory framework mainly focuses on the results
of direct visualization. These results can be made dynamic offering user interaction
capabilities on the graphical representation. The incorporation of interactive tech-
niques implies that to any action on a screen corresponds a reaction either in numerical
analysis or in visualization (VITAMIN-S FSR, 2002).

The Use of Visual Variables
for Designing Useful Representations

In an interview, Bertin (1967) stressed the idea that the use of computers for visual-
ization should not ignore the real objectives of graphics, namely, treating data to get
information and communicating, when necessary, the information obtained.
According to the definition of an image as a sign’s structured set in a visual field,
Bertin identifies three dimensions: X and Y define the sign’s position in 2-D space,
and Z, the third dimension, specifies the informative content. In order to measure
the usefulness of any given construction or graphical invention and to avoid useless
graphics, Bertin warns us to answer the following three questions:
— Which are the X, Y, and Z components of the data table? (What is it all about?)
— What are the groups in X and Y that Z builds? (What is the information at the
general level?)
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— What are the exceptions?

A useful representation must provide clear answers to these questions.

In addition, Csinger (1992) refers to the Steven and Weber laws on human percep-
tive capabilities and highlights two basic behaviors of human perception: (i) differ-
ences are perceived in terms of relative variations; (i) human perception of variations
is biased and the bias is against valuing distances and gradually becomes more favor-
able toward areas, volumes, and colors.

Traditional (sometimes overused) factorial maps and dendrograms, thanks to their
full correspondence to Bertins principles, are very popular. Moreover, giving the
maximum prominence to distances, these representations are very helpful in min-
imizing biased perceptions.

In addition, to enrich information that can be transmitted through 2-D repre-
sentations, Bertin introduces seven visual variables: position, form, orientation, color,
texture, value, and size.

The display in Fig. 4.7 was realized from a real dataset and was chosen because
it is a good example to understand how to read this kind of enriched visualization.
At this point it is not relevant to know which data are represented: in Sect. 4.8 the
actual informative potentiality of enriched representations will be shown in practice.
Looking at Fig. 4.7, the reader can appreciate how the inertia (of the first two PCs) is
distributed among the statistical units and according to the factorial axes. In partic-
ular, units are visualized by means of pies: sizes are calculated according to the total
contribution of each statistical unit; the slice color denotes the share of contribution
to each factor (accordingly colored). Influential units are characterized by the biggest
pies and can be easily and quickly identified even if there are thousands of points on
the plot.

It is possible to obtain a similar representation using either the absolute contri-
butions or the square cosinus associated with the points. They consist of coefficients
computable for each axis allowing one to interpret the axes in terms of the units and
the adequacy of the unit representations, respectively (Lebart et al., 1984). In partic-
ular:

1. ABSOLUTE CONTRIBUTIONS, which indicate the proportion of explained variance
by each variable with respect to each principal axis.

2. SQUARED CORRELATIONS, which indicate the part of the variance of a variable
explained by a principal axis.

It is also possible to represent both the above measures using an index for drawing
the pies and the other to attribute different brightnesses to the points (a darker point
could denote a high value of the index associated to it).

In the case of cluster representation, it is possible to query a given cluster on the
factorial plane in order to visualize its internal composition (in terms of both units
and variables) through the use of “drill-down” functionalities.

Obviously, clustering methods can be either nonhierarchical or hierarchical. It is
clear that in the case of a hierarchical method that exploits linking functionalities, it
is also possible to link two different views of the same data (the dendrogram and the
factorial plane) in order to obtain more information (Sect. 4.5).
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Figure 4.7. PCA unit display: absolute visualization of contributions through point size and color

(green and blue refer, respectively, to the first and second factors)

A useful interactive capability in this sense is based on the dendrogram dynamic
cutting: changing the cutlevel of the dendrogram, the user can consequently visualize
the resulting partition on the factorial plane. Obtained clusters can be described in
terms of descriptive tables and charts; the user can decide to drop a cluster from the
analysis or to aggregate two or more homogeneous clusters. As a consequence of the
user action, the analysis restarts again and the results change.

Aside from the classical dendrogram, alternative views can be obtained using the
tree views that are typical of modern operating system user interfaces. An illustrative
example is shown in Fig. 4.8. It is an innovative representation useful for visualizing
results of a cluster analysis that also allows the user to query a particular level of the
tree.

The user can collapse (expand) a particular cluster in order to hide (to show) the
items included in that cluster. Drill-down functionalities allow one to browse a given
cluster, while linking functionalities between the tree-view representation and the
factorial plane provide the user the capability to select a different cut level in order
to visualize the corresponding clusters on the factorial plane.
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Figure 4.8. A tree view clustering representation

Interactivity Within and Between Graphics

Global views are used to provide context for more detailed views, to help formulate
a search, identify patterns, or make a gestalt overview (Cleveland, 1993, 1994; Boun-
ford, 2000).

Human-machine interaction confers substantial advantages to the power of statis-
tical graphics (Cleveland and McGill, 1988). Interactive manipulation is the capability
to directly interact with displays to query them for information, to link them, and to
change their shapes, scales, and other characteristics so that a wide range of views can
be scanned. Interactive manipulation techniques can be developed and used within
each graphic as well as between graphics and between graphics and data.

Manipulation techniques can be classified into two main areas:

1. INTERACTIVITY WITHIN GRAPHICS, aimed at promoting interactivity on a single
graphical representation. Among the available tools are: the ability to show/hide
parts of a graph, the ability to use color/size information in order to change the
representation according to the point attributes, and the ability to use the mouse
pointer to query the graphical representation. Moreover, the user can alter the
data table in order to observe changes on the graph. Such changes include the
deletion of data, the highlighting of data (the data will stand out against normal
data), and the focus of data (in order to show as mush detail as possible on the
data). Nevertheless, traditional tools can be used, i.e., context-sensitive querying,
zooming, flexible scaling, resizing of graphics and of objects, coloring of objects,
selecting (by points, areas, etc.), masking, and grouping (Dhillon et al., 1998;
Hurley and Buja, 1990).

2. INTERACTIVITY BETWEEN GRAPHICS, aimed at promoting the interactivity among
different views of the same data. It is straightforward to say that the previously
listed tools can be used also for this kind of interactivity, mainly based on the
linking concept: to any action on a view corresponds the same reaction on all
the related views of the same data (Symanzik, 2004).

4.7.2
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Previously we pointed out that the use of graphical representations could be a starting
point for data exploration. In other words, starting from these representations, the
main idea of graphical interactivity is to allow the user to visually query the data

(Unwin, 1999). That is, once the data have been displayed on graphics, the next step

is to allow the user to manipulate the graphics in an interactive fashion, in order

to search for patterns in the data. We refer the interested reader to Wilhem’s survey

on “the paradigm of the linked view”, which recently appeared in Rao et al. (2005)

(Wilhelm, 2005).

According to their basic aims, a consistent taxonomy of graphical interactive tools
is as follows:

FINDING PATTERNS: clusters, outliers, unusual groups, and local densities are exam-
ples of features that should be interactively inspected by users. Very important is
the inspection of low-dimensional dependencies, which are helpful for dimen-
sion reduction.

PosING QUERIES: after the identification of interesting patterns, the user should be
able to highlight individual cases as well as subsets of data. The results of such
queries should be given in a graphic display.

Different interactive methods are used to carry out the previous tasks. The under-
lying idea that associates the different usable tools is the data consistency principle:
whatever changes the user causes, each available data view (numerical and graphical)
is consequently updated.

The analyst can thus act on the screen, generating parameter changes and causing

a new execution of the analysis and a subsequent redrawing of the graphical repre-

sentations. The user can take several different analysis pathways based on the use of

one or more interactive tools that allow the user to address different tasks:

— Exploring the original dataset (drill-down functionalities);

— Asking for a different representation of all the information (multiple views) or of
the information stored in a selected area of the graph (subset views);

— Dropping points, units, and/or variables from the analysis (deletion): deleting
point(s) can help the user to evaluate the sensitivity of the analysis and of subse-
quent representation to particular units and in order to compare this sensitivity
among the different views;

— Aggregating/disaggregating (grouping/ungrouping) units in order to reduce/in-
crease the level of detail of the representation;

— Filtering the representation in order to visualize only part of the information. The
filtering criteria can be based both on values of one or more variables (using suit-
able tools to build and/or query) and on indexes (the user can ask to graph units
characterized by given values of one or more indexes). With respect to the last
point, in particular, a set of statistical measures can be used to filter the relevant
information so as to reduce the amount of represented points according to the
importance of the information lying below;

— Focusing on specific characteristics: the user can decide which feature of the data
to visualize and the way to display it. This includes the choice of variables, the scale
and aspect of the plots, the possibility to animate the plots using real-time controls
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in order to have different views of the same set of data, the choice of particular
range of values for a numerical variable, the use of tools to obtain a better visual
perception of the data (in the case of multiple points in the same plotting location
one simple solution is jittering, i.e., a small amount of uniform random noise is
added to the data before graphing);

— Asking for a representation of part of the information, namely, starting from unit
attributes (subset selection) or querying a given region (selection of an area), that
is, the user can concentrate on particular points and regions. These are made to
stand out from the background and highlighted using a different color, dimen-
sion, or filling in order to look for clusters or behavior different with respect to
unselected points;

— Analyzing several linked views of the same data (linking, brushing, slicing). Mul-
tiple graphics is an old technique used to propagate information through differ-
ent plots that display different aspects (dimensions) of the same dataset. When
points are selected on a view through an input device, all views of that case are
highlighted on each of the other plots simultaneously. In this way the user can an-
alyze if the selected points have some particular features in the other dimensions
or views. Linking, brushing, and slicing are based on the idea that by emphasiz-
ing the common identity of cases in multiple displays, the analyst can more easily
relate several displays to one another. They allow one to look for clusters, to ex-
plore the relationships among variables, or to investigate if a particular pattern
or position is confirmed on different views of the same data. Moreover, the link-
ing capability can be used not only among different graphical displays but also
between a graph and the input data;

— Redrawing the views using only certain selected levels of a strata variable (con-
ditional selection), mainly categorical variables, even if intervals of a quantitative
variable can be used. The redrawing of the graphs requires one to rerun the sta-
tistical analysis in order to visually concentrate on groups of units characterized
by the same level(s) of the strata variable. This tool provides a powerful method
to execute conditional analysis.

An Application: the Survey
of Italian Household Income and Wealth 4.8

Previous ideas are best transmitted through a typical application. Results shown in
the present section have been obtained using the software VITAMIN-S. VITAMIN-S
(VIsual daTA MINing System) is a prototype software realized in the framework
of the 1999-2002 IST-2000-26341 project; the project was sponsored by EC
fifth FP.

This contribution has been greatly affected by the authors’ experience in the devel-
opment of the VITAMIN-S software. The most innovative aspect of VITAMIN-S
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is the connection between MDA techniques and graphic interaction tools (Klinke,
2004). The software was designed as a data-mining tool to work with huge amounts
of data.

Data presented in this section come from the Italian Survey of Household Income
and Wealth (SHIW), a large-scale household survey run biannually by the Bank of
Italy on a panel of about 8000 Italian households (24 000 individuals) spanning about
300 Italian municipalities (Bank of Italy, 2004). The SHIW began in the 1960s with
the aim of gathering data on the income and savings of Italian households, and it
is widely used in studies on saving behavior by Italian households. It collects de-
tailed information on Italian household demographic characteristics, consumption,
income, and balance sheet items. For our analysis, we consider data of the last survey
(year 2004). For an exhaustive description of the data and related issues, see D’Alessio
et al. (2004).

For the sake of simplicity, among the available indicators we have selected are the
following:

ETA: age (years)
Q: working status (1=employed, 2 = self-employed, 3 = unemployed)
AREAS5: geographical area
(1= northeast, 2 = northwest, 3 = central, 4 = south, 5 = islands)
YL: compensation of employees
YT: pensions and net transfers
YM: net income from self-employment
YC: property income
CD: consumption (durables)
CN: consumption (nondurables)
S:  Saving
AR: real assets
AF: financial assets
PF: financial liabilities
BD: consumer durables

Data exploration and feature extraction can be well presented through the visual ap-
proach. Unfortunately, static views presented in this section do not allow us to ap-
preciate the human-machine interaction analysis power that comes from MDA.

The following results refer to a two-step analysis (factorial analysis and clustering).
Looking at the point configuration on the factorial plans, the user can modify the
analysis parameters or add and remove variables or statistical units.

VITAMIN-S software was designed to be used also by users not having a high
level of skill in MDA. Indeed, specifying the type of variables and the desired analysis
strategy is enough to start.

In this example we classed all variables as continuous except Q and AREAS5. In par-
ticular we used the AGE variable and the two categorical variables as supplementary.
Then we specified factorial analysis plus clustering as a strategy. Once these parame-
ters were established, VITAMIN-S performs the whole analysis and then the user can
act on the graphic displays. Any action performed on one display causes methods to
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run again (if necessary), and new results updating the current views automatically
appear.

Let us start the analysis results interpretation by looking at the representation of
variables with respect to the first two factors. In Fig. 4.9 we see the first factorial
plan whose total associated inertia is 47.42 %. We observe all indicators, but YT con-
tributes to the first factor. With respect to the second factor, instead, they split into
two groups.

After the factorial axes are interpreted according to the variables in the analysis, we
shift our attention to the statistical units’ configuration on the same factorial space.
In Fig. 4.10 we observe the configuration of points on the first factorial plan. As in the
most of data-mining applications, we notice that the largest part of the statistical units
is massed on the axis origins. This happens because the analysis is strongly affected
by a few influence points.

In order to detect which kind of units have the greatest influence, the system allows
the user to differentiate points according to the modalities of a categorical variable.
In this example, on the right-hand side of Fig. 4.10 points are colored according to
the modalities of variable Q (working status): blue points correspond to “employed”,
cyan indicates “self-employed”, and black indicates “unemployed”

% of explained variability: 47.42%
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Figure 4.9. Representation of variables: SHIW data



380 Francesco Palumbo, Domenico Vistocco, Alain Morineau

% of explained variability: 47.42%

20

Factor2 (14,96%)

-204

-504

~40+4 '
-50
-40

-20
Factor1 (32.46%)
(@)

Factor2 (14.96%)

-10 4

-20 4

-30 4

-40 |

20

% of explained variability: 47.42%

=50

-40

T

=30 -10

20

Factort (32.46%)
(b)

Figure 4.10. Statistical units on the first factorial plan (SHIW data). (a) Classical view. (b) Units
distinguished according to categories of Q variable

Some interesting patterns can also be revealed using a scatterplot matrix repre-
sentation obtained by representing the first factor with respect to the other ones, as
shown in Fig. 4.11. The plot, as above, uses highlighting to explore the position of
employees (black points) in the different spaces.

Figure 4.12 shows the contribution representation for the units. With respect to the
classical representation that uses dimensionless points, the same units are represented
by pies proportional to their contribution. Notice that pies are characterized by two
colors (blue and green): green refers to the contribution to the first factor (horizontal
axis) and blue to the second one. Configuration of the points in the graphics is en-
hanced by many useful bits of information for the analyst. To investigate the masking
effect, on the right-hand side only the units with a contribution to the first plane of
up to 5 % are shown using the filtering capabilities of VITAMIN-S.

The exhibited pattern of the unit plot is typical in data-mining applications: an
overwhelming majority of points shows features similar to the average unit. This in-
volves a masking effect in revealing interesting variability. The next step is to make
these units supplementary. Removing units or variables is a simple and fast task with
VITAMIN-S: one simply selects and cuts the points on the screen. A removal implies
that factors are recalculated: this is immediately done in VITAMIN-S and displays
are updated in real time. The UNDO functionality allows the user to go forward and
backward in the different configurations. By evaluating changes in distances among
points and absolute contributions the user understands the relationships in the data.

After the deletion, we take alook at the variable and unit configuration in Fig. 4.13.
From the variable representation it is evident that a remarkable change occurred: on
the first axis two variables move to the right side of the plane while the variables are
again split on the second factor.
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Figure 4.12. (a) Unit representation using contribution. (b) Units with contribution < 5% (SHIW data)

Another typical strategy in data-mining exploration consists in studying the influ-
ence of anomalous observations. Using again the filtering capabilities of VITAMIN-S,
units with a related contribution greater than 70 % are isolated in Fig. 4.14.
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Figure 4.13. Variable and unit representations after the deletion of the less important units

In exploratory MDA, to evaluate the influence of anomalous observations, statis-
ticians remove units having the greatest contributions and, projecting these as sup-
plementary points, compare the two-point configurations.

High-contribution units are then made supplementary using the deletion tool and
the resulting planes are shown in Fig. 4.15.

It is evident that a remarkable change occurred: while the variables preserves their
position on the first axis with respect to Fig. 4.13, they move on the second factor, that
is, they are more influenced by anomalous observations.

The user can reiterate the point deletion step or, if the point configuration is be-
lieved to be sufficiently stable, go to the analysis of the classification step.

% of explained variability: 43.07%

: é
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=
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20+ i
-20 0
-10 ¢
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Figure 4.14. Units with a contribution > 70 % (SHIW data)
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Figure 4.15. Variable and unit representations after the deletion of the most important units

VITAMIN-S was expressly designed to perform exploratory analysis also on large
and very large datasets, so it can exploit hierarchical and nonhierarchical cluster anal-
ysis algorithms. The current example, consistent with the structure of the contribu-
tion, is realized using an agglomerative hierarchical approach: Ward’s classification
algorithm. As described in Sect. 4.5, cluster analysis assumes as input data the unit
coordinates on the factors (the principal components). Finally, the exploratory pro-
cess ends with a dendrogram display (left-hand side in Fig. 4.16), whereas the analysis
process goes on to obtain cluster descriptions. In this phase there are several different
data and analysis parameters the user can set. Looking at the dendrogram, we notice
the yellow vertical line. Moving the line from right to left, the user can set the classi-
fication tree cutting point and the number of partition classes as a consequence. At
the same time, on another display there is the cluster display on the factorial plan.
The user can act on both displays. In particular, when a cluster on the factorial rep-
resentation is deleted, the set of active units changes and the whole analysis process
works in the background to recalculate all the results of the entire analysis. Results
are immediately displayed in the updated views.

Finally, when the user is satisfied with the obtained configurations, the user can
click on a command button to save all results, graphical and analytical.

Conclusion and Perspectives 4.9

Recent visualization techniques are based on the highly intensive exploitation of PC
graphics cards capabilities. We should expect that these capabilities will further im-
prove in coming years. However, the risk is that these representations, which are
very attractive from an aesthetic point of view, will not be readable using a statis-
tical approach. Statistical reading of graphical representations must necessarily be
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Figure 4.16. Clustering results: dendrogram and cluster displays on the first factorial plan

based on key elements for the correct interpretation (Wilkinson, 2004; Wilkinson
et al., 2005). The use of space colors, shapes, and sizes are linked to statistical con-
cepts (Tufte, 1990, 1997b,a, 2001). As in Chernoft’s face representations, every detail
of the graphic should represent a particular aspect of the data. We can appreciate
different and even nicer representations; they could be useful to quickly and easily
provide information, but they are not statistical representations. The present contri-
bution has proposed some well-known data representation techniques from MDA
in a new light, where human-computer interaction together with modern graphic
capabilities can offer simple and highly informative representations.

For the sake of brevity, we did not mention many other statistical methods in the
MDA framework that can ensure the same capabilities and are founded on the same
paradigm. In the factorial methods framework, it is worth mentioning correspon-
dence analysis (Greenacre, 1984), multidimensional scaling (Cox and Cox, 1994), and
Procrustean analysis (Mardia et al., 1979). It is necessary to remark that Euclidean
distance is one among hundreds of available metrics. The central role of Euclidean
distance in geometry captures researchers’ attention more than other distances and
dissimilarity indexes. As has been pointed out by many authors, the role of distance
is prominent and much attention must be paid to this choice.

The choice of classification algorithm would require a wide and deep review of
the most recent literature. As a final remark, we would like to stress the fact that
the analysis process described in this paper can succeed in exploratory analysis if
the same distance, the same yardstick, is kept constant through the whole analysis
process.

Our example has been realized with the help of VITAMIN-S software; however,
using the most recent metalanguages, the same results can be obtained by someone
with very little programming experience. Some important computational aspects of
exploratory data analysis are treated in the book by Martinez and Martinez (2005).
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Density estimation and related methods provide a powerful set of tools for visual-
ization of data-based distributions in one, two, and higher dimensions. This chapter
examines a variety of such estimators, as well as the various issues related to their
theoretical quality and practical application.

The goal of understanding data leads to the notion of extracting as much informa-
tion as possible. This begins by understanding how each individual variable varies. If
the parametric form is well known, then a few statistics answer the question. How-
ever, if the parametric form is unknown, then visual examination of a well-con-
structed nonparametric density estimate is the recommended route. In this way, fea-
tures of the density, such as the number and location of modes, can be identified.
With multivariate density estimates, we can extend this ability to understand the dis-
tributional relationships between variables in two or more dimensions.

Univariate Density Estimates

5.1.1

Given a univariate sample {xi,...,x,} ~ f(x) of an unknown parametric form, vi-
sualization of an estimate of f is an important part of the analysis process for multiple
reasons. It allows for direct examination of possibly important structure in f, such
as skewness or multiple modes. In addition, it provides for a means of considering
assumptions such as that of normality for further analysis. Such visualization can
provide an alternative to a formal goodness-of-fit test, particularly for large sample
sizes where such tests may reject even quite reasonable models.

Histograms

The form of density estimation most familiar to analysts is the univariate histogram.
While it owes its popularity to its simplicity, the histogram can provide a serviceable,
if crude, idea of a dataset’s distribution.

Construction of a histogram requires a mesh of bin edges, {fp < t; < £, < ... <
ti }, covering the range of the data. Define the jth bin as B; = [t}, tj.1), its width as
hj=tj.—tj,anditscountasv; = Y} I, (x;), where I, (x) is an indicator function,
taking 1if x € A and 0 otherwise. A frequency histogram plots

&i(x)=v; xeBj, (5.1)
while a percentage histogram plots

100 Vj

gz(X)Z XEB]'. (52)
As long as the widths for all bins equal a constant h; = h, either of these will give
a reasonable visual depiction. But as neither integrates to 1, neither is a true density
estimate. If bin widths vary, neither frequency nor percentage histograms should be
used, as they will give excessive visual weight to the larger bins.
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A density histogram, in contrast, plots
f(x)=— xeB;. (5.3)

A simple calculation demonstrates that the density histogram integrates to 1 and is
therefore a true density, and it can be shown to provide a reasonable estimate of f.
The use of h; in rescaling means that f will be well estimated, even with varying bin
widths.

See Fig. 5.1 for an example of a density histogram. The data consist of average win-
ter (December, January, and February) temperature minimums, in degrees Celsius,
for n = 16,236 grid points in the US state of Colorado over the period 1995-2004.
This 10-year average of temperature minimums, as well as average temperature maxi-
mums (degrees Celsius) and total precipitation (millimeters), were constructed from
monthly datasets available from the Spatial Climate Analysis Service at Oregon State
University (http://www.ocs.oregonstate.edu/prism/). These high-resolution, gridded
datasets are based on the parameter-elevation regressions on the independent slopes
model (PRISM) discussed in Daly et al. (1994) and Gibson et al. (1997) that incor-
porates station-level meteorological data, a digital elevation model, as well as other
spatial datasets, in a type of “expert system” designed to represent how an experienced
climatologist would create a climate map.

The histogram in Fig. 5.1 clearly shows a bimodal structure relating to the geog-
raphy of the state, a sharp mode to the right for the eastern plains, and a shorter,
broader mode indicating the lower temperatures of the mountain grid points.

The choice of bin width plays a critical role in the appearance and accuracy of the
histogram. Theoretical analysis of the density histogram involves the multinomial
distribution and a Taylor’s series on the true distribution f; see Scott (1992) for details.
The variance of f(x) is dominated by a term of the form f(x)/nhj, for x in Bj,

I I I I
-20 -15 -10 -5
minimum temperature
Figure 5.1. Density histogram of average minimum winter temperature (degrees Celcius) over a grid of

locations in the US state of Colorado
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indicating that the variance will be reduced for large bin width. On the other hand,
the bias of f(x) for x € B; is dominated by

(tmz+ : _x)f'(X) = (mj-x)f'(x), (5.4)

where m; is the midpoint of bin B;. Not surprisingly, the piecewise-constant his-
togram has greatest bias in bins where the true density has the largest (positive or
negative) slope. However, this effect can be reduced by the use of smaller bins, since
|m;j— x| < hj/2forall x € B;.

Clearly, no single bin width will perform optimally for both variance and bias, but
we can balance these competing forces by considering the mean integrated squared
error (MISE), found as the sum of the integrated variance and the integrated square
of the bias. Optimization over a single bin width h suggests that asymptotic MISE
will be minimized for bin width

6\
Wt = 173 5.5
(R(f’)) " 53

where the “roughness” functional, R, is defined by R(g) = [ g(x)? dx. Unfortunately,
the presence of R(f”) limits the applicability of this rule, as it is highly unlikely to be
known when f itself must be estimated.

As a more practical alternative, many computer packages follow a recommenda-
tion by Sturges (1926) that the number of bins be roughly 1 + log, (7). Sturges chose
the bin counts v; = (Kj_l) for j=0,1,...,K -1, so that

K-1
n=>y vj=(1+1)" =251, (5.6)
j=0

Hence the number of bins K = 1+log, (7). Sturges’ bin counts are proportional to the
binomial B(K — 1, 1) probabilities, which is approximately normal for moderate K.
Hence, Sturges’ rule is a version of a normal reference rule but motivated by binomial
approximations rather than by mean squared error considerations.

While Sturges’ rule gives fairly reasonable widths for small samples from smooth
densities, the number of bins increases (and therefore h decreases) at a rate far slower
than optimal for AMISE purposes. Better rules replace R(f") in the theoretical for-
mula with the value for a normal distribution, resulting in h* = 3.50n™/3. Scott
(1979) suggests using the sample standard deviation s in hg = 3.5 s n™"/3, while Freed-
man and Diaconis (1981) suggest using the more robust interquartile range IQR in
hpp =2IQR n13, Usually, hpp < hg, since 0 = IQR/1.35 for the normal density and
hence 3.5¢0 = 2.6 IQR, which is 30 % wider than hpp. Although less oversmoothed
than the estimates generated by Sturges’ rule, estimates using the normal-based rules
can still be smoother than optimal for more complicated underlying densities. This
may not be terrible; oversmoothed histograms often look better to many viewers, as
the bias of overly large bins can be easier to mentally smooth out than the multiple
small modes that can appear in undersmoothed estimates. Nonetheless, the strong ef-
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fect of bin width suggests that for visualization purposes, it is wise to view a collection
of histograms with more than one choice of bin width; a particular sequence recom-
mended in practice is h = hg/1.05* for k = 0,1, ..., until & is obviously too narrow.

The exact locations of the bin edges does not enter into the expression for h* be-
cause the bin edge is generally theoretically less important than the bin width. The
exception occurs when f has a known point of discontinuity. Placing a bin edge at
such a point will provide a simple, automatic adjustment. As 0 is frequently a point
of discontinuity, selecting bin edges as ty = 0, t; = jh, is often a wise choice. Despite
the lower-order theoretical effect, placement of bin edges can have substantial visual
effect on histograms of moderate sample size. As with bin width, inspecting multiple
histograms with different bin edges is highly recommended. A JAVA applet is avail-
able in the Rice Virtual Lab in Statistics to explore the interaction of bin width and bin
edge selections; see the histogram applet at http://www.ruf.rice.edu/~lane/rvls.html.
Features that appear in most or all alternative histogram views should be given much
more credence than those that appear only once.

Improved Binned Density Estimates

Visual and theoretical improvement can be obtained in density estimates from histo-
gram-style binned data through the use of interpolation. The oldest such technique
is the frequency polygon, generated by linearly interpolating histogram bin centers.
By this means, the slope of f may be tracked, and the bias improves from O(h),
depending on f’(x), to O(h?), depending on f”’(x); details may be found in Scott
(1992).

The edge frequency polygon of Jones et al. (1998), instead interpolates the his-
togram bin edges, at heights representing the averages of adjacent histogram bin
heights. The result reduces variance and optimal MISE, at the cost of a small increase
in bias.

Minnotte’s (1996) biased-optimized frequency polygon interpolates histogram bin
centers, but at heights calculated to ensure that the multinomial probabilities repre-
sented by the bin data proportions are maintained. Although the estimates may go
negative, and have higher optimal MISE properties than the edge frequency poly-
gon, their minimal bias recommends them in cases where large amounts of data are
collected into coarse bins and no finer binning is possible. These can be improved
still further by interpolating with cubic or higher-order splines. The resulting higher-
order histosplines (Minnotte, 1998) achieve O(h*) or higher levels of bias, and can
strongly outperform other estimates when large samples are prebinned into wide
bins.

Figure 5.2 shows examples of the standard frequency polygon, edge frequency
polygon, bias-optimized frequency polygon, and cubic higher-order histospline com-
puted from the histogram information of Fig. 5.1.

The effects of the bin origin nuisance parameter can be minimized by comput-
ing several histograms, each with the same bin width, but with different bin ori-
gins. Scott’s (1985) averaged shifted histogram (ASH) is a weighted average of m his-
tograms, fi, fa, ... fum, all constructed with the same bin width, A, but with shifted

5.1.2
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Figure 5.2. Frequency polygon and variants constructed from the histogram information of Fig. 5.1

bin origins, {0, h/m,2h/m,...,(m — 1)h/m}. The data are prebinned into inter-
vals of width § = h/m. Let the bin count v, denote the number of points in bin
By = ((k—1)6, k8]. Then the equally weighted ASH is defined by the equation

R 12
flx)=—=>fi(x) X € Bg. (5.7)
m 3
Using weights w,, (i), the weighted ASH becomes
R 1 & .
f(x):E Z Wi (7) Visj x€Byg. (5.8)
j=—m

Figure 5.3 shows the effect of equally weighted averaging of increasing numbers of
histograms for the data and bin width of Fig. 5.1.

Kernel Density Estimates

The bin origin can be eliminated altogether by the use of a kernel density estimate.
The result is superior theoretically as well as smoother and thus more appealing vi-
sually.

The estimate requires a smoothing parameter, h, that plays a role similar to that
of the bin width of a histogram and that is sometimes referred to as the bandwidth
of the estimate. It also requires a kernel function, K, which is usually selected to be
a probability density function that is symmetric around 0.

From these, the estimator may be written as

A 1 Z X —Xi 1 &
f(x)—nh ':1K( ; )—n;Kh(x xi), (5.9)

1
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Figure5.3. Averaged shifted histograms constructed from the data and bin width of Fig. 5.1 with

increasing numbers of averaged bin edges

with Kj,(¢) = K(t/h)/h. The estimate is the sum of a collection of n probability
masses, each with shape K and size n™!, centered on the observations. Figure 5.4
demonstrates the construction of such an estimate for the percentage of silica in 22
chondrite meteorites (from Ahrens, 1965), with a standard normal kernel and a band-
width of L
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Figure 5.4. Example of kernel density estimate construction for percent silica in chondrite meteorites.
The original observations and individual kernel functions are displayed. The final estimate is the

vertical sum of all n=22 kernel functions
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Choice of kernel is relatively unimportant, as any reasonable p.d.f. will provide
a similar picture. Optimal mean integrated squared error may be achieved using the
Epanechnikov kernel, a truncated parabola with form

KE(t):Z(l—tz) -1<t<l. (5.10)

The discontinuous derivative at +1 is inherited by the estimate at numerous points,
so for visual purposes this choice of kernel may not be ideal. The biweight kernel,

15
Kp(t) = E(1—t2)2 -1<t<l, (5.11)

is nearly as efficient and has a continuous first derivative, so it is often preferred for
the smoother appearance of its estimates. (The triweight kernel, Kr(x) = 35(1 -
t2)3/32, has a continuous second derivative.) Finally, the standard normal kernel,
Kn(t) = ¢(t), is smoother still and often preferred for its infinite number of contin-
uous derivatives and its uniquely well-behaved mode structure (Sect. 5.1.5).

Choice of the bandwidth 4 is more critical and, as with a histogram, can have a very
strong effect on the resulting estimate. Large h leads to oversmoothing and (asymp-
totic) bias proportional to h? f(x ), while small & leads to an undersmoothed, highly
multimodal estimate with (again asymptotic) variance proportional to f(x)/nh. Op-
timization shows that the asymptotic mean integrated squared error may be min-
imized by choosing h* = cx[R(f")n] /%, with cx depending on the kernel and
equaling 1.719, 2.036, and 0.776 for the Epanechnikov, biweight, and normal kernels,
respectively. As with the histogram, the presence of a function of f in the optimal
choice of h leads to a requirement of alternative approximations.

One approach is again to assume a normal distribution for f. This leads to the
normal reference rule h = cNK(m‘l/S, for cyk = 2.35,2.78, and 1.06 for the Epanech-
nikov, biweight, and normal kernels. This will be oversmoothed for most nonnormal
densities, so an initial estimate with extreme skewness or multiple strong modes may
argue for a second estimate with smaller /. Figure 5.5 demonstrates the effect of h
with three normal kernel estimates for a subset of 250 points of the minimum tem-
perature data from Fig. 5.1. The normal reference rule suggests that 4 = 1.01 for this
data, but the strong bimodality indicates that a smaller choice, such as the middle
h = 0.5 example, is probably more appropriate. Taking h smaller still, as in the right-
most h = 0.25 estimate of Fig. 5.5, leads to a clearly undersmoothed estimate. Note
that the individual kernels at the bottom of each plot are scaled correctly relative
to one another, but not to their full estimates. For visibility, each has been rescaled
vertically to 10 times the height of a single kernel used for this sample.

A variety of more highly computational approaches for data-based bandwidth se-
lection have also been proposed. These include variations on cross-validation [in-
cluding Scott and Terrell (1987), Hall and Marron (1988), and Sain et al. (1994)] as
well as methods using pilot estimates of R(f”') [such as Sheather and Jones (1991)
and Hall et al. (1991)]. While these can lead to improved choice of 4 and accordingly
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Figure5.5. Effect of h on kernel density estimates of a subset of the minimum temperature data

better estimates, the results can be unstable and should not replace the examination
of multiple estimates by the skilled analyst.

One advantage kernel estimates have over simpler density estimates such as his-
tograms is the ease with which they can be compared across different datasets. Kernel
density estimates are continuous and hence are well suited to overplotting with dif-
ferent colors or line types, which makes visual comparisons between different groups
simple and effective.

An example is shown in Fig. 5.6. The black curve represents a kernel density es-
timate of the temperature midpoint from the PRISM data for grid cells in Colorado
using a normal kernel and normal reference bandwidth. The grey curve represents
a similarly constructed kernel estimate off the temperature midpoint for the grid cells
in the neighboring state of Kansas. The bimodality in the kernel estimate for Col-
orado is attributable to the differences between the eastern plains and the mountain
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Figure 5.6. Univariate kernel density estimates of average temperature midpoint based on the PRISM

data. Black line: grid points in Colorado; grey line: Kansas
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regions. The kernel estimate for Kansas has a dominant mode consistent with the
eastern plains of Colorado.

Kernel Variants

Minor adjustments allow for estimation of density derivatives as well as the function
itself. The derivative of f is a reasonable estimate of the derivative of f and can be
estimated directly as

5 1 &, (x—x;
= — ile( - ) (5.12)
The variance of this estimate is inherently greater than that of f, and the optimal
choice of h is correspondingly larger.

Returning to estimates of f, a variety of approaches are available for reducing the
bias of a kernel estimate. See Jones and Signorini (1997) for a survey and comparison
of some of the most common higher-order methods. As a rule, most of these will
have fairly minimal effect on the visual impact of the estimate.

The oldest and best-known higher-order methods replace the p.d.f. kernel K with
one involving carefully computed negative regions so as to have second, and possi-
bly higher, moments equal to 0 (Bartlett 1963). For example, starting with standard
(second-order) kernel K, let

Spm = f t"K(t)dt. (5.13)
Then the function
2
Ky (1) = (%) K(t) (5.14)
S4— 8

will have a 0 second moment and be a fourth-order kernel. Using K4 (t) in place
of K(t) will reduce the bias of the estimate. Unfortunately, such an estimate will fre-
quently include undesirable visual artifacts, including extra modes and negative lobes
in the tails of the density estimate, so is not recommended for visualization purposes.

Bias-reduction methods involving “variable location” approaches (Samiuddin and
El-Sayyad, 1990; Hall and Minnotte, 2002) provide better solutions. Instead of replac-
ing the kernel K, these methods use one of our good second-order kernels but center
them on transformed values, y(x;), rather than on the raw x;s themselves. These
transformations depend upon pilot estimates of f and its derivatives in a way that
will reduce the bias. For example, replacing x; with

A

252 f'(x1)
2 f(xi)
provides fourth-order bias and improved estimation near local extrema, but the use

of the standard kernel guarantees positivity and fewer extraneous bumps than found
with the fourth-order kernel.

y(xi) =xi+h (5.15)
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Yet another approach to bias reduction relies on variable bandwidths. By choosing
h; = h(x;) proportional to f~/*(x;), Abramson (1982) demonstrated that this is
yet another way to improve the order of the bias; see also Terrell and Scott (1992)
and Sain and Scott (1996). This approach also has much to recommend it for density
visualization. By using small bandwidths near modes we sharpen the estimates where
bias is greatest. At the same time, wide kernels for isolated points in the tails of the
density lead to smoother estimates with fewer spurious modes there.

A compromise between the single bandwidth of a standard kernel estimate and
the n bandwidths of a variable bandwidth estimate may be found in the filtered ker-
nel technique of Marchette et al. (1996). The authors use an initial normal mixture
distribution estimate with a small number of components to select bandwidths pro-
portional to the component standard deviations. Kernels with each bandwidth are
averaged for each x; with weights proportional to their component densities at x;.
In this way, the smoothness of each region may be adjusted individually to empha-
size large, important features, while deemphasizing unimportant features such as the
many minor modes that may often be observed in the tails of densities.

Figure 5.7 shows these variants for the data of Fig. 5.5. For the fourth-order and
variable-location estimates, the bandwidth is h = 0.5, while the variable-bandwidth
and filtered estimates have the same value for the geometric averages of their band-
widths. Each panel also includes the standard kernel estimate in grey for comparison
(asin the middle panel of Fig. 5.5). All of the variants strengthen and sharpen the large
mode on the right. The fourth-order and variable-location estimates also strengthen
the smaller bumps and modes in the left tail, while the variable-bandwidth and fil-
tered estimates deemphasize the same.
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Figure 5.7. Variant kernel density estimates for minimum temperature data
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Multiscale Visualization of Density Estimates

The importance of the smoothing parameter in the appearance of density estimates
has led to some additional visualization tools that examine a dataset at a wide variety
of smoothing levels.

Recognizing that the most visually striking and important aspect of a density esti-
mate is often the number and location of modes, Minnotte and Scott (1993) proposed
plotting those against the bandwidth for a set of kernel estimates using a wide range of
smoothing parameters. As the number of modes is roughly monotone decreasing in
the bandwidth (strictly, if the normal kernel is used), the authors called the resulting
plot the “mode tree”. The mode tree is highly effective for examining modal behavior
under varying levels of smoothing for a dataset or density estimation method. Un-
less the modal behavior of the density estimation method is the effect of interest, the
normal kernel is recommended. As Silverman (1981) showed, the number of modes is
nonincreasing in h for a normal kernel density estimate. Visually, this means that the
mode tree is well behaved in this case, with mode traces appearing as you continue
down the tree and continuing once they appear. Minnotte and Scott (1993) demon-
strate that this is not the case for estimates derived from nonnormal kernels.

Minnotte and Scott (1993) also demonstrate how additional features may be added
for an “enhanced mode tree,” including locations of antimodes and inflection points,
measures of sizes of modes, and regions of positive and negative second derivatives
(the latter are often called “bumps”). In this way, a great deal of information about
the behavior of the density estimates may be examined without restriction to a single
bandwidth, or even a small set of them.

Use of the filtered kernel technique of Marchette et al. (1996) leads to the “filtered
mode tree” of Marchette and Wegman (1997). The filtering reduces the visual impor-
tance of minor modes in the tail of the density while inflating the prominence of large
central modes.

Overplotting the bumps (regions of negative second derivative) over different band-
widths for multiple resamples, subsamples, or jittered versions of the data leads to the
“mode forest” of Minnotte et al. (1998). Again, the effect is a kind of visual inference,
emphasizing large central modes, while deemphasizing those minor ones in the tails
of the density.

Finally, Chaudhuri and Marron (1999) combined the ideas of the mode tree, “scale
space” from computer vision research (which is closely related to smoothing parame-
ter variation), and some simple inference to propose SiZer (for Significant Zero cross-
ings). At each location-by-bandwidth pixel, one of three colors is plotted depending
on the estimated density slope - significantly positive, significantly negative, or not
significantly different from zero. The resulting patterns may be examined for modal-
ity information.

Figure 5.8 shows the mode tree, filtered mode tree, subsampled mode forest, and
SiZer plot for the minimum temperature data of Fig. 5.5. For the latter, increasingly
dark grey levels indicate significantly positive slope, nonsignificant slope, and signif-
icantly negative slope, while white identifies regions of insufficient data density for
inference. Note the emphasis on the bimodal structure in each of the four plots, al-
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Figure 5.8. Multiscale visualization methods of minimum temperature data. Darker regions of the
mode forest represent higher-confidence “bumps,” while light, medium, and dark regions on the sizer
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though there is suggestion of a more complicated structure as well. The full complex-
ity of the mode behavior may be seen in the basic mode tree, while the filtered mode
tree emphasizes the two key modes as found in its underlying mixture model. The
dark regions of the mode forest perform implicit inference as they indicate bumps
found in many or most of the subsamples of the full data, while the SiZer plot makes
the inference explicit, with alternating light and dark regions strongly suggesting the
presence of underlying modes.

Bivariate Density Estimates 5.2

The basic tool for graphically exploring the bivariate distribution between pairs of
measurements is the well-known scatterplot. A scatterplot is constructed by simply
plotting the pairs of points in the coordinate plane. Generally, some functional rela-
tionship between the variable represented by the y-axis and the variable represented
by the x-axis is not assumed. However, it is precisely the power of the scatterplot to
visualize such relationships that makes it so useful a tool for data analysis.

Friendly and Dennis (2005) present an excellent treatise on the scatterplot and
note that early authors recognized the need to augment the scatterplot to account for
repeated values in the data, such as glyphs and different plot characters to indicate
a multiplicity of points with the same observed value. Cleveland and McGill (1984),
Scott (1992), and others have also noted this and many of the modifications and en-
hancements that have been proposed to convey additional information in scatter-
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plots. These authors have also noted the difficulties that arise due to the overplotting
of characters designed to represent a single observation.

This phenomenon, referred to as “too much ink” by Tufte (1983), has given rise to
the use of more formal density estimators, in particular the histogram and the ker-
nel density estimator, to visualize bivariate distributions and relationships in data.
Bivariate density estimates remain straightforward to calculate but require more so-
phisticated visualization techniques to plot.

Bivariate Histograms

Bivariate histograms share many of the strengths and weaknesses of their univariate
cousins. They remain simple to calculate, with the computational effort being pri-
marily focused on determining the counts of the observations in what are now 2-D
bins. Bin size and location issues remain important, although there is also the addi-
tional issue of the shape of the bivariate bins. Again, one should examine multiple
examples when possible to discover what are true features and what are artifacts of
the histogram mesh.

For a rectangular mesh, an asymptotic analysis of the MISE, similar to the univari-
ate case, shows that the optimal size of the edges of the bivariate bins is proportional
to n~/4. Assuming uncorrelated and normally distributed data gives rise to the nor-
mal reference rule i} = 3.50% n~"* for k = 1,2 and where oy is the standard deviation
for the kth variable. See Scott (1992) for details.

Of particular interest in the construction of bivariate histograms is the notion of
an optimal bin shape. Three types of regular bins are possible: rectangular, trian-
gular, and hexagonal. Scott (1988) compared the three shapes and showed that the
hexagonal bins offer a slight improvement in asymptotic MISE when compared to
rectangular bins; triangular bins were substantially worse than the other two. Carr
et al. (1987) also suggest using hexagonal bins, although from a different perspective.
In particular, they show that, when using some sort of glyph representing the fre-
quency for each bin, a rectangular mesh resulted in a type of visual artifact from the
vertical and horizontal alignment; the hexagonal bin structure has a much improved
visual appeal.

Displaying bivariate histograms can be accomplished in a number of ways. A tra-
ditional bivariate histogram with a rectangular mesh can be displayed using a type of
3-D bar chart. Often structure in the histograms of this type can be obscured by the
viewing angle. Rotating the display and viewing the histogram at different viewing
angles can reveal this hidden structure. In a non-interactive setting, such operations
are of course unavailable. An alternative for displaying bivariate histograms is the
use of the so-called image plot in which color is used to represent the frequency or
density of points in each bin.

An example demonstrating the need and benefit of bivariate histograms is shown
in Fig. 5.9. In the left frame, a scatterplot is shown using the average winter midpoint
temperature and the log-transformed total precipitation for the Colorado PRISM
data. The scatterplot in Fig. 5.9 clearly demonstrates the phenomenon of “too much
ink” and little of the structure in the data can be discerned from the plot. In the right
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Figure 5.9. The left frame shows a scatterplot of the average winter midpoint temperature and the
logarithm of the total precipitation for Colorado PRISM data. The right frame displays an image plot for
a bivariate histogram with the same data

frame, an image plot is used to display a bivariate histogram of the data. The bin-
widths for the histogram were determined based loosely on the normal based rule
discussed earlier. A greyscale is used to display the density of points in each bin with
darker shades indicating a higher density. Far more of the structure in the data ap-
pears, as it is clear that there are at least two modes in the data, including one sharp
mode represented by the higher temperatures and lower precipitation of the eastern
plains and a much more broad mode representing the lower temperatures and higher
precipitation in the mountains.
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Figure 5.10. A bivariate histogram of the Colorado PRISM data using a hexagonal mesh. Shading is as
in the right panel of Fig. 5.9
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As mentioned earlier, hexagonal binning was introduced as way of improving the
visual appeal of bivariate histograms that are displayed using some sort of glyph to
represent the frequency in each bin. An alternative is to use greyscale or color coding
of the bins to represent frequency. An example using the PRISM data is shown in
Fig. 5.10. The number of hexagon bins was chosen to be consistent with the number
of bins in the rectangular mesh of the histogram in Fig. 5.9. The hexagons appear to
further clarify the multimodal structure in the data.

Bivariate Kernel Density Estimators

Bivariate kernel estimates are more common than bivariate histograms. Basic com-
putation is a simple extension of the univariate method. Choice of the kernel function
is a little more complicated but may usually be satisfied with a bivariate kernel gen-
erated from one of the standard univariate kernels.

Bandwidth selection also becomes more troublesome, as a 2 x 2 bandwidth matrix
is now required. Product kernels (diagonal bandwidth matrix) that allow for different
degrees of smoothing in each dimension are appropriate for most datasets, and often
transformations of the original data are used to make the data more amenable to
a more simple form of the kernel. Wand and Jones (1993) give an excellent discussion
of the issues with parameterizing the bandwidth matrix for bivariate kernel density
estimators. The exact form of the bivariate kernel estimator follows from the more
general multivariate presentation at the beginning of Sect. 5.3.

Scott (1992) demonstrates that the optimal smoothing parameter for the product
kernel estimator is proportional to #n~/®, Further, for uncorrelated and normally dis-
tributed data, the asymptotic MISE bandwidth is given as h; = (2/ 3)o5n71/% for
k =1,2 and oy the standard deviation for the kth variable.

Displaying bivariate density estimates can be accomplished easily using contour
plots or via 3-D perspective or wireframe plots. An example is shown in Fig. 5.11,
again using the Colorado PRISM data. The left frame shows a contour plot where
each contour represents the points of equal height of the density. The sharp mode
corresponding to the eastern plains is clearly visible, while there appears to be even
further evidence of multimodal structure.

The right plot in Fig. 5.11 shows a perspective or wireframe plot of the estimated
density. Note that the density has been rotated in the figure in an attempt to better
display the structure in the data. Clearly additional modes are seen, suggesting more
structure in the data than simply the rough division of the state into the eastern plains
and mountain regions. Of course, densities of this kind (multimodal with differing
scales) pose a special challenge to density estimators with fixed meshes or band-
widths. Variable bandwidth methods for kernel estimators have been proposed for
bivariate and higher-dimensional data; see Terrell and Scott (1992) and Sain (2002).

Whether to view such plots using 3-D perspective plots or 2-D contour plots is
often a matter of personal taste. One view is that the perspective plot is more useful
for obtaining an overview of the structure, while a contour plot is more useful for
obtaining precise information such as the location of a mode.
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Figure 5.11. Contour (left frame) and perspective (right frame) plots of a bivariate kernel density
estimate using the Colorado PRISM data. The perspective plot has been rotated for better visibility of

the density structure

An interesting special case of the use of kernel methods and other visualization
techniques for bivariate densities arises from the analysis of spatial point patterns.
For example, maps of the locations of disease or some other event of interest are pro-
duced with the hope of identifying potential clusters in the data. Often, some assump-
tion of uniform spatial randomness is adopted and there are various tests that can be
performed to examine this hypothesis. Visualization using kernel density estimates,
for example, offers a graphical alternative, in particular, when the number of events
is large enough to make a simple map of the locations ineffective (“too much ink”).

An example is shown in Fig. 5.12 in which a bivariate kernel density estimate of the
distribution of the locations of sites in Louisiana reporting to the US Environmental
Protection Agency’s Toxic Release Inventory (TRI). The TRI is a publicly accessible
database that contains information on toxic releases reported by certain manufactur-
ing and industrial sites as well as certain federal facilities.

This density estimate was constructed using the spherically symmetric kernel with
a bandwidth that is related to the assumption that the immediate health and other
impacts of these TRI sites extend four miles symmetrically around the site. Overlaid
on the parish (county) map of Louisiana is a greyscale image plot of the density. Sev-
eral clusters are clearly seen, in clear violation of any assumption of uniform spatial
randomness. In particular, the concentration of sites stands out along the so-called
Industrial Corridor, which is loosely defined as the stretch of the Mississippi River
between Baton Rouge (located at 30° 32" N latitude, 91° 9" W longitude) and New
Orleans (at 29° 59’ N, 90° 15" W).

Comparing bivariate density estimates, even using kernel estimates as in Fig. 5.6,
requires some care. Extending the example of Fig. 5.6 comparing Colorado and Kansas
PRISM data, Fig. 5.13 shows contour plots of bivariate kernel density estimates of
average temperature midpoint and logarithm of the total precipitation. The density
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Figure 5.12. Kernel density estimate of the Toxic Release Inventory (TRI) sites in the US state of
Louisiana. Dark regions: areas of high density. Thick black line: path of the Mississippi River

estimate from Colorado is displayed using the black contours while the density es-
timate for Kansas is displayed using the grey contours. To keep the plot from be-
coming overly complicated, a small number of specifically chosen contours is used.
In particular, three contours are computed for each density and these contours con-
tain roughly 25, 50, and 75 % of the data. Multimodality is clearly present in both
estimates, representing different regions of the two states. The much more compact
density of the Kansas data is strongly representative of its much greater geographic
homogeneity relative to Colorado.

5.3 Higher-dimensional Density Estimates

Three- and 4-D kernel density estimates are quite feasible theoretically. In the mul-
tivariate setting, x € 2%, the kernel, K(t), is a multivariate density function often
chosen to be a product kernel, defined by

d
K(t) = 1‘[ Ki(t)). (5.16)
j=1



Multivariate Visualization by Density Estimation 407

© -
—
c
Re]
2
S v ]
2
3]
1]
o
o
S <«
9]
ke)
£
o
o
o -

-10 -5 0
temperature midpoint

Figure 5.13. Bivariate kernel density estimates of regional climate model output of average temperature
and the logarithm of precipitation over a grid of locations in the western USA. Black contours represent
climate in the state of Colorado while the grey contours represent climate in the (more geographically
homogenous) state of Kansas

The univariate bandwidth, h, is replaced by an invertible d x d matrix, H, whose
properties are explored in Scott (1992) and Wand and Jones (1993). Then the scaled
univariate kernel, Ky (t), is generalized to be

Ku(t) = ﬁK(H_lt). (517)

By a multivariate change of variables, K (t) integrates to 1 if K(t) does.
For multivariate data, {x;,...,X, }, the multivariate kernel estimator is given by

R 1
J) =~ Ku(x-xi). (5.18)
i=1
The simplest product kernel is the standard multivariate normal
1
K(t) = (27) % exp (—tht) , (5.19)
which leads to the kernel estimate
f(x)—lzn:;ex [—l(x—x-)TH_lTH_l(x—xl)] (5.20)
T QoA H P2 I '

While the calculations and theory of multivariate density estimation are straightfor-
ward, the challenge of identifying and understanding the structure of multivariate
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data may be quite difficult. The first step is examining the univariate densities of all
the individual variables f(x), followed by understanding how pairs of variables co-
vary by the examination of all bivariate density plots, f(x, y).

Just as the univariate estimates can only hint at the actual bivariate structure in
data, so too bivariate estimates can only hint at the trivariate structure, and so on.
Three- and 4-D kernel density estimates are quite feasible theoretically but should be
approached with caution for several reasons. The choices of kernel and bandwidth
become more complicated, although a product kernel and diagonal bandwidth ma-
trix will often be reasonable. Data becomes thinner at higher dimensions, so larger
sample sizes are required to get reasonable results. Most importantly, plotting of the
full estimate would require four and five dimensions, respectively, as a perspective
plot requires one more dimension than the number of variables.

Clearly, one must set aside any thought of examining the entire function, f (x, y, z)
or f (x, y,z,t). However, note that a bivariate contour plot only requires two dimen-
sions. Likewise, a 3-D density estimate may still be examined as a 3-D contour plot.
A single contour slice is a level set of the density, for example,

Sa:{(XJ”Z):J?(x:%z):“fmax} > (5.21)

where fiay is the largest value of the density and « ranges from 0 to 1. For normal
data, the contour is an ellipse (or sphere). When « = 1, S, is the mode. As « decreases,
the size of the ellipse increases.

Of course, a contour plot of a bivariate density is not complete if only one contour
level is displayed. Likewise, a trivariate density requires examination of at least three
to five levels, depending upon the complexity of the estimated density. This task will
require some way to see “through” the individual contours: either transparency, or
some method of removing part or all of outer contours so that inner ones may be
viewed. Some care should be taken here to carefully distinguish different levels, and
possibly upper and lower regions on each side of the contours as well, as otherwise
opposite features such as modes and holes may be visually indistinguishable.

When dealing with four or more variables, one’s options are more limited. The best
choice appears to be to examine the conditional 3-D estimates as above, for a series of
selected “slices” in the fourth variable. For example, a series of values t; < t, < ... <t}
are selected and contour shells of the 3-D arrays

f(x,y,z,tg) £=1,2,...,k (5.22)

are displayed. If hardware permits, k may be taken as quite large and the sequence of
view may be animated. The animation is effective because the density contours vary
smoothly, which the human brain can easily decode. This approach is similar to some
of the ideas found in trellis coplots (Cleveland, 1993; Becker, et al., 1996).

To illustrate these ideas, the full PRISM dataset for the continental United States is
employed. There are 481 475 grid points, each representing about 6 square miles. The
variables used are elevation, precipitation, and maximum temperature for the months
December-February averaged over the period 1995-2004. As the variables are quite
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Figure 5.14. Univariate and bivariate density estimates (ASH) of the elevation of the US mainland,

precipitation, and maximum temperature; see text for data description and transformations

skewed, the first two variables were reexpressed as log,,(x + 74) and log,,(y), as

elevation ranged from -73 to 4005 m, and precipitation from 9 to 3007 mm.
Univariate averaged shifted histograms (as described in Sect. 5.1.2) of these three

variables are displayed in the first three panels of Fig. 5.14. For the densities displayed
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in Fig. 5.14, the ASH weights were sampled from the quadweight kernel, K(¢) =

35 (1 )% Specifically,

K(j/m)
it K(i/m)

Each variable was prebinned into 400 intervals. The ASH smoothing parameters were
picked by eye to smooth out most of the noisy structure. All of these estimates are
multimodal. Regions of high elevation are somewhat unique climatically.

Next, the bivariate ASH density estimates were constructed in the remaining pan-
els of Fig. 5.14. The data were prebinned into 75 x 75 intervals. A product version
of the ASH using the quadweight kernel was selected. Again, the structure is more
complex than a single Gaussian and more complex than a mixture of a few Gaussians.

Finally, all three variables were examined simultaneously in one ASH (Fig. 5.15).
The data were prebinned into a mesh of size 75 x 75 x 75 and the quadweights again
employed. The shell displayed corresponds to & = 25 %. The structure is quite fasci-
nating. Of course, given the huge dataset, one has high confidence that the features
clearly visible are not due to noise alone.

Without the availability of color in the figure, adding other contour levels is ill ad-
vised for such complex contours. Instead, a sequence of slices of the trivariate ASH
may be displayed (Fig. 5.16). The climate is less complex near sea level and high al-
titudes. It would be interesting to link features in these frames with geographical in-
formation. Such research has been shown to be fruitful (Whittaker and Scott, 1999).

Without color, attempts to show 4-D and 5-D densities are best postponed. How-
ever, it should be clear from these examples the potential power that such displays
may bring. These figures bring both an overview and yet great detail. Given the in-
creasing number of massive datasets available for analysis, these tools can prove
highly effective in the hands of a trained analyst.

P

Wi (j)=m- j=-m,...,0,...,m. (5.23)

Figure 5.15. Trivariate density estimate (ASH) of elevation (x), precipitation (y), and maximum

temperature (z)
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Figure 5.16. Bivariate slices of temperature (y) vs. precipitation (x) of the trivariate density estimate

(ASH) at a sequence of levels of the elevation (z)
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We present many examples of structured sets of graphs that convey and support
statistical analyses. Structured sets of graphs can be drawn with any modern sta-
tistical software system with graphics capabilities. We use S-Prus and R, two di-
alects of the S language that offer substantial capabilities for producing graphs cus-
tomized to the particular needs and visions of the analyst. We emphasize two ba-
sic paradigms for constructing structured graphs: Cartesian products and the Trellis
paradigm. Our software for all examples in this article is available from Heiberger
and Holland (2004).

Introduction 6.1

S-Prus and R offer users substantial capabilities to customize graphs to their par-
ticular needs and visions when they are accessed using command language rather
than their graphical user interfaces (GUIs). Production software, that is, software
already developed by someone else, needs to be standardized, packaged, and restric-
tive, allowing the user less control. Analysts occasionally require a graph unlike any
readily available elsewhere. We recommend that serious data analysts invest time in
becoming proficient in writing code rather than using GUIs. Users of a GUI are lim-
ited to the current capabilities of the GUI. While the design of GUIs will continually
improve, their capabilities will always remain far behind what skilled programmers
can produce. Even less-skilled analysts can take advantage of cutting-edge graphics
by accessing libraries of graphing functions such as those accompanying our text or
available at Statlib and elsewhere on the Internet.

Our graphical displays are designed for elementary to intermediate statistical anal-
yses, but the graphs themselves are relatively sophisticated constructions. Our exam-
ples extend the concept of a structured presentation of plots of different sets of vari-
ables, or of different parametric transformations of the same set of variables. Several
of the examples extend the interpretation of the model formula, that is, the semantics
of the formula, to allow easier exposition of standard statistical techniques.

Our examples are taken from several sources. These include classical and recent
examples from the statistical literature, standard texts in statistics, the authors’ text-
book Heiberger and Holland (2004) (referred to in the sequel as HH), and projects
on which the authors have worked as consulting statisticians.

Cartesian Products
and the Trellis Paradigm 6.2

A feature common to many of the displays is the Cartesian product principle behind
their construction.
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The Cartesian product of two sets A and B is the set consisting of all possible or-
dered pairs (a, b), where a is a member of set A and b is a member of set B. Many of
our innovative graphs are formed as a rectangular set of panels, or subgraphs, where
each panel is based on one pair from a Cartesian product. The sets defining the Carte-
sian product differ for each graph type. For example, a set can be a collection of vari-
ables, functions of a single variable, levels of a single factor, functions of a fitted model,
different models, etc.

When constructing a graph that can be envisioned as a Cartesian product, itis nec-
essary that the code writer be aware of the Cartesian product relationship. The code
for such a graph includes a command that explicitly states the Cartesian product.

Trellis Paradigm

Many of the graphs in this article are constructed using the trellis paradigm pioneered
by S-Prus. The trellis system of graphics is based on the paradigm of repeating the
same graphical specifications for each element in a Cartesian product of levels of one
or more factors.

The majority of the methods supplied in the S-PLus trellis library are based
on a typical formula having the structure

y ~x | a*b (6.1)
where
y s either continuous or a factor
X is continuous
a isafactor
b isa factor
and each panel is a plot of y ~ x for the subset of the data defined by the Cartesian

product of the levels of a and b.

Implementation of Trellis Graphics

The concept of trellis plots can be implemented in any graphics system. In the S family
of languages (S-PLus and R), selection of the set of panels, assignment of individual
observations to one panel in the set, and coordinated scaling across all panels is au-
tomated in response to a formula specification at the user level. In other languages
that are capable of displaying multiple panels on the same physical page, the user (at
this writing) is responsible for those tasks.

The term “trellis” comes from gardening, where it describes an open structure used
as a support for vines. In graphics, a trellis provides a framework in which related
graphs can be placed.
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Scatterplot Matrices: splomand xysplom

A scatterplot matrix (splom) is a trellis display in which the panels are defined by
a Cartesian product of variables. In the standard scatterplot matrix constructed by
splom, the same set of variables defines both the rows and columns of the matrix.
More generally, what we term an xysplom uses different sets of variables defining
the rows and columns of the matrix. We strongly recommend the use of sploms and
xysploms, sometimes conditioned on values of relevant categorical variables, as ini-
tial steps in analyzing a set of data. Examples are given in Sects. 6.3.1-6.3.6.

An xysplom, produced with our function xysplom (Heiberger and Holland,
2004), is used to produce a rectangular subset, often an off-diagonal block, of a scat-
terplot matrix. It involves a Cartesian product of the form [variables] x [variables],
where the two sets of variables contain no common elements. A large splom may
be legibly presented as a succession of smaller sploms (diagonal blocks of the large
splom) and xysploms (oft-diagonal blocks of the large splom).

An example where xysploms are useful in their own right is when examining a set
of potential response variables against members of a set of potential explanatory vari-
ables.

We use an extension

U+ v~w+x+y+2z | a*rb (6.2)

of the syntax of the standard model formula to define the variables of the xysplom
function. The rows of the xysplom are defined by the crossing of the set of vari-
ables on the left-hand side of the formula with the set of variables on the right-hand
side of the formula. The expanded xysplom generated with Eq. (6.2) will contain, for
each combination of the elements in a and b, an xysplom having two rows and four
columns.

Example - Life Expectancy

For each of the 40 largest countries in the world (according to 1990 population fig-
ures), data are given for a country’s life expectancy at birth categorized by gender,
number of people per television set, and number of people per physician. This is
a subset of the full data set contained in a study cited by Rossman (1994) that sought
a short list of variables that could accurately predict life expectancy:

life.exp: Life expectancy at birth
ppl.per.tv: Number of people per television set
ppl.per.phys: Number of people per physician

Figure 6.1 is a scatterplot matrix for a final linear model for these data. The variables
ppl.per.tvand ppl.per.phys were log-transformed to correct for positive
skewness in the original data. This figure demonstrates that the response 1ife . exp
is moderately negatively correlated with both explanatory variables, and the two ex-
planatory variables are positively associated.

6.3

6.3.1
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Display of Scatterplot Matrix

Figure 6.1 has several noteworthy characteristics. The panels are symmetric about
the main diagonal running from SW to NE, which, as explained below, is a more
appealing choice than NW to SE. The panels are square, which makes sense because
both dimensions contain the same variables. We display both y ~ x and x ~ y since
we don’'t know in advance which is more helpful or appropriate. The panels on the
main diagonal are used for labeling and tick marks.

Figure 6.2 contains an alternate splom orientation that we do not recommend. In
the alternate orientation, with the downbhill diagonal and rectangular panels, each
variable is depicted on two different scales, making comparisons of each panel with
its transpose more difficult than with an uphill diagonal and square panels.

Figure 6.3 compares the axes of symmetry of figures resembling Figs. 6.1 and 6.2.
Figure 6.3a has six axes of symmetry. We focus on panel 6, which appears in positions
reflected about the main NW-SE axis. The individual points within panels 6 and 6’
are reflected about the dashed SW-NE line, as indicated by the position of the arrow.
The other four axes, which reflect respectively panel 5, panels 3 and 4, panel 2, and
panel 1, are indicated with dotted lines. Figure 6.3b has only one axis of symmetry.
The arrow for panel 6 is reflected by the same SW-NE axis that reflects panels 6
and 6.

log(Televisions, Physicians), and Life Expectancy
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Figure 6.1. log(televisions), log(physicians), and life expectancy (File: hh/grap/code/grap.f6.s)
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Figure 6.2. Alternate orientation with rectangular panels for splom. We do not recommend this

orientation. The downhill diagonal is harder to read (Fig. 6.3). The rectangular panels make it hard to

compare each panel with its transpose. The location of comparable panels (Life.exp ~

ppl.per.tvand ppl.per.tv ~ life.exp, for example) reflect on a common NW-SE axis; the

content of the comparable panels reflects on a unique SW-NE axis (File: hh/grap/code/grap.fll.s)
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Example - A Scatterplot Matrix with Conditioning

The goal of a chiropractic research project (Harrison et al., 2002) was to model pain
indices constructed from patient pain questionnaires as functions of skeletal mea-
surements summarizing patient posture:

SBA: sacral base angle

API: angle of pelvic incidence

PTPIA: posterior tangent pelvic incidence angle

Sex: female, male

Group: pain category: normal, chronic, acute

Associations between these two classes of variables could suggest chiropractic skele-
tal adjustments to address pain. We illustrate with a subset of the data set that in-
cludes three continuous skeletal measurements for both sexes and three pain cate-
gories from a sample of 150 subjects. Figure 6.4 was prepared as an initial look at
these data, not as a presentation of an interim or final analysis.

Figure 6.4 exemplifies what is meant by a structured set of graphs. It systemati-
cally unifies 36 interrelated graphs defined by the Cartesian product of several sets.
The figure consists of a 2x3 arrangement of scatterplot matrices (sploms). The two
columns are defined by sex of the patient and the three rows by pain category. Within
each of the sploms, the nine panels are defined by the Cartesian product of the set of
three continuous variables (SBA, API, PTPIA) crossed with itself. The upper triangle
of each splom contains the mirror image of the set of plots in the lower triangle.

Evidently these skeletal measurements do not differ by sex but do differ according
to pain category. The measurements are more tightly clustered for subjects classified
as pain-free (normal) than for those having acute or chronic pain. In addition,
we see that measurements APT and SBA are more highly correlated for pain subjects
than those without pain. To ease the reader’s task in seeing both the tightness and the
correlation, we collect in Fig. 6.5 all the SBA ~ API panels from Fig. 6.4 and also
show the marginal distributions for the Sex, Group, and Total.

Coordinating Sets of Related Graphs

The graphical issues that needed attention in Fig. 6.5 are

Positioning: the panels containing marginal displays need to be clearly delineated
as distinct from the panels containing data from just a single set of levels of the
factors. We do this by placing extra space between the set of panels for the indi-
vidual factor values and the panels containing marginal displays.

Scaling: all panels need to be on exactly the same scale to enhance the reader’s ability
to compare the panels visually. We use the automatic scaling feature of trellis
plots to scale simultaneously both the individual panels and the marginal panels.

Labeling: we indicate the marginal panels by use of the strip labels. Each panel label
is constructed from the levels of the two factors defining it. The marginal pan-
els contain a level name from just one factor. The Total panel is named without
reference to the factor level names.
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Figure 6.4. Skeletal measurements by sex and pain category (File: hh/csc/code/lumb.s)
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Figure 6.5. The SBA ~ APT panel from Fig. 6.4 is expanded and shown with marginal plots for each of
the two grouping variables: Sex and Group. The Sex margin at the bottom of the figure shows not
much difference between male and female. The Group margin on the right-hand side of the figure
shows that both variables, APT and SBA, have a much narrower range in the pain-free normal group
than in either of the two pain groups. There is a suggestion of an interaction in the
female.chronic panel, where we see a larger range for SBA for values of APT near 60 and

a correspondingly lower correlation than in the male.chronic panel. In this figure, the colors and
symbols are implicitly defined by the labels of the panels. The colors and symbols are explicitly defined
in the key in Fig. 6.6 in which we expand the lower right Total panel of Fig. 6.5 (File:
hh/csc/code/lumb-i.s)
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Figure 6.6. The Total panel (lower right) of SBA ~ APT panel from Fig. 6.5 is expanded and the key
defining the symbols and colors is displayed. Now that we have seen the detail of Fig. 6.5, and we are
able to see most of the features in this single panel (File: hh/csc/code/lumb.s)

Color and shape of plotting characters: we used three contrasting colors for the
three-level factor. We also used three distinct plotting characters for the three-
level factor. This is both redundant - reemphasizing the difference between lev-
els — and defensive — protecting the interpretability of the graph from black-and-
white copying by a reader. We used lighter and darker shades of the same color
to distinguish the two-level factor Sex. The different darknesses will usually sur-
vive photocopying into black and white.

The ColorBrewer Web site Brewer (2002) gives a discussion on the principles of
color choice and gives a series of palettes for distinguishing nominal sets of items
or sequences of items.

Summary Plot with Legend

Figure 6.6 is an expansion of the grand total panel of Fig. 6.5 with a legend contrasting
the combinations of pain group and sex. The legend is needed in Fig. 6.6 because it
does not have the implicit definitions of the individual panels. We chose to label the
legend with level names constructed as the Cartesian product of the names of the
levels of the two defining factors.

6.3.5
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Example - an xysplom
with Labeled Correlation Coefficients

Figure 6.7 is taken from a study Harrison et al. (2006) of scoliosis, abnormal lat-
eral curvature of the spine. An initial stage of the study required associating each of
two response variables ( DispL and DispR, measures of translation displacement)
with its own set of four potential explanatory variables. All explanatory variables are
angles between lines drawn through projected centers of mass on AP (front-back)
radiographs of thoracic and lumbar vertebrae. Variable names including the letter “L”
are measurements on the left side of the subject’s body and the names including the
letter “R” are measurements on the right side of the body. The figure shows moderate
correlations between most of the pairs of variables.

corr: 0.478 corr: 0.613 corr: 0.589 corr: -0.227
y: Displ y: Displ. y: Displ. y: Displ.
X: Cobbl . T1215 x: Cobbl 1115 x: RFL | x| SAnglel. |
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45 °® o® e © - e o
40 [] L] L] -1 o
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
corr: -0.577 corr: -0.433 corr: -0.5 corr: -0.568
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Figure 6.7. An xysplom of two response variables, each with four associated explanatory variables.

Pairwise correlations are shown in the strip labels. The separate y-scales for each response variable

were forced to show a common number of data units per inch of graph. Each pair of x-scales, for

Left and Right measurements of similar quantities, has a common scale. All four panels on the left,

those containing an x-variable name that includes the string “Cobb,” have the same scale (File:

h2/splm/code/scolio2.s)
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The mechanics of scale control in Fig. 6.7 differ for S-Prus and R. In S-Prus, we
needed to draw eight graphs and give each one its own x1im and y1im arguments.
In R, the x1imand y1imarguments can take a list and therefore all eight panels on
the top can be drawn with a single call to the HH function xysplom.

The xysplom has an option to display pairwise correlations in the strip labels.
We use that capability in Fig. 6.7.

Ladder of Powers Plot — Wool Data

A power transformation often succeeds in changing from a skewed distribution to
one more closely resembling a symmetric unimodal distribution. Such transforma-
tions are basic items in analysts’ toolkits because many standard statistical analyses
require variables to be approximately normally distributed.

The family of power transformations T}, (x), often called Box-Cox transformations
Box and Cox (1964), is given by

xP (p>0),
Tp(x) ={In(x) (p=0), (6.3)
-xF (p<0).

The ladder of powers is the sequential set of power transformations with the particular
choice of powers p = -1,-1,0, 1,1,2.

In a study of the “plasticity of wool,” Ripa and Speakman (1951) reprinted in Tukey
(1977), interest lies in relating diam, the coeflicient of variation of the diameter of
a wool fiber, to the amount of time in minutes the fiber is stretched under a pre-
scribed load. Figure 6.8 displays an xysplom of the set of ladder of powers transfor-
mations of diam against the ladder of powers transformations of time. Suppose
the goal is to model some transformation of a variable y as a linear function of some
transformation of x. This is best accomplished if we can find a transformation of each
variable such that the two transformed variables are closely linearly related. We ex-
amine this plot for the pair of transformations that best renders a linear relationship.
Clearly the best transformation for time is the square root. Careful examination
of the figure suggests that leaving diam untransformed is slightly better than us-
ing a square root transformation for diam. At this stage of the analysis, we would
ordinarily ask the client which of these two transformations is more readily inter-
pretable.

6.3.7
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Ladder of Powers for the Wool data: relating diam to time
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Figure 6.8. Ladder of powers plot for wool data: relating diam to t ime. Data source: Ripa and
Speakman (1951), reprinted in Tukey (1977) (File: h2/splm/code/wool.s)
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Regression Diagnostic Plots 6.4

After developing an initial reasonably fitting linear regression model, an analyst may
wish to assess whether any of the observations unusually impact on the quality of the
fit.

Case Statistics 6.4.1

A strategy for doing so is to examine various case statistics that have a value for each
of the n cases in the data set. Belsley et al. (1980) presents detailed discussions of
case statistics including definitions, formulas, interpretation, and suggested thresh-
olds for flagging a case as unusual. If a case statistic has a value that is unusual, based
on thresholds developed in the literature, the analyst should scrutinize the case. One
action the analyst might take is to delete the case. This is justified if the analyst deter-
mines the case is not a member of the same population as the other cases in the data
set. But deletion is just one possibility. Another is to determine that the flagged case
is unusual in ways apart from those available in its information in the present data
set, and this may suggest a need for additional predictors in the model.

We focus on five distinct case statistics, each having a different function and inter-
pretation. (One of these, DFBETAS, is a vector with a distinct value for each regres-
sion coeflicient including the intercept coeflicient.) For small data sets the analyst
may choose to display each statistic for all cases. For larger data sets we suggest that
the analyst display only those values of the case statistics that exceed a threshold, or
flag, indicating that the case is unusual in some way.

A regression diagnostic plot displays all commonly used case statistics on a sin-
gle page. Included are thresholds for flagging cases as unusual along with identifi-
cation of such cases. Heretofore, presentations of regression diagnostics have been
presented on multiple pages of tabular output with one row per observation. It is
very difficult to read such tables and examine them for cases that exceed accepted
thresholds.

Example - Kidney Data 6.4.2

Creatine clearance is an important but difficult to measure indicator of kidney func-
tion. Shih and Weisberg (1986), also presented in Neter et al. (1996), discuss the mod-
eling of clearance as a function of the more readily measured variables serum
clearance concentration, age, and weight. The datafile is (hh/datasets/
kidney.dat).

At an intermediate stage of analysis of these data, the researchers posed the linear
regression model

clearance ~ concent + age + weight + concent * age

Figure 6.9 is a regression diagnostic plot for this model. It flags five cases as being
unusual. Case 16 has a high leverage value implying an unusual set of predictors. The
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Im(formula = clearance ~ concent + age + weight + concent * age, data = kidney)
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Figure 6.9. Regression diagnostics plot for Kidney data (File: hh/csc/code/kidney2.s)

DFBETAS flags indicate that cases 12, 21, and 26 appreciably impact one or more re-
gression coeflicient estimates. The df £ 1 t s flags suggest that cases 20, 21, and 26 have
substantial effects on model predictions. In addition, deleted std dev hints
that cases 21 and 26 impact the overall goodness of fit. We draw the splom in Fig. 6.10
to show these points identified. We see that four of the five flagged points are extreme
on at least one variable. Point 16 has low clearance, high concent, and high
age. Point 21 has low weight. Points 20 and 26 have low age. Point 12 is harder to
interpret from just this graph as it has high weight, but not the highest weight.
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Kidney function data
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Figure 6.10. Points identified by regression diagnostics in Fig. 6.9 (File: hh/csc/code/kidney2.s)

Analysis of Covariance Plots 6.5

Analysis of covariance (ANCOVA) plots are defined by the Cartesian product of dis-
play format. In Fig. 6.11, an example with one factor and one covariate, we show sep-
arate panels for each level of the factor on the left side and superposed panels on
the right side. The display extends naturally to ANCOVA with two factors and one
covariate.

1. Theancova function constructs both the ANOVA table and the ANCOVA plot
from a single specification of a model formula.
2. Depending on the level of overlap of the x- and y-ranges and the collinearity of

the groups, it may be more advantageous to look at the set of separate panels or
at the single superposed panel. We display both.
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3. We have options in the ancova function to show any one of
a) Horizontal slopes (ANOVA ignoring the covariate),
b) Common slope (ordinary ANCOVA),
c) Common intercept (regression ignoring the factor),
d) Distinct lines (interaction of factor and covariate).

Example - Hot Dog Data

Hot dogs based on poultry are said to be healthier than ones made from either meat
(beef and pork) or all beef. A basis for this claim may be the lower-calorie (fat) content
of poultry hot dogs. Is this advantage of poultry hot dogs offset by a higher sodium
content than meat hot dogs?

Researchers for Consumer Reports analyzed three types of hot dog: beef, poultry,
and meat (mostly pork and beef, but up to 15% poultry meat). The data available
in file (hh/datasets/hotdog.dat) come from Consumers Union (1986) and were later
used by Moore and McCabe (1989):

Type: type of hot dog (beef, meat, or poultry)
Calories: calories per hot dog
Sodium: milligrams of sodium per hot dog

We used these data to model Sodiumas a function of the categorical variable Type
and the continuous variable Calories.

The model displayed in Fig. 6.11 has common slope and possibly differing inter-
cepts. Displays comparable to Fig. 6.11 can be constructed for the other three mod-
els. The common slope model is the correct final model, a conclusion that required
support from the ANOVA table for the interaction model. In context, for given fat
(calorie) content, poultry hot dogs contain significantly more sodium than beef
or meat hot dogs, but the three types have insignificantly different increases in
sodium as calories increase.

Sodium ~ Calories + Type

100 140 180 100 140 180
700 Beef Meat Poultry superpose
o
600 o Type
.3 500 % Beef o —
08)400- Q0 IN % Meat P —
2 Poult -
s30{ o ry °
o
200
A
100 140 180 100 140 180

Figure 6.11. The left set of panels show one level each. The right panel, labeled “superpose,” shows all

three groups. Sometimes it is easier to interpret the individual panels, other times the superposed

panel. We therefore normally print both. The HH Heiberger and Holland (2004) ancova function

automatically constructs all panels from a single call (Files: hh/regbb/code/hotdog.s,
hh/csc/code/hotdog.csc.s)
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Cartesian Product of Model Parameters

Figure 6.12 displays all four models as a Cartesian product of model parameters. The
models in the columns of Fig. 6.12 are distinguished by the absence or presence of
a parameter for Type - forcing a common intercept in the left column and allowing
different intercepts by Type in the right column. The three rows are distinguished
by how the covariate Calories is handled: separate slopes by Type in the top row,
constant slope for all Types in the middle row, or identically zero slope (horizontal
line) in the bottom row.

Figure 6.12 is structured as a set of small multiples, a term introduced by Tufte
(2001) to indicate repetition of the same graphical design structure. “Small multiples
are economical: once viewers understand the design of one slice, they have imme-
diate access to the data in all other slices. Thus, as the eye moves from one slice to
the next, the constancy of the design allows the viewer to focus on changes in the
data rather than on changes in graphical design (Tufte, 2001, p. 48)” Figure 6.12 may
be interpreted as a four-way Cartesian product: slope (« vs. «;), intercept (f = 0,
B, B;), individual panels vs. superpose, hot dog type (beef, meat, poultry) with an
ordinary two-way scatterplot with a fitted line inside each element of the four-way
product.

. Sodium ~ Calories * Type
variable Beef Meat | Ponltry 1 |
slope g
BJ' f ® ®

(] A Gg
[¢)
A A
Sodium ~ Calories Sodium ~ Calories + Type
Constant Beef Meat Poultry Beef Meat [ Poultry
slope 8 g g g 5 g
| etoi L 2k
] A a
P @ﬂ ° %ﬁf :
A A A A
Sodium ~ Type
Beef Meat Poultry
zero 8
> §
slope o® A2
B=0 5 ﬁ - PR
A
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Figure 6.12. Sets of ANCOVA plots as a Cartesian product of models with the intercept having two
levels (« and «;) and slope having three levels (0, 3, and f3;). The middle plot on the right is identical to
the plot in Fig. 6.11 (Files: hh/regbb/code/hotdog.s, hh/csc/code/hotdog.csc.s)

6.5.2
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Interaction Plots

6.6.1

6.6.2

Two factors A and B are said to interact if the changes in a response variable Y as
factor A goes from one level to another differ depending on the level of the second
factor B. The notation in the ANOVA setting is: “(y;; —p;r;) differs from (p;jr—pirjr)”

The standard display of an interaction uses separate lines for each level of one
factor, the trace factor, and by convention connects the points for each level of the
second factor, the x-factor. Connecting the levels of the trace factor is an interesting
convention because the levels are usually - as in this example - on a nominal scale
and the implied legitimacy of interpolation is not meaningful. Parallel trace lines
indicate lack of interaction. Nonparallel trace lines indicate interaction. The p-value
in the ANOVA table is used to determine how far from parallel the lines must be to
reject the null hypothesis of no interaction. If interaction is determined to be present,
then the main effects are usually not interpretable and we must use simple effects
(Sect. 6.6.5) instead.

Two-factor Rhizobium Example

Erdman (1946) discusses experiments to determine if antibiosis occurs between Rhi-
zobium meliloti and Rhizobium trifolii. Rhizobium is a bacteria, growing on the roots
of clover and alfalfa, that fixes nitrogen from the atmosphere into a chemical form
plants can use. The research question for Erdman was whether there was an interac-
tion between the two types of bacteria, one specialized for alfalfa plants and the other
for clover plants. If there were an interaction, it would indicate that clover bacteria
mixed with alfalfa bacteria changed the nitrogen-fixing response of alfalfa to alfalfa
bacteria or of clover to clover bacteria. The biology of the experiment says that inter-
action indicates antibiosis or antagonism of the two types of rhizobium. That is, the
goal was to test whether the two types of rhizobium killed each other oft. If they did,
then there would be less functioning bacteria in the root nodules and consequently
nitrogen fixation would be slower.

A portion of Erdman’s study involves a two-way factorial layout with factors
strain at six levels of rhizobium cultures and comb, a factor with two distinct bac-
teria as the two levels. The univariate response is a function of the nitrogen content
per milligram of plants grown under these 12 conditions. Erdman was specifically
interested in whether two factors interact, as this would have implications for best
choice of strain. The standard interaction plot for these data is in Fig. 6.13.

Extended Two-way Interaction Plot

Figure 6.14 is a trellis plot that illustrates all the main effects and two-way interactions
for a multifactor model. Boxplots for the main effects are shown along the main (SW-
NE) diagonal of the matrix. Two standard interaction plots, with interchanged roles
for the trace and x-factors, are shown along the off-diagonals. In our experience it is
not redundant to show the interchanged roles because usually one of the interaction
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Interactions of comb and strain
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Npg

25 1
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Figure 6.13. intxplot (Npg ~ strain, groups=comb)

Standard interaction plot of rhizobium data. At most levels of strain, the clover line is similar to or

comb
clover
clover+alfalfa

slightly lower than the combination (clover + alfalfa) line. At strain =5, the clover line is much higher

than the combination line (Files: h2/intx/code/rhizobium-clover.s,
hh/csc/code/rhizobium-clover-CSC.s)

Npg: main effects and 2-way interactions
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Figure 6.14. Extended interaction plot for rhizobium data. The upper-left panel is identical to Fig. 6.13

(File: h2/intx/code/rhizobium-clover.s)

plots is more readily interpretable than the other. Constructing this plot involves the
Cartesian product [factors] x [factors]. Rows are labeled by the trace factor. The color
scheme is constant in each row. Columns are labeled by the x-factor. The x-axis tick
marks are constant in each column.
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A conclusion from Fig. 6.14 is: as factor comb goes from clover to clover+
alfalfa, the response npg (nitrogen per gram) decreases significantly only for
level 5 of strain.

Three-factor Vulcanized Rubber Example

An example of a two-way interaction plot involving three factors appears in Fig. 6.15.
This is a 5 x 3 x 4 factorial experiment designed to compare the wear resistance of
vulcanized rubber. It was desired to maximize wear resistance, along with minimiz-
ing the costs of three factors: £i11ler at five quality levels, pretreatment (three
methods), and raw (four qualities). The data come from Davies (1954). As there is
only one observation from each treatment combination, it is assumed that the three-
factor interaction is negligible and therefore available as the model residual.

Figure 6.15 corresponds to the model with all three main effects and all three two-
factor interactions. The most striking conclusion from Fig. 6.15 is that for filler
level 2, the change in response to changing levels of factor raw is different from what
occurs at the other four levels of filler.

wear: main effects and 2-way interactions

X trace factor: raw trace factor- ra
x factor: filler x factor: pretreat x factor: raw
500 - -
raw
1 400 T / -
g - 300 / - wear
4 200 ’ -
100 — =
trace.factor: pretreat |trace.factor: pretreat |trace.factor: pretreat
x factor: filler x factor: pretreat x.factor: raw
500 - -
1 pretreat 400 - |
2 —— | 300 V | wear
3 200 -
100 — =
trace factor: filler trace factor: filler i
- filler x factor: pretreat x factor: raw
, filler 500 @ % 4 \/ -
400 -
% — | 300 - w | wear
: 200 % -~ S
100 - L
12 3 4 5 1 2 3 1 2 3 4
filler pretreat raw

Figure 6.15. HH Figure 13.11, p. 423. Main effects and two-way interactions for wear resistance of
vulcanized rubber (File: h2/intx/code/vulcan.intx.s)
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Design Issues for the Two-way Interaction Plot

The two-way interaction plot, displayed in Fig. 6.15, shows all the main effects and

two-way interactions for designs with two or more factors. The model in S nota-

tion iswear ~ (filler + pretreat + raw) 2. We construct the figure
by analogy with the splom (scatterplot matrix). The rows and columns of the two-
way interaction plot are defined by the Cartesian product of the factors.

1. Each main diagonal (SW-NE) panel shows a boxplot for the marginal effect of
a factor.

2. Each off-diagonal panel is a standard interaction plot of the factors defining its
position in the array. Each point in the panel is the mean of the response variable
conditional on the values of the two factors. Each line in the panel connects the
cell means for a constant level of the trace factor. Each vertically aligned set of
points in the panel shows the cell means for a constant value of the x-factor.

3. Panels in mirror-image positions interchange the trace- and x-factors. This du-
plication is helpful rather than redundant because one of the orientations is fre-
quently much easier to interpret than the other.

4. The rows are labeled with a key that shows the line type and color for the trace
factor by which the row is defined.

5. Each box in the boxplot panels has the same color, and optionally the same line
type, as the corresponding traces in its row.

6. The columns are labeled by the x-factor.

Two-way Interaction Plots with Simple Effects

Figure 6.14 showed interaction between the st rain and comb factors. Consequently
the marginal main effects, showing the average effect of one factor over all levels of
the other, were not relevant. We redraw the two-way interaction plot, this time with

simple effects in the main diagonal, in Fig. 6.16. Simple effects of one factor, strain
for example, are conditional on a level of the other factor, in this case comb. Simple

effects are usually the correct set of means to look at in the presence of interaction. In
the left panels of Fig. 6.16 we split each box in the main diagonal, and offset the match-

ing points in the traces in the oft-diagonal, to show the nesting of the combinations

within each strain. The extreme outliers in the strain=5 are seen to occur entirely
in comb="clover". In the right panels we split each box to show the nesting of
the strains within the combinations. The outliers in comb="clover" are seen to
be due primarily to strain=5.

The 12 boxes in the lower-left and upper-right panels of Fig. 6.16 are identical, each
showing the distribution for one of the 12 strain-comb combinations. The order in
which the boxes appear, and the colors assigned to them, differs to reflect the different
nestings. The individual boxes are not labeled. Instead, the outer factor is labeled
and “rug fringes” for the inner factor are displayed. The reader can use the legend to
identify specific boxes.

6.6.4

6.6.5
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Npg: Simple effects and 2-way interactions
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Figure 6.16. Revision of Fig. 6.14 to display simple effects (Files: hh/csc/code/rhizobium-clover3b.s,
hh/csc/code/rhizobium-clover5.s)

Figure 6.16 has several noteworthy features.

1. Color coding by rows. The top row of Fig. 6.16 continues the color coding of the

top row of Fig. 6.14. Each level of comb has its own color. The split of the upper
right-hand panel into individual boxes emphasizes the pattern within each level
of comb.
The bottom row of Fig. 6.16 continues the color coding of the bottom row of
Fig. 6.14. The visible change in the Npg value for similarly colored boxes in the
left panel (comb within each strain) agrees with the direction of the slope of
the similarly colored trace lines in the right panel.

2. x-axis labels. The left and right panels both have an x-axis that itemizes the same
levels of the interaction. They differ in the sequence in which those levels are
presented.

3. x-axis spacing. This version of the graph emphasizes the nesting of the combina-
tions within strains (left-hand panels) by spacing the within-combination boxes
slightly closer than the between-combination boxes. The left-hand panels also
use color coding by strain. The nesting of strains within combinations (right-
hand panels) is shown purely by color coding by combination.

4. Reading by columns. Each boxplot pair in the left-hand panel expands on the
difference in traces of means for the corresponding strain. Each trace in the
right-hand panel illustrates the difference in mean for the corresponding pair
of boxplots for the corresponding strain.
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Boxplots 6.7
Assessing Three-way Interaction 6.7.1

Cochran and Cox (1957) report on an experiment to assess the effect of electrical
stimulation to prevent the atrophy of muscle tissue in rats. This experiment contained
aresponse variable wt . d (weight of treated muscle), a covariate wt . n (weight of un-
treated muscle), and three factors, current, n. treat, and minutes. There are
two replications of the entire experiment. It is desired to model wt . d as a function
of the other variables. The datafile is (hh/datasets/muscle.dat).

Figure 6.17 is designed to assess whether there is a significant three-way interac-
tion. The three-way interaction is not significant in this example. If there were a sig-
nificant three-way interaction, the patterns in boxplots in adjacent rows and columns
would not be the same. For example, we note a hint of a difference in the y.adj ~
minutes behavior across panels. It has a negative slope in the galvanic ~ 3
panel and a positive slope in the faradic ~ 3 panel, but a positive slope in the
galvanic ~ 6 paneland anegative slopeinthe faradic ~ 6 panel. However,
an ANOVA table for a full model containing the three-factor interaction indicates

current: 25.cycle current: 25.cycle current: 25.cycle
n.treats: 1 n.treats: 3 n.treats: 6
70 & > & C
i @ = =] —— @ = L
50 -
current: 60.cycle current: 60.cycle current: 60.cycle
n.treats: 1 n.treats: 3 n.treats: 6
i = B B
707 e == D == @ oo 4o B
5 50 -
I
>
current: faradic current: faradic current: faradic
n.treats: 1 n.treats: 3 n.treats: 6
07 = =] - @ B
50 == @ = =] = =} == = =] L
current: galvanic current: galvanic current: galvanic
n.treats: 1 n.treats: 3 n.treats: 6
70 == = 9 B
wl]® ® = - & = -
1 2 3 5 1 2 3 5 1 2 3 5

minutes

Figure 6.17. Three-way interactions of all effects. One of the (3! = 6) possible orderings (Files:
hh/dsgn/code/ccl76.s, hh/csc/code/ccl76-csc.s)
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that these differences in slope are not significant. That is, the three-factor interaction
is not statistically significant. The boxplots in Fig. 6.17 are all based on samples of
size 2. Such boxplots are a well-defined but uncustomary way to display such a sam-

ple.
Sequences of Boxplots

A recent comparative clinical trial at GlaxoSmithKline (Amit et al., 2007) examined
the result of monitoring ASAT in two trt groups A and B after 0, 1, 2, 4, 8, 12, and
24 weeks. ASAT and other clinical biochemistry laboratory blood assays were mon-
itored to give an early signal of potential adverse events in liver function in response
to the treatments. The sample size for treatment A was about 200 patients and for
treatment B about 400. ASAT (aspartate aminotransferase), an enzyme associated
with liver parenchymal cells, is raised in acute liver damage. The display in Fig. 6.18

Distribution of ASAT by Time and Treatment

1 1 1
missingand (A 2 0 2 2 2 4 1
outliers B6 14 3 0 2 0
T U0 s s
o o o
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012 4 8 12 24
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Subjects A 217 209 212 200 195 189 163
atvist B 433 405 379 368 344 327 297

Figure 6.18. Comparative distributions of responses of two treatment groups at unequally spaced
points in time. Boxplots are color coded to distinguish between the two treatment groups. The covariate
time is correctly scaled on the horizontal axis. Since the data are positively skewed with extreme
outliers and with missing values, we choose to truncate observations at asat=80 in order to display
full details on the bulk of the data. The sample sizes and numbers of missing and outlying observations
are noted on the graph (File: h2/intx/code/lft.asat.s)
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was designed specifically to monitor this data situation. The horizontal axis is propor-
tional to the time scale, the treatments are distinguished by color, the sample sizes are
identified at each time point, a reference line locates the center of the normal range,
outliers are noted, and extreme outliers are identified.

Microplots

Boxplots capture comparative information better than numbers. They don’t have to
take much space, therefore they can fit into tables of numbers and satisfy both the
regulations for displaying numbers and the legibility of displaying graphs. We call
the plots microplots when they are deliberately sized to fit into a regulation-mandated
table of numbers without interfering with the overall layout. When small plots are
placed into a table of numbers, they can carry the same or more information per
cm? as the numbers themselves. The two examples here have different objectives and
therefore are arranged in different patterns.

Example - Catalyst Data

With the catalyst data from Montgomery (1997) we are interested in comparing the
concentrations of one component of a liquid mixture in the presence of each of four
catalysts. We investigate whether the catalysts provide for equal mean concentrations
and then, since this does not appear to be true, we study the extent of differences
among the mean concentrations.

The microplot of small parallel boxplots in Fig. 6.19 takes up little more page space
than the table of summary statistics. We placed y=concentration on the vertical axis,
the axis that we have been trained to think of as the appropriate location for a re-
sponse variable. Under each box we placed the table of relevant statistics: mean, num-
ber of replications, and standard deviation. The F-test shows a significant difference
between the catalyst means. We can see it visually from the microplot or tabularly
from the numbers.

58 ’
c
2 56 @ N
g
Df Sum of Sq Mean Sq F Value Pr(F) § 54 7 B
catalyst 3 85.68 28.56  9.916 0.0014 § 52 I
Residuals 12 34.56 2.88 50 B

A B C D

mean 56.90 55.77 53.23 51.13
rep 5.00 4.00 3.00 4.00
sd 1.52 1.10 2.78 1.44

Figure 6.19. ANOVA table, boxplots, and means for each catalyst (File: hh/oway/code/catalystm.s)

6.7.3

6.7.4
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Treatment Min X- s X X +s Max Boxplot

I I I I I
25.cycle  54.13 61.13 69.83 78.53 86.08  — 1 o 1+—3}
60.cycle 46.31 57.73 65.22 72.71 79.71 H o B 1+—3 -
faradic 38.89 5191 57.68 6345 67.96 Ho [} He13 o -
galvanic  45.07 52.86 60.13 67.39 73.54 E 0 3 o

T T T T T

40 50 60 70 80

Figure 6.20. Muscle data: distribution statistics and boxplots for adjusted weights (Files:
hh/dsgn/code/jsm.cc176.s, hh/dsgn/code/jsm.ccl76.s)

6.7.5 Example - Muscle Data, continued

The Muscle data was introduced in Sect. 6.71. In Fig. 6.20 we display microplots that
compare the distributions of responses for each level of the factor current. The
microplots in Fig. 6.20 are horizontally oriented. These consume even less vertical
page space than the vertically oriented boxplots in Fig. 6.19. The advantage of reduced
page space with a horizontal orientation must be weighed against a preference for the
vertical response scale for vertically oriented boxplots.

In this setting, we are able to align the numbers with a similar interpretation. Thus,
for example, all the means are in the same column. Vertical alignment of comparable
numbers often makes it easier for the reader to understand them.

Graphical Display of Incidence
6.8 and Relative Risk

In a clinical trial of any new pharmaceutical product, any adverse events (negative
side effects of the treatment) must be reported by the company sponsoring the trial to
the US Food and Drug Administration. These data in file (h2/datasets/aedotplot.dat)
from Amit et al. (2007) is based on a clinical trial at GlaxoSmithKline.

Figure 6.21 compares the incidence rate of multiple adverse events in a clinical
trial. It is intended as a graphical summary of adverse events in the trial, highlighting
the key differences between two treatments. It is a panel plot with two associated
dotplots. The left-hand dotplot gives the comparative incidence of selected adverse
events under each of the two treatments. The right-hand dotplot gives estimates and
isolated 95 % confidence intervals for the associated relative risks.

We place a vertical reference line at relative risk=1 to facilitate the interpretation
that an event having a confidence interval including 1 does not distinguish the effects
of treatments A and B. Events having confidence intervals that do not cross 1 suggest
a significant difference between treatments A and B.

The adverse events are ordered by relative risk, so that those with the largest in-
creases in risk for the experimental treatment are prominent at the top of the display.
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Most Frequent On-Therapy Adverse Events Sorted by Relative Risk
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Figure 6.21. The left-hand panel shows the percentage of subjects in each treatment arm who
experienced an adverse event. The right-hand panel shows the relative risk and asymptotic 95 %
confidence intervals (Files: h2/stdt/code/aerelrisk.s, hh/jsm2005/code/aerelrsk.jsm2005.s)

This could be reversed, to put the largest increases at the bottom if preferred, or the
order could be defined by the actual risk in one of the treatment arms rather than the
relative risk.

Together, the two panels display four variables for each type of adverse event: the
incidences of A and B in the left-hand panel, and the relative risk and its confidence
interval in the right-hand panel. The two panels are linked, sharing the same row
names on the y-axis identifying the types of adverse events experienced.

The two treatments are differentiated by color, and by symbol in case the display
is viewed in black and white.

The relative risks are displayed on a log scale, as the asymptotic confidence in-
tervals are symmetrical on this scale. A vertical reference line is drawn to indicate
equality of risks, to facilitate appreciation of the size of each relative risk with refer-
ence to its confidence interval. The x-axis labeling may need adjustment to ensure
legibility: in this example, the 0.25 tick label was suppressed to avoid overwriting the
0.125 tick label.

Although this example displays the relative risk in the right-hand panel, any rele-
vant measure of treatment effect for proportions can be used. For example, in dose-
ranging studies, the odds ratio from a logistic regression model with dose as a co-
variate may be substituted for the relative risk.

The size of the displayed confidence interval could be varied. There is clearly a mul-
tiplicity issue here, if there is interest in assessing the statistical significance of differ-
ences of the relative risk for so many types of events. However, the main aim of this
display is to highlight potential signals by providing an estimate of treatment effect
and the precision about that estimate. The criterion for inclusion of specific adverse
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events in the display needs to be selected with care. In this example, the criterion used
was to show only those events that had at least 2 % incidence in treatment B.

This type of panel display is useful for randomized trials with two or more treat-
ment arms. When a study has more than two treatment arms, consider separate sets
of graphs for each pairwise comparison of interest.

Summary

6.10

We have illustrated many ways in which sets of graphs are coordinated in a structured
manner to increase the amount of information that they carry jointly. The principle
of construction used in all the examples is the use of multiple panels placed in a rect-
angular structure defined by the crossing of sets of labels. While a set is often the set
of levels of a factor, it may also be a set of different variables, of different functions
of the same variable, of different functions of the data, or of different models applied
to the data. We showed examples with several applications of scatterplot matrices,
with a series of displays of case statistics used as diagnostics in regression analysis,
with interactions of several factors in analysis of variance setting, with boxplots used
in conjunction with tabular displays of the same information, and with a graphical
display of incidence and relative risk for adverse effects. In all cases, the use of struc-
tured sets of graphs enhances the ease of presenting and receiving the information
revealed by the analysis.

File Name Conventions

All examples in this article were constructed with code from the referenced files in
the HH online files Heiberger and Holland (2004).
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7.1 Introduction

Regression modeling often requires many subjective decisions, such as choice of
transformation for each variable and the type and number of terms to include in
the model. The transformations may be as simple as powers and cross-products or
as sophisticated as indicator functions and splines. Sometimes, the transformations
are chosen to satisfy certain subjective criteria such as approximate normality of the
marginal distributions of the predictor variables. Further, model building is almost
always an iterative process, with the fit of the model evaluated each time terms are
added or deleted.

In statistical applications, a regression model is generally considered acceptable if
it satisfies two criteria. The first is that the distribution of the residuals agrees with
that specified by the model. In the case of least-squares regression, this usually means
normality and variance homogeneity of the residuals. The whole subject of regression
diagnostics is concerned with this problem (Belsley et al., 1980). This criterion can
be hard to achieve, however, in complex datasets without the fitted model becoming
unwieldy. The second criterion, which is preferred almost exclusively in the machine
learning literature, is that the model has low mean prediction squared error or, more
generally, deviance.

If model selection is completely software based, the prediction deviance of an al-
gorithm can be estimated by V'-fold cross-validation as follows:

1. Randomly divide the dataset into V roughly equal parts.

2. Leaving out one part in turn, apply the algorithm to the observations in the re-
maining V' — 1 parts to obtain a model.

3. Estimate the mean prediction deviance of each model by applying the left-out
data to it.

4. Average the V estimates to get a cross-validation estimate for the model con-
structed from all the data.

The value of V may be as small as 2 for very large datasets and as large as the sample
size for small datasets. But cross-validation is impractical if the model is selected not
by a computer algorithm but by a person making subjective decisions at each stage.
In this case, penalty-based methods such as AIC (Akaike, 1973) are often employed.
These methods select the model that minimizes a sum of the residual deviance plus
a penalty term times a measure of model complexity. Although the rationale makes
sense, there is no, and probably never will be, consensus on the right value of the
penalty term for all datasets.

A separate, but no less important, problem is how to build a regression model that
can be interpreted correctly and unambiguously. In practice, the majority of con-
sumers of regression models often are more interested in model interpretation than
in optimal prediction accuracy. They want to know which predictor variables affect
the response and how they do it. Sometimes, they also want a rank ordering of the
predictors according to the strength of their effects, although this question is mean-
ingless without a more precise formulation. Nonetheless, it is a sad fact that the mod-
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els produced by most regression techniques, including the most basic ones, are often
difficult or impossible to interpret. Besides, even when a model is mathematically
interpretable, the conclusions can be far from unambiguous.

In the rest of this article, we use four examples to highlight some common difficul-
ties: (i) effects of collinearity on modeling Boston housing prices (Sect. 7.2), (ii) in-
clusion of a categorical predictor variable in modeling New Zealand horse mussels
(Sect. 7.4), (iii) outlier detection amid widespread confounding in US automobile
crash tests (Sect. 7.5), and (iv) Poisson regression modeling of Swedish car insurance
rates (Sect. 7.6). We propose a divide-and-conquer strategy to solve these problems. It
is based on partitioning the dataset into naturally interpretable subsets such that a rel-
atively simple and visualizable regression model can be fitted to each subset. A criti-
cal requirement is that the partitions be free of selection bias. Otherwise, inferences
drawn from the partitions may be incorrect. Another requirement is that the solution
be capable of determining the number and type of partitions by itself. In Sect. 7.3 we
present an implementation derived from the GUIDE regression tree algorithm (Loh,
2002). At the time of this writing, GUIDE is the only algorithm that has the above
properties as well as other desirable features.

Boston Housing Data -
Effects of Collinearity 7.2

I
The well-known Boston housing dataset was collected by Harrison and Rubinfeld
(1978) to study the effect of air pollution on real estate price in the greater Boston
area in the 1970s. Belsley et al. (1980) drew attention to the data when they used it to
illustrate regression diagnostic techniques. The data consist of 506 observations on
16 variables, with each observation pertaining to one census tract. Table 7.1 gives the
names and definitions of the variables. We use the version of the data that incorpo-
rates the minor corrections found by Gilley and Pace (1996).
Harrison and Rubinfeld (1978) fitted the linear model

log(MEDV) =3y + Bi1CRIM + 3,ZN + B3 INDUS + 8,CHAS + BsNOX* + B¢RM’
+ ﬁ7AGE + /38 IOg(DIS) + ﬁ9 IOg(R.AD) + ﬁ]QTAX + ﬁHPT + ﬁ]zB
+ ﬁ13 lOg(STAT)

whose least-squares estimates, ¢-statistics, and marginal correlation between each re-
gressor and log(MEDV) are given in Table 7.2. Note the liberal use of the square and
log transformations. Although many of the signs of the coefficient estimates are rea-
sonable and expected, those of log(DIS) and log(RAD) are somewhat surprising be-
cause their signs contradict those of their respective marginal correlations with the
response variable. For example, the regression coeflicient of log(DIS) is negative but
the plot in Fig. 7.1 shows a positive slope.



450 Wei-Yin Loh

Table 7.1. Variables in Boston housing data

Variable definition Variable definition

ID Census tract number TOWN Township (92 values)

MEDV Median value in $1000 AGE % built before 1940

CRIM Per capita crime rate DIS Distance to employ. centers
ZN % zoned for lots >25 000 sq. ft. RAD Accessibility to highways
INDUS % nonretail business TAX Property tax rate/$10K
CHAS 1 on Charles River, 0 else PT Pupil/teacher ratio

NOX Nitrogen oxide conc. (p.p-10°) B (% black —63)?/10

RM Average number of rooms LSTAT % lower-status population

Table 7.2. Least-squares estimates of coefficients and ¢-statistics for regression model for log(MEDV).

The marginal correlation between the response variable and each predictor is denoted by p

Regressor B t p Regressor B t P
Constant 4.6 30.0 AGE 7.1x107° 01 -05
CRIM -12x1072  -9.6 -05 log(DIS) -2.0x107"  -6.0 0.4
ZN 9.2x107° 0.2 0.4  log(RAD) 9.0 x 1072 47 -0.4
INDUS 1.8x107* 01 -05 TAX -42x107* -35 -06
CHAS 9.2 x1072 2.8 0.2 PT -3.0x1072 -6.0 -05
)& -6.4x107!  -57 -05 B 3.6x1074 3.6 0.4
RM? 63x107° 4.8 0.6  log(LSTAT) -3.7x107" -152 -0.8
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Figure7.1. Plot of log(MEDV) vs. log(DIS) for Boston data
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To resolve the contradiction, recall that the regression coeflicient of log (DIS) quan-
tifies the linear effect of the variable after the linear effects of the other variables are
accounted for. On the other hand, the correlation of log(DIS) with the response vari-
able ignores the effects of the other variables. Since it is important to take the other
variables into consideration, the regression coefficient may be a better measure of the
effect of log(DIS). But this conclusion requires that the linear model assumption be
correct. Nonetheless, it is hard to explain the negative linear effect of log(DIS) when
we are faced with Fig. 7.1.

The problem of contradictory signs vanishes when there is only one regressor vari-
able. Although it can occur with two regressor variables, the difficulty is diminished
because the fitted model can be visualized through a contour plot. For datasets that
contain more than two predictor variables, we propose a divide-and-conquer strat-
egy. Just as a prospective buyer inspects a house one room at a time, we propose to
partition the dataset into pieces such that a visualizable model involving one or two
predictors suffices for each piece. One difficulty is that, unlike a house, there are no
predefined “rooms” or “walls” in a dataset. Arbitrarily partitioning a dataset makes as
much sense as arbitrarily slicing a house into several pieces. We need a method that
gives interpretable partitions of the dataset. Further, the number and kind of parti-
tions should be dictated by the complexity of the dataset as well as the type of models
to be fitted. For example, if a dataset is adequately described by a nonconstant simple
linear regression involving one predictor variable and we fit a piecewise linear model
to it, then no partitioning is necessary. On the other hand, if we fit a piecewise con-
stant model to the same dataset, the number of partitions should increase with the
sample size.

The GUIDE regression tree algorithm (Loh, 2002) provides a ready solution to
these problems. GUIDE can recursively partition a dataset and fit a constant, best
polynomial, or multiple linear model to the observations in each partition. Like the
earlier CART algorithm (Breiman et al., 1984), which fits piecewise constant models
only, GUIDE first constructs a nested sequence of tree-structured models and then
uses cross-validation to select the smallest one whose estimated mean prediction de-
viance lies within a short range of the minimum estimate. But unlike CART, GUIDE
employs lack-of-fit tests of the residuals to choose a variable to partition at each stage.
As aresult, it does not have the selection bias of CART and other algorithms that rely
solely on greedy optimization.

To demonstrate a novel application of GUIDE, we use it to study the linear ef-
fect of log(DIS) after controlling for the effects of the other variables, without mak-
ing the linear model assumption. We do this by constructing a GUIDE regression
tree in which log(DIS) is the sole linear predictor in each partition or node of the
tree. The effects of the other predictor variables, which need not be transformed, can
be observed through the splits at the intermediate nodes. Figure 7.2 shows the tree,
which splits the data into 12 nodes. The regression coefficients are between —0.2 and
0.2 in all but four leaf nodes. These nodes are colored red (for slope less than —0.2)
and blue (for slope greater than 0.2). We choose the cutoff values of +0.2 because
the coefficient of log(DIS) in Table 72 is 0.2. The tree shows that the linear effect of
log(DIS) is neither always positive nor always negative - it depends on the values of
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LSTAT < 9.95

259 296 258 217
Figure7.2. GUIDE model for log(MEDV) using log(DIS) as linear predictor in each node. At each

branch, a case goes to the left child node if and only if the given condition is satisfied. The sample mean

of log(MEDV) is printed beneath each leaf node. A blue leaf node indicates a slope coefficient greater
than 0.2. Correspondingly, a red leaf node is associated with a slope coefficient less than —0.2

the other variables. This explains the contradiction between the sign of the multiple
linear regression coeflicient of log(DIS) and that of its marginal correlation. Clearly,
a multiple linear regression coefficient is, at best, an average of several conditional
simple linear regression coefficients.

Figure 7.3 explains the situation graphically by showing the data and the 12 re-
gression lines and their associated data points using blue triangles and red circles for
observations associated with slopes greater than 0.2 and less than —0.2, respectively,
and green crosses for the others. The plot shows that, after we allow for the effects of
the other variables, log(DIS) generally has little effect on median house price, except
in four groups of census tracts (triangles and circles) that are located relatively close to
employment centers (log(DIS) < 1). According to Fig. 7.2, the groups denoted by blue
triangles are quite similar. They contain a large majority of the lower-priced tracts
and have high values of LSTAT and CRIM. The two groups composed of red circles,
on the other hand, are quite different from each other. One group contains tracts in
Beacon Hill and Back Bay, two high-priced Boston neighborhoods. The other group
contains tracts with DIS lying within a narrow range and with mostly below-average
MEDV values. Clearly, the regression coefficient of log(DIS) in Table 7.2 cannot pos-
sibly reveal such details. Unfortunately, this problem is by no means rare. Friedman
and Wall (2005), for example, found a similar problem that involves different vari-
ables in a subset of these data.
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Figure 7.3. Data points and regression lines in the 12 leaf nodes of the Boston data tree. The blue and

red colors correspond to those in Fig. 7.2

Extension to GUIDE 7.3

The basic GUIDE procedure for fitting piecewise constant and piecewise multiple
linear models is described in Loh (2002). We present here an extension to fit piecewise
simple linear models. The same ideas apply to Poisson regression and to piecewise
linear two-predictor models, where the two predictors are chosen at each node via
stepwise regression, subject to the standard F-to-enter and F-to-remove threshold
values of 4.0 (Miller, 2002). Our extension comprises four algorithms, starting with
Algorithm 1.

Algorithm 1:  Tree construction These steps are applied recursively to each node of

the tree, starting with the root node that holds the whole dataset.

1. Let t denote the current node. Fit a simple linear regression to each predictor
variable in the data in ¢. Choose the predictor yielding the smallest residual mean
squared error and record its model R>.

2. Stop if R* > 0.99 or if the number of observations is less than 2n, where n, is
a small user-specified constant. Otherwise, go to the next step.

3. For each observation associated with a positive residual, define the class variable
Z =1; else define Z = 0.

4. Use Algorithm 2 to find a variable X’ to split ¢ into left and right subnodes ¢,
and fg.

a) If X' is ordered, search for a split of the form X’ < x. For every x such that
t; and ty contain at least 1y observations each, find S, the smallest total sum
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of squared residuals obtainable by fitting a simple linear model to the data in
t, and tg separately. Select the smallest value of x that minimizes S.

b) If X' is categorical, search for a split of the form X’ € C, where C is a subset
of the values taken by X’. For every C such that ¢; and tg have at least ng
observations each, calculate the sample variances of Z in ¢} and t. Select the
set C for which the weighted sum of the variances is minimum, with weights
proportional to sample sizes in 7 and tg.

5. Apply step 1 to ¢, and tg separately.

Algorithm 2:  Split variable selection

1. Use Algorithms 3 and 4 to find the smallest curvature and interaction p-values
p(9) and p(") and their associated variables X(¢) and {Xl(i),Xgi)}.

2. If pl©) < p(, define X’ = X() to be the variable to split .

3. Otherwise, if p(*) > p("), then:

a) If either Xl(i) or Xgi) is categorical, define X’ = Xl(i) if it has the smaller
curvature p-value; otherwise, define X' = Xgi).

b) Otherwise, if Xl(i) and Xgi) are both ordered variables, search over all splits
of t along Xl(i). For each split into subnodes t; and ¢z, fit a simple linear
model on Xl(i) to the data in #; and ty separately and record the total sum of
squared residuals. Let S; denote the smallest total sum of squared residuals
over all possible splits of t on Xl(i). Repeat the process with X§i) and obtain
the corresponding smallest total sum of squared residuals S,. If §; < S5, de-
fine X' = Xl(i); otherwise, define X' = X;i).

Algorithm 3:  Curvature tests
1. For each predictor variable X:
a) Construct a2 x m cross-classification table. The rows of the table are formed
by the values of Z. If X is a categorical variable, its values define the columns,
i.e., m is the number of distinct values of X. If X is quantitative, its values are
grouped into four intervals at the sample quartiles and the groups constitute
the columns, i.e., m = 4.
b) Compute the significance probability of the chi-squared test of association
between the rows and columns of the table.

2. Let p{©) denote the smallest significance probability and let X(¢) denote the as-
sociated X variable.

Algorithm 4: Interaction tests
1. For each pair of variables X; and X}, carry out the following interaction test:

a) If X; and X; are both ordered variables, divide the (X;, X;)-space into four
quadrants by splitting the range of each variable into two halves at the sample
median; construct a 2x4 contingency table using the Z values as rows and the
quadrants as columns. After dropping any columns with zero column totals,
compute the chi-squared statistic and its p-value.
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b) If X; and X are both categorical variables, use their value-pairs to divide the
sample space. For example, if X; and X; take ¢; and c; values, respectively,
the chi-squared statistic and p-value are computed from a table with two rows
and number of columns equal to ¢;c; less the number of columns with zero
totals.

c) If X;j is ordered and X is categorical, divide the X;-space into two at the
sample median and the X-space into as many sets as the number of cate-
gories in its range — if X; has ¢ categories, this splits the (X;, X;)-space into
2¢ subsets. Construct a 2 x 2¢ contingency table with the signs of the residuals
as rows and the 2¢ subsets as columns. Compute the chi-squared statistic and
its p-value, after dropping any columns with zero totals.

2. Let p( denote the smallest p-value and let Xl(i) and Xgi) denote the pair of
variables associated with p(?),

After Algorithm 1terminates, we prune the tree with the method described in Breiman
et al. (1984, Sect. 8.5) using V-fold cross-validation. Let E; be the smallest cross-
validation estimate of prediction mean squared error and let « be a positive number.
We select the smallest subtree whose cross-validation estimate of mean squared er-
ror is within « times the standard error of E,. To prevent large prediction errors
caused by extrapolation, we also truncate all predicted values so that they lie within
the range of the data values in their respective nodes. The examples here employ the
default values of V' =10 and « = 0.5; we call this the half-SE rule.

Our split-selection approach is different from that of CART, which constructs
piecewise constant models only and which searches for the best variable to split and
the best split point simultaneously at each node. This requires the evaluation of all
possible splits on every predictor variable. Thus, if there are K ordered predictor vari-
ables each taking M distinct values at a node, K(M —1) splits have to be evaluated. To
extend the CART approach to piecewise linear regression, two linear models must be
fitted for each candidate split. This means that 2K (M —1) regression models must be
computed before a split is found. The corresponding number of regression models
for K categorical predictors each having M distinct values is 2K(2"~! - 1). GUIDE,
in contrast, only fits regression models to variables associated with the most signifi-
cant curvature or interaction test. Thus the computational savings can be substantial.
More important than computation, however, is that CART’s variable selection is in-
herently biased toward choosing variables that permit more splits. For example, if
two ordered variables are both independent of the response variable, the one with
more unique values has a higher chance of being selected by CART. GUIDE does not
have such bias because it uses p-values for variable selection.

Mussels - Categorical Predictors and SIR 7.4

In this section, we use GUIDE to reanalyze a dataset, previously studied by Cook
(1998), to show that GUIDE can deal with categorical predictor variables as natu-
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rally and easily as continuous variables. The data are from the Division of Water Sci-
ence, DSIR, New Zealand (Camden, 1989). They contain measurements on 201 horse
mussels taken from five sites in the Marlborough Sounds, New Zealand, in Decem-
ber 1984. Besides site, each mussel’s length, width, depth (all in millimeters), gender
(male, female, or indeterminate), viscera mass, muscle mass, and shell mass (all in
grams) were recorded, as well as the type of peacrab (five categories) found living in
its shell.

Cook (1998, p. 214) used Muscle as the response variable and Length, Depth, and
Shell as predictors to illustrate his approach to graphical regression. (Note: Cook used
the symbols L, W, and S to denote length, depth and shell, respectively.) With the aid
of sliced inverse regression (Li, 1991) and power transformations, he found that the
mean of Muscle could be modeled by the 1-D subspace defined by the variable

SIR1 = 0.001Length + 0.073 Depth®?° + 0.997 She11"" . (7.1)

Figure 7.4 shows the banana-shaped plot of Muscle versus SIRI.

The variable Site is not used in Eq. (7.1) because, unlike GUIDE, sliced inverse
regression does not easily handle categorical predictor variables. Figure 7.5 shows the
result of fitting a GUIDE piecewise best simple linear model to the data. The tree splits
first on Site. If Site is neither 2 nor 3, the tree splits further on Depth. The best simple
linear predictor is Shell at two of the leaf nodes and Width at the third. Figure 7.6
shows the data and the fitted lines in the leaf nodes of the tree. The plots look quite
linear.

On the right side of Fig. 7.5 is the piecewise best two-variable GUIDE model. It
splits the data into two pieces, using the same top-level split as the piecewise best
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D [¢]
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o
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30
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SIR1
Figure7.4. Plot of Muscle vs. SIR1 (slightly jittered to reduce overplotting)
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Figure 7.5. Piecewise best simple linear (left) and best two-variable linear (right) least-squares GUIDE
models for mussels data. At each intermediate node, a case goes to the left child node if and only if the

condition is satisfied. Beneath each leaf node are the sample mean of Muscle and the selected linear

predictors
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simple linear model. Shell and Width are selected as the best pair of linear predictors
in both leaf nodes. Figure 7.7 shows shaded contour plots of the fitted functions and
data points. Clearly, the mussels from Sites 2 and 3 tend to have greater muscle mass

than those from Sites 1, 4, and 5.

Since Site is an important predictor in the GUIDE models, we redraw the SIR
plot using different symbols to indicate site information in panel a of Fig. 7.8. The
banana-shaped plot is seen to be an artifact caused by combining the sites; the data

(a) Site=2o0r3

(b) Site = 1, 4, or 5
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Figure7.7. Shaded contour plots of fitted functions and data

linear model on the right side of Fig. 7.5
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Figure 7.8. Muscle vs. SIRI by site and by the nodes of the tree in Fig. 7.5a
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points within each site are quite linear. Panel b again employs different symbols to
indicate leaf node membership according to the piecewise best simple linear model
in Fig. 7.6. We see that node membership divides the data into three clusters, with the
first cluster belonging to Sites 2 and 3 and the second and third clusters to Sites 1, 4,
and 5, depending on whether or not Depth < 42.5. The first cluster (indicated by cir-
cles) clearly exhibits the most pronounced curvature. This suggests that the nonlinear
relationship between Muscle and SIRI is mainly due to the observations from Sites 2
and 3. On the other hand, we saw in Fig. 7.6a that at these two sites, Muscle varies
roughly linearly with Shell. Thus it is likely that the curvature in Fig. 7.4 is at least
partly due to the power transformation of Shell in the definition of SIRI in Eq. (7.1).

Crash Tests — Outlier Detection
Under Confounding 7.5

The data in this example are obtained from 1789 vehicle crash tests performed by
the National Highway Transportation Safety Administration (NHTSA) between 1972
and 2004 (http://www-nrd.nhtsa.dot.gov). The response variable is the square root of
the head injury criterion (hic) measured on a crash dummy. Values of \/hic range
from 0 to 100, with 30 being the approximate level beyond which a person is expected
to suffer severe head injury. Twenty-five predictor variables, defined in Table 7.3, pro-
vide information on the vehicles, dummies, and crash tests. Angular variables are
measured clockwise, with —90, 0, and 90 degrees corresponding to the driver’s left,
front, and right sides, respectively. About one quarter of the vehicle models are tested
more than once, with the most often tested being the 1982 Chevy Citation, which was
tested 15 times.

Table 7.3. Variables for NHTSA data

Name Description Name Description

hic Head injury criterion make Car manufacturer (62 values)

vear Car model year mkmodel  Car model (464 values)

body Car body type (18 values) transm Transmission type (7 values)
engine  Engine type (15 values) engdsp Engine displacement (liters)
vehtwt  Vehicle total weight (kg) colmec Collapse mechanism (11 values)
vehwid  Vehicle width (mm) modind Car modification indicator (5 values)
vehspd  Vehicle speed (km/h) crbang Crabbed angle (degrees)

tksurf  Track surface (5 values) pdof Principal direction of force (degrees)
tkcond  Track condition (6 values) impang Impact angle (degrees)

occtyp  Occupant type (10 values) dumsiz Dummy size (6 values)

seposn  Seat position (5 values) barrig Barrier rigidity (rigid/deformable)
barshp  Barrier shape (14 values) belts Seat belt type (none/2pt/3pt)

airbag  Airbag present (yes/no) knee Knee restraint present (yes/no)
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Our goal is to identify the vehicle models for which the hic values are unusually
high, after allowing for the effects of the predictor variables. Since almost all the tests
involve two or more crash dummies, we will give two separate analyses, one for the
driver and another for the front passenger dummies. After removing tests with in-
complete values, we obtain 1633 and 1468 complete tests for driver and front passen-
ger, respectively. The tests for driver dummies involve 1136 different vehicle models.
Figure 7.9 shows a histogram of the v/hic values for the driver data (the histogram
for front passenger is similar). There are 22 vehicle models with /hic values greater
than 50. They are listed in Table 7.4, arranged by model year, with the total number of
times tested and (in parentheses) the Vhic values that exceed 50. For example, the
2000 Nissan Maxima was tested eight times, of which five gave v/hic values greater
than 50.

To identify the outliers after removing the effects of the predictor variables, we
need to regress the response values on the predictors. The regression model must be
sufficiently flexible to accommodate the large number and mix of predictor variables
and to allow for nonlinearity and interactions among them. It must also be suitable
for graphical display, as the outliers will be visually identified. These requirements are
well satisfied by a piecewise simple linear GUIDE model, which is shown in Fig. 7.10.
The tree has three leaf nodes, partitioning the data according to vehspd. Beneath
each leaf node is printed the sample mean response for the node and the selected
signed linear predictor. We see that model year is the most important linear predictor
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Figure7.9. Histogram of \/hic for driver dummy data. Shaded areas correspond to v/hic > 30
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Table 7.4. Vehicles with \/hic (in parentheses) greater than 50 registered on driver dummies. The
column labeled # gives the total number of each model tested. For example, five out of eight 2000
Nissan Maxima’s tested had \/hic > 50

# Model # Model
1 1979 Dodge Colt (96) 2 1983 Renault Fuego (57)
12 1979 Honda Civic (53) 1 1984 Ford Tempo (54)
1 1979 Mazda B2000 Pickup (55) 1 1988 Chevy Sportvan (61)
1 1979 Peugeot 504 (68) 1 1990 Ford Clubwagon MPV (51)
2 1979 Volkswagen Rabbit (62) 4 1995 Honda Accord (94)
3 1980 Chevy Citation (65) 5 2000 Nissan Altima (100)
1 1980 Honda Civic (52) 8 2000 Nissan Maxima (69, 72, 100, 100, 100)
1 1980 Honda Prelude (55) 4 2000 Saab 38235 (72)
2 1981 Mazda GLC (51) 4 2000 Subaru Legacy (100, 100)
2 1982 Chrysler Lebaron (51) 11 2001 Saturn L200 (68, 87,100)
2 1982 Renault Fuego (61) 9 2002 Ford Explorer (100)

21.01 26.84
-impang ~ —Year

Figure 7.10. Piecewise-simple linear GUIDE model for driver data. At each intermediate node, a case
goes to the left child node if and only if the condition is satisfied. Beneath each leaf node are the sample
mean of \/hic and the selected signed linear predictor

in two of the three leaf nodes, and impang in the third. In the latter (Node 4), injury
tends to be more severe if the impact occurs on the driver side (impang = —90).

A very interesting feature of the tree is that the sample mean response is lowest in
Node 3, which has the highest values of vehspd (>63.95). At first glance, this does
not make sense because injury severity should be positively correlated with vehicle
speed. It turns out that the design of the experiment causes some variables to be
confounded. This is obvious from the upper row of plots in Fig. 7.11, which show the
data and regression lines in the three leaf nodes of the tree, using different symbols to
indicate whether a vehicle is crashed into a rigid or a deformable barrier. We see that
the proportion of tests involving deformable barriers is much greater at high speeds
(Node 3) than at low speeds. This would explain the lower injury values among the
high-speed tests.
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Figure 7.11. Data and fitted regression functions in the leaf nodes of the tree model in Fig. 7.10, using

different symbols for barrig (top) and airbag (bottom) values

Another variable confounded with vehspd is airbag. This can be seen in the
second row of plots in the same figure, where different symbols are used to indicate
whether a vehicle is equipped with an airbag or not. We see that almost all vehicles
manufactured from 1990 onwards have airbags and that their presence is associated
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with lower hic values. Since there is a fair number of such vehicles in Node 3, this
could also account for the low sample mean response.

Finally, a third confounding variable is evident in Fig. 712, which shows barplots
of the proportions of barrier shape type (barshp) within each leaf node of the tree.
Node 3, whose bars are colored green, stands out in that barrier shapes EOB, GRL,
IAT, MBR, and SGN practically never appear in the other two nodes. For some rea-
son, the testers seem to prefer these barrier shapes for high-speed crashes. Thus bar-
rier shape is yet another possible explanation for the low mean response value in the
node.

Despite these difficulties, it is clear from the plots that three vehicle models stand
out as outliers: 1995 Honda Accord, 2000 Nissan Altima, and 2000 Subaru Legacy.
All are foreign imports. The 2000 Subaru Legacy appears as an outlier in two separate
tests, one at moderate speed and one at high speed.

Figure 713 shows the corresponding tree model for the front passenger data. Now
airbag and barrier rigidity appear as split variables after the top-level split on vehspd.
The plots of the data in the leaf nodes are presented in Fig. 714. Everything seems to
make sense: injury is less severe when a vehicle is equipped with airbags and when
it is crashed into a deformable barrier, and also if impact occurs on the driver side
(Node 6). It is interesting to note that in Node 5, where vehspd < 48.25 and the
vehicles are equipped with airbags, rigid barriers are used for the higher speeds and
deformable barriers for the lower speeds. This may exaggerate the effect of vehspd
in this node. The outliers for these data turn out to be all domestic models: 1978

barshp proportions

0.7 = Node 3
O Node 4
B Node 5
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0.5 1
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0.1 4 I

EOB EOL FAB FLB GRL IAT LCB LUM MBR OTH POL SGN US1 US2
Figure 7.12. Proportions of different barrier shapes within the three leaf nodes of the tree model in

Fig. 710. The lengths of the bars sum to one for each color
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vehspd

barrig

airbag
deformable

23.23 16.79 18.67 26.31
+vehspd  +vehspd +impang ~—Yyear
Figure 7.13. Piecewise-simple linear GUIDE model for front passenger data. At each intermediate node,
a case goes to the left child node if and only if the condition is satisfied. Beneath each leaf node are the
sample mean of /hic and the selected signed linear predictor

Node 4: Node 5:
vehspd < 48.25 & no airbag vehspd < 63.95 & airbag
o o
o o
- - rigid
o o _l deformable
© '78 Blazer ©
o _| (=3
o © ©
2
o | o |
< <
o | o
3V 3V
o - o
\ \ \ \ \ \ \ \ \ \
25 30 35 40 45 25 30 35 40 45
vehspd vehspd
Node 6: Node 7:
vehspd > 48.25 & deformable vehspd > 48.25 & rigid
o o
2 ’98 Contour 2 '94 Ram150 <
'99 Intrepid
& & '82 Citation
o _| o _
o © ©
2
o | o |
< <
o | o |
[aV) [aV)
o o
\ \ \ \ \ \ \ \ | \ 1
-60 -40 -20 0 1975 1985 1995 2005
impang year

Figure 7.14. Data and fitted regression functions in the leaf nodes of the tree model in Fig. 713, with
different symbols for barrig type
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Chevy Blazer, 1982 Chevy Citation, 1994 Ford Ram 150, 1998 Ford Contour, and 1999
Dodge Intrepid.

The good news from both analyses is that no obvious outliers are found among
vehicles newer than the 2000 model year.

Car Insurance Rates - Poisson Regression 7.6

The data are from Statlib. A subset of them is given in Andrews and Herzberg (1985,
pp. 415-421). The original data consist of information on more than two million
third-party automobile insurance policies in Sweden for the 1977 year. For each pol-
icy the annual mileage, bonus class (on a seven-point scale), geographical zone (seven
categories), and make of car (nine categories) were recorded. Annual mileage is dis-
cretized into five categories: (1) less than 10,000 km/year, (2) 10 000-15 000 km/year,
(3) 15000-20000km/year, (4) 20000-25000km/year, and (5) more than
25000 km/year (Hallin and Ingenbleek, 1983). These four explanatory variables yield
a5 x7x7x9 table with 2205 possible cells. For each cell, the following quantities
were obtained:

1. Total insured time in years,

2. Total number of claims,

3. Total monetary value of the claims.

Twenty-three cells are empty.

We will model claim rate here. According to Andrews and Herzberg (1985, p. 414),
a Swedish Analysis of Risk group decided that a multiplicative model (i.e., an additive
Poisson loglinear model) for claim rate is fairly good, and that any better model is
too complicated to administer. To challenge this conclusion, we will use GUIDE to
fit a piecewise-additive Poisson loglinear model for number of claims, using the log
of number of claims as offset variable. Bonus class and mileage class are treated as
continuous, and zone and make as categorical variables.

0.091 0.107 0.060 0.036
Figure 7.15. GUIDE multiple linear Poisson regression tree for car insurance data. At each intermediate
node, a case goes to the left child node if and only if the condition is satisfied. The number in italics

beneath each leaf node is the sample claim rate
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Figure 715 shows the GUIDE tree, which has four leaf nodes and an estimated
prediction deviance (based on tenfold cross-validation) about 25% lower than that
of a single additive loglinear model. From the sample average claim rates printed
beneath the leaf nodes, we see that bonus classes 1 and 2 tend to yield rates two to
three times as large as the other bonus classes.

The estimated regression coeflicients in the leaf nodes are given in Table 7.5, where
the coeflicients of the dummy variables corresponding to the first levels of each cat-
egorical variable are set to zero. As may be expected, Mileage has a positive slope
coefficient in all three nodes where it is not constant. The slope for Bonus is, how-
ever, negative wherever it is not constant. Thus the higher the Bonus class, the lower
the Claim rate tends to be.

For Make, the coefficient for level 4 has a larger negative value than the coefficients
for the other Make levels, uniformly across all the nodes. Hence this level of Make
is likely to reduce claim rate the most. In contrast, the coeflicient for level 5 of Make
is positive in all nodes and is larger than the coefficients for all other levels in three
nodes - it is second largest in the remaining node. This level of Make is thus most
likely to increase claim rate. The situation is quite similar for Zone: since all its co-
efficients are negative except for level 1, which is set to zero, that level is most likely
to increase claim rate, across all four nodes. The Zone level most likely to decrease
claim rate is 7, which has the largest negative coefficient in three of the nodes and the
second largest negative coeflicient in the fourth node. Figure 7.16 presents the results
more vividly by showing barplots of the coefficients for Make and Zone by node. The
relative sizes of the coefficients are fairly consistent between nodes.

Table 7.5. Regression estimates for GUIDE model using set-to-zero constraints for the first levels of
Make and Zone

Node 4 Node 5 Node 6 Node 7
Constant —0.8367 —1.0639 —2.3268 —3.3725
Mileage Aliased 0.0427 0.1425 0.1439
Bonus —-0.5202 —-0.4500 —-0.0992 aliased
Make=2 —-0.1705 —0.0356 0.0756 0.1375
Make=3 —0.2845 —0.2763 —0.2038 —0.2247
Make=4 -1.0964 —0.7591 —0.6555 —0.4595
Make=5 0.0892 0.1685 0.1468 0.1308
Make=6 —-0.5971 —0.5437 —-0.3274 —-0.2563
Make=7 —0.3330 —0.2900 —0.0405 0.0214
Make=8 —0.0806 —0.0848 0.0233 —0.0584
Make=9 —0.4247 —0.2097 —0.0592 0.0039
Zone=2 —-0.3306 —0.2735 —0.2525 —0.1837
Zone=3 —0.5220 —0.3905 —0.4046 —-0.3303
Zone=4 —0.8298 —0.5692 —0.5986 —0.5120
Zone=5 —0.4683 —0.3927 —0.3533 —0.2384
Zone=6 —0.7414 —0.5437 —0.5830 —0.4273

Zone=7 -0.8114 —0.8538 —-0.7760 —-0.6379
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Figure7.16. Estimated regression coefficients for Make (above) and Zone (below)

Because rate of change of log claim rate with respect to Bonus and Mileage class
depends on the levels of Make and Zone, the best way to visualize the effects is to
draw a contour plot of the fitted model for each combination of Make and Zone. This
is done in Fig. 7.17 for four level combinations, those corresponding to the best and
worst levels of Make and Zone. We see that claim rate is highest when Mileage class
is 5, Bonus class is 1, Make is 5, and Zone is 1. The lowest claim rates occur for Make
level 4 and Zone level 7, more or less independent of Mileage and Bonus class.
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Figure 7.17. Estimated claim rates for selected values of Make and Zone
o
7.7 Conclusion
I

We have given four examples to illustrate the uses of GUIDE for building visualizable
regression models. We contend that a model is best understood if it can be visualized.
But in order to make effective use of current visualization techniques, namely, scatter
and contour plots, we will often need to fit models to partitions of a dataset. Other-
wise, we simply cannot display a model involving more than two predictor variables
in a single 2-D graph. The data partitions, of course, should be chosen to build as
parsimonious a model as possible. The GUIDE algorithm does this by finding par-
titions that break up curvature and interaction effects. As a result, it avoids splitting
a partition on a predictor variable whose effect is already linear. Model parsimony as
a whole is ensured by pruning, which prevents the number of partitions from being
unnecessarily large.

After pruning is finished, we can be quite confident that most of the important
effects of the predictor variables are confined within the one or two selected linear
predictors. Thus it is safe to plot the data and fitted function in each partition and
to draw conclusions from them. As our examples showed, such plots usually can tell
us much more about the data than a collection of regression coefficients. An obvious
advantage of 2-D plots is that they require no special training for interpretation. In
particular, the goodness of fit of the model in each partition can be simply judged by
eye instead of through a numerical quantity such as AIC.

The GUIDE computer program is available for Linux, Macintosh, and Windows
computers from www.stat.wisc.edu/%7Eloh/.
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Regression is commonly used to describe and analyze the relation between explana-
tory input variables X and one or multiple responses Y. In many applications such
relations are too complicated to model with a parametric regression function. Classi-
cal nonparametric regression (see e.g., Fan and Gijbels, 1996; Wand and Jones, 1995;
Loader, 1999; Simonoft, 1996) and varying coeflicient models (see e.g., Hastie and
Tibshirani, 1993; Fan and Zhang, 1999; Carroll et al., 1998; Cai et al., 2000), allow for
a more flexible form. In this article we describe an approach that allows us to effi-
ciently handle discontinuities and spatial inhomogeneities of the regression function
in such models.

Nonparametric Regression

8.1.1

Let us assume that we have a random sample Zi, ..., Z, of the form Z; = (X;, Y;).
Every X; is a vector of explanatory variables which determines the distribution of an
observed response Y;. Let the X;’s be valued in the finite dimensional Euclidean space
X = R? and the Y;’s belong to ) € RY. The explanatory variables X; may quantify
some experimental conditions, coordinates within an image, or a time. The response
Y; in these cases identifies the observed outcome of the experiment: the gray value
or color at the given location and the value of a time series, respectively.

We assume that the distribution of each Y; is determined by a finite dimensional
parameter 0 = 6(X;) which may depend on the value X; of the explanatory variable.

Examples

We use the following examples to illustrate the situation.

Example 1: homoscedastic nonparametric regression model This model is specified
by the regression equation Y; = 6(X;) + ¢; with a regression function 0 and additive
i.i.d. Gaussian errors &; ~ N(0,0%). We will use this model to illustrate the main
properties of our algorithms in a univariate (d = 1) setting. The model also serves as
a reasonable approximation to many imaging problems. Here the explanatory vari-
ables X; define a two-dimensional (d = 2) or three-dimensional (d = 3) grid with
observed gray values Y; at each grid point.

Example 2: inhomogeneous binary response model Here Y; is a Bernoulli random
variable with parameter 0(X;); thatis, P(Y; =1| X;) =0(X;)and P(Y; =0| X;) =
1- 0(X;). This model occurs in classification. It is also adequate for binary images.

Example 3: inhomogeneous Poisson model Every Y; follows a Poisson distribution
with parameter 6 = 0(X;), ie, Y; attains nonnegative integer values and
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P(Y; = k| X;) = 0(X;)e "D /k!. Such a situation frequently occurs in low-
intensity imaging, e.g., confocal microscopy and positron emission tomography. It
also serves as an approximation of the density model, obtained by a binning proce-
dure.

Example 4: color images In color images, Y; denotes a vector of values in a three-
dimensional color space at pixel coordinates X; . A fourth component may code trans-
parency information. The observed vectors Y; can often be modeled as a multivariate
Gaussian, i.e., Y; ~ N3(6(X;), £) with some unknown covariance ¥ that may depend
on 6. Additionally we will usually observe some spatial correlation.

Local Modeling

We now formally introduce our model. Let P = (Py, 6 € @) be a family of probabil-
ity measures on ) where © is a subset of the real line R'. We assume that this family
is dominated by a measure P and denote p(y,0) = dPy/dP(y). We suppose that
each Y; is, conditionally on X; = x, distributed with density p(-, 8(x)). The density
is parameterized by some unknown function 8(x) on X which we aim to estimate.
A global parametric structure simply means that the parameter 6 does not depend on
the location; that is, the distribution of every “observation” Y; coincides with Py for
some 0 € ® and all i. This assumption reduces the original problem to the classical
parametric situation and the well-developed parametric theory is applied here to es-
timate the underlying parameter 0. In particular, the maximum likelihood estimate
0= é( Y1,...,Y,) of 6, which is defined by the maximization of the log-likelihood

n
L(8) = > log p(Y:.6) (8.1)
i=1
is root-n consistent and asymptotically efficient under rather general conditions.
Such a global parametric assumption is typically too restrictive. The classical non-
parametric approach is based on the idea of localization: for every point x, the para-
metric assumption is only fulfilled locally in a vicinity of x. We therefore use a local
model concentrated in some neighborhood of the point x.
The most general way to describe a local model is based on weights. Let, for a fixed
x, a nonnegative weight w; = w;(x) < 1be assigned to the observations Y; at X;, i =
1,...,n. When estimating the local parameter 6(x), every observation Y; is used with
the weight w; (x). This leads to the local (weighted) maximum likelihood estimate

0(x) =argsup »_ w;(x)logp(Y;,0). (8.2)
0€0 i=1

Note that this definition is a special case of a more general local linear (polynomial)
likelihood model when the underlying function 6 is modelled linearly (polynomi-
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ally) in x; see e.g., Fan et al. (1998). However, our approach focuses on the choice of
localizing weights in a data-driven way rather than on the method of local approxi-
mation of the function 6.

A common way to choose the weights w; (x) is to define them in the form w; (x) =
Kioc(1;) with I; = |p(x, X;)/h|* where h is a bandwidth, p(x, X;) is the Euclidean
distance between x and the design point X;, and Ky, is a location kernel. This ap-
proach is intrinsically based on the assumption that the function 0 is smooth. It leads
to a local approximation of 0(x) within a ball with some small radius 4 centered on
the point x, see e.g., Tibshirani and Hastie (1987); Hastie and Tibshirani (1993); Fan
et al. (1998); Carroll et al. (1998); Cai et al. (2000).

An alternative approach is termed localization by a window. This simply restricts
the model to a subset (window) U = U(x) of the design space which depends on
x; that is, w; (x) = 1(X; € U(x)). Observations Y; with X; outside the region U(x)
are not used to estimate the value 6(x). This kind of localization arises, for example,
in the regression tree approach, in change point estimation (see e.g., Miiller, 1992;
Spokoiny, 1998), and in image denoising (see Qiu, 1998; Polzehl and Spokoiny, 2003),
among many other situations.

In our procedure we do not assume any special structure for the weights w;(x);
that is, any configuration of weights is allowed. The weights are computed in an it-
erative way from the data. In what follows we identify the set W(x) = {w(x),...,
wy(x)} and the local model in x described by these weights and use the notation

L(W(x),0) = 3 wi(x) log p(¥;, ).

i=1

Then O(x) = argsupy L(W(x),0). For simplicity we will assume the case where
0(x) describes the conditional expectation E(Y|x) and the local estimate is obtained
explicitly as

0(x) = Zwi(x)lfi/ Z wi(x). (8.3)

The quality of the estimation heavily depends on the localizing scheme we se-
lected. We illustrate this issue by considering kernel weights w; (x) = Kioc(|p(x, X;)/
h|*) where the kernel Kj,. is supported on [0, 1]. Then the positive weights w; (x) are
concentrated within the ball of radius /4 at the point x. A small bandwidth / leads to
a very strong localization. In particular, if the bandwidth h is smaller than the dis-
tance from x to the nearest neighbor, then the resulting estimate coincides with the
observation at x. Increasing the bandwidth amplifies the noise reduction that can be
achieved. However, the choice of a large bandwidth may lead to estimation bias if
the local parametric assumption of a homogeneous structure is not fulfilled in the
selected neighborhood.

The classical approach to solving this problem is based on a model selection idea.
One assumes a given set of bandwidth candidates { i }, and one of them is selected in
a data-driven way to provide the optimal quality of estimation. The global bandwidth
selection problem assumes the same kernel structure of localizing schemes w; (x) for
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all points x, and only one bandwidth % has to be specified. In the local model selection
approach, the bandwidth h may vary with the point x. See Fan et al. (1998) for more
details.

We employ a related but more general approach. We consider a family of localizing
models, one per design point X;, and denote them as W; = W(X;) = {wi1, ..., Win }.
Every W; is built in an iterative data-driven way, and its support may vary from point
to point. The method used to construct such localizing schemes is discussed in the
next section.

Structural Adaptation

Let us assume that for each design point X; the regression function 6 can be well
approximated by a constant within a local vicinity U(X;) containing X;. This serves
as our structural assumption.

Our estimation problem can now be viewed as consisting of two parts. In order
to efficiently estimate the function 6 in a design point X; we need to describe a local
model, i.e., to assign weights W(X;) = {wj1, ..., wi, }. If we knew the neighborhood
U(X;) via an oracle we would define the local weights as w;; = w;(X;) = Ixcu(x))
and use these weights to estimate 6(X;). However, since 6 and therefore U(X ) are
unknown, the assignments will have to depend on the information on 6 that we can
extract from the observed data. If we have good estimates 0 i = 6(x j) of 0(X;), we
can use this information to infer the set U(X;) by testing the hypothesis

A weight w;; can be assigned based on the value of a test statistic T;;, assigning zero
weights if 0 and 0; are significantly different. This provides us with a set of weights
W(X;) = {wll, ..., Wiy, } that determines a local model in X;.

Given the local model we can then estimate our function 6 at each design point
X by (8.2).

We utilize both steps in an iterative procedure. We start with a very local model at
each point X; given by weights

W = Ko (197) with 1 =1, - X;{/h®). (8.5)

The initial bandwidth #(%) is chosen very small. K. is a kernel function supported
on [-1,1]; i.e., weights vanish outside a ball Ul.(o) of radius h(®) centered on X;. We
then iterate two steps: estimation and local model refinement. In the kth iteration
new weights are generated as

Wi = Kioe (1)) Ko (") with (8.6)

19 = [Xi - X;|/h® and s = 190, (8.7)
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The kernel function Kj, is monotonically nonincreasing over the interval [0, 00).
The bandwidth & is increased by a constant factor with each iteration k. The test
statistic for (8.4)

1) - N K60, 66 ©9)

with N; = 3 w;; is used to specify the penalty sff). This term effectively measures
the statistical difference between the current estimates in X; and X;. In (8.8) the
term C(0, 6") denotes the Kullback-Leibler distance of the probability measures Py
and Py:.

Additionally, we can introduce a kind of memory into the procedure, which en-
sures that the quality of estimation will not be lost with the iterations. This basically
means that we compare a new estimate éfk) = %) (X;) with the previous estimate

éfk_l) in order to define a memory parameter #; = Kmem(mfk)) using a kernel func-
tion Kpem and

m,(k) = 'l'_1 Z Kloc(lt(]]’())lc(éfk)’ égk_l)) : (8'9)
J

This leads to an estimate

0% = 0%+ (1= 7). (8.10)

Adaptive Weights Smoothing

We now formally describe the resulting algorithm.
Initialization: Set the initial bandwidth h(®), k = 0 and compute, for every i, the
statistics

Ni(k) = Z wff) , and ka) = Z wff)Yj (8.11)
] ]

and the estimates
o) = s® Nk (8.12)

using wf;)) = Kloc(lg))). Set k =1and h) = Cio).

Adaptation: For every pair i, j, compute the penalties

1 = X - x;{/n 5, (8.13)

& =27 = TIN5y (8.14)

(k)

i

w8 = Kioe (19K (1)

Now compute the weights w;.~ as

and specify the local model by Wl.(k) = {wflk), cis wf:) 1.
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Local estimation: Now compute new local MLE estimates éfk) of 0(X;) as

JONNONVO! ; R Z 5, (0 (k) s (k)
6;" =SV N, with NV =Y w877 =Y wi
J J

Adaptive control: Compute the memory parameter as #; = Kmem(mfk) ). Define
éfk) = qiéfk) +(1- qi)éfk_l) and
NZ-(k) = ﬂiNl-(k) +(1-p)NED

Stopping: Stop if K1) > k.., otherwise set h¥) = ¢, h(*™)), increase k by 1, and
continue with the adaptation step.

Choice of Parameters: Propagation Condition

The proposed procedure involves several parameters. The most important one is the
scale parameter A in the statistical penalty s;;. The special case A = oo simply leads
to a kernel estimate with bandwidth .. We propose to choose A as the smallest
value satisfying a propagation condition. This condition requires that, if the local
assumption is valid globally (i.e., 8(x) = 6 does not depend on x), then with high
probability the final estimate for /imax = oo coincides at every point with the global
estimate. More formally we request that, in this case, for each iteration k,

E|0X) (X) - 6% (X)| < «E|0® (X) - 6| (8.15)
for a specified constant & > 0. Here

é(k)(xz) = ZKloc(l,(]k))Yj/ ZKIOC(IE;()) (8-16)
j j

denotes the nonadaptive kernel estimate employing the bandwidth h(¥) from step
k. The value A provided by this condition does not depend on the unknown model
parameter 0 and can therefore be approximately found by simulation. This allows
us to select default values for A depending on the specified family of the probability
distribution P = (Py, 0 € ®). Default values for A in the examples below are selected
for a value of « = 0.2.

The second parameter of interest is the maximal bandwidth h,,x, which controls
both the numerical complexity of the algorithm and the smoothness within homo-
geneous regions.

The scale parameter 7 in the memory penalty m; can also be chosen to meet the
propagation condition (8.15). The special case 7 = oo turns off the adaptive control
step.

Additionally we specify a number of parameters and kernel functions that have
less influence on the resulting estimates. As a default, the kernel 