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Computational Statistics
and Data Visualization1.1

his book is the third volume of the Handbook of Computational Statistics and cov-
ers the field of data visualization. In line with the companion volumes, it contains
a collection of chapters by experts in the field to present readers with an up-to-date
and comprehensive overview of the state of the art. Data visualization is an active area
of application and research, and this is a good time to gather together a summary of
current knowledge.
Graphic displays are oten very effective at communicating information. hey are

also very oten not effective at communicating information. Two important reasons
for this state of affairs are that graphics can be produced with a few clicks of the
mouse without any thought and the design of graphics is not taken seriously in many
scientific textbooks. Some people seem to think that preparing good graphics is just
a matter of common sense (in which case their common sense cannot be in good
shape), while others believe that preparing graphics is a low-level task, not appropri-
ate for scientific attention. his volume of the Handbook of Computational Statistics
takes graphics for data visualization seriously.

Data Visualization and Theory1.1.1

Graphics provide an excellent approach for exploring data and are essential for pre-
senting results. Although graphics have been used extensively in statistics for a long
time, there is not a substantive body of theory about the topic. Quite a lot of atten-
tion has been paid to graphics for presentation, particularly since the superb books of
Edward Tute. However, this knowledge is expressed in principles to be followed and
not in formal theories. Bertin’s work from the s is oten cited but has not been
developed further. his is a curious state of affairs. Graphics are used a great deal in
many different fields, and one might expect more progress to have been made along
theoretical lines.
Sometimes in science the theoretical literature for a subject is considerable while

there is little applied literature to be found.he literature on data visualization is very
much the opposite. Examples abound in almost every issue of every scientific jour-
nal concerned with quantitative analysis. here are occasionally articles published in
a more theoretical vein about specific graphical forms, but little else. Although there
is a respected statistics journal called the Journal of Computational and Graphical
Statistics, most of the papers submitted there are in computational statistics. Perhaps
this is because it is easier to publish a study of a technical computational problem
than it is to publish work on improving a graphic display.

Presentation and Exploratory Graphics1.1.2

he differences between graphics for presentation and graphics for exploration lie
in both form and practice. Presentation graphics are generally static, and a single
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Figure .. A barchart of the number of authors per paper, a histogram of the number of pages per

paper, and parallel boxplots of length by number of authors. Papers with more than three authors have

been selected

graphic is drawn to summarize the information to be presented.hese displays should
be of high quality and include complete definitions and explanations of the variables
shown and of the form of the graphic. Presentation graphics are like proofs of math-
ematical theorems; they may give no hint as to how a result was reached, but they
should offer convincing support for its conclusion. Exploratory graphics, on the other
hand, are used for looking for results. Very many of them may be used, and they
should be fast and informative rather than slow and precise. hey are not intended
for presentation, so that detailed legends and captions are unnecessary. One presen-
tation graphic will be drawn for viewing by potentially thousands of readers while
thousands of exploratory graphics may be drawn to support the data investigations
of one analyst.
Books on visualization should make use of graphics. Figure . shows some simple

summaries of data about the chapters in this volume, revealing that over half the
chapters had more than one author and that more authors does not always mean
longer papers.

Graphics and Computing 1.1.3

Developments in computing power have been of great benefit to graphics in recent
years. It has become possible to draw precise, complex displays with great ease and
to print them with impressive quality at high resolution. hat was not always the
case, and initially computers were more a disadvantage for graphics. Computing
screens and printers could at best produce clumsy line-driven displays of low resolu-
tion without colour. hese offered no competition to careful, hand-drawn displays.
Furthermore, even early computersmademany calculations much easier than before
and allowed fitting of more complicated models. his directed attention away from
graphics, and it is only in the last  years that graphics have come into their own
again.
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hese comments relate to presentation graphics, that is, graphics drawn for the
purpose of illustrating and explaining results. Computing advances have benefitted
exploratory graphics, that is, graphics drawn to support exploring data, far more.
Not just the quality of graphic representation has improved but also the quantity. It is
now trivial to drawmany different displays of the same data or to riffle through many
different versions interactively to look for information in data. hese capabilities are
only gradually becoming appreciated and capitalized on.
he importance of sotware availability and popularity in determining what anal-

yses are carried out and how they are presented will be an interesting research topic
for future historians of science. In the business world, no one seems to be able to
do without the spreadsheet Excel. If Excel does not offer a particular graphic form,
then that form will not be used. (In fact Excel offers many graphic forms, though
not all that a statistician would want.) Many scientists, who only rarely need access
to computational power, also rely on Excel and its options. In the world of statistics
itself, the packages SAS and SPSS were long dominant. In the last  years, first S and
S-plus and now R have emerged as important competitors. None of these packages
currently provide effective interactive tools for exploratory graphics, though they are
all moving slowly in that direction as well as extending the range and flexibility of the
presentation graphics they offer.
Data visualization is a new term. It expresses the idea that it involves more than

just representing data in a graphical form (instead of using a table). he information
behind the data should also be revealed in a good display; the graphic should aid
readers or viewers in seeing the structure in the data. he term data visualization is
related to the new field of information visualization. his includes visualization of
all kinds of information, not just of data, and is closely associated with research by
computer scientists. Up till now the work in this area has tended to concentrate just
on presenting information, rather than on what may be deduced from it. Statisticians
tend to be concerned morewith variability and to emphasize the statistical properties
of results.he closer linking of graphicswith statisticalmodelling canmake thismore
explicit and is a promising research direction that is facilitated by the flexible nature
of current computing sotware. Statisticians have an important role to play here.

The Chapters1.2

Needless to say, each Handbook chapter uses a lot of graphic displays. Figure . is
a scatterplot of the number of figures against the number of pages. here is an ap-
proximate linear relationship with a couple of papers having somewhat more figures
per page and one somewhat less. he scales have been chosen to maximize the data-
ink ratio. An alternative version with equal scales makes clearer that the number of
figures per page is almost always less than one.
he Handbook has been divided into three sections: Principles, Methodology,

and Applications. Needless to say, the sections overlap. Figure . is a binary matrix
visualization using Jaccard coefficients for both chapters (rows) and index entries
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Figure .. A scatterplot of the number of figures against the number of pages for the Handbook’s

chapters

(columns) to explore links between chapters. In the raw data map (lower-let portion
of Fig. .) there is a banding of black dots from the lower-let to upper-right cor-
ners indicating a possible transition of chapter/index combinations. In the proximity
map of indices (upper portion of Fig. .), index groups A, B, C, D, and E are over-
lapped with each other and are dominated by chapters of Good Graphics, History,
Functional Data, Matrix Visualization, and Regression by Parts respectively.

Summary and Overview; Part II 1.2.1

he ten chapters in Part II are concerned with principles of data visualization. First
there is an historical overview by Michael Friendly, the custodian of the Internet
Gallery of Data Visualization, outlining the developments in graphical displays over
the last few hundred years and including many fine examples.
In the next chapter Antony Unwin discusses some of the guidelines for the prepa-

ration of sound and attractive data graphics. he question mark in the chapter title
sums it up well: whatever principles or recommendations are followed, the success
of a graphic is a matter of taste; there are no fixed rules.
he importance of sotware for producing graphics is incontrovertible. Paul Mur-

rell in his chapter summarizes the requirements for producing accurate and exact
static graphics. He emphasizes both the need for flexibility in customizing standard
plots and the need for tools that permit the drawing of new plot types.
Structure in data may be represented bymathematical graphs. George Michailidis

pursues this idea in his chapter and shows how this leads to another class of graphic
displays associated with multivariate analysis methods.
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Figure .. Matrix visualizations of the Handbook with chapters in the rows and index entries in the

columns

Lee Wilkinson approaches graph-theoretic visualizations from another point of
view, and his displays are concerned predominantly, though by nomeans exclusively,
with trees, directed graphs and geometric graphs. He also covers the layout of graphs,
a tricky problem for large numbers of vertices, and raises the intriguing issue of graph
matching.
Most data displays concentrate on one or two dimensions. his is frequently suffi-

cient to reveal striking information about a dataset. To gain insight into multivariate
structure, higher-dimensional representations are required. Martin heus discusses
the main statistical graphics of this kind that do not involve dimension reduction and
compares their possible range of application.
Everyone knows about Chernoff faces, though not many ever use them. he po-

tential of data glyphs for representing cases in informative and productive ways has
not been fully realized. Matt Ward gives an overview of the wide variety of possible
forms and of the different ways they can be utilized.
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here are two chapters on linking. Adalbert Wilhelm describes a formal model
for linked graphics and the conceptual structure underlying it. He is able to encom-
pass different types of linking and different representations. Graham Wills looks at
linking in a more applied context and stresses the importance of distinguishing be-
tween views of individual cases and aggregated views. He also highlights the variety
of selection possibilities there are in interactive graphics. Both chapters point out the
value of linking simple data views over linking complicated ones.
he final chapter in this section is by Simon Urbanek. He describes the graphics

that have been introduced to support tree models in statistics. he close association
between graphics and themodels (and collections ofmodels in forests) is particularly
interesting and has relevance for building closer links between graphics and models
in other fields.

Summary and Overview; Part III 1.2.2

he middle and largest section of the Handbook concentrates on individual area of
graphics research.
Geographical data can obviously benefit from visualization. Much of Bertin’s work

was directed at this kind of data. Juergen Symanzik and Daniel Carr write about mi-
cromaps (multiple small images of the same area displaying different parts of the
data) and their interactive extension.
Projection pursuit and the grand tour are well known but not easy to use. Despite

the availability of attractive free sotware, it is still a difficult task to analyse datasets in
depth with this approach. Dianne Cook, Andreas Buja, Eun-Kyung Lee and Hadley
Wickham describe the issues involved and outline some of the progress that has been
made.
Multidimensional scaling has been around for a long time.Michael Cox andTrevor

Cox (no relation, but an MDS would doubtless place them close together) review the
current state of research.
Advances in high-throughput techniques in industrial projects, academic studies

and biomedical experiments and the increasing power of computers for data collec-
tion have inevitably changed the practice of modern data analysis. Real-life datasets
become larger and larger in both sample size and numbers of variables. Francesco
Palumbo, Alain Morineau and Domenico Vistocco illustrate principles of visualiza-
tion for such situations.
Some areas of statistics benefit more directly from visualization than others. Den-

sity estimation is hard to imaginewithout visualization.MichaelMinnotte, Steve Sain
andDavid Scott examine estimationmethods in up to three dimensions. Interestingly
there has not been much progress with density estimation in even three dimensions.
Sets of graphs can be particularly useful for revealing the structure in datasets

and complement modelling efforts. Richard Heiberger and Burt Holland describe an
approach primarily making use of Cartesian products and the Trellis paradigm.Wei-
Yin Loh describes the use of visualization to support the use of regression models, in
particular with the use of regression trees.
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Instead of visualizing the structure of samples or variables in a given dataset, re-
searchersmay be interested in visualizing images collectedwith certain formats. Usu-
ally the target images are collected with various types of noise pattern and it is neces-
sary to apply statistical or mathematical modelling to remove or diminish the noise
structure before the possible genuine images can be visualized. Jörg Polzehl andVlad-
imir Spokoiny present one such novel adaptive smoothing procedure in reconstruct-
ing noisy images for better visualization.
he continuing increase in computer power has had many different impacts on

statistics. Computationally intensive smoothing methods are now commonplace, al-
though they were impossible only a few years ago. Adrian Bowman gives an overview
of the relations between smoothing and visualization. Yuan-chinChang, Yuh-Jye Lee,
Hsing-Kuo Pao, Mei-Hsien Lee and Su-Yun Huang investigate the impact of kernel
machinemethods on anumber of classical techniques: principal components, canon-
ical correlation and cluster analysis. hey use visualizations to compare their results
with those from the original methods.
Cluster analyses have oten been a bit suspect to statisticians. he lack of formal

models in the past and the difficulty of judging the success of the clusterings were
both negative factors. Fritz Leisch considers the graphical evaluation of clusterings
and some of the possibilities for a sounder methodological approach.
Multivariate categorical data were difficult to visualize in the past. he chapter by

David Meyer, Achim Zeileis and Kurt Hornik describes fairly classical approaches
for low dimensions and emphasizes the link to model building. Heike Hofmann de-
scribes the powerful tools of interactive mosaicplots that have become available in
recent years, not least through her own efforts, and discusses how different varia-
tions of the plot form can be used for gaining insight into multivariate data features.
Alfred Inselberg, the original proposer of parallel coordinate plots, offers an over-

view of this approach to multivariate data in his usual distinctive style. Here he con-
siders in particular classification problems and how parallel coordinate views can be
adapted and amended to support this kind of analysis.
Most analyses using graphics make use of a standard set of graphical tools, for

example, scatterplots, barcharts, and histograms. Han-MingWu, ShengLi Tzeng and
Chun-houh Chen describe a different approach, built around using colour approxi-
mations for individual values in a data matrix and applying cluster analyses to order
the matrix rows and columns in informative ways.
For many years Bayesians were primarily theoreticians. hanks to MCMC meth-

ods they are now able to also apply their ideas to great effect. his has led to new
demands in assessing model fit and the quality of the results. Jouni Kerman, An-
drew Gelman, Tian Zheng and Yuejing Ding discuss graphical approaches for tack-
ling these issues in a Bayesian framework.
Without sotware to draw the displays, graphic analyis is almost impossible nowa-

days. Junji Nakano, Yamamoto Yoshikazu and Keisuke Honda are working on Java-
based sotware to provide support for new developments, and they outline their ap-
proach here. Many researchers are interested in providing tools via the Web. Yoshiro
Yamamoto, Masaya Iizuka and Tomokazu Fujino discuss using XML for interactive
statistical graphics and explain the issues involved.



Introduction 11

Summary and Overview; Part IV 1.2.3

he final section contains seven chapters on specific applications of data visualiza-
tion. here are, of course, individual applications discussed in earlier chapters, but
here the emphasis is on the application rather than principles or methodology.
Genetic networks are obviously a promising area for informative graphic displays.

Grace Shieh andChin-YuanGuo describe some of the progressmade so far andmake
clear the potential for further research.
Modern medical imaging systems have made significant contributions to diag-

noses and treatments. Henry Lu discusses the visualization of data from positron
emission tomography, ultrasound and magnetic resonance.
Two chapters examine company bankruptcy datasets. In the first one, Antony Un-

win, Martin heus and Wolfgang Härdle use a broad range of visualization tools to
carry out an extensive exploratory data analysis. No large dataset can be analysed
cold, and this chapter shows how effective data visualization can be in assessing data
quality and revealing features of a dataset. he other bankruptcy chapter employs
graphics to visualize SVMmodelling.WolfgangHärdle, RouslanMoro andDorothea
Schäfer use graphics to display results that cannot be presented in a closed analytic
form.
he astonishing growth of eBay has been one of the big success stories of recent

years. Wolfgang Jank, Galit Shmueli, Catherine Plaisant and Ben Shneiderman have
studied data from eBay auctions and describe the role graphics played in their anal-
yses.
Krzysztof Burnecki and Rafal Weron consider the application of visualization in

insurance. his is another example of how the value of graphics lies in providing
insight into the output of complex models.

The Authors 1.2.4

he editors would like to thank the authors of the chapters for their contributions. It
is important for a collective work of this kind to cover a broad range and to gather
many experts with different interests together. We have been fortunate in receiving
the assistance of so many excellent contributors.
he mixture at the end remains, of course, a mixture. Different authors take dif-

ferent approaches and have different styles. It early became apparent that even the
term data visualization means different things to different people! We hope that the
Handbook gains rather than loses by this eclecticism.
Figures . and . earlier in the chapter showed that the chapter form varied be-

tween authors in variousways. Figure . reveals another aspect.he scatterplot shows
an outlier with a very large number of references (the historical survey of Michael
Friendly) and that some papers referenced the work of their own authors more than
others. he histogram is for the rate of self-referencing.
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Figure .. A scatterplot of the number of references to papers by a chapter’s authors against the total

number of references and a histogram of the rate of self-referencing

Outlook1.3

here are many open issues in data visualization and many challenging research
problems. he datasets to be analysed tend to be more complex and are certainly
becoming larger all the time. he potential of graphical tools for exploratory data
analysis has not been fully realized, and the complementary interplay between statis-
tical modelling and graphics has not yet been fully exploited. Advances in computer
sotware and hardware have made producing graphics easier, but they have also con-
tributed to raising the standards expected.
Future developments will undoubtedly include more flexible and powerful sot-

ware and better integration of modelling and graphics. here will probably be indi-
vidual new and innovative graphics and some improvements in the general design
of displays. Gradual gains in knowledge about the perception of graphics and the
psychological aspects of visualization will lead to improved effectiveness of graphic
displays. Ideally there should be progress in the formal theory of data visualization,
but that is perhaps the biggest challenge of all.
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It is common to think of statistical graphics and data visualization as relatively mod-
ern developments in statistics. In fact, the graphic representation of quantitative in-
formationhas deep roots.hese roots reach into the histories of the earliestmapmak-
ing and visual depiction, and later into thematic cartography, statistics and statistical
graphics, medicine and other fields. Along the way, developments in technologies
(printing, reproduction), mathematical theory and practice, and empirical observa-
tion and recording enabled the wider use of graphics and new advances in form and
content.
his chapter provides an overview of the intellectual history of data visualiza-

tion frommedieval tomodern times, describing and illustrating some significant ad-
vances along the way. It is based on a project, called theMilestones Project, to collect,
catalogue and document in one place the important developments in a wide range of
areas and fields that led to modern data visualization. his effort has suggested some
questions concerning the use of present-day methods of analysing and understand-
ing this history, which I discuss under the rubric of ‘statistical historiography.’

Introduction1.1

he only new thing in the world is the history you don’t know. – Harry S Truman

It is common to think of statistical graphics and data visualization as relatively mod-
ern developments in statistics. In fact, the graphic portrayal of quantitative informa-
tion has deep roots. hese roots reach into the histories of the earliest map-making
and visual depiction, and later into thematic cartography, statistics and statistical
graphics, with applications and innovations in many fields of medicine and science
which are oten intertwined with each other.hey also connect with the rise of statis-
tical thinking andwidespread data collection for planning and commerce up through
the th century. Along the way, a variety of advancements contributed to the wide-
spread use of data visualization today. hese include technologies for drawing and
reproducing images, advances in mathematics and statistics, and new developments
in data collection, empirical observation and recording.
From above ground, we can see the current fruit and anticipate future growth; we

must look below to understand their germination. Yet the great variety of roots and
nutrients across these domains, which gave rise to the many branches we see today,
are oten not well known and have never been assembled in a single garden to be
studied or admired.
his chapter provides an overview of the intellectual history of data visualiza-

tion from medieval to modern times, describing and illustrating some significant
advances along the way. It is based on what I call the Milestones Project, an attempt
to provide a broadly comprehensive and representative catalogue of important de-
velopments in all fields related to the history of data visualization.
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here are many historical accounts of developments within the fields of proba-
bility (Hald, ), statistics (Pearson, ; Porter, ; Stigler, ), astronomy
(Riddell, ) and cartography (Wallis and Robinson, ), which relate to, inter
alia, some of the important developments contributing to modern data visualiza-
tion. here are other, more specialized, accounts which focus on the early history
of graphic recording (Hoff and Geddes, , ), statistical graphs (Funkhouser,
, ; Royston, ; Tilling, ), fitting equations to empirical data (Fare-
brother, ), economics and time-series graphs (Klein, ), cartography (Friis,
; Kruskal, ) and thematic mapping (Robinson, ; Palsky, ) and so
forth; Robinson (Robinson, , Chap. ) presents an excellent overview of some
of the important scientific, intellectual and technical developments of the th–th
centuries leading to thematic cartography and statistical thinking. Wainer and Velle-
man () provide a recent account of some of the history of statistical graphics.
But there are no accounts which span the entire development of visual thinking

and the visual representation of data and which collate the contributions of disparate
disciplines. Inasmuch as their histories are intertwined, so too should be any telling
of the development of data visualization. Another reason for interweaving these ac-
counts is that practitioners in these fields today tend to be highly specialized and
unaware of related developments in areas outside their domain, much less of their
history.

Milestones Tour 1.2

Every picture tells a story. – Rod Stewart, 

In organizing this history, it proved useful to divide history into epochs, each ofwhich
turned out to be describable by coherent themes and labels.his division is, of course,
somewhat artificial, but it provides the opportunity to characterize the accomplish-
ments in each period in a general way before describing some of them inmore detail.
Figure ., discussed in Sect. .., provides a graphic overview of the epochs I de-
scribe in the subsections below, showing the frequency of events considered mile-
stones in the periods of this history. For now, it suffices to note the labels attached to
these epochs, a steady rise from the early th century to the late th century, with
a curious wiggle thereater.
In the larger picture – recounting the history of data visualization – it turns out

that many of the milestone items have a story to be told: What motivated this de-
velopment? What was the communication goal? How does it relate to other devel-
opments – What were the precursors? How has this idea been used or re-invented
today? Each section below tries to illustrate the general themes with a few exemplars.
In particular, this account attempts to tell a few representative stories of these periods,
rather than to try to be comprehensive.
For reasons of economy, only a limited number of images could be printed here,

and these only in black and white. Others are referred to by Web links, mostly from
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Figure .. Time distribution of events considered milestones in the history of data visualization, shown

by a rug plot and density estimate

the Milestones Project, http://www.math.yorku.ca/SCS/Gallery/milestone/, where
a colour version of this chapter will also be found.

Pre-17th Century: Early Maps and Diagrams1.2.1

he earliest seeds of visualization arose in geometric diagrams, in tables of the posi-
tions of stars and other celestial bodies, and in themaking ofmaps to aid in navigation
and exploration. he idea of coordinates was used by ancient Egyptian surveyors in
laying out towns, earthly and heavenly positions were located by something akin to
latitude and longitude by at least  B.C., and themap projection of a spherical earth
into latitude and longitude by Claudius Ptolemy [c. –c. ] in Alexandria would
serve as reference standards until the th century.
Among the earliest graphical depictions of quantitative information is an anony-

mous th-century multiple time-series graph of the changing position of the seven
most prominent heavenly bodies over space and time (Fig. .), described by Funk-
houser () and reproduced in Tute (, p. ). he vertical axis represents the
inclination of the planetary orbits; the horizontal axis shows time, divided into 
intervals. he sinusoidal variation with different periods is notable, as is the use of
a grid, suggesting both an implicit notion of a coordinate system and something akin
to graph paper, ideas that would not be fully developed until the –s.
In the th century, the idea of plotting a theoretical function (as a proto bar graph)

and the logical relation between tabulating values and plotting them appeared in
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Figure .. Planetary movements shown as cyclic inclinations over time, by an unknown astronomer,

appearing in a th-century appendix to commentaries by A.T. Macrobius on Cicero’s In Somnium

Sciponis. Source: Funkhouser (, p. )

a work by Nicole Oresme [–] Bishop of Liseus (Oresme, , ), fol-
lowed somewhat later by the idea of a theoretical graph of distance vs. speed byNico-
las of Cusa.
By the th century, techniques and instruments for precise observation and mea-

surement of physical quantities and geographic and celestial position were well de-
veloped (for example, a ‘wall quadrant’ constructed by Tycho Brahe [–], cov-
ering an entire wall in his observatory). Particularly important were the development
of triangulation and other methods to determine mapping locations accurately (Fri-
sius, ; Tartaglia, ). As well, we see initial ideas for capturing images directly
(the camera obscura, used by Reginer Gemma-Frisius in  to record an eclipse
of the sun), the recording of mathematical functions in tables (trigonometric tables
by Georg Rheticus, ) and the first modern cartographic atlas (heatrum Orbis
Terrarum by Abraham Ortelius, ). hese early steps comprise the beginnings of
data visualization.

1600–1699: Measurement and Theory 1.2.2

Amongst the most important problems of the th century were those concerned
with physical measurement – of time, distance and space – for astronomy, survey-

 Funkhouser (, p. ) was sufficiently impressed with Oresme’s grasp of the relation be-
tween functions and graphs that he remarked, ‘If a pioneering contemporary had collected
some data and presented Oresme with actual figures to work upon, we might have had sta-
tistical graphs four hundred years before Playfair.’
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ing, map making, navigation and territorial expansion. his century also saw great
new growth in theory and the dawn of practical application – the rise of analytic
geometry and coordinate systems (Descartes and Fermat), theories of errors of mea-
surement and estimation (initial steps by Galileo in the analysis of observations on
Tycho Brahe’s star of  (Hald, , §.)), the birth of probability theory (Pascal
and Fermat) and the beginnings of demographic statistics (John Graunt) and ‘politi-
cal arithmetic’ (William Petty) – the study of population, land, taxes, value of goods,
etc. for the purpose of understanding the wealth of the state.
Early in this century, Christopher Scheiner (–, recordings from ) in-

troduced an idea Tute () would later call the principle of ‘small multiples’ to
show the changing configurations of sunspots over time, shown in Fig. .. he mul-
tiple images depict the recordings of sunpots from October  until  December
of that year. he large key in the upper let identifies seven groups of sunspots by the
letters A–G. hese groups are similarly identified in the  smaller images, arrayed
let to right and top to bottom below.
Another noteworthy example (Fig. .) shows a  graphic by Michael Florent

van Langren[–], a Flemish astronomer to the court of Spain, believed to be
the first visual representation of statistical data (Tute, , p. ). At that time, lack of

Figure .. Scheiner’s  representation of the changes in sunspots over time. Source: Scheiner

(–)
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Figure .. Langren’s  graph of determinations of the distance, in longitude, from Toledo to Rome.

he correct distance is �′. Source: Tute (, p. )

a reliable means to determine longitude at sea hindered navigation and exploration.

his -D line graph shows all  known estimates of the difference in longitude be-
tween Toledo and Rome and the name of the astronomer (Mercator, Tycho Brahe,
Ptolemy, etc.) who provided each observation.
What is notable is that van Langren could have presented this information in var-

ious tables – ordered by author to show provenance, by date to show priority, or by
distance. However, only a graph shows the wide variation in the estimates; note that
the range of values covers nearly half the length of the scale. Van Langren took as his
overall summary the centre of the range, where there happened to be a large enough
gap for him to inscribe ‘ROMA.’ Unfortunately, all of the estimates were biased up-
wards; the true distance (�′) is shown by the arrow. Van Langren’s graph is also
amilestone as the earliest known exemplar of the principle of ‘effect ordering for data
display’ (Friendly and Kwan, ).
In the s, the systematic collection and study of social data began in various

European countries, under the rubric of ‘political arithmetic’ (John Graunt,  and
William Petty, ), with the goals of informing the state about matters related to
wealth, population, agricultural land, taxes and so forth, as well as for commercial
purposes such as insurance and annuities based on life tables (Jan de Witt, ). At
approximately the same time, the initial statements of probability theory around 
(see Ball, ) together with the idea of coordinate systems were applied by Chris-
tiaan Huygens in  to give the first graph of a continuous distribution function

(from Graunt’s based on the bills of mortality). he mid-s saw the first bivariate
plot derived from empirical data, a theoretical curve relating barometric pressure to
altitude, and the first known weather map, showing prevailing winds on a map of
the earth (Halley, ).
By the end of this century, the necessary elements for the development of graphical

methods were at hand – some real data of significant interest, some theory to make

 For navigation, latitude could be fixed from star inclinations, but longitude required ac-
curate measurement of time at sea, an unsolved problem until  with the invention of
a marine chronometer by John Harrison. See Sobel () for a popular account.

 For example, Graunt () used his tabulations of London births and deaths from parish
records and the bills of mortality to estimate the number of men the king would find avail-
able in the event of war (Klein, , pp. –).

 Image: http://math.yorku.ca/SCS/Gallery/images/huygens-graph.gif
 Image: http://math.yorku.ca/SCS/Gallery/images/halleyweathermap-.jpg
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sense of them, and a few ideas for their visual representation. Perhaps more impor-
tantly, one can see this century as giving rise to the beginnings of visual thinking, as
illustrated by the examples of Scheiner and van Langren.

1700–1799: New Graphic Forms1.2.3

With some rudiments of statistical theory, data of interest and importance, and the
idea of graphic representation at least somewhat established, the th century wit-
nessed the expansion of these aspects to new domains and new graphic forms. In
cartography, mapmakers began to try to show more than just geographical position
on amap.As a result, newdata representations (isolines and contours) were invented,
and thematic mapping of physical quantities took root. Towards the end of this cen-
tury, we see the first attempts at the thematic mapping of geologic, economic and
medical data.
Abstract graphs, and graphs of functions becamemore widespread, along with the

early stirrings of statistical theory (measurement error) and systematic collection of
empirical data. As other (economic and political) data began to be collected, some
novel visual forms were invented to portray them, so the data could ‘speak to the
eyes.’
For example, the use of isolines to show contours of equal value on a coordinate

grid (maps and charts) was developed by Edmund Halley (). Figure ., showing
isogons – lines of equal magnetic declination – is among the first examples of the-
matic cartography, overlaying data on a map. Contour maps and topographic maps
were introduced somewhat later by Philippe Buache () and Marcellin du Carla-
Boniface ().
Timelines, or ‘cartes chronologiques,’ were first introduced by Jacques Barbeu-

Dubourg in the form of an annotated chart of all of history (from Creation) on a -
foot scroll (Ferguson, ). Joseph Priestley, presumably independently, used amore
convenient form to show first a timeline chart of biography (lifespans of  famous
people,  B.C. to A.D. , Priestley, ), and then a detailed chart of history
(Priestley, ).
heuse of geometric figures (squares or rectangles) and cartograms to compare ar-

eas or demographic quantities byCharles de Fourcroy () andAugust F.W.Crome
() provided another novel visual encoding for quantitative data using superim-
posed squares to compare the areas of European states.
As well, several technological innovations provided necessary ingredients for the

production and dissemination of graphic works. Some of these facilitated the repro-
duction of data images, such as three-colour printing, invented by Jacob le Blon in
, and lithography, invented by Aloys Senefelder in . Of the latter, Robinson
(, p. ) says “the effect was as great as the introduction [of the Xerox machine].”
Yet, likely due to expense, most of these new graphic forms appeared in publications
with limited circulation, unlikely to attract wide attention.

 Image: http://math.yorku.ca/SCS/Gallery/images/palsky/defourcroy.jpg
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Figure .. A portion of Edmund Halley’s New and Correct Sea Chart Shewing the Variations in the

Compass in the Western and Southern Ocean, . Source: Halley (), image from Palsky (, p. )

A prodigious contributor to the use of the new graphical methods, Johann Lam-
bert [–] introduced the ideas of curve fitting and interpolation from empir-
ical data points. He used various sorts of line graphs and graphical tables to show
periodic variation in, for example, air and soil temperature.

WilliamPlayfair [–] iswidely considered the inventor ofmost of the graph-
ical forms used today – first the line graph and barchart (Playfair, ), later the

 Image: http://www.journals.uchicago.edu/Isis/journal/demo/vn//fg.gif
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Figure .. Redrawn version of a portion of Playfair’s  pie-circle-line chart, comparing population

and taxes in several nations

piechart and circle graph (Playfair, ). Figure . shows a creative combination of
different visual forms: circles, pies and lines, redrawn from Playfair (, Plate ).
he use of two separate vertical scales for different quantities (population and

taxes) is today considered a sin in statistical graphics (you can easily jiggle either
scale to show different things). But Playfair used this device to good effect here to
try to show taxes per capita in various nations and argue that the British were over-
taxed, compared with others. But, alas, showing simple numbers by a graph was hard
enough for Playfair – he devoted several pages of text in Playfair () describing
how to read and understand a line graph. he idea of calculating and graphing rates
and other indirect measurements was still to come.
In this figure, the let axis and line on each circle/pie graph shows population,

while the right axis and line shows taxes. Playfair intended that the slope of the line
connecting the twowould depict the rate of taxation directly to the eye; but, of course,
the slope also depends on the diameters of the circles. Playfair’s graphic sins can per-
haps be forgiven here, because the graph clearly shows the slope of the line for Britain
to be in the opposite direction of those for the other nations.
A somewhat later graph (Playfair, ), shown in Fig. ., exemplifies the best that

Playfair had to offer with these graphic forms. Playfair used three parallel time series
to show the price of wheat, weekly wages and reigning ruler over a -year span
from  to  and used this graph to argue that workers had become better off in
the most recent years.
By the end of this century (), the utility of graphing in scientific applications

prompted a Dr Buxton in London to patent and market printed coordinate paper;
curiously, a patent for lined notepaper was not issued until . he first known
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Figure .. William Playfair’s  time-series graph of prices, wages and reigning ruler over a -year

period. Source: Playfair (), image from Tute (, p. )

published graph using coordinate paper is one of periodic variation in barometric
pressure (Howard, ). Nevertheless, graphing of data would remain rare for an-
other  or so years, perhaps largely because there wasn’t much quantitative infor-
mation (apart from widespread astronomical, geodetic and physical measurement)
of sufficient complexity to require new methods and applications. Official statistics,
regarding population and mortality, and economic data were generally fragmentary
and oten not publicly available. his would soon change.

1800–1850: Beginnings of Modern Graphics 1.2.4

With the fertilization provided by the previous innovations of design and technique,
the first half of the th century witnessed explosive growth in statistical graphics and
thematic mapping, at a rate which would not be equalled until modern times.
In statistical graphics, all of the modern forms of data display were invented: bar-

and piecharts, histograms, line graphs and time-series plots, contour plots, scatter-
plots and so forth. In thematic cartography, mapping progressed from single maps
to comprehensive atlases, depicting data on a wide variety of topics (economic, so-
cial, moral, medical, physical, etc.), and introduced a wide range of novel forms of
symbolism. During this period graphical analysis of natural and physical phenom-
ena (lines of magnetism, weather, tides, etc.) began to appear regularly in scientific
publications as well.
In , the first geological maps were introduced in England by William Smith

[–], setting the pattern for geological cartography or ‘stratigraphic geology’

 William Herschel (), in a paper that describes the first instance of a modern scatterplot,
devoted three pages to a description of plotting points on a grid.
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(Smith, ).hese and other thematic maps soon led to newways of showing quan-
titative information on maps and, equally importantly, to new domains for graphi-
cally based inquiry.
In the s, Baron Charles Dupin [–] invented the use of continuous

shadings (from white to black) to show the distribution and degree of illiteracy in
France (Dupin, ) – the first unclassed choropleth map, and perhaps the first
modern-style thematic statistical map (Palsky, , p. ). Later given the lovely
title ‘Carte de la France obscure et de la France éclairée,’ it attracted wide attention,
and was also perhaps the first application of graphics in the social realm.
More significantly, in , the ministry of justice in France instituted the first

centralized national system of crime reporting, collected quarterly from all depart-
ments and recording the details of every charge laid before the French courts. In ,
André-Michel Guerry, a lawyer with a penchant for numbers, used these data (along
with other data on literacy, suicides, donations to the poor and other ‘moral’ vari-
ables) to produce a seminal work on the moral statistics of France (Guerry, ) –
a work that (along with Quételet, , ) can be regarded as the foundation of
modern social science.

Guerry used maps in a style similar to Dupin to compare the ranking of depart-
ments on pairs of variables, notably crime vs. literacy, but other pairwise variable
comparisons were made. He used these to argue that the lack of an apparent (nega-
tive) relation between crime and literacy contradicted the armchair theories of some
social reformers who had argued that the way to reduce crime was to increase edu-
cation. Guerry’s maps and charts made somewhat of an academic sensation both
in France and the rest of Europe; he later exhibited several of these at the  Lon-
don Exhibition and carried out a comparative study of crime in England and France
(Guerry, ) for which he was awarded the Moynton Prize in statistics by the
French Academy of Sciences. But Guerry’s systematic and careful work was unable

 Image: http://math.yorku.ca/SCS/Gallery/images/dupin-map_.jpg
 Guerry showed that rates of crime, when broken down by department, type of crime, age and
gender of the accused and other variables, remained remarkably consistent fromyear to year,
yet varied widely across departments. He used this to argue that such regularity implied the
possibility of establishing social laws, much as the regularity of natural phenomena implied
physical ones. Guerry also pioneered the study of suicide, with tabulations of suicides in
Paris, –, by sex, age, education, profession, etc., and a content analysis of suicide
notes as to presumed motives.

 Today, one would use a scatterplot, but that graphic form had only just been invented (Her-
schel, ) andwould not enter common usage for another  years; see Friendly andDenis
().

 Guerry seemed reluctant to take sides. He also contradicted the social conservatives who
argued for the need to build more prisons or impose more severe criminal sentences. See
Whitt ().

 Among the  plates in this last work, seven pairs of maps for England and France each
included sets of small line graphs to show trends over time, decompositions by subtype
of crime and sex, distributions over months of the year, and so forth. he final plate, on
general causes of crime, is an incredibly detailed and complex multivariate semi-graphic
display attempting to relate various types of crimes to each other, to various social andmoral
aspects (instruction, religion, population) as well as to their geographic distribution.
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Figure .. A portion of Dr Robert Baker’s cholera map of Leeds, , showing the districts affected by

cholera. Source: Gilbert (, Fig. )

to shine in the shadows cast by Adolphe Quételet, who regarded moral and social
statistics as his own domain.
In October , the first case of asiatic cholera occurred in Great Britain, and over

  people died in the epidemic that ensued over the next months or so (Gilbert,
). Subsequent cholera epidemics in – and – produced similarly
large death tolls, but the water-borne cause of the disease was unknown until 
when Dr John Snow produced his famous dot map (Snow, ) showing deaths
due to cholera clustered around the Broad Street pump in London. his was indeed
a landmark graphic discovery, but it occurred at the end of the period, roughly –
, which marks a high point in the application of thematic cartography to human
(social, medical, ethnic) topics.he first known disease map of cholera (Fig. .), due
to Dr Robert Baker (), shows the districts of Leeds ‘affected by cholera’ in the
particularly severe  outbreak.
I show this figure to make another point – why Baker’s map did not lead to a ‘eu-

reka’ experience, while John Snow’s did. Baker used a town plan of Leeds that had
been divided into districts. Of a population of   in all of Leeds, Baker mapped

 Image: http://www.math.yorku.ca/SCS/Gallery/images/snow.jpg
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the  cholera cases by hatching in red ‘the districts in which the cholera had pre-
vailed.’ In his report, he noted an association between the disease and living con-
ditions: ‘how exceedingly the disease has prevailed in those parts of the town where
there is a deficiency, oten an entirewant of sewage, drainage and paving’ (Baker, ,
p. ). Baker did not indicate the incidence of disease onhismap, norwas he equipped
to display rates of disease (in relation to population density), and his knowledge of
possible causes, while definitely on the right track, was both weak and implicit (not
analysed graphically or by othermeans). It is likely that some, perhaps tenuous, causal
indicants or evidence were available to Baker, but he was unable to connect the dots
or see a geographically distributed outcome in relation to geographic factors in even
the simple ways that Guerry had tried.
At about the same time, –, the use of graphs began to become recognized

in some official circles for economic and state planning – where to build railroads and
canals? What is the distribution of imports and exports? his use of graphical meth-
ods is no better illustrated than in the works of Charles Joseph Minard [–],
whose prodigious graphical inventions led Funkhouser () to call him the Playfair
of France. To illustrate, we choose (with some difficulty) an  ‘tableau-graphique’
(Fig. .) by Minard, an early progenitor of the modern mosaicplot (Friendly, ).
On the surface, mosaicplots descend from bar charts, but Minard introduced two si-
multaneous innovations: the use of divided and proportional-width bars so that area
had a concrete visual interpretation. he graph shows the transportation of commer-
cial goods along one canal route in France by variable-width, divided bars (Minard,
). In this display the width of each vertical bar shows distance along this route;
the divided-bar segments have height proportional to amount of goods of various
types (shown by shading), so the area of each rectangular segment is proportional to
the cost of transport. Minard, a true visual engineer (Friendly, ), developed such
diagrams to argue visually for setting differential price rates for partial vs. complete
runs. Playfair had tried to make data ‘speak to the eyes,’ but Minard wished to make
them ‘calculer par l’œil’ as well.
It is no accident that, in England, outside the numerous applications of graphical

methods in the sciences, there was little interest in or use of graphs amongst statis-
ticians (or ‘statists’ as they called themselves). If there is a continuum ranging from
‘graph people’ to ‘table people,’ British statisticians and economists were philosoph-
ically more table-inclined and looked upon graphs with suspicion up to the time of
William Stanley Jevons around  (Maas and Morgan, ). Statistics should be
concerned with the recording of ‘facts relating to communities of men which are ca-
pable of being expressed by numbers’ (Mouat, , p. ), leaving the generalization
to laws and theories to others. Indeed, this view was made abundantly clear in the
logo of the Statistical Society of London (now the Royal Statistical Society): a banded

 he German geographer Augustus Petermann produced a ‘Cholera map of the
British Isles’ in  using national data from the – epidemic (image:
http://images.rgs.org/webimages//////S.jpg) shaded in proportion
to the relative rate of mortality using class intervals (< �, � � �, � � �, . . . ).
No previous disease map had allowed determination of the range of mortality in any given
area.
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Figure .. Minard’s Tableau Graphique, showing the transportation of commercial goods along the

Canal du Centre (Chalon–Dijon). Intermediate stops are spaced by distance, and each bar is divided by

type of goods, so the area of each tile represents the cost of transport. Arrows show the direction of

transport. Source: ENPC:/C (Col. et cliché ENPC; used by permission)

sheaf of wheat, with the mottoAliis Exterendum – to others to flail the wheat. Making
graphs, it seemed, was too much like breadmaking.

1850–1900: The Golden Age of Statistical Graphics 1.2.5

By the mid-s, all the conditions for the rapid growth of visualization had been
established – a ‘perfect storm’ for data graphics. Official state statistical offices were
established throughout Europe, in recognition of the growing importance of numeri-
cal information for social planning, industrialization, commerce and transportation.
Statistical theory, initiated by Gauss and Laplace and extended to the social realm by
Guerry and Quételet, provided the means to make sense of large bodies of data.
What started as the Age of Enthusiasm (Funkhouser, ; Palsky, ) for graph-

ics ended with what can be called the Golden Age, with unparalleled beauty and
many innovations in graphics and thematic cartography. So varied were these de-
velopments that it is difficult to be comprehensive, but a few themes stand out.
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Escaping Flatland
Although some attempts to display more than two variables simultaneously had oc-
curred earlier in multiple time series (Playfair, ; Minard, ), contour graphs
(Vauthier, ) and a variety of thematic maps, (e.g. Berghaus ()) a number of
significant developments extended graphics beyond the confines of a flat piece of
paper. Gustav Zeuner [–] in Germany (Zeuner, ), and later Luigi Per-
ozzo [–] in Italy (Perozzo, ) constructed -D surface plots of population
data. he former was an axonometric projection showing various slices, while the
latter (a -D graph of population in Sweden from – by year and age group)
was printed in red and black and designed as a stereogram.

Contour diagrams, showing isolevel curves of -D surfaces, had also been used
earlier inmapping contexts (Nautonier, –;Halley, ; vonHumboldt, ),
but the range of problems and data towhich theywere applied expanded considerably
over this time in attempts to understand relations among more than two data-based
variables, or where the relationships are statistical, rather than functional or mea-
sured with little error. It is more convenient to describe these under Galton, below.
By , the idea of visual and imaginary worlds of varying numbers of dimensions
found popular expression in Edwin Abbott’s () Flatland, implicitly suggesting
possible views in four and more dimensions.

Graphical Innovations
With the usefulness of graphical displays for understanding complex data and phe-
nomena established, many new graphical forms were invented and extended to new
areas of inquiry, particularly in the social realm.
Minard () developed the use of divided circle diagrams on maps (showing

both a total, by area, and subtotals, by sectors, with circles for each geographic region
on the map). Later he developed to an art form the use of flow lines onmaps of width
proportional to quantities (people, goods, imports, exports) to show movement and
transport geographically. Near the end of his life, the flow map would be taken to its
highest level in his famous depiction of the fate of the armies of Napoleon and Han-
nibal, in what Tute () would call the ‘best graphic ever produced.’ See Friendly
() for a wider appreciation of Minard’s work.
he social and political uses of graphics is also evidenced in the polar area charts

(called ‘rose diagrams’ or ‘coxcombs’) invented by Florence Nightingale [–]
to wage a campaign for improved sanitary conditions in battlefield treatment of sol-
diers (Nightingale, ).hey let no doubt that many more soldiers died from dis-
ease and the consequences of wounds than at the hands of the enemy. From around
the same time, Dr John Snow [–] is remembered for his use of a dot map of
deaths from cholera in an  outbreak in London. Plotting the residence of each

 Image: http://math.yorku.ca/SCS/Gallery/images/stereo.jpg
 Zeuner used one axis to show year of birth and another to show present age, with number
of surviving persons on the third, vertical, axis giving a -D surface. One set of curves thus
showed the distribution of population for a given generation; the orthogonal set of curves
showed the distributions across generations at a given point in time, e.g. at a census.
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deceased provided the insight for his conclusion that the source of the outbreak could
be localized to contaminated water from a pump on Broad Street, the founding in-
novation for modern epidemiological mapping.
Scales and shapes for graphs and maps were also transformed for a variety of

purposes, leading to semi-logarithmic graphs (Jevons, , ) to show percent-
age change in commodities over time, log-log plots to show multiplicative relations,
anamorphic maps by Émile Cheysson (Palsky, , Figs. –) using deforma-
tions of spatial size to show a quantitative variable (e.g. the decrease in time to travel
from Paris to various places in France over  years) and alignment diagrams or
nomograms using sets of parallel axes. We illustrate this slice of the Golden Age with
Fig. ., a tour-de-force graphic for determination of magnetic deviation at sea in re-
lation to latitude and longitudewithout calculation (‘L’ AbaqueTriomphe’) byCharles
Lallemand (), director general of the geodeticmeasurement of altitudes through-
out France, which combines many variables into a multifunction nomogram, using
-D, juxtaposition of anamorphic maps, parallel coordinates and hexagonal grids.

Figure .. Lallemand’s L’ abaque du bateau “Le Triomphe”, allowing determination of magnetic

deviation at sea without calculation. Source: courtesy Mme Marie-Noëlle Maisonneuve, Les fonds

anciens de la bibliothèque de l’École des Mines de Paris
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Galton’s Contributions
Special note should bemade of the varied contributions of Francis Galton [–]
to data visualization and statistical graphics. Galton’s role in the development of the
ideas of correlation and regression are well known. Less well known is the role that
visualization and graphing played in his contributions and discoveries.
Galton’s statistical insight (Galton, ) – that, in a bivariate (normal) distribu-

tion, (say, height of a child against height of parents), (a) he isolines of equal fre-
quency would appear as concentric ellipses and (b)he locus of the (regression) lines
of means of y�x and of x�y were the conjugate diameters of these ellipses – was based
largely on visual analysis from the application of smoothing to his data. Karl Pearson
would later say ‘that Galton should have evolved all this from his observations is to
my mind one of the most noteworthy scientific discoveries arising from pure analy-
sis of observations.’ (Pearson, , p. ). his was only one of Galton’s discoveries
based on graphical methods.
In earlier work, Galton had made wide use of isolines, contour diagrams and

smoothing in a variety of areas. An  paper showed the use of ‘isodic curves’ to
portray the joint effects of wind and current on the distance ships at sea could travel
in any direction. An  ‘isochronic chart’ (Galton, ) showed the time it took
to reach any destination in the world from London by means of coloured regions
on a world map. Still later, he analysed rates of fertility in marriages in relation to
the ages of father and mother using ‘isogens,’ curves of equal percentage of families
having a child (Galton, ).
But perhaps the most notable non-statistical graphical discovery was that of the

“anti-cyclonic” (anticlockwise) pattern of winds around low-pressure regions, com-
binedwith clockwise rotations aroundhigh-pressure zones. Galton’s work onweather
patterns began in  and was summarized inMeteorographica (). It contained
a variety of ingenious graphs and maps (over  illustrations in total), one of which
is shown in Fig. .. his remarkable chart, one of a two-page Trellis-style display,
shows observations on barometric pressure, wind direction, rain and temperature
from  days in December . For each day, the  �  grid shows schematic maps
of Europe, mapping pressure (row ), wind and rain (row ) and temperature (row
), in the morning, aternoon and evening (columns). One can clearly see the series
of black areas (low pressure) on the barometric charts for about the first half of the
month, corresponding to the anticlockwise arrows in the wind charts, followed by
a shit to red areas (high pressure) and more clockwise arrows. Wainer (, p. )
remarks, ‘Galton did for the collectors of weather data what Kepler did for Tycho
Brahe. his is no small accomplishment.’

Statistical Atlases
he collection, organization and dissemination of official government statistics on
population, trade and commerce, social, moral and political issues became wide-

 In July , Galton distributed a circular to meterologists throughout Europe, asking them
to record these data synchonously, three times a day for the entiremonth of December .
About  weather stations supplied the data; see Pearson (–, pp. –).
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Figure .. One page of Galton’s  multivariate weather chart of Europe showing barometric

pressure, wind direction, rain and temperature for the month of December . Source: Pearson

(–, pl. )

spread in most of the countries of Europe from about  to  (Westergaard,
). Reports containing data graphics were published with some regularity in
France, Germany, Hungary and Finland, and with tabular displays in Sweden, Hol-
land, Italy and elsewhere. At the same time, there was an impetus to develop stan-
dards for graphical presentation at the International Statistical Congresses which had
begun in  in Belgium (organized by Quételet), and these congresses were closely
linked with state statistical bureaus. he main participants in the graphics section
included Georg von Mayr, Hermann Schwabe, Pierre Émile Levasseur and Émile
Cheysson. Among other recommendations was one from the th Statistical Congress
in  that official publications be accompanied by maps and diagrams. he state-
sponsored statistical atlases that ensued provide additional justification to call this
period the golden age of graphics, and some of its most impressive exemplars.
he pinnacle of this period of state-sponsored statistical albums is undoubtedly

the Albums de statistique graphique published annually by the French ministry of
public works from  to  under the direction of Émile Cheysson. hey were

 Cheysson had been one of the major participants in committees on the standardization of
graphical methods at the International Statistical Congresses from  on. He was trained
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published as large-format books (about  �  in.), and many of the plates folded out
to four or six times that size, all printed in colour and with great attention to layout
and composition.We concur with Funkhouser (, p. ) that “theAlbums present
the finest specimens of French graphic work in the century and considerable pride
was taken in them by the French people, statisticians and laymen alike.”
he subject matter of the albums largely concerned economic and financial data

related to the planning, development and administration of public works – transport
of passengers and freight, by rail, on inland waterways and through seaports, but
also included such topics as revenues in the major theaters of Paris, attendance at
the universal expositions of ,  and , changes in populations of French
departments over time and so forth.
More significantly for this account the Albums can also be viewed as an exquisite

sampler of all the graphical methods known at the time, with significant adaptations
to the problem at hand. he majority of these graphs used and extended the flow
map pioneered by Minard. Others used polar forms – variants of pie and circle dia-
grams, star plots and rose diagrams, oten overlaid on a map and extended to show
additional variables of interest. Still others used subdivided squares in the manner
of modern mosaic displays (Friendly, ) to show the breakdown of a total (pas-
sengers, freight) by several variables. It should be noted that in almost all cases the
graphical representation of the data was accompanied by numerical annotations or
tables, providing precise numerical values.
he Albums are discussed extensively by Palsky (), who includes seven repre-

sentative illustrations. It is hard to choose a single image here, but my favourites are
surely the recursive, multimosaic of rail transportation for the – volumes,
the first of which is shown in Fig. .. his cartogram uses one large mosaic (in the
lower let) to show the numbers of passengers and tons of freight shipped from Paris
from the four principal train stations. Of the total leaving Paris, the amounts going
to each main city are shown by smaller mosaics, coloured according to railway lines;
of those amounts, the distribution to smaller cities is similarly shown, connected by
lines along the rail routes.
Among the many other national statistical albums and atlases, those from the US

Census bureau also deserve special mention. he Statistical Atlas of the Ninth Census,
produced in – under the direction of Francis A. Walker [–], con-
tained  plates, including several novel graphic forms. he ambitious goal was to
present a graphic portrait of the nation, and it covered a wide range of physical and
human topics: geology, minerals and weather; population by ethnic origin, wealth,
illiteracy, school attendance and religious affiliation; death rates by age, sex, race and
cause; prevalence of blindness, deafmutism and insanity; and so forth. ‘Age pyramids’
(back-to-back, bilateral frequency histograms and polygons) were used effectively to
compare age distributions of the population for two classes (gender, married/single,
etc.). Subdivided squares and area-proportional pies of various forms were also used
to provide comparisons among the states on multiple dimensions simultaneously

as an engineer at the ENPC and later became a professor of political economy at the École
des Mines.
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Figure .. [his figure also appears in the color insert.] Mouvement des voyageurs et des marchandises

dans les principales stations de chemins de fer en . Scale: mm =   passengers or tons of

freight. Source: Album, , Plate  (author’s collection)

(employed/unemployed, sex, schooling, occupational categories). he desire to pro-
vide for easy comparisons among states and other categorizations was expressed by
arranging multiple subfigures as ‘small multiples’ in many plates.
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Following each subsequent decennial census for  to , reports and statisti-
cal atlases were produced with more numerous and varied graphic illustrations. he
 volume from the Eleventh Census (), under the direction of Henry Gan-
nett [–], contained over  graphs, cartograms and statistical diagrams.
here were several ranked parallel coordinate plots comparing states and cities over
all censuses from –. Trellis-like collections of shaded maps showed inter-
state migration, distributions of religious membership, deaths by known causes and
so forth.
he  and  volumes produced under Gannett’s direction are also notable

for (a) the multimodal combination of different graphic forms (maps, tables, bar-
charts, bilateral polygons) in numerous plates and (b) the consistent use of effect-
order sorting (Friendly and Kwan, ) to arrange states or other categories in rela-
tion to what was to be shown, rather than for lookup (e.g. Alabama–Wyoming).
For example, Fig. . shows interstate immigration in relation to emigration for

the  states and territories in . he right side shows population loss sorted by
emigration, ranging from New York, Ohio, Pennsylvania and Illinois at the top to
Idaho, Wyoming and Arizona at the bottom.he let side shows where the emigrants
went: Illinois, Missouri, Kansas and Texas had the biggest gains, Virginia the biggest
net loss. It is clear that people were leaving the eastern states and were attracted to
those of the Midwest Mississippi valley. Other plates showed this data in map-based
formats.
However, the Age of Enthusiasm and the Golden Age were drawing to a close.he

French Albums de statistique graphique were discontinued in  due to the high
cost of production; statistical atlases appeared in Switzerland in  and , but
never again. he final two US Census atlases, issued ater the  and  censuses,
‘were both routinized productions, largely devoid of colour and graphic imagination’
(Dahmann, ).

Figure .. Interstate migration shown by back-to-back barcharts, sorted by emigration. Source:

Statistical Atlas of the Eleventh Census, , diagram , p.  (author’s collection)



ABrief History of Data Visualization 37

1900–1950: The Modern Dark Ages 1.2.6

If the late s were the ‘golden age’ of statistical graphics and thematic cartography,
the early s can be called the ‘modern dark ages’ of visualization (Friendly and
Denis, ).
here were few graphical innovations, and by the mid-s the enthusiasm for

visualization which characterized the late s had been supplanted by the rise of
quantification and formal, oten statistical, models in the social sciences. Numbers,
parameter estimates and, especially, those with standard errors were precise. Pictures
were – well, just pictures: pretty or evocative, perhaps, but incapable of stating a ‘fact’
to three or more decimals. Or so it seemed to many statisticians.
But it is equally fair to view this as a time of necessary dormancy, application and

popularization rather than one of innovation. In this period statistical graphics be-
came mainstream. Graphical methods entered English textbooks (Bowley, ;
Peddle, ; Haskell, ; Karsten, ), the curriculum (Costelloe, ; Warne,
) and standard use in government (Ayres, ), commerce (Gantt charts and
Shewart’s control charts) and science.
hese textbooks contained rather detailed descriptions of the graphic method,

with an appreciative and oten modern flavour. For example, Sir Arthur Bowley’s
() Elements of Statistics devoted two chapters to graphs and diagrams and dis-
cussed frequency and cumulative frequency curves (with graphical methods for find-
ing the median and quartiles), effects of choice of scales and baselines on visual esti-
mation of differences and ratios, smoothing of time-series graphs, rectangle diagrams
in which three variables could be shown by height, width and area of bars, and ‘his-
torical diagrams’ in which two or more time series could be shown on a single chart
for comparative views of their histories.
Bowley’s (, pp. –) example of smoothing (Fig. .) illustrates the charac-

ter of his approach. Here he plotted the total value of exports fromBritain and Ireland
over the period –. At issue was whether exports had become stationary in
the most recent years, and the conclusion by Sir Robert Giffen (), based solely
on tables of averages for successive -year periods, that ‘the only sign of stationari-
ness is an increase at a less rate in the last periods than in the earlier periods’ (p. ).
To answer this, he graphed the raw data, together with curves of the moving average
over -, - and -year periods. he - and -year moving averages show strong evi-
dence of an approximately -year cycle, and he noted, ‘no argument can stand which
does not take account of the cycle of trade, which is not eliminated until we take de-
cennial averages’ (p. ). To this end, he took averages of successive -year periods
starting  and drew a freehand curve ‘keeping as close [to the points] as possible,

 he first systematic attempt to survey, describe and illustrate available graphic methods for
experimental data was that of Étienne Jules Marey’s () La Méthode Graphique. Marey
[–] also invented several devices for visual recording, including the sphymograph
and chronophotography to record themotion of birds in flight, people running and so forth.

 Giffen, an early editor ofhe Statist, also wrote a statistical text published posthumously in
; it contained an entire chapter on constructing tables, but not a single graph (Klein,
, p. ).
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Figure .. Arthur Bowley’s demonstration of methods of smoothing a time-series graph. Moving

averages of ,  and  years are compared with a freehand curve drawn through four points

representing the averages of successive -year periods. Source: Bowley (, opposite p. )

without making sudden changes in curvature,’ giving the thick curve in Fig. ..

Support for Sir Robert’s conclusion and the evidence for a -year cycle owe much to
this graphical treatment.
Moreover, perhaps for the first time, graphical methods proved crucial in a num-

ber of new insights, discoveries and theories in astronomy, physics, biology and other
sciences. Among these, onemay refer to (a) E.W.Maunder’s () ‘butterfly diagram’
to study the variation of sunspots over time, leading to the discovery that they were
markedly reduced in frequency from –; (b) the Hertzsprung–Russell dia-
gram (Hertzsprung, ; Spence and Garrison, ), a log-log plot of luminosity as
a function of temperature for stars, used to explain the changes as a star evolves and
laying the groundwork for modern stellar physics; (c) the discovery of the concept
of atomic number by Henry Moseley () based largely on graphical analysis. See
Friendly and Denis () for more detailed discussion of these uses.

 A reanalysis of the data using a loess smoother shows that this is in fact oversmoothed and
corresponds closely to a loess windowwidth of f = ..he optimal smoothing parameter,
minimizing AICC is f = ., giving a smooth more like Bowley’s - and -year moving
averages.
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As well, experimental comparisons of the efficacy of various graphics forms were
begun (Eells, ; von Huhn, ; Washburne, ), a set of standards and rules
for graphic presentation was finally adopted by a joint committee (Joint Commit-
tee on Standards for Graphic Presentation, ) and a number of practical aids to
graphing were developed. In the latter part of this period, new ideas and methods
for multidimensional data in statistics and psychology would provide the impetus to
look beyond the -D plane.
Graphic innovation was also awaiting new ideas and technology: the development

of the machinery of modern statistical methodology, and the advent of the computa-
tional power and display deviceswhichwould support the nextwave of developments
in data visualization.

1950–1975: Rebirth of Data Visualization 1.2.7

Still under the influence of the formal and numerical zeitgeist from themid-s on,
data visualization began to rise from dormancy in the mid-s. his was spurred
largely by three significant developments:

In the USA, John W. Tukey [–], in a landmark paper,he Future of Data
Analysis (Tukey, ), issued a call for the recognition of data analysis as a le-
gitimate branch of statistics distinct from mathematical statistics; shortly later,
he began the invention of a wide variety of new, simple and effective graphic dis-
plays, under the rubric of ‘exploratory data analysis’ (EDA) – stem-leaf plots, box-
plots, hanging rootograms, two-way table displays and so forth, many of which
entered the statistical vocabulary and sotware implementation. Tukey’s stature as
a statistician and the scope of his informal, robust and graphical approach to data
analysis were as influential as his graphical innovations. Although not published
until , chapters from Tukey’s EDA book (Tukey, ) were widely circulated
as they began to appear in – and began to make graphical data analysis
both interesting and respectable again.
In France, Jacques Bertin [–] published themonumental Sémiologie graphique
(Bertin, ). To some, this appeared to do for graphics what Mendeleev had
done for the organization of the chemical elements, that is, to organize the vi-
sual and perceptual elements of graphics according to the features and relations
in data. In a parallel but separate stream, an exploratory and graphical approach
to multidimensional data (‘L’analyse des données’) begun by Jean-Paul Benzécri
[–] provided French and other European statisticians with an alternative, vi-
sually based view of what statistics was about. Other graphically minded schools
of data-thought would later arise in the Netherlands (Gifi), Germany and else-
where in Europe.
But the skills of hand-drawn maps and graphics had withered during the dor-
mant ‘modern dark ages’ of graphics (though nearly every figure in Tukey’s EDA
(Tukey, ) was, by intention, hand-drawn). Computer processing of statisti-
cal data began in  with the creation of Fortran, the first high-level lan-
guage for computing. By the late s, widespread mainframe university com-
puters offered the possibility to construct old and new graphic forms by computer
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programs. Interactive statistical applications, e.g. Fowlkes (); Fishkeller et al.
(), and true high-resolution graphics were developed but would take a while
to enter common use.

By the end of this period significant intersections and collaborations would begin:
(a) Computer science research (sotware tools, C language, UNIX, etc.) at Bell Labo-
ratories (Becker, ) and elsewhere would combine forces with (b) Developments
in data analysis (EDA, psychometrics, etc.) and (c) Display and input technology
(pen plotters, graphic terminals, digitizer tablets, the mouse, etc.). hese develop-
ments would provide new paradigms, languages and sotware packages for express-
ing statistical ideas and implementing data graphics. In turn, they would lead to an
explosive growth in new visualization methods and techniques.
Other themes began to emerge, mostly as initial suggestions: (a) Various novel

visual representations of multivariate data (Andrews’ () Fourier function plots,
Chernoff () faces, star plots, clustering and tree representations); (b) he devel-
opment of various dimension-reduction techniques (biplot (Gabriel, ), multi-
dimensional scaling, correspondence analysis), providing visualization of multidi-
mensional data in a -D approximation; (c) Animations of a statistical process; and
(d) Perceptually based theory and experiments related to how graphic attributes and
relations might be rendered to better convey data visually.
By the close of this period, the first exemplars of modern GIS and interactive sys-

tems for -D and -D statistical graphics would appear. hese would set goals for
future development and extension.

1975–present: High-D, Interactive
and Dynamic Data Visualization1.2.8

During the last quarter of the th century data visualization blossomed into a ma-
ture, vibrant and multidisciplinary research area, as may be seen in this Handbook,
and sotware tools for a wide range of visualization methods and data types are avail-
able for every desktop computer. Yet it is hard to provide a succinct overview of the
most recent developments in data visualization because they are so varied and have
occurred at an accelerated pace and across a wider range of disciplines. It is also more
difficult to highlight the most significant developments which may be seen as such
in a subsequent history focusing on this recent period.
With this disclaimer, a few major themes stand out.
he development of highly interactive statistical computing systems. Initially, this
meant largely command-driven, directly programmable systems (APL, S), as op-
posed to compiled, batch processing;
New paradigms of direct manipulation for visual data analysis (linking, brushing
(Becker and Cleveland, ), selection, focusing, etc.);
New methods for visualizing high-dimensional data (the grand tour (Asimov,
), scatterplot matrix (Tukey and Tukey, ), parallel coordinates plot (In-
selberg, ; Wegman, ), spreadplots (Young, a), etc.);
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he invention (or re-invention) of graphical techniques for discrete and categor-
ical data;
he application of visualization methods to an ever-expanding array of substan-
tive problems and data structures; and
Substantially increased attention to the cognitive and perceptual aspects of data
display.

hese developments in visualization methods and techniques arguably depended on
advances in theoretical and technological infrastructure, perhaps more so than in
previous periods. Some of these are:

Large-scale statistical and graphics sotware engineering, both commercial (e.g.
SAS) and non-commercial (e.g. Lisp-Stat, the R project). hese have oten been
significantly leveraged by open-source standards for information presentation
and interaction (e.g. Java, Tcl/Tk);
Extensions of classical linear statistical modelling to ever-wider domains (gener-
alized linear models, mixed models, models for spatial/geographical data and so
forth);
Vastly increased computer processing speed and capacity, allowing computation-
ally intensive methods (bootstrap methods, Bayesian MCMC analysis, etc.), ac-
cess to massive data problems (measured in terabytes) and real-time streaming
data. Advances in this area continue to press for new visualization methods.

From the early s to mid-s, many of the advances in statistical graphics con-
cerned static graphs for multidimensional quantitative data, designed to allow the
analyst to see relations in progressively higher dimensions. Older ideas of dimension-
reduction techniques (principal component analysis, multidimensional scaling, dis-
criminant analysis, etc.) led to generalizations of projecting a high-dimensional data-
set to ‘interesting’ low-dimensional views, as expressed by various numerical indices
that could be optimized (projection pursuit) or explored interactively (grand tour).
he development of general methods formultidimensional contingency tables be-

gan in the early s, with Leo Goodman (), Shelly Haberman () and others
(Bishop et al., ) laying out the fundamentals of log-linear models. By the mid-
s, some initial, specialized techniques for visualizing such data were developed
(four-fold display (Fienberg, ), association plot (Cohen, ), mosaicplot (Har-
tigan and Kleiner, ) and sieve diagram (Riedwyl and Schüpbach, )), based
on the idea of displaying frequencies by area (Friendly, ). Of these, extensions of
the mosaicplot (Friendly, , ) have proved most generally useful and are now
widely implemented in a variety of statistical sotware, most completely in the vcd
package (Meyer et al., ) in R and interactive sotware from the Augsburg group
(MANET, Mondrian).
It may be argued that the greatest potential for recent growth in data visualiza-

tion came from the development of interactive and dynamic graphic methods, al-
lowing instantaneous and direct manipulation of graphical objects and related statis-
tical properties. One early instance was a system for interacting with probability plots
(Fowlkes, ) in real time, choosing a shape parameter of a reference distribution
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and power transformations by adjusting a control.hefirst general system formanip-
ulating high-dimensional data was PRIM-, developed by Fishkeller, Friedman and
Tukey (), and providing dynamic tools for projecting, rotating (in -D), isolating
(identifying subsets) and masking data in up to  dimensions. hese were quite in-
fluential, but remained one-of-a-kind, ‘proof-of-concept’ systems. By the mid-s,
as workstations and display technology became cheaper and more powerful, desk-
top sotware for interactive graphics became more widely available (e.g. MacSpin,
Xgobi). Many of these developments to that point are detailed in the chapters of
Dynamic Graphics for Statistics (Cleveland and McGill, ).
In the s, a number of these ideas were brought together to provide more gen-

eral systems for dynamic, interactive graphics, combined with data manipulation and
analysis in coherent and extensible computing environments. he combination of all
these factors was more powerful and influential than the sum of their parts. Lisp-Stat
(Tierney, ) and its progeny (Arc, Cook andWeisberg, ;ViSta, Young, b),
for example, provided an easily extensible object-oriented environment for statisti-
cal computing. In these systems, widgets (sliders, selection boxes, pick lists, etc.),
graphs, tables, statistical models and the user all communicated through messages,
acted uponbywhoeverwas a designated ‘listener,’ and had amethod to respond.Most
of the ideas and methods behind present-day interactive graphics are described and
illustrated in Young et al. (). Other chapters in this Handbook provide current
perspectives on other aspects of interactive graphics.

Statistical Historiography1.3

As mentioned at the outset, this review is based on the information collected for the
Milestones Project, which I regard (subject to some caveats) as a relatively compre-
hensive corpus of the significant developments in the history of data visualization. As
such, it is of interest to consider what lightmodernmethods of statistics and graphics
can shed on this history, a self-referential question we call ‘statistical historiography’
(Friendly, ). In return, this offers other ways to view this history.

History as ‘Data’1.3.1

Historical events, by their nature, are typically discrete, but marked with dates or
ranges of dates, and some description – numeric, textual, or classified by descrip-
tors (who, what, where, howmuch and so forth). Amongst the first to recognize that
history could be treated as data and portrayed visually, Joseph Priestley (; )
developed the idea of depicting the lifespans of famous people by horizontal lines
along a time scale. His enormous ( �  t., or . � m) and detailed Chart of Biog-
raphy showed two thousand names from  B.C. to A.D.  by horizontal lines
from birth to death, using dots at either end to indicate ranges of uncertainty. Along
the vertical dimension, Priestly classified these individuals, e.g., as statesmen or men
of learning. A small fragment of this chart is shown in Fig. ..
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Figure .. A specimen version of Priestley’s Chart of Biography. Source: Priestley ()

Priestley’s graphical representations of time and duration apparently influenced
Playfair’s introduction of time-series charts and barcharts (Funkhouser, , p. ).
But these inventions did not inspire theBritish statisticians of his day, as noted earlier;
historical events and statistical facts were seen as separate, rather than as data arrayed
along a time dimension. In , at the Jubilee meeting of the Royal Statistical Society,
AlfredMarshall () argued that the causes of historical events could be understood
by the use of statistics displayed by ‘historical curves’ (time-series graphs): ‘I wish to
argue that the graphic method may be applied as to enable history to do this work
better than it has hitherto’ (p. ). Maas and Morgan () discuss these issues in
more detail.

Analysing Milestones Data 1.3.2

he information collected in the Milestones Project is rendered in print and Web
forms as a chronological list but is maintained as a relational database (historical
items, references, images) in order to be able to work with it as ‘data.’ he simplest
analyses examine trends over time. Figure . shows a density estimate for the distri-
bution of  milestone items from  to the present, keyed to the labels for the
periods in history. he bumps, peaks and troughs all seem interpretable: note par-
ticularly the steady rise up to about , followed by a decline through the ‘modern
dark ages’ to , then the steep rise up to the present. In fact, it is slightly surprising
to see that the peak in the Golden Age is nearly as high as that at present, but this
probably just reflects underrepresentation of the most recent events.

 Technical note: In this figure an optimal bandwidth for the kernel density estimate was se-
lected (using the Sheather–Jones plug-in estimate) for each series separately. he smaller
range and sample size of the entries for Europe vs. NorthAmerica gives a smaller bandwidth
for the former, by a factor of about . Using a common bandwidth fixed to that determined
for the whole series (Fig. .) undersmoothes the more extensive data on European develop-
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Figure ..he distribution of milestone items over time, comparing trends in Europe and North

America

Other historical patterns can be examined by classifying the items along various
dimensions (place, form, content and so forth). If we classify the items by place of
development (Europe vs. North America, ignoring Other), interesting trends appear
(Fig. .). he greatest peak in Europe around – coincided with a smaller
peak in North America. he decline in Europe following the Golden Age was ac-
companied by an initial rise in North America, largely due to popularization (e.g.
textbooks) and significant applications of graphical methods, then a steep decline as
mathematical statistics held sway.
Finally, Fig. . shows twomosaicplots for themilestone items classified byEpoch,

Subject matter and Aspect. Subject was classed as having to do with human (e.g.
mortality, disease), physical or mathematical characteristics of what was represented
in the innovation. Aspect classed each item according to whether it was primarily
map-based, a diagram or statistical innovation or a technological one. he let mo-
saic shows the shits in Subject over time: most of the early innovations concerned
physical subjects, while the later periods shit heavily to mathematical ones. Human
topics are not prevalent overall but were dominant in the th century. he right mo-
saic, for Subject�Aspect, indicates that, unsurprisingly,map-based innovationswere
mainly about physical and human subjects, while diagrams and statistical ones were
largely about mathematical subjects. Historical classifications clearly rely on more

ments and oversmoothes the NorthAmerican ones.he details differ, butmost of the points
made in the discussion about what was happening when and where hold.
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Figure .. [his figure also appears in the color insert.] Mosaic plots for milestones items, classified by

Subject, Aspect and Epoch. Cells with greater (less) frequency than expected under independence are

coloured blue (red), with intensity proportional to the deviation from independence

detailed definitions than described here; however, it seems reasonable to suggest that
such analyses of history as ‘data’ are a promising direction for future work.

What Was He Thinking? –
Understanding Through Reproduction 1.3.3

Historical graphs were created using available data, methods, technology and under-
standing current at the time. We can oten come to a better understanding of intel-
lectual, scientific and graphical questions by attempting a re-analysis from a modern
perspective.
Earlier, we showed Playfair’s time-series graph (Fig. .) of wages and prices and

noted that Playfair wished to show thatworkerswere better off at the end of the period
shown than at any earlier time. Presumably he wished to draw the reader’s eye to the
narrowing of the gap between the bars for prices and the line graph for wages. Is this
what you see?
What this graph shows directly is quite different from Playfair’s intention. It ap-

pears that wages remained relatively stable while the price of wheat varied greatly.
he inference that wages increased relative to prices is indirect and not visually com-
pelling.
We cannot resist the temptation to give Playfair a helping hand here – by graphing

the ratio of wages to prices (labour cost of wheat), as shown in Fig. .. But this would
not have occurred to Playfair because the idea of relating one time series to another
by ratios (index numbers) would not occur for another half-century (due to Jevons).
See Friendly and Denis () for further discussion of Playfair’s thinking.
As another example, we give a brief account of an attempt to explore Galton’s

discovery of regression and the elliptical contours of the bivariate normal surface,
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Figure .. Redrawn version of Playfair’s time-series graph showing the ratio of price of wheat to

wages, together with a loess smoothed curve

Figure .. Galton’s smoothed correlation diagram for the data on heights of parents and children,

showing one ellipse of equal frequency. Source: (Galton, , Plate X)
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Figure .. Contour plot of Galton’s smoothed data, showing the curves of ȳ�x (filled circles, solid line),

x̄�y (open circles, solid line) and the corresponding regression lines (dashed)

treated in more detail in Friendly and Denis (). Galton’s famous graph show-
ing these relations (Fig. .) portrays the joint frequency distribution of the height
of children and the average height of their parents. It was produced from a ‘semi-
graphic table’ in which Galton averaged the frequencies in each set of four adjacent
cells, drew isocurves of equal smoothed value and noted that these formed ‘concen-
tric and similar ellipses.’
A literal transcription of Galton’s method, using contour curves of constant av-

erage frequency and showing the curves of the means of y�x and x�y, is shown in
Fig. .. It is not immediately clear that the contours are concentric ellipses, nor that
the curves of means are essentially linear and have horizontal and vertical tangents
to the contours.
A modern data analyst following the spirit of Galton’s method might substitute

a smoothed bivariate kernel density estimate for Galton’s simple average of adjacent
cells. he result, using jittered points to depict the cell frequencies, and a smoothed
loess curve to show E(y�x) is shown in Fig. .. he contours now do emphati-
cally suggest concentric similar ellipses, and the regression line is near the points
of vertical tangency. A reasonable conclusion from these figures is that Galton did
not slavishly interpolate isofrequency values as is done in the contour plot shown in
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Figure .. Bivariate kernel density estimate of Galton’s data, using jittered points for the data, and

a smoothed loess curve for E(y�x) (solid) and regression line (dashed)

Fig. .. Rather, he drew his contours to the smoothed data by eye and brain (as he
had done earlier with maps of weather patterns), with knowledge that he could, as
one might say today, trade some increase in bias for a possible decrease in variance,
and so achieve a greater smoothing.

Final Thoughts1.4

his chapter is titled ‘A brief history. . . ’ out of recognition that it it impossible to do
full justice to the history of data visualization in such a short account. his is doubly
so because I have attempted to present a broad view spanning the many areas of
application in which data visualization took root and developed. hat being said, it
is hoped that this overview will lead modern readers and developers of graphical
methods to appreciate the rich history behind the latest hot new methods. As we
have seen, almost all current methods have a much longer history than is commonly
thought. Moreover, as I have surveyed this work and travelled to many libraries to
view original works and read historical sources, I have been struck by the exquisite
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beauty and attention to graphic detail seen inmany of these images, particularly those
from the th century. We would be hard-pressed to recreate many of these today.
From this history one may also see that most of the innovations in data visualiza-

tion arose from concrete, oten practical, goals: the need or desire to see phenom-
ena and relationships in new or different ways. It is also clear that the development
of graphic methods depended fundamentally on parallel advances in technology,
data collection and statistical theory. Finally, I believe that the application of mod-
ern methods of data visualization to its own history, in this self-referential way I call
‘statistical historiography,’ offers some interesting views of the past and challenges for
the future.
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Graphical excellence is nearly always multivariate. – Edward Tute

Introduction2.1

his chapter discusses drawing good graphics to visualize the information in data.
Graphics have been used for a long time to present data. Figure . is a scanned image
from Playfair’s Commercial and Political Atlas of , reproduced in Playfair ().
he fairly continuous increase of both imports and exports, and the fact that the bal-
ance was in favour of England from  on, can be seen easily. Some improvements
might be made, but overall the display is effective and well drawn.
Data graphics are used extensively in scientific publications, in newspapers and in

the media generally. Many of those graphics do not fully convey the information in
the data they are supposed to be presenting and may even obscure it. What makes
a graphic display of data bad? More importantly, what makes one good? In any suc-
cessful graphic there must be an effective blending of content, context, construction
and design.

Content, Context and Construction2.1.1

What is plotted comes first, andwithout content no amount of clever design can bring
meaning to a display. A good graphic will convey information, but a graphic is always
part of a larger whole, the context, which provides its relevance. So a good graphic
will complement other related material and fit in, both in terms of content and also

Figure .. Playfair’s chart of trade between England and Ireland from  to 
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Figure .. Church attendance (DDB Life Style Survey –)

with respect to style and layout. Finally, if a graphic is constructed and drawn well, it
will look good.
Figure . shows two similar displays of the same data from the DDB social survey

used in Robert Putnam’s bookBowling Alone (Putnam, ). Every year for  years,
different groups of  people were surveyed. Amongst other questions, they were
asked how oten they had attended church in the last year.
he let-hand graph includes gridlines and a coloured background and uses -D

columns to represent the data counts. he right-hand graph sticks to basics. In gen-
eral, the right-hand display is to be preferred (-D columns can cross gridlines, and
zero values would be misleadingly displayed). For these data there is not much to
choose between the two representations; both convey the same overall information.
he potential weakness in both graphics is the set of categories. Grouping the data
together in different ways could give quite different impressions.
For a given dataset there is not a great deal of advice which can be given on content

and context. hose who know their own data should know best for their specific
purposes. It is advisable to think hard about what should be shown and to check with
others if the graphicmakes the desired impression. Design should be let to designers,
though some basic guidelines should be followed: consistency is important (sets of
graphics should be in similar style and use equivalent scaling); proximity is helpful
(place graphics on the same page, or on the facing page, of any text that refers to
them); and layout should be checked (graphics should be neither too small nor too
large and be attractively positioned relative to the whole page or display). Neither
content nor context nor design receives much attention in books offering advice on
data graphics; quite properly they concentrate on construction.his chapter will, too.

Presentation Graphics and Exploratory Graphics 2.1.2

here are two main reasons for using graphic displays of datasets: either to present
or to explore data. Presenting data involves deciding what information you want to
convey and drawing a display appropriate for the content and for the intended audi-
ence. You have to think about how the plot might be perceived and whether it will be
understood as you wish. Plots which are common in one kind of publication may be
unfamiliar to the readers of another. heremay only be space for one plot and it may
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be available in print for a very long time, so great care should be taken in preparing
the most appropriate display. Exploring data is a much more individual matter, us-
ing graphics to find information and to generate ideas. Many displays may be drawn.
hey can be changed at will or discarded and new versions prepared, so generally no
one plot is especially important, and they all have a short life span. Clearly princi-
ples and guidelines for good presentation graphics have a role to play in exploratory
graphics, but personal taste and individual working style also play important roles.
he same data may be presented in many alternative ways, and taste and customs
differ as to what is regarded as a good presentation graphic. Nevertheless, there are
principles that should be respected and guidelines that are generally worth following.
No one should expect a perfect consensus where graphics are concerned.

Background2.2

History2.2.1

Data graphics may be found going very far back in history, but most experts agree
that they really began with the work of Playfair a little more than  years ago. He
introduced somemodern basic plots (including the barchart and the histogram) and
produced pertinent and eye-catching displays (Fig. .). Wainer and Spence recently
republished a collection of his works (Playfair, ). Not all his graphics could be
described as good, but most were. In the second half of the th century Minard
prepared impressive graphics, including his famous chart of Napoleon’s advance on
and retreat from Moscow. he French Ministry of Public Works used his ideas to
attractive, and presumably pertinent, effect in an annual series of publications (Album
de Statistique Graphique) from  to , presenting economic data geographically
for France. Examples can be found in Michael Friendly’s chapter in this book.
In the first half of the last century graphics were not used in statistics as much as

they might have been. Interestingly, the second chapter in Fisher’s Statistical Methods
for ResearchWorkers in was ondiagrams for data, so he, at least, thought graphics
important. In Vienna there was a group led by Otto Neurath which worked exten-
sively on pictograms in the s and early s. hey produced some well-crated
displays, which were forerunners of the modern infographics. (Whether Fig. . is
improved by including the symbols at the top to represent the USA is a matter of
taste.)
With the advent of computers, graphics went into a relative decline. Computers

were initially bad for graphics for two reasons. Firstly, much more complex analytic
models could be evaluated and, quite naturally, modelling received a great deal more
attention than displaying data. Secondly, only simple and rather ugly graphics could
be drawn by early computers.he development of hardware and sotware has turned
all this around. In recent years it has been very easy to produce graphics, and far more
can be seen than before.Which is, of course, all the more reason to be concerned that
graphics be drawn well.
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Figure .. Pictogram by Otto Neurath of the number of cars in the USA and the rest of the world in

, , and 

Literature 2.2.2

Several authors havewritten excellent books on drawing good statistical graphics, the
best known, justifiably, being Edward Tute.His books (e.g. Tute, ) includemany
splendid examples (and a few dreadful ones) and describe important principles on
how to draw good graphics. Tute criticizes unsuitable decoration and data misrepre-
sentation, but his advice is restricted to representing data properly. Cleveland’s books
[for instance, Cleveland () another useful source of advice on preparing data dis-
plays] are equally valuable. And this is the way it should be. Statisticians should con-
centrate on getting the basic statistical display right, and designers may be consulted
to produce a polished final version.
While there is a place for applied books full of sound practical advice [other use-

ful references include Burn (), Kosslyn (), and Robbins ()], there is also
a need for theory to provide formal structures for understanding practice and to pro-
vide a foundation from which progress can be made. Graphics must be one of the
few areas in statistics where there is little such theory. Bertin’s major work (Semiolo-
gie Graphique) from  contains a number of interesting ideas and is oten cited,
but it is difficult to point to later work that directly extends it. Wilkinson’s Grammar
of Graphics has received a lot of attention and been quickly revised in a substantially
expanded second edition (Wilkinson, ).
If there is little theory, then examples become particularly important to showwhat

can be achieved.he twobooks byWainer (, ) contain collections of columns
first published in Chance and offer instructive and entertaining examples. Friendly’s
Gallery of Statistical Visualization (http://www.math.yorku.ca/SCS/Gallery/) in-
cludes many examples, both good and bad, chronicling the history of graphical de-
velopments. he websites ASK E.T. (http://www.edwardtute.com) and Junk Charts
(http://junkcharts.typepad.com) provide lively discussions and sage advice for par-
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ticular examples. It would be invidious, and perhaps unfair, to single out egregious
examples here. Readers should be able to find plenty for themselves without having
to look far.

The Media and Graphics2.2.3

Graphical displays of data appear in the press very oten. hey are a subset of info-
graphics, graphical displays for conveying information of any kind, usually discussed
under the heading information visualization (Spence, ). Many impressive exam-
ples can be found in the New York Times. While there are guidelines which apply
to all infographics, this chapter is restricted to the construction of data visualiza-
tions.
Data displays in the media are used to present summary information, such as the

results of political surveys (what proportion of the people support which party), the
development of financial measures over time (a country’s trade balance or stockmar-
ket indices) or comparisons between population groups (average education levels of
different sections of the community). here are many other examples. hese topics
only require fairly basic displays, so it is not surprising that in the media they are
commonly embellished with all manner of decoration and ornamentation, some-
times effectively drawing attention both to the graphic and to its subject, sometimes
just making it more difficult to interpret the information being presented. What is
surprising is that the graphics are oten misleading or flawed.

Presentation
(What toWhom, How andWhy)2.3

How is it possible to make amess of presenting simple statistical information? Surely
there is little that can go wrong. It is astonishing just what distortion can be intro-
duced: misleading scales may be employed; -D displays of -D data make it difficult
to make fair comparisons; areas which are apparently intended to be proportional
to values are not; so much information is crammed into a small space that noth-
ing can be distinguished. While these are some of the technical problems that can
arise, there are additional semantic ones. A graphic may be linked to three pieces of
text: its caption, a headline and an article it accompanies. Ideally, all three should be
consistent and complement each other. In extreme cases all four can tell a different
story! A statistician cannot domuch about headlines (possibly added or amended by
a subeditor at the last minute) or about accompanying articles if he or she is not the
first author (in the press the journalist chooses the graphic andmay have little time to
find something appropriate), but the caption and the graphic itself should be “good”.
Some displays in the media highlight a news item or provide an illustration to

lighten the text. hese are oten prepared by independent companies at short notice
and sold to the media as finished products. Fitting the graphic to its context may be
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awkward. here are displays in scientific publications which are prepared by the au-
thors and should be the product of careful and thorough preparation. In this situation
a graphic should match its context well. Whatever kind of data graphic is produced,
a number of general principles should be followed to ensure that the graphic is at
least correct.
Whether or not a graphic is then successful as a display depends on its subject,

on its context and on aesthetic considerations. It depends on what it is supposed
to show, on what form is chosen for it and on its audience. Readers familiar with
one kind of graphic will have no trouble interpreting another example of the same
kind. On the other hand, a graphic in a form which is new to readers may lead to
unanticipated interpretation difficulties. When someone has spent a long time on
a study and further time on the careful preparation of a graphic display to illustrate
the conclusions, they are usually astonishedwhen others do not seewhat they can see.
[his effect is, of course, not restricted to drawing graphics. Designers are frequently
shocked by how people initially misunderstand their products. How oten have you
stared at the shower in a strange hotel wondering how you can get it to work without
its scalding or freezing you? Donald Norman’s book (Norman, ) is filled with
excellent examples.]
Other factors have to be considered as well. A graphic may look different in print

than on a computer screen. Complex graphics may work successfully in scientific
articles where the reader takes time to fully understand them.heywill not work well
as a brief item in a televisionnews programme.On the other hand, graphics which are
explained by a commentator are different fromgraphics in print. If graphics displayed
on the Web can be queried (as with some of the maps on http://www.cancer.gov/
atlasplus/, discussed in Sect. ..), then more information can be provided without
cluttering the display.

Scientiic Design Choices
in Data Visualization 2.4

Plotting a single variable should be fairly easy. he type of variable will influence the
type of graphic chosen. For instance, histograms or boxplots are right for continuous
variables, while barcharts or piecharts are appropriate for categorical variables. In
both cases other choices are possible too. Whether the data should be transformed
or aggregated will depend on the distribution of the data and the goal of the graphic.
Scaling and captioning should be relatively straightforward, though they need to be
chosen with care.
It is a different matter with multivariate graphics, where even displaying the joint

distribution of two categorical variables is not simple. hemain decision to be taken
for a multivariate graphic is the form of display, though the choice of variables and
their ordering are also important. In general a dependent variable should be plotted
last. In a scatterplot it is traditional to plot the dependent variable on the vertical axis.
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Choice of Graphical Form2.4.1

here are barcharts, piecharts, histograms, dotplots, boxplots, scatterplots, roseplots,
mosaicplots and many other kinds of data display.he choice depends on the type of
data to be displayed (e.g. univariate continuous data cannot be displayed in a piechart
and bivariate categorical data cannot be displayed in a boxplot) and on what is to be
shown (e.g. piecharts are good for displaying shares for a small number of categories
and boxplots are good for emphasizing outliers). A poor choice graph type cannot be
rectified by other means, so it is important to get it right at the start. However, there
is not always a unique optimal choice and alternatives can be equally good or good
in different ways, emphasizing different aspects of the same data.
Provided an appropriate form has been chosen, there are many options to con-

sider. Simply adopting the default of whatever computer sotware is being used is
unlikely to be wise.

Graphical Display Options2.4.2

Scales
Defining the scale for the axis for a categorical variable is a matter of choosing an
informative ordering. his may depend on what the categories represent or on their
relative sizes. For a continuous variable it is more difficult. he endpoints, divisions
and tick marks have to be chosen. Initially it is surprising when apparently reliable
sotware produces a really bad scale for some variable. It seems obviouswhat the scale
should have been. It is only when you start trying to design your own algorithm for
automatically determining scales that you discover how difficult the task is.
In Grammar of Graphics Wilkinson puts forward some plausible properties that

‘nice’ scales should possess and suggests a possible algorithm. he properties (sim-
plicity, granularity and coverage, with the bonus of being called ‘really nice’ if zero
is included) are good but the algorithm is easy to outwit. his is not to say that it is
a weak algorithm. What is needed is a method which gives acceptable results for as
high a percentage of the time as possible, and the user must also check the resulting
scale and be prepared to amend it for his or her data. Difficult cases for scaling al-
gorithms arise when data cross natural boundaries, e.g., data with a range of  to 
would be easy to scale, whereas data with a range of  to  would bemore awkward.
here is a temptation to choose scales running from the minimum to the maxi-

mum of the data, but this means that some points are right on the boundaries and
may be obscured by the axes. Unless the limits are set by the meaning of the data (e.g.
with exammarks from  to , neither negative marks nor marks more than  are
possible – usually!), it is good practice to extend the scales beyond the observed lim-
its and to use readily understandable rounded values. here is no obligatory require-
ment to include zero in a scale, but there should always be a reason for not doing so;
otherwise it makes the reader wonder if some deception is being practiced. Zero is
in fact not the only possible baseline or alignment point for a scale, though it is the
most common one. A sensible alignment value for ratios is one, and financial series
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are oten standardized to all start at . In Fig. . the cumulative times for all the
riders who finished the Tour de France cycle race in  are plotted.he data at the
end of each stage have been aligned at their means. he interest lies in the differences
in times between the riders, not so much in their absolute times.
Figure . shows histograms for the Hidalgo stamp thickness data (Izenman and

Sommer, ).he first uses default settings and shows a skew distribution with pos-
sibly a second mode around .. he second has rounded endpoints and a rounded
binwidth and shows stronger evidence for the second mode. he third is drawn so
that each distinct value is in a different bin (the data were all recorded to a thousandth
of a millimetre). It suggests that the first mode is actually made of up to two groups
and that there may be evidence for several additional modes to the right. It also re-
veals that rounded values such as ., ., . . . , . occur relativelymore frequently.
Izenman and Sommer used the third histogram in their paper. What the data repre-

Figure .. hree different histograms of the Hidalgo stamp thickness data, all with the same

anchorpoint but with different binwidths. he horizontal scales are aligned and the total area of each

display is the same (note the different frequency scales). Source: Izenman and Sommer ()
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sent and how they are collected should be taken into account when choosing scales.
Asymptotic optimality criteria only have a minor role to play.
While Fig. . shows the importance of choosing binwidths carefully, it also il-

lustrates some display issues. he horizontal value axis is clearly scaled, but it would
surely be nicer if it extended further to the right. More importantly, the comparison
in Fig. . ideally requires that all three plots be aligned exactly and have the same
total area. Not all sotware provides these capabilities.
Graphics should be considered in their context. It may be better to use a scale in

one graphic that is directly comparable with that in another graphic instead of indi-
vidually scaling both. Common scaling is used in one form or another in Figs. .,
. and ..
It is one thing to determine what scale to use, but quite another to draw and label

the axes. Too many labels make a cluttered impression; too few can make it hard for
the reader to assess values and differences. (Note that it is not the aim of graphics
to provide exact case values; tables are much better for that.) Tick marks in between
labels oten look fussy and have little practical value. In some really bad situations,
they can obscure data points.

Sorting and Ordering
he effect of a display can be influenced by many factors. When more than one vari-
able is to be plotted, the position or order in which they appear in the graphic makes
a difference. Examples arise with parallel coordinate plots, mosaicplots and matrix
visualizations, all discussed in other chapters. Within a nominal variable with no
natural ordering, the order in which the categories are plotted can have a big effect.
Alphabetic ordering may be appropriate (a standard default, which is useful for com-
parison purposes), or a geographic or other grouping (e.g. shares by market sector)
might be relevant.he categories could be ordered by size or by a secondary variable.
Figure . shows two barcharts of the same data, the numbers in each class and in the
crew on the Titanic. he second ordering would be the same in any language, but the
first would vary (for instance, Crew, First, Second, hird in English).

Figure .. Numbers of passengers and crew who travelled on the Titanic, by class, ordered

alphabetically (in German) and by status. Source: Dawson ()
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AddingModel or Statistical Information –
Overlaying (Statistical) Information
Guides may be drawn on a plot as a form of annotation and are useful for emphasiz-
ing particular issues, say which values are positive or negative. Sloping guides high-
light deviations from linearity. Fitted lines, for instance polynomial regression or
smoothers, may be superimposed on data not only to show the hypothesized overall
structure but also to highlight local variability and any lack of fit. Figure . plots the
times from the first and last stages of a -km road race. A lowess smoother has been
drawn. It suggests that there is a linear relationship for the faster runners and a flat
one for the slower ones.
When multiple measurements are available, it is standard practice in scientific

journals to plot point estimates with their corresponding confidence intervals. (%
confidence intervals are most common, though it is wise to check precisely what has
been plotted.) Figure . displays the results of a study on the deterioration of a thin
plastic over time. Measurements could only be made by destructive testing, so all
measurements are of independent samples. he high variability at most of the time
points is surprising. Adjacent means have been joined by straight lines. A smoothing
function would be a better alternative, but such functions are not common for this
kind of plot. As the measurement timepoints are far apart and as there is only one
dataset, there is no overlapping here. hat can very oten be a serious problem.
Overlaying information, whether guides or annotation, can lead to overlapping

and cluttered displays. Good solutions are possible but may require individual ad-
justments depending on the shape of the data. A well-spaced and informative display
at one size may appear unsatisfactory and unclear when shrunk for publication.

Figure .. Times for  runners for the last stage of a road race vs. their times for the first stage, with

a lowess smoother. Default scales from R have been used. Source: Everitt ()
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Captions, Legends and Annotations
Ideally, captions should fully explain the graphic they accompany, including giving
the source for the data. Relying on explanations in the surrounding text rarely works.
Ideals cannot always be met and very long captions are likely to put off the reader,
but the whole point of a graphic is to present information concisely and directly.
A compromise where the caption outlines the information in the graphic and a more
detailed description can be found in the text can be a pragmatic solution. Graphics
which require extensive commentary may be trying to present toomuch information
at one go.
Legends describe which symbols and/or colours refer to which data groups. Tute

recommends that this information be directly on the plot and not in a separate legend,
so that the reader’s eyes do not have to jump backwards and forwards. If it can be
done, it should be.
Annotations are used to highlight particular features of a graphic. For reasons of

space there cannot be many of them and they should be used sparingly. hey are
useful for identifying events in time series, as Playfair did (Playfair, ), or for
drawing attention to particular points in scatterplots.
Union estimates of protest turnout in Fig. . are larger than the police estimates by

roughly the same factor, except for the two extreme exceptions, Marseille and Paris,
where the disagreement is much greater.

Positioning in Text
Keeping graphics and text on the samepage or on facing pages is valuable for practical
reasons. It is inconvient to have to turn pages back and forth because graphics and
the text relating to them are on different pages. However, it is not always possible to
avoid this. Where graphics are placed on a given page is a design issue.

Size, Frames and Aspect Ratio
Graphics should be large enough for the reader to see the information in them clearly
and not much larger.his is a rough guideline, asmuchwill depend on the surround-
ing layout. Frames may be drawn to surround graphics. As frames take up space and
add to the clutter, they should best only be used for purposes of separation, i.e. sep-
arating the graphic from other graphics or from the text.
Aspect ratios have a surprisingly strong effect on the perception of graphics. his

is especially true of time series. If you want to show gradual change, grow the hor-
izontal axis and shrink the vertical axis. he opposite actions will demonstrate dra-
matic change. For a scatterplot example, see Fig. ., which displays the same data
as Fig. .. here is useful advice on aspect ratios in Cleveland (), especially the
idea of ‘banking to  degrees’ for straight lines.

Colour
Colour should really have been discussed much earlier. It is potentially one of the
most effective ways of displaying data. In practice it is also one of the most difficult
to get right. A helpful check for colour schemes for maps, Colorbrewer by Cynthia
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Figure .. Average chemical deterioration and % confidence intervals, measured at different time

points. here were either  or  measurements at each time point. Source: Confidential research data

Figure .. Union estimates (in thousands) of the protester turnout in various French cities in the

spring of  plotted against police estimates (also in thousands). Source: Le Monde ..

Figure .. he same plot as Fig. ., drawn with different aspect ratios. Data are times for runners for

the last stage of a road race vs. their times for the first stage
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Brewer, can be found at http://colorbrewer.org. Colorbrewer can give suggestions for
colour schemes that both blend well and distinguish between different categories.
here remainmany factors in the choice of colour which have to be borne inmind:

some people are colour blind; colours have particular associations (red for danger or
for losses); colours may not be reproduced in print the way they were intended; and
colour can be a matter of personal taste. Colour is discussed in more detail in other
Handbook chapters.

Higher-dimensional Displays
and Special Structures2.5

Scatterplot Matrices (Sploms)2.5.1

Plotting each continuous variable against every other one is effective for small num-
bers of variables, giving an overview of possible bivariate results. Figure . displays
data from emissions tests of  cars sold in Germany. It reveals that engine size,
performance and fuel consumption are approximately linearly related, as might be
expected, that COmeasurements and fuel consumption are negatively correlated in
batches, which might not be so expected, and that other associations are less conclu-
sive. Packing so many plots into a small space it is important to cut down on scales.
Placing the variable names on the diagonal works well, and histograms of the indi-
vidual variables could also be placed there.

Parallel Coordinates2.5.2

Parallel coordinate plots (Inselberg, ) are valuable for displaying large numbers
of continuous variables simultaneously. Showing so much information at once has
several implications: not all information will be visible in any one plot (so that sev-
eral may be needed); formatting and scaling will have a big influence on what can
be seen (so that there are many choices to be made); and some overlapping is in-
evitable (so that α-blending or more sophisticated density estimation methods are
useful).
Figure . plots the cumulative times of the  cyclists at the ends of the  stages

of the  Tour de France. he axes all have the same scale, so that differences are
comparable. he best riders take the shortest time and are at the bottom of the plot.
he axes have been aligned at their means, as without some kind of alignment little
could be seen. α-blending has been applied to reduce the overprinting in the early
sprint stages where all riders had almost the same times. If more α-blending is used,
then the individual lines for the riders in the later stages of the race become too faint.
his single display conveys a great deal about the race. In the early stages, at most
a few minutes separates the riders. On the mountain stages there are much larger
differences and individual riders gain both time and places (where a line segment
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Figure .. A scatterplot matrix of the five main continuous variables from a car emissions dataset

from Germany. Source: http://www.adac.de, March 

crosses many others downwards). Note that there are relatively few line crossings
over the later stages of the race, which means, perhaps surprisingly, that not many
riders changed their race ranking.
his graphic might be improved in a number of ways: the axes could be labelled

(though there is little space for this); the vertical axes could be drawn less strongly;
scale information could be added (the range of the vertical axes is about  h, though
precise values would be better read off a table of results); and the level of α-blending
might be varied across the display.
Figure . shows a special form of parallel coordinate plot. Usually each axis has

its own scale and there is no natural ordering of the axes. Other examples of parallel
coordinate plots can be found in other chapters of the Handbook.

Mosaic Plots 2.5.3

Mosaic plots display the counts in multivariate contingency tables. here are various
types of mosaicplot (Hofmann, ) and a -D example of a doubledecker plot is
displayed in Fig. .. he data are from a study of patterns of arrest based on 
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Figure .. Cumulative times for riders in  Tour de France for the  stages. he axes have

a common scale and are aligned by their means. Each vertical line represents a stage, and they have

been plotted in date order. Source: http://www.letour.fr

cases in Toronto. Each column represents one combination of the four binary vari-
ables Gender, Employed, Citizen and Colour. he width of a column is proportional
to the number with that combination of factors. hose stopped who were not re-
leased later have been highlighted. Over % of those stopped were male. Some of
the numbers of females in the possible eight combinations are too small to draw firm
conclusions. Each pair of columns represents the variable colour, and the proportion
not released amongst the males is lower amongst the whites for all combinations of
other factors.he general decline in the level of highlighting across themale columns
shows that the proportion not released is lower if the person is a citizen and lower still
if they are employed. Figure . shows the difficulties in displaying data of this kind
in a graphic for presentation. Colour, aspect ratio and size can make a big difference,
but labelling is the main problem.

Small Multiples and Trellis Displays2.5.4

One way to avoid overloading a single large plot with information is to use a set of
smaller, comparable plots instead. his can be effective for subgroup analyses [e.g.
trellis displays for conditioning (Becker et al., )] or for geographic data [cf. mi-
cromaps Carr ()]. A simple example is given in Fig. .. he boxplots on their
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Figure .. A doubledecker plot of Toronto arrest data. Source: Fox ()

own show that diesel cars have generally lower fuel consumption (in Europe con-
sumption is measured in litres/ km). he barchart on the let shows that little at-
tention should be paid to the (Natural) Gas and Hybrid groups as few of these cars
were measured. Should these two groups have been let out or perhaps be replaced
by dotplots? Small groups are always a problem. It should also be noted that the units
for natural gas cars are different (kg/ km) from the others.
Small multiples can work well, but careful captioning is necessary to ensure that

it is clear which smaller plot is which, and common scaling is obviously essential.
Figure . is a trellis display of emissions data for the  petrol or diesel cars. hey
have been grouped by engine type (rows) and engine size (columns). An equal count
grouping has been used for engine size, which is why the shaded parts of the cc bars
have different lengths. Engine size seems to make little difference as the plots in each
row are similar to one another.he type of engine makes more difference, with diesel

Figure .. Boxplots of fuel consumption by engine type data from Germany. he barchart shows the

relative numbers of cars involved. he total number was . Source: http://www.adac.de, March 
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Figure .. Trellis display of car emissions data from Germany. Each panel is a scatterplot of two

pollution measures. Rows: type of engine; columns: engine size. Source: http://www.adac.de, March



engines in particular being different from the other two types. here are a few local
outliers amongst the petrol cars.
When several plots of the same kind are displayed, they can be plots of subsets of

the same data, as in trellis displays, or plots of different variables for the same dataset,
as in a parallel coordinates plot. It should always be obvious from the display which
is the case.

Time Series and Maps2.5.5

Time Series
Time series are special because of the strict ordering of the data, and good displays
respect temporal ordering. It is useful to differentiate between value measurements
at particular time points (e.g. a patient’s weight or a share price) and summary mea-
surements over a period (e.g. how much the patient ate in the last month or how
many shares were traded during the day).
Time scales have to be carefully chosen. he choice of time origin is particularly

important, as anyone who looks at the advertised performance of financial funds will
know. Time points for value measurements may not match the calendar scale (e.g.
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Figure .. Weekly Dow Jones Industrial Average: a Four years from  to . b Six months from

July to December . he maximum vertical axis value on the let is over four times the maximum on

the right

daily share prices only being available on days the market is open). Time units for
summary measurements may be of unequal length (e.g. months). he time period
chosen and the aspect ratio used for a time series plot can make a big difference in
the interpretation of the data (Fig. .).
If several time series are plotted in the same display, then it is necessary to en-

sure that they are properly aligned in time (e.g. two annual economic series may be
published at different times of the year), that their vertical scales are matched (the
common origin and the relative ranges) and that they can be distinguished from one
another. Depending on the data, this can be tricky to do successfully.

Maps
Geographic data are complex to analyse, though graphical displays can be very infor-
mative. Bertin discussed many ways of displaying geographic data in his book, and
MacEachren’s book contains a lot of sound advice (MacEachren, ), though more
from a cartographic point of view.hemain problems to be solved lie in the fact that
areas do not reflect the relative importance of regions (e.g. Montana has fewer people
than NewYork City but is much bigger) and spatial distance is not directly associated
with similarity or nearness (e.g. where countries are divided by natural borders, like
mountain ranges). here is a substantial research literature in geography on these
and other display issues, such as how to use colour scales to show values (‘choropleth
maps’) and how to choose colour schemes (e.g. Colorbrewer referred to above). Some
instructive examples can be found in the cancer atlas maps of US health authorities
on the Web and in the book by Devesa et al. (). Figure . shows that cancer
rates are highest along the East Coast and lowest in the Midwest. State Economic
Areas (SEAs) have been chosen because using states oversmooths the data (consider
Nevada in theWest with its high cancer rate around Las Vegas, but its lower rate else-
where), while using counties undersmooths. he map on the website is in colour, on
a scale from deep red for high rates to dark blue for low. Naturally, this would not
reproduce well in a grey-scale view, so the webpage provides the alternative version
that is used here. Offering multiple versions of the same image on the Web is read-
ily possible but not oten done. his is one of several reasons why the cancer atlas
webpages are exemplary.
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Figure .. Cancer mortality rates for white males in the USA between  and  by State

Economic Area. he scale has been chosen so that each interval contains % of the SEAs. Source:

http://www.cancer.gov/atlasplus/

Practical Advice2.6

Software2.6.1

For a long time all graphics had to be prepared by dratsmen by hand. he volumes
of the Album de Statistique Graphique produced towards the end of the th cen-
tury contain many exceptional displays which must have taken much painstaking
preparation. Such graphics may be individually designed with special features for
the particular data involved. Nowadays graphics are produced by sotware, and this
has tended to mean that certain default displays are adopted by many as a matter of
course. If it takes a fewminutes to prepare a graphic that is standard in your field, why
bother to prepare something novel? his has advantages – standards avoid possible
gross errors and are readily understood by readers familiar with them – and disad-
vantages – not all data fit the existing standards and interesting new information may
be obscured rather than emphasized by a default display. As sotware becomes more
sophisticated and user interfaces become more intuitive, this may change. Currently
(in ), there are sotware packages which give users substantial control over all
aspects of the displays they wish to draw, but these are still only for experts in the
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sotware (Murrell, ). It is reasonable to assume that there will be a steady pro-
gression to a situation where even non-experts will be able to draw what they wish.
Whether good graphics are the result will depend on the users’ statistical good sense
and on their design ability. Like the quality of a scientific article, the quality of a data
visualization graphic depends on content and presentation. How has the quality of
scientific articles changed since scientists have been able to prepare their own drats
with sophisticated text preparation sotware?

Bad Practice and Good Practice (Principles) 2.6.2

Sometimes it is easier to see what has gone wrong than to explain how to do some-
thing right. Take the simple task of preparing a barchart to display univariate cate-
gorical data. What could possibly go wrong?he barsmay be too thin (or too fat); the
gaps between the bars may be too narrow (or too wide): the labelling of the bars may
be unclear (because it is difficult to fit long category names in); the order of the bars
may be confusing; the vertical scale may be poorly chosen; there may be superfluous
gridlines; irrelevant -D effects may have been used; colours or shading may have
been unnecessarily added; or the title may be misleading and the caption confusing.
Doubtless there are even more ways of ruining a barchart.
It is not possible to give rules to cover every eventuality. Guiding principles like

those outlined in this chapter are needed.

And Finally 2.7

he lack of formal theory bedevils good graphics. he only way to make progress is
through training in principles and through experience in practice. Paying attention
to content, context and construction should ensure that sound and reliable graphics
are produced. Adding design flair aterwards can add to the effect, so long as it is
consistent with the aims of the graphic.
Gresham’s Law in economics states that ‘bad money drives out good.’ Fortunately

this does not seem to apply to graphics, for while it is true that there are very many
bad graphics displays prepared and published, there are also many very good ones.
All serious data analysts and statisticians should strive for high standards of graphical
display.
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his chapter describes the requirements for a modern statistical graphics system for
the production of static plots. here is a discussion of the production of complete
plots, customizing plots, adding extra output to plots and creating entirely new plots.
Statistical graphics is described as an extension of a general graphics language.

here is an emphasis on the importance of support for sophisticated graphics facili-
ties such as semitransparent colours, image compositing operators and the complex
arrangement of graphical elements.

Static displays of information continue to be the primary graphical method for the
display and analysis of data. his is true both for presentation purposes, where the
vast majority of data displays produced for articles and reports are still static in na-
ture, and for data exploration, wheremany important statistical discoveries have been
made based simply on static displays (e.g. Cleveland’s barley data discovery using
Trellis plots; Cleveland, ). he recent advances in dynamic and interactive dis-
plays (e.g. Swayne et al., ; heus, ) provide us with wonderful additional
tools, but static displays still play a fundamental role in the presentation of data.
here are very many sotware packages (some of them statistical) that provide

ways to produce static displays of data. his is good, because these computer pro-
grams allow us to produce more complex graphics, and graphics in greater volumes,
than was ever possible when working just with pen and paper. But how good is the
sotware for displaying data? More importantly, how good could the sotware be?
What should we expect from our statistical graphics sotware?
his chapter addresses these questions by discussing the important features which

sotware for the static display of data should provide. In addition, there are descrip-
tions of ways to provide those features. For each topic, therewill be an abstract discus-
sion of the issue followed by concrete examples implemented in R (R Development
Core Team, ).he use of R is natural for me due to my personal familiarity with
the system, but it is also justified by the fact that R is widely acknowledged as being
pretty good at producing static displays of data, and, to my knowledge, some of the
ideas can only be demonstrated in R.

The Grammar of Graphics
A comprehensive overview of statistical graphics is provided by Wilkinson’s Gram-
mar of Graphics (Wilkinson, , ).Wilkinsonoutlines a system inwhich statis-
tical graphics are described in a high-level, abstract language and which encompasses
more than just static graphical displays.
his chapter provides a different view, where statistical graphics is seen as an ex-

tension of a general graphics language like PostScript (Inc., ) or SVG (Ferraiolo
et al., ).his view is lower level, more explicit about the basic graphical elements
which are drawn and more focused on static graphics.
To emphasize the difference, consider a simple barplot of birth rate for three dif-

ferent types of government (Fig. .). A Grammar of Graphics description (or part
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Figure .. A simple barchart of birth rate for three different types of government

thereof) for the barplot would be a statement of the following form (from p.  of the
Grammar of Graphics, st edn. Wilkinson, ):

FRAME: gov*birth

GRAPH: bar()

A description consistent with this chapter would involve a description of the coor-
dinate systems and graphical shapes that make up the plot. For example, the barplot
consists of a plotting region and several graphical elements. he plotting region is
positioned to provide margins for axes and has scales appropriate to the range of the
data.he graphical elements consist of axes drawn on the edges of the plotting region,
plus three rectangles drawn relative to the scales within the plotting region, with the
height of the rectangles based on the birth rate data.

Complete Plots 3.1

We will start with the most obvious feature of statistical graphics sotware: the user
should be able to produce graphical output. In other words, the user should be able to
draw something. Inmost cases, the userwill want to draw some sort of plot consisting
of axes, labels and data symbols or lines to represent the data. Figure . shows an
example consisting of a basic scatterplot.
his is one distinction between statistical graphics sotware and a more general

graphics language such as PostScript. he user does not just want to be able to draw
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Figure .. A basic scatterplot consisting of axes, labels and data symbols

lines and rectangles (though he may also want to do that; see Sect. ..). he user
wants to be able to create an entire plot. To be even more explicit, the user wants to
be able to draw an entire plot with a single command (or via a single menu selection).
his is so far quite uncontroversial, and all statistical sotware packages provide

this feature in one way or another (though they may differ in terms of the range of
different sorts of plots that can be produced). In R, the following command usually
does the trick (where the variable somedata contains the data values to plot).
> plot(somedata)

Sensible Defaults3.1.1

Take another look at the basic plot in Fig. .. As we have mentioned, it consists of
a standard set of components: axes, labels and data symbols. But there are other im-
portant aspects to this plot. For a start, these components are all in sensible locations;
the title is at the top and, very importantly, the data symbols are at the correct loca-
tions relative to the axes (and the scales on the axes ensure that there is sufficient
room for all of the data points).
Some of these aspects are inevitable; no one would use a program that drew data

symbols in the wrong locations or created axis scales so that none of the data could
be seen. However, there are many aspects that are less obvious.
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Why should the title be at the top? Did you notice that the title uses a sans serif
font? Why is that? Something else the sotware has done is to position the tick marks
at sensible locations within the range of the data. Also, the axes have their tick marks
and tick labels pointing away from the region where the data are plotted (other sot-
ware may do this differently). Does that matter?
In some of these cases, there are clear reasons for doing things a certain way (e.g.

to improve clarity or visual impact; Cleveland, , ; Robbins, ; Tute, ).
In other cases, the choice is more subjective or a matter of tradition. he main point
is that there are a number of ways that the sotware could do these things. What is
important is that the sotware should provide a good default choice.

Trellis Plots
A good example of a graphics system that provides sensible defaults is the Trellis sys-
tem (Becker et al., ).he choice of default values in this system has been guided
by the results of studies in human perception (Cleveland and McGill, ) so that
the information within a plot will be conveyed quickly and correctly to the viewer.
In R, the lattice package (Sarkar, ) implements Trellis plots. Figure . shows
a Trellis version of a basic scatterplot. One subtle, but well-founded, difference with
Fig. . is the fact that the labels on the tick marks of the y-axis are horizontal so

Figure .. A basic Trellis scatterplot, which has a different default appearance from the scatterplot in

Fig. .
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that they are easier to read. he subtitle of Fig. . is also more heavily emphasized
by using a bold font face.he Trellis defaults extend to selections of plotting symbols
and colours in plots of multiple data series, which are chosen so that different data
series can be easily distinguished by the viewer.

User Interface3.1.2

A sometimes controversial aspect of statistical graphics sotware is the user interface.
he choice is between a command line, where the user must type textual commands
(or function calls), and a graphical user interface (GUI), consisting of menus and
dialogue boxes. A batch system is considered to be a command-line interface; the
important point is that the user has to do everything by typing on the keyboard rather
than by pointing and clicking with a mouse. Oten both a command line and a GUI
will be offered.
he interface to a piece of sotware is conceptually orthogonal to the set of features

that the sotware provides, which is ourmain focus here.Nevertheless, in each section
of this chapter we will briefly discuss the user interface because there are situations
where the interface has a significant impact on the accessibility of certain features.
For the purpose of producing complete plots, the choice of user interface is not

very important. Where one system might have an option on a GUI menu to produce
a histogram, another system can have a command or function to do the same thing.
With R, the standard interface is a command line, but a number of GUI options

exist, notably Rcmdr (Fox, ), JGR (Helbig et al., ) and the standard GUI on
the Mac platform (Iacus and Urbanek, ).

Customization3.2

Let us assume that your statistical sotware allows you to produce a complete plot
from a single command and that it provides sensible defaults for the positioning and
appearance of the plot. It is still quite unlikely that the plot you end up with will be
exactly what you want. For example, youmaywant a different scale on the axes, or the
tickmarks in different positions, or no axes at all. Ater being able to draw something,
the nextmost important feature of statistical graphics sotware is the ability to control
what gets drawn and how it gets drawn.

Setting Parameters3.2.1

For any particular piece of output, there will be a number of free parameters that
must be specified. As a very basic example, it is not sufficient to say something like
‘I want to draw a line’; you must also specify where the line should start and where
it should end. You might be surprised how many free parameters there are in even
simple cases like this; in order to fully specify the drawing of a single straight line, it is
necessary to provide not only a start and end point, but a colour, a line style (perhaps
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dashed rather than solid), how thick to draw the line and even a method for how to
deal with the ends of the line (should they be rounded or square?).
When producing plots, you deal with more complex graphical output than just

a single line, and more complex graphical components have their own sets of param-
eters. For example, when drawing an axis, one parameter might control the number
of tick marks on the axis and another might control the text for the axis label. When
drawing a complete plot, an important parameter is the data to plot(!), but there may
also be parameters to control whether axes are drawn, whether a legend (or key) is
provided, and so on.
Wherever there is a parameter to control some aspect of graphical output, the user

should have the ability to provide a value for that parameter.
In R, each graphics function provides a set of parameters to control aspects of the

output. he following code shows how a plot can be created with no axes and no
labels by specifying arguments for axes and ann respectively. A line is added to the
plot with control over its location and its colour, line type and line width.
> plot(1:10, axes=FALSE, ann=FALSE)
> lines(1:10, col="red", lty="dashed", lwd=3)

Graphical Parameters
here is a common set of ‘graphical’ parameters that can be applied to almost any
graphical output to affect the appearance of the output. his set includes such things
as line colour, fill colour, line width, line style (e.g. dashed or solid) and so on. his
roughly corresponds to the concept of graphics state in the PostScript language.
In order to be able to have complete control over the appearance of graphical

output, it is important that statistical graphics sotware provides a complete set of
graphical parameters. Examples of parameters that may sometimes be overlooked

Figure .. Line join and line ending styles. hree thick lines have been drawn with different line end

and line join styles. he top line has ‘square’ ends and ‘mitre’ joins, the middle line has ‘round’ ends and

‘round’ joins, and the bottom line has ‘butt’ ends and ‘bevel’ joins. In each case, the three points that the

line goes through are indicated by black circles
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are semitransparent colours, line joins and endings (Fig. .) and full access to a va-
riety of fonts. Edward Tute has recommended (Tute, ) the use of professional
graphics sotware such as Adobe Illustrator to achieve quality results, but even better
is the ability to provide the control within the statistical graphics sotware itself.
In R there is a large set of graphical parameters that allow control over many as-

pects of graphical output, such as colours, line types and fonts (see the previous ex-
ample code demonstrating the control of colour, line type and line width), but this
could be extended further to include any of the basic drawing parameters and oper-
ators that you will find in a sophisticated graphics language such as SVG. Examples
are gradient fills (where a region is filled with a smoothly varying colour), general
pattern fills and composition of output.
An example of the use of composition operators is the addition of a legend to a plot,

both of which have a transparent background, but where the plot has grid lines. If we
do not want the grid lines to appear in the legend background, one way to achieve

Figure .. Composing graphical elements on a white background. here are three elements being

composed: two legends, one with a transparent background and one with a white background (top let),

and a plot with a transparent background (top right). In the bottom let, the legend with a transparent

background is drawn over the plot and the grid lines in the plot are visible behind the legend. In the

bottom right, the legend with a white background is drawn over the plot and the grid lines in the plot are

not visible behind the legend
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that is to combine the legend with the plot in such a way that the legend output com-
pletely replaces the plot output over the region that the legend is drawn. Figure .
showshow just drawing the legend on top of the plot produces thewrong result (there
are grid lines visible behind the legend). Using an opaque background in the legend
does the job as long as we can anticipate the background colour that the overall plot
will be drawn on (Fig. .). However, this is not a good general solution because it
fails badly if a different background colour is encountered (Fig. .). A general solu-
tion involves more complex imagemanipulations, such as negating the alpha channel

Figure .. Composing graphical elements on a grey background to show that the use of an opaque

background for a legend (as in Fig. .) is not suitable if the background of the final image is a different

colour. here are three elements being composed: two legends, one with a transparent background and

one with a white background (top let in Fig. .), and a plot with a transparent background (top right

in Fig. .). In the top let in this figure, the legend with a white background is drawn over the plot and

the grid lines in the plot are not visible behind the legend, but the white background of the legend does

not match the background of the plot, so the result is unpleasant. In the top right, the legend with

a transparent background has had its alpha channel (opacity) negated, so that the background is the

only part that is opaque. In the bottom let, the negated legend is composited with the plot using an ‘out’

operator, thereby creating a ‘hole’ in the plot. In the bottom right, the (untransformed) legend with

a transparent background is drawn over the plot with a hole and the grid lines in the plot are not visible

behind the legend, but the background of the final image is still grey, which is the desired result



88 PaulMurrell

(inverting the opacity) of the legend and using a Porter–Duff (Porter and Duff, )
‘out’ compositing operator to create a ‘hole’ for the legend within the plot (Fig. .).

Arranging Plots3.2.2

Where several plots are produced together on a page, a new set of free parameters
becomes available, corresponding to the location and size of each complete plot. It is
important that statistical graphics sotware provides some way to specify an arrange-
ment of several plots.
In R, it is easy to produce an array of plots all of the same size, as shown by the

code below.
> par(mfrow=c(2, 2))

It is also possible to produce arrangements where plots have different sizes. he fol-
lowing code gives a simple example (Fig. .):
> layout(rbind(c(1, 2),

c(0, 0),
c(3, 3)),

heights=c(1.5, lcm(0.5), 1))

he idea of arranging several plots can be generalized to the arrangement of arbitrary
graphical elements; we will discuss this more in Sect. ..

Annotation3.2.3

Amore complex sort of customization involves the addition of further graphical out-
put to a plot. For example, it can be useful to add an informative label to one or more
data symbols in a plot.

Graphical Primitives
he first requirement for producing annotations is the ability to produce very basic
graphical output, such as simple text labels. In this way, statistical graphics sotware
needs to be able to act like a generic drawing program, allowing the user to draw
lines, rectangles, text and so on. In other words, it is not good if the sotware can
‘only’ draw complete plots.
In R, there are functions for drawing a standard set of graphical primitives. he

following code demonstrates how rectangles, lines, polygons and text can be added
to a basic plot (Fig. .):
> x <- rnorm(20)
> plot(x)
> polygon(c(1, 1:20, 20), c(0, x, 0),

col="grey", border=NA)
> rect(1, -0.5, 20, 0.5,

col="white", lty="dotted")
> lines(x)
> points(x, pch=16)
> text(c(0.7, 20.3), 0, c("within", "control"), srt=90)
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Figure .. Two arrangements of multiple plots on a page. In the top example, all of the plots have the

same size; in the bottom example, several plots of different sizes are arranged
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Figure .. Basic scatterplot with extra rectangles, lines, polygons and text added to it

Some slightly more complex primitives (not currently natively supported by R) are
spline curves, arbitrary paths (as in PostScript or SVG) and polygons with holes,
which are useful for drawing maps. An example of a polygon with a hole is an is-
land within a lake within an island, where both islands are part of the same country
or state and so are usefully represented as a single polygon.

Coordinate Systems
One of the most important and distinctive features of statistical graphics sotware is
that it is not only capable of producing many pieces of graphical output at once (lots
of lines, text, and symbols that together make up a plot), but that it is also capable of
positioning the graphical output within more than one coordinate system. Here are
some examples (Fig. .):

he title of a plot might be positioned halfway across a page. hat is, the title is
positioned relative to a ‘normalized’ coordinate system that covers the entire page,
where the location  corresponds to the let edge of the page and the location 
corresponds to the right edge.
he data symbols in a scatterplot are positioned relative to a coordinate system
corresponding to the range of the data that only covers the area of the page
bounded by the plot axes.
he axis labels might be positioned halfway along an axis. hat is, the axis labels
are positioned relative to a ‘normalized’ coordinate system that only covers the
area of the page bounded by the plot axes.
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Figure .. Two of the coordinate systems involved in producing a simple scatterplot. A ‘normalized’

coordinate system that covers the whole page is used to centre the plot title, and a coordinate system

based on the range of the data that covers the plot region is used to position the data symbols

Many users of statistical graphics sotware produce a plot and then export it to a for-
mat which can be easily edited using third-party sotware (e.g. export to WMF and
edit using Microsot Office products). his has the disadvantage that the coordinate
systems used to produce the plot are lost and cannot be used to locate or size an-
notations. Furthermore, it makes it much harder to automate or programmatically
control the annotation, which is essential if a large number of plots are being pro-
duced.
When it comes to annotating a plot, it is important that output can be added rela-

tive to the coordinate systemswhichwere used to draw the original plot. For example,
in Fig. . all additional output is positioned relative to the scales on the plot axes.
Because there are several coordinate systems used in the construction of a graph,

there must be some way to specify which coordinate system to use when adding fur-
ther output.
In R’s traditional graphics, each function for adding additional output to a plot

only works with a single coordinate system. For example, the text() function only
positions text relative to the scales on the axes and the mtext() function only posi-
tions text relative to the plot margins (where the axis labels and plot titles are drawn).
R’s grid package (Murrell, ) provides a more general approach; it is described in
more detail in Sect. ..
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Non-Cartesian Coordinates
here are many examples of useful plots and diagrams that require non-cartesian
coordinates, so it is desirable for statistical graphics sotware to support or at least
allow the construction of a variety of coordinate systems. For example, a number of
data sources suit polar coordinate displays, such as wind diagrams; when plotting
a single categorical variable with exactly three levels, ternary plots can be effective;
hierarchical data are naturally displayed as trees or graphs (with nodes and edges).

The User Interface3.2.4

he user interface for providing parameters to control graphical output can be ade-
quately provided by either a command line or GUI. In a command-line environment,
function calls can be made with an argument provided for each control parameter;
GUIs tend to provide dialog boxes full of various options.
One issue that arises with statistical graphics is the ‘explosion’ of parameters for

higher-level graphical elements. Consider a matrix of scatterplots: the matrix con-
tains many plots; each plot contains several axes; each axis consists of multiple lines
and pieces of text. How can you provide parameters to control each piece of text in
every axis on every plot? hat is a lot of parameters. he problem essentially is one
of being able to uniquely specify a particular component of an overall plot.
A mouse input device provides a very good way of specifying elements in an im-

age. It is very natural to point at the element youwant. However, there are issues when
selecting components of a plot because there is oten ambiguity due to the hierarchi-
cal structure inherent in a plot. If you click on a piece of text on an axis tick mark, it is
not clear whether you want to select just the text, or the entire axis, or even the entire
plot. he advantage of using a command line to select objects is that, although it may
be less convenient, you can typically be more expressive, or more precise. For exam-
ple, in the grid graphics system in R, the text for a particular axis might be expressed
as the following ‘path’: "plot1::xaxis::label".
Another problem with the GUI approach is that it is hard to capture a particular

editing operation. For example, if the same editing operation is required on another
plot, the same series of actions must be repeated by the user. In a command-line
environment, operations can be captured and repeated easily.

Extensibility3.3

he ability to produce complete plots, control all aspects of their appearance and
add additional output represents a minimum standard for what statistical graphics
sotware should provide. A more advanced feature is the ability to extend the system
to add new capabilities, such as new types of plots.
In some respects, creating a new sort of plot is just an extreme version of cus-

tomization, but there are two distinguishing features: you are starting from a blank
slate rather than building on an existing plot as a starting point (i.e. it is not just anno-
tation) and, more importantly, extensibility means that the new plot that you create
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is made available for others to use in exactly the same way as existing plots. To be
more explicit, in an extensible system you can create a new menu item or function
that other users can access.
So what sorts of features are necessary or desirable to support the development

of new plots? For a start, the system must allow new functions or menu items to be
added, and these must be able to be added by the user. he next most important fea-
tures are that low-level building blocks must be available and there must be support
for combining those building blocks into larger, coherent graphical elements (plots).

Building Blocks 3.3.1

What are the fundamental building blocks from which plots are made? At the low-
est level, a plot is simply basic graphical shapes and text, so these must be available
(see ‘Graphical Primitives’ in Sect. ..). In addition, there must be some way to de-
fine coordinate systems so that graphical elements can be conveniently positioned
in sensible locations to make up a plot. Surprisingly, that’s about it. Given the ability
to draw shapes and locate them conveniently, you can produce a huge variety of re-
sults. Controlling coordinate systems is a special case of being able to define arbitrary
transformations on output, such as is provided by the current transformation matrix
in PostScript or transform attributes on group elements in SVG.
We have already seen that R provides basic graphical elements such as lines and

text (Sect. ..). R also provides ways to control coordinate systems; this discussion
will focus on the features provided by the grid system because they are more flexible.
he grid system in R provides the concept of a ‘viewport’, which represents a rect-

angular region on the page and contains several different coordinate systems. View-
ports can be nested (positionedwithin each other) to produce quite complex arrange-
ments of regions. he following code provides a simple demonstration (Fig. .).
First of all, we create a region centred on the page, but only % as wide and high as
the page.
> pushViewport(viewport(width=0.8, height=0.8,

xscale=c(0, 3), yscale=c(0, 10)))

his now is where drawing occurs, so rectangles and axes are drawn relative to this
viewport.
> grid.rect(gp=gpar(fill="light grey"))
> grid.xaxis(at=1:2, gp=gpar(cex=0.5))
> grid.yaxis(gp=gpar(cex=0.5))

Now we define a new viewport, which is located at (, ) relative to the axis scales
of the first viewport. his also demonstrates the idea of multiple coordinate systems;
the width and height of this new viewport are specified in terms of absolute units,
rather than relative to the axis scales of the previous viewport.
> pushViewport(viewport(unit(1, "native"),

unit(4, "native"),
width=unit(1, "cm"),
height=unit(1, "inches")))
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Figure .. A demonstration of grid viewports. he overall data region (bounded by the axes) is

a viewport, each overall thermometer is another viewport, and the black region within each

thermometer is yet another viewport. he white text within each thermometer is also drawn within its

own (clipped) viewport

We draw a rectangle around this new viewport and then draw the word ‘thermome-
ter’.
> grid.rect(gp=gpar(fill="white"))
> grid.text("thermometer",

y=0, just="left", rot=90)

Wecreate yet another viewport, which is just the bottom  %of the second viewport,
and draw a filled rectangle within that.
> pushViewport(viewport(height=0.3, y=0,

just="bottom"))
> grid.rect(gp=gpar(fill="black"))

Finally, we create a viewport in exactly the same location as the third viewport, but
this time with clipping turned; whenwe draw the word ‘thermometer’ again in white,
it is only drawn within the filled black rectangle.
> pushViewport(viewport(clip=TRUE))
> grid.text("thermometer",

y=0, just="left", rot=90,
gp=gpar(col="white"))

A second thermometer has been drawn in a similar manner in Fig. . (code not
shown).
his sort of facility provides great power and flexibility for producing complex

plots such as the Trellis plots produced by the lattice system (Fig. .) and more be-
sides.
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Figure .. Example of a complex Trellis plot. he data are yields of several different varieties of barley

at six sites, over  years. he plot consists of  panels, one for each year at each site. Each panel consists

of a dotplot showing yield for a particular site in a particular year and a strip showing the year and the

name of the site
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Graphical Layout
heproduction of a complex plot involves positioning multiple elements withinmul-
tiple coordinate systems. he arrangement of output within a coordinate system is
typically very explicit; for example, a data symbol is drawn at a precise location and
is a fixed proportion of the plotting region in size. By contrast, the arrangement of
coordinate systems (or entire plots) relative to each other is more implicit. hese ar-
rangements are more along the lines of a number of rows and columns of plots (and
let the sotware figure out exactly what that means in terms of the size and location
of the plots on the page). hese sorts of arrangements have echoes of typesetting or
page-layout operations like those in LATEX (Lamport, ) or HTML (Raggett et al.,
), or even the generation of GUI components such as Java layout managers (Us-
ing Layout Managers, ). It is therefore useful for a statistical graphics system to
provide a means for defining implicit arrangements of elements.
In R there is the concept of a ‘layout’ (Murrell, ) (a simple example was given

in Sect. ..).A layout divides a rectangular region into rows and columns, each with
a different height or width if desired. In the grid system, a viewport can be positioned
relative to a layout rather than via an explicit location and size. For example, the
following code creates a viewport with a layout that defines a central region so that
the margins around the central region are guaranteed to be identical on all sides and
are one quarter of the minimum of the width and height of the central region.
> pushViewport(viewport(layout=grid.layout(3, 3,

widths=c(1, 4, 1),
heights=c(1, 4, 1),
respect=rbind(c(1, 0, 1),

c(0, 0, 0),
c(1, 0, 1)))))

his next code shows another viewport being positioned in the central region of the
layout (Fig. .). he location and size of this viewport will depend on the size and
shape of the parent viewport that defined the layout.
> pushViewport(viewport(layout.pos.col=2,

layout.pos.row=2))

With the ability to nest viewports, it is possible to specify complex implicit arrange-
ments of graphical elements in R (this is how the panels are arranged in a lattice
plot).

Transformations in Statistical Graphics
An important difference between transformations in a general graphics language and
transformations in statistical sotware is that statistical sotware does not apply trans-
formations to all output. his arises from the difference between statistical graphics
and general graphics images (art). A good example is that in PostScript or SVG the
current transformation applies to text as well as all other shapes. In particular, if the
current transformation scales output, all text is scaled. his is not desirable when
drawing a statistical plot because we would like the text to be readable, so in statisti-
cal graphics, transformations apply to the locations of output and the size of shapes
such as rectangles and lines, but text is sized separately (Fig. .).



Static Graphics 97

Figure .. Two views of a layout that defines a central region with equal-sized margins all around

(indicated by the grey rectangles). he location and shape of the central region depend on the size and

shape of the ‘page’ which the layout is applied to; the let-hand page is tall and thin and the right-hand

page is short and wide

Figure .. he difference between transformations in statistical graphics (let) and a general graphics

language (right). In statistical graphics, the location of the text depends on the coordinate system, but

the size of text is controlled separately from coordinate-system transformations. In a general graphics

system, all output, including text size, is affected by the current transformation; in this case, the text

gets flipped upside down and drawn one-quarter of the size of normal text

Combining Graphical Elements 3.3.2

In addition to allowing the user to compose basic graphics shapes and position them
flexibly, a statistical graphics system should allow the user to ‘record’ a composition
of graphics shapes. For example, the user should be able to write a function that en-
capsulates a series of drawing operations. his does two things: the complete set of
operations becomes easily available for other people to use, and the function repre-
sents a higher-level graphical element that can be used as part of further composi-
tions.
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The User Interface3.3.3

Extending a system is one area where the user interface is crucial. In almost all cases,
an extensible system must provide a language for developing new graphics. In other
words, you must write code (type commands) to extend a system. his is not to say
that it is impossible to produce a graphical programming interface (see, for example,
theViSta system;Young, ), but a command line offers by far the best environment
for power and flexibility. As an absolute minimum, a GUI must provide some way to
record code equivalents of GUI actions.
Another detail is that the language for extending the system should ideally be the

same language that is used to develop the system.his has two implications: first, the
user has full access to the graphics system and, second, a scripting language, such as R
or Python, is preferable to a ‘heavy-duty’ language such as C or Java because scripting
languages are easier to get started with.

Other Issues3.4

his section draws together a number of issues that overlap with the production of
static graphics but are described in more detail elsewhere.

3-D Plots3.4.1

Static -D plots have limited usefulness because -D structures are oten difficult to
perceive without motion. Nevertheless, it is important to be able to produce -D im-
ages for some purposes. For example, a -D plot can be very effective for visualizing
a prediction surface from a model.

R provides only simple functionality for drawing -D surfaces via the persp()
function, but the rgl (Adler, ) add-on package provides an interface to the
powerful OpenGL -D graphics system (Schreiner, ).

Speed3.4.2

In dynamic and interactive statistical graphics, speed is essential. Drawing must be
as fast as possible in order to allow the user to change settings and have the graphics
update in real time. In static graphics, speed is less of an issue; achievability of a par-
ticular result is more important than how long it takes to achieve it. It is acceptable
for a plot to take on the order of seconds to draw rather than milliseconds.
his speed allowance is particularly important in terms of the user interface. For

example, in R a lot of graphics code is written in interpreted R code (which is much
slower than C code). his makes it easier for users to see the code behind graphics
functions, to possibly modify the code, and even to write their own code for graphics.
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Nevertheless, a limit is still required because the time taken to draw a single plot
can be multiplied many times when producing plots of a large number of observa-
tions and when running batch jobs involving a large number of plots.
In R, complex plots, such as Trellis plots produced by the lattice package, can be

slow enough to see individual panels being drawn, butmost users find this acceptable.
he entire suite of figures for a medium-sized book can still be generated in much
less than a minute.

Output Formats 3.4.3

When producing plots for reports, it is necessary to produce different formats de-
pending on the format of the report. For example, reports for printing are best pro-
duced using PostScript or PDF (Bienz and Cohn, ) versions of plots, but for pub-
lication on the World Wide Web, it is still easiest to produce some sort of raster for-
mat such as PNG.here are many excellent pieces of sotware for converting between
graphics formats, which reduces the need for statistical graphics sotware to produce
output inmany formats; simply producewhatever format the statistical graphics sot-
ware supports and then convert it externally.
Nevertheless, there are still some reasons for statistical graphics sotware to sup-

port multiple formats. One example is that sotware can raise the bar for the lowest-
common-denominator format. For example, R performs clipping of output for for-
mats that do not have their own clipping facilities (e.g. the FIG format; Sutanthav-
ibul, ). Another example is that some formats, especially modern ones, provide
features that are unavailable in other formats, such as transparency, hyperlinks and
animation. It is not possible to convert a more basic format into a more sophisticated
format without adding information. Essentially this says that if you are going to aim
for a single format, aim high.
Finally, it is worth noting that a description of a plot in the original language of

a statistical graphics sotware system is a viable and important persistent storage op-
tion. For example, when producing plots with R, it is advisable to record the R code
that was used to produce the plot in addition to saving the plot in any ‘traditional’
formats such as PDF or PostScript. One important advantage with retaining such
a high-level format is that it is then possible tomodify the image using high-level sta-
tistical graphics concepts. For example, an extra text label can be positioned relative
to the scales on a plot by modifying the original R code, but this sort of manipulation
would be inconvenient, inaccurate and hard to automate if you had to edit a PDF or
PostScript version of the plot.

Data Handling 3.4.4

he description of statistical graphics sotware in this chapter has largely ignored
the issue of where the data come from. On one hand, this is deliberate because by
separating data from graphics there is a greater flexibility to present any data using
any sort of graphic.
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However, we should acknowledge the importance of functionality for generating,
importing, transforming and analysing data. Without data, there is nothing interest-
ing to plot.
In an ideal situation, statistical graphics facilities are provided as part of a larger

system with data-handling features, as is the case with R.

Summary3.5

Statistical graphics sotware should provide a straightforward way to produce com-
plete plots. It should be possible to customize all aspects of the plot, add extra output
to the plot and extend the system to create new types of plots.
Statistical graphics sotware can be thought of as an extension of a sophisticated

graphics language, providing a fully featured graphics system, a programming lan-
guage and extensions to specifically support statistical graphics.
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Introduction4.1

he amount of data and information collected and retained by organizations and
businesses is constantly increasing, due to advances in data collection, computeri-
zation of transactions, and breakthroughs in storage technology. Further, many at-
tributes are also recorded, resulting in very high-dimensional data sets. Typically,
the applications involve large-scale information banks, such as data warehouses that
contain interrelated data from a number of sources. Examples of new technologies
giving rise to large, high-dimensional data sets are high-throughput genomic and
proteomic technologies, sensor-based monitoring systems, etc. Finally, new appli-
cation areas such as biochemical pathways, web documents, etc. produce data with
inherent structure that cannot be simply captured by numbers.
To extract useful information from such large and structured data sets, a first step

is to be able to visualize their structure, identifying interesting patterns, trends, and
complex relationships between the items. hemain idea of visual data exploration is
to produce a representation of the data in such a way that the human eye can gain in-
sight into their structure and patterns. Visual data mining techniques have proven to
be of particularly high value in exploratory data analysis, as indicated by the research
in this area (Eick and Wills a, b).
In this exposition, we focus on the visual exploration of data through their graph

representations. Specifically, it is shown how various commonly encountered struc-
tures in data analysis can be represented by graphs. Special emphasis is paid to cate-
gorical data for whichmany commonly used plotting techniques (scatterplots, paral-
lel coordinate plots, etc.) prove problematic. Further, a rigorousmathematical frame-
work based on optimizing an objective function is introduced that results in a graph
layout. Several examples are used to illustrate the techniques.

Data and Graphs4.2

Graphs are useful entities since they can represent relationships between sets of ob-
jects. hey are used to model complex systems (e.g., computer and transportation
networks, VLSI and Web site layouts, molecules, etc.) and to visualize relationships
(e.g., social networks, entity-relationship diagrams in database systems, etc.). In statis-
tics and data analysis, we usually encounter them as dendrograms in cluster analysis,
as trees in classification and regression, and as path diagrams in structural equation
models and Bayesian belief diagrams. Graphs are also very interesting mathematical
objects, and a lot of attention has been paid to their properties. In many instances,
the right picture is the key to understanding. he various ways of visualizing a graph
provide different insights, and oten hidden relationships and interesting patterns are
revealed. An increasing body of literature is considering the problem of how to draw
a graph [see for instance the book by Di Battista et al. () on graph drawing, the
Proceedings of the Annual Conference on Graph Drawing, and the annotated bib-
liography by Di Battista et al. ()]. Also, several problems in distance geometry
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Figure .. Graph representation of a small protein interaction network, with nodes corresponding to

proteins and links to their physical interactions

and in graph theory have their origin in the problem of graph drawing in higher-
dimensional spaces. Of particular interest in this study is the representation of data
sets through graphs. his bridges the fields of multivariate statistics and graph draw-
ing.
Figure . shows the graph representation of the protein interaction network im-

plicated in the membrane fusion process of vesicular transport for yeast (Ito et al.,
), with the nodes representing the proteins and the links the physical interac-
tions between them.
However, graphs are also capable of capturing the structure of data commonly

encountered in statistics, as the following three examples show. he first example
deals with a contingency table (Table . and Fig. .), where the nodes correspond
to the categories and the weighted links represent the frequencies.
he second example deals with a small correlation matrix (Table . and Fig. .),

which can also be represented by a weighted graph, with the nodes representing the
variables and the links the strength of the correlation.

Table .. Contingency table of  school children form Caithness, Scotland, classified according to

two categorical variables, hair and eye color (Fisher, )

Hair color

Eye color Fair Red Medium Dark Black

Light     

Blue     

Medium     

Dark     
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Figure .. Weighted graph representation of a contingency table

Table .. A small correlation matrix for four variables

Var  Var  Var  Var 

Var  .

Var  . .

Var  . . .

Var  . . . .

Figure .. Representation of a small correlation matrix by a weighted graph

Another interesting data structure that can be represented successfully by a graph
is that corresponding to a multivariate categorical data set, as the following example
attests (Table .). he data on  sleeping bags and their characteristics come from
Prediger () and have also been discussed in Michailidis and de Leeuw ().

Graph Layout Techniques4.3

he problem of graph drawing/layout has received a lot of attention from various
scientific communities. It is defined as follows: given a set of nodes connected by a set
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Table .. he superindicator matrix representation (Gifi, ) of a categorical data set
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Sleeping Bag Price Fiber Quality

 One Kilo Bag        

 Sund        

 Kompakt Basic        

 Finmark Tour        

 Interlight Lyx        

 Kompakt        

 Touch the Cloud        

 Cat’s Meow        

 Igloo Super        

 Donna        

 Tyin        

 Travellers Dream        

 Yeti Light        

 Climber        

 Viking        

 Eiger        

 Climber light        

 Cobra        

 Cobra Comfort        

 Foxfire        

 Mont Blanc        

of edges, identify the positions of the nodes in some space and calculate the curves
that connect them. Hence, in order to draw a graph, one has to make the following
two choices: (i) selection of the space and (ii) selection of the curves. For example,
grid layouts position the nodes at points with integer coordinates, while hyperbolic
layouts embed the points on a sphere. Most graph drawing techniques use straight
lines between connected nodes, but some use curves of a certain degree (Di Battista
et al., ).
Many layout algorithms are based on a set of aesthetic rules that the drawing needs

to adhere to. Popular rules are that nodes and edges must be evenly distributed, edges
should have similar lengths, edge crossings must be kept to a minimum, etc. Some
of these rules are important in certain application areas. Further, many of these rules
lead to a corresponding optimization problem, albeit intractable in certain cases. For
example, the edge-crossing minimization is provably NP-hard and hence computa-
tionally intractable (Di Battista et al., ). In many cases, a basic layout is obtained
by a computationally fast algorithm, and the resulting drawing is postprocessed to
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Figure .. Graph representation of the sleeping bag data set presented in Table ., with the let set of

nodes corresponding to the objects (sleeping bags), the right set of nodes to the categories of the three

attributes (price, fiber, quality), and selected edges capturing the relationship between objects and

categories.

adhere to such aesthetic rules. he latter strategy proves particularly useful in the
presence of large graphs and is adopted by several graph drawing systems, such as
Nicheworks (Wills, ), GVF (Herman et al., ), and HViewer (Muentzer,
). Many systems also allow manual postprocessing of the resulting layout; see
for example the Cytoscape visualization system (www.cytoscape.org).
he general problem of graph drawing discussed in this paper is to represent the

edges of a graph as points inR
p and the vertices as lines connecting the points. Graph

drawing is an active area in computer science, and it is very ably reviewed in the recent
book by Di Battista et al. (). he choice of R

p is due to its attractive underlying
geometry and the fact that it renders the necessary computations more manageable.
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here are basically two different approaches to making such drawings. In themet-
ric or embedding approach, one uses the path-length distance defined between the
vertices of the graph and tries to approximate these distances by the Euclidean dis-
tance between the points. he area of embedding graph-theoretical distances is re-
lated to distance geometry, and it has been studied a great deal recently. In this paper,
we adopt primarily the adjacency model, i.e., we do not emphasize graph-theoretical
distances, but we pay special attention to which vertices are adjacent and which are
not. Obviously, this is related to distance, but the emphasis is different. We use ob-
jective (loss) functions to measure the quality of the resulting embedding.

Force-directed Techniques 4.3.1

he class of graph-drawing techniques most useful for data visualization are force-
directed techniques.his class of techniques borrows an analogy fromclassical physics,
with the vertices being bodies with masses that attract and repel each other due to
the presence of springs, or because the vertices have electric charges. his implies
that there are ‘physical’ forces pulling and pushing the vertices apart, and the opti-
mal graph layout will be one in which these forces are in equilibrium. An objective
(loss) function that captures this analogy is given next:

Q(X�A, B) = n�
i=

n�
j=

ai jϕ(di j(X)) − n�
i=

n�
j=

bi jψ(di j(X)) , (.)

where the n� pmatrix X contains the coordinates of the n vertices inR
p and di j(X)

denotes the distances between points with coordinates xi and x j. he weights ai j

correspond to those in the adjacency matrix A of the graph G, while the pushing
weights B = �bi j� could be derived either from the adjacency matrix or from an ex-
ternal constraint. Finally, the functions ϕ(ċ) and ψ(ċ) are transformations whose role
is to impose some aesthetic considerations on the layout. For example, a convex ϕ
function will reinforce large distances by rendering them even larger and thus en-
able one to detect unique features in the data, while a concave transformation will
dampen the effect of isolated vertices. Notice that this framework can accommodate
both simple (i.e., ai j � �, �) and weighted (i.e., ai j 	 ) graphs. A popular force-
directed technique that employs this pull-push framework is discussed in Di Battista
et al. (), where the pulling is done by springs obeying Hooke’s law (i.e., the force
is proportional to the difference between the distance of the vertices and the zero-
energy length of the spring), while the pushing is done by electrical forces following
an inverse square law. Variations on this physical theme are used in several other
algorithms (Fruchterman and Reingold  and references therein).
Another way of incorporating a pushing component in the above objective func-

tion is through a normalization constraint. For example, one can require that
η(X) = , and then the objective function takes the form by forming the Lagrangian:

Q(X�A) = n�
i=

n�
j=

ai jϕ(di j(X)) − λ(η(X) − ) . (.)
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It then becomes clear that the constraint term in the Lagrangian corresponds to the
push component of Q(ċ). Examples of η(X) include η(X) = trace(X′X) or η(X) =
det(X′X). Other possibilities include requiring the orthonormality of the points in
the layout, such as X′X = Ip or even fixing some of the Xs (Tutte, ).
Finally, this formulation allows one to incorporate into the force-directed frame-

work themetric approach of graph drawing, where one works not with the adjacency
matrix of the graph but with a distance matrix defined on the graph G. he goal then
becomes to approximate graph-theoretic distances by Euclidean distances. Hence,
the goal becomes to minimize

Q(X�W) = n�
i=

n�
j=

wi jρ(di j(X)) , (.)

where

ρ(di j(X)) = (η(δi j) − η(di j(X))) , (.)

whereW = �wi j� is a set of weights. he δi j correspond to path-length distances de-
fined on the graphG, whereas the transformation η is usually the identity, the square,
or the logarithm. Obviously ρ(d(X)) is not increasing and does not pass through
zero; nevertheless, by expanding the square it becomes clear that it is equivalent to
minimizing Q(X�W) with ϕ(d) = η(d), ψ(d) = η(d), and bi j = η(δi j)wi j. hus,
all points are pulling together, but points with large path-length distances are being
pushed apart.
Next we examine inmore detail themetric or embedding approach and the pulling

under constraints model, which have proved particularly useful for drawing graphs
obtained from data.

Multidimensional Scaling4.3.2

he metric approach previously discussed corresponds to one version of multidi-
mensional scaling (MDS). MDS is a class of techniques where a set of given dis-
tances is approximated by distances in low-dimensional Euclidean space. Formally,
let �δi j , i, j = , . . . , n� be a set of distances. he goal is to identify the coordinates
of n points xi in R

p such that the Euclidean distance d(xi , x j) 
 di j(X) is approxi-
mately equal to δi j .
Asmentioned before, for graph-drawing purposes, the δi j correspond to the short-

est path distances defined on a graph G. A discussion of MDS as a graph-drawing
technique is provided in Buja and Swayne (), where in addition other choices
beyond Euclidean space are studied for the embedding space. he least-squares-loss
(fit) function (known in the literature as Stress) introduced in Kruskal () has the
form

σ(X) = n�
i=

n�
j=

wi j(δi j − di j(X)) (.)
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that is minimized over X. he wi j are weights that can be chosen to reflect variabil-
ity, measurement error, or missing data. his is precisely the objective function (.)
derived from the general framework of force-directed techniques previously intro-
duced and discussed.
A number of variations of (.) have appeared in the literature. In McGee (),

the loss function has weights δ−i j . he loss function is interpreted as the amount of
physical work that must be done on elastic springs to stretch or compress them from
an initial length δi j to a final length di j . On the other hand, the following choice of
weights wi j = δ−i j is discussed in Sammon ().
Minimization of the loss function (.) can be accomplished either by an iterative

majorization algorithm (Borg and Groenen ; De Leeuw andMichailidis ) or
by a steepest descent method (Buja and Swayne ). he latter method is used in
the implementation of MDS in the GGobi visualization system (Swayne et al., ).
A -DMDS solution for the sleeping bag data is shown in Fig. .. It can be seen that
the solution spreads the objects in the data set fairly uniformly in the plane, and edge
crossings are avoided.
We discuss next a fairly recent application ofMDS. Inmany instances, the data ex-

hibit nonlinearities, i.e., they lie on a low-dimensional manifold of some curvature.
his has led to several approaches that still rely on the embedding (MDS) approach
for visualization purposes but appropriately alter the input distances �δi j�. A pop-

Figure .. MDS representation of sleeping bag data set based on χ-distances. Due to the discrete

nature of the data, multiple objects are mapped onto the same location, as shown in the plot. Further,

for reference purposes, the categories to which the sleeping bags belong have been added to the plot at

the centroids of the object points
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Figure .. [his figure also appears in the color insert.] Top panel: original data ( data points)

arranged along a nonlinear surface (Swiss Roll).Middle panel: -D MDS representation based on

a complete weighted graph. Bottom panel: -D MDS representation based on  nearest-neighbor graph
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ular and fairly successful nonlinear embedding technique is the Isomap algorithm
(Tenenbaum et al., ). he main algorithm computes for each point in the data
set a K-nearest neighbor graph and then stitches them together in the adjacency ma-
trix. It then calculates distances using the resulting graph and then applies MDS.he
main idea in the first step of the construction is to capture well the local geometry of
the data. An illustration of the idea based on the Swiss Roll data set is shown next.
Specifically,  random points lying on a roll have been generated and their Eu-
clidean pairwise distances computed. In addition, a graph that connects data points
only with their closest  neighbors in the Euclideanmetric was computed and short-
est path distances calculated. Subsequently, MDS was applied to both distance matri-
ces and a -D embedding obtained. he coloring scheme shows that straightforward
MDS does not capture the underlying geometry of the roll (since the points do not
follow their progression on the roll, blue, cyan, green, etc.), whereas the first dimen-
sion using the Isomap algorithm recovers the underlying structure. he hole in the
middle is mostly due to the low density of orange points.

The Pulling Under Constraints Model 4.3.3

In this model, the similarity of the nodes is important. In the case of a simple graph,
only connections between nodes are taken into consideration, whereas in a weighted
graph, edges with large weights play a more prominent role. However, the normal-
ization constraint, as discussed in Sect. , pushes points apart and avoids the triv-
ial solution of all points collapsing to the origin. his model, under various dis-
tance functions, has been studied in a series of papers by Michailidis and de Leeuw
(, , ). We examine next the case of squared Euclidean distances, where
ϕ(d(X)) 
 di j(X)�, which turns out to be particularly interesting from a data visu-
alization point of view. Some algebra shows that the objective function can be written
in the following matrix algebra form:

Q(X�A) = trace(X′LX) , (.)

where L = D−A is the graphLaplacian (Chung, ), withD being a diagonalmatrix
containing the row sums of the adjacency matrix A. It can be seen that byminimizing
(.), nodes sharing many connections would be pulled together, whereas nodes with
few connections would end up on the periphery of the layout. For a weighted graph,
the larger the weights, the stronger the bond between nodes and hence the more
pronounced the clustering pattern.
A normalization constraint that leads to a computationally easy-to-solve problem

is X′DX = Ip . Some routine calculations show that minimizing (.) subject to this
constraint corresponds to solving a generalized eigenvalue problem. Further, notice
that the solution is not orthogonal in Euclidean space, but in weighted (by D) Eu-
clidean space. Figure . shows the graph layout for the small protein interactions
network shown in Fig. .. It can be seen that proteins PIB and BET that have very
few interactions are located on the periphery of the layout. Moreover, the ‘hub’ pro-
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Figure .. Two-dimensional layout of the small protein interaction network shown in Fig. .

teins TLG and YIP are positioned close to the center of the plot, signifying their
central role in this network.
he next example comes from the UCI machine learning repository. he data set

consists of features of handwritten numerals (–) extracted from a collection of
Dutch utility maps.here are  patterns per class, and  variables characterizing
the pixel intensity of the underlying digital image of the digit have been collected.
he pixel intensities are categorical and take values in the  to  range. his is an ex-
ample where linear techniques such as principal component analysis fail to separate
the classes (see top panel of Fig. .).
he next set of plots in Fig. . shows the layouts of a few large graphs that have

been used for testing graph partitioning algorithms (Walshaw, ).he first graph
is comprised of  vertices and   edges, the second of   vertices and
  edges, and the third of  vertices and   edges. hey are derived from
computational mechanics meshes and characterized by extreme variations in the
mesh density and the presence of “holes.” he layouts shown are based on weighted
graphs that were built by considering for each vertex its ten nearest neighbors in the
Euclidean metric and calculating exponentially decreasing weights. It can be seen
that the layouts capture, to a large extent, the underlying structure of the graphs in
terms of density and the presence of “holes.”

Bipartite Graphs4.3.4

As noted in Sect. , the graph representation of a contingency table and of a categori-
cal data set has some special features, namely, the node set V can be partitioned into
two subsets. For example, in the case of a contingency table, the categories of one
variable form the first subset and those of the other variable the second one. Notice
that there are only connections between members of these two subsets. An analogous
situation arises in the case of categorical data, where the first subset of nodes corre-
sponds to the objects (e.g., the sleeping bags) and the second subset to the categories
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Figure .. [his figure also appears in the color insert.] PCA layout of digits dataset (top panel) and

the -D graph layout (bottom panel)

of all the variables. hese are two instances where the resulting graph representation
of the data gives rise to a bipartite graph. A slight modification of the Q(ċ) objective
function leads to interesting graph layouts of such data sets. Let X = [Z′ Y ′], where
Z contains the coordinates of the first subset of the vertices and Y those of the second
subset.he objective function for squared Euclidean distances can then be written as
(given the special block structure of the adjacency matrix A)

Q(Z ,Y �A) = trace(Z′DZZ + Y ′DYY − Y ′AZ) , (.)

where DY is a diagonal matrix containing the column sums of A and DZ another
diagonal matrix containing the row sums of A. In the case of a contingency table,
both DY and DZ contain the marginal frequencies of the two variables, while for
a multivariate categorical data set DY contains again the univariate marginals of all
the categories of all the variables and DZ = JI is a constant multiple of the identity
matrix, with J denoting the number of variables in the data set. A modification of
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Figure .. Layouts of large graphs derived from computational mechanics meshes and characterized

by varying degrees of mesh density
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the normalization constraint to this setting, namely, Z′DZZ = Ip , gives the following
solution, which can be obtained through a block relaxation algorithm (Michailidis
and de Leeuw, ):

Z = J−AY and Y = D−Y A′XZ .

Hence, the optimal solution satisfies the centroid principle (Gifi, ), which says that
the category points in the optimal layout are at the center of gravity of the objects that
belong to them.he above graph-drawing solution is known in multivariate analysis
for contingency tables as correspondence analysis and for multivariate categorical
data sets as multiple correspondence analysis (Michailidis and de Leeuw, ).
Figure . shows the graph layout of the sleeping bags data set. he solution cap-

tures the basic patterns in the data set, namely, that there are good-quality, expensive
sleeping bags filled with down fibers and cheap, bad-quality sleeping bags filled with
synthetic fibers. Further, there exist some sleeping bags of intermediate quality and
price filled with either down or synthetic fibers. Notice that the centroid principle
resulting from the partitioning of the vertex set proves useful in the interpretation
of the layout. Further, the resulting layout is less ‘uniform’ than the one obtained
through MDS and thus better captures features of the data.
It is interesting to note that the choice of the distance function coupled with a par-

ticular normalization has a significant effect on the aesthetic quality of the resulting

Figure .. Graph layout of sleeping bags data based on objective function (.). Due to the discrete

nature of the data, multiple objects are mapped on the same location, as shown in the plot. Further, for

reference purposes, the categories to which the sleeping bags belong have been added to the plot at the

centroids of the object points
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graph layout. An extreme case occurs when ϕ(d(X)) 
 di j(X) corresponds to Eu-
clidean distances. hen, under the orthonormality constraint, the solution is rather
uninteresting and consists of exactly p +  points, where p is the dimensionality of
the embedding space. A mathematical explanation of this result is given for the -D
case (p = ) in de Leeuw and Michailidis () and is also illustrated for the higher-
dimensional case (p 	 ) in Michailidis and de Leeuw ().

Discussion and Concluding Remarks4.4

In this paper, the problem of data visualization through layouts of their graph rep-
resentations is considered. A mathematical framework for graph drawing based on
force-directed techniques is introduced, and several connections towell-knownmul-
tivariate analysis techniques such as multidimensional scaling, correspondence, and
multiple correspondence analysis are made.
Several extensions that may improve the quality of the graph layout are possible

within this general framework. For example, logistic loss functions are explored in de
Leeuw (), together with the arrangement of the nodes along Voronoi cells. he
visualization of several related data sets through multilevel extensions of multiple
correspondence analysis are explored in Michailidis and de Leeuw (). Finally,
a version of multidimensional scaling for data that change over time is discussed in
Costa et al. ().
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topic over the course of the last  years and the editors of the Handbook for many comments
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Introduction5.1

his chapter will cover the uses of graphs for making graphs. his overloading of
terms is an unfortunate historical circumstance that conflated graph-of-a-function
usage with graph-of-vertices-and-edges usage. Vertex-edge graphs have long been
understood as fundamental to the development of algorithms. It has become increas-
ingly evident that vertex-edge graphs are also fundamental to the development of
statistical graphics and visualizations.
One might assume this chapter is about laying out graphs on a plane, in which

vertices are represented by points and edges by line segments. Indeed, this problem
is covered in the chapter. Nevertheless, we take the point of view of the grammar of
graphics (Wilkinson ), in which a graphic has an underlying model. hus, we
assume a graph-theoretic graph is any graph that maps aspects of geometric forms
to vertices and edges of a graph.
We begin with definitions of graph-theoretic terminology. hese definitions are

assumed in later sections, so this section may be skipped and used later as a glossary
by those not interested in details.

Deinitions5.2

A graph is a setV together with a relation onV .We usually express this by saying that
a graph G = (V , E) is a pair of sets, V is a set of vertices (sometimes called nodes),
and E is a set of edges (sometimes called arcs or links). An edge e(u, v), with e � E
and u, v � V , is a pair of vertices.
We usually assume the relation on V induced by E is symmetric; we call such

a graph undirected. If the pair of vertices in an edge is ordered, we call G a directed
graph, or digraph. We denote direction by saying, with respect to a node, that an edge
is incoming or outgoing.
A graph is weighted if each of its edges is associated with a real number. We con-

sider an unweighted graph to be equivalent to a weighted graph whose edges all have
a weight of .
A graph is complete if there exists an edge for every pair of vertices. If it has n

vertices, then a complete graph has n(n − )� edges.
A loop is an edge with u = v. A simple graph is a graph with no loops. Two edges(u, v) and (s, t) are adjacent if u = s or u = t or v = s or v = t. Likewise, a vertex v is

adjacent to an edge (u, v) or an edge (v,u).
A path is a list of successively adjacent, distinct edges. Let �e , . . . , ek
 be a se-

quence of edges in a graph.his sequence is called a path if there are vertices �v , . . . ,
vk
 such that e i = (vi− , vi) for i = , . . . , k.
Two vertices u, v of a graph are called connected if there exists a path from vertex

u to vertex v. If every pair of vertices of the graph is connected, the graph is called
connected.
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A path is cyclic if a node appears more than once in its corresponding list of edges.
A graph is cyclic if any path in the graph is cyclic. We oten call a directed acyclic
graph a DAG.
A topological sort of the vertices of a DAG is a sequence of distinct vertices �v , . . . ,

vn
. For every pair of vertices vi , v j in this sequence, if (vi , v j) is an edge, then i < j.
A linear graph is a graph based on a list of n vertices; its n− edges connect vertices

that are adjacent in the list. A linear graph has only one path.
Two graphs G = (V , E) and G = (V , E) are isomorphic if there exists a bijec-

tive mapping between the vertices in V and V and there is an edge between two ver-
tices of one graph if and only if there is an edge between the two corresponding ver-
tices in the other graph. A graph G = (V , E) is a subgraph of a graph G = (V , E)
if V � V and E � E � (V � V).
he graph-theoretic distance (or geodesic distance) between connected nodes u and

v is the sumof theweights of the edges in any shortest path connecting the nodes.his
distance is a metric, namely, symmetry, identity, and the triangle inequality apply.
he adjacency matrix for a graph G with n vertices is an n � nmatrix with entries

ai j having a value  if vertex i is adjacent to vertex j and zero otherwise. he set
of eigenvalues of this matrix is called the graph spectrum. he spectrum is useful
for identifying the dimensionality of a space in which a graph may be embedded or
represented as a set of points (for vertices) and a set of connecting lines (for edges).
A geometric graph Gg = [ f (V), g(E), S] is a mapping of a graph to a metric space

S such that vertices go to points and edges go to curves connecting pairs of points. We
will discuss various types of geometric graphs in this chapter. When the meaning is
clear, we will omit the subscript and refer to G as a geometric graph. he usual map-
ping is to Euclidean space. Sometimes we will measure and compare the Euclidean
distance between points to the graph-theoretic distance between the corresponding
vertices of the graph.
A proximity graph Gp = [V , f (V)] is a graph whose edges are defined by a prox-

imity function f (V) onpoints in a space S.he range of f (V ) is pairs of vertices.One
may regard f (V) as an indicator function in which an edge exists when g(u, v) < d,
where d is some nonnegative real value and g() is a real-valued function associated
with f ().
A random graph is a function defined on a sample space of graphs. Although ran-

dom graphs are relevant to statistical data, this chapter will not cover them because
of space limitations. Marchette () is a standard reference.

Trees 5.2.1

A tree is a graph in which any two nodes are connected by exactly one path. Trees are
thus acyclic connected graphs. Trees may be directed or undirected. A tree with one
node labeled root is a rooted tree. Directed trees are rooted trees; the root of a directed
tree is the node having no incoming edges.
A hierarchical tree is a directed tree with a set of leaf nodes (nodes of degree )

representing a set of objects and a set of parent nodes representing relations among
the objects. In a hierarchical tree, every node has exactly one parent, except for the
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root node, which has one or more children and no parent. Examples of hierarchical
trees are those produced by decision-tree and hierarchical clustering algorithms.
A spanning tree is an undirected geometric tree. Spanning trees have n −  edges

that define all distances between n nodes. his is a restriction of the n(n− )� edges
in a complete graph. A minimum spanning tree (MST) has the shortest total edge
length of all possible spanning trees.

Ultrametric Trees
If the node-to-leaf distances aremonotonically nondecreasing (i.e., no parent is closer
to the leaves than its children are), then a hierarchical tree is ultrametric. An ultra-
metric is a metric with a strong form of the triangle inequality, namely,

d(x , y) � max [d(x , z), d(y, z)] .
In an ultrametric tree, the graph-theoretic distances take at most n −  possible val-
ues, where n is the number of leaves. his is because of the ultrametric three-point
condition, which says we can rename any x , y, z such that

d(x , y) � d(x , z) = d(y, z) .
Another way to see this is to note that the distance between any two leaves is deter-
mined by the distance of either to the common ancestor.

Additive Trees
Let D be a symmetric n by nmatrix of distances di j . Let T be a hierarchical tree with
one leaf for each row/columnofD. T is an additive tree forD if, for every pair of leaves(ti , t j), the graph theoretic distance between the leaves is equal to di j . Additive trees
rest on a weaker form of the triangle inequality than do ultrametric trees. namely,

d(x , y) � [d(x , z) + d(y, z)] .

Graph Drawing5.3

A graph is embeddable on a surface if it can be drawn on that surface so that edges
meet only at vertices. A graph is planar if it is embeddable on a sphere (and, by impli-
cation, the unbounded plane). We can use a theorem by Euler to prove a particular
graph is not planar, but we can prove a particular graph is planar only by drawing it
without edge crossings. Drawing graphs is more than a theoretical exercise, however.
Finding compact planar drawings of graphs representing electrical circuits, for ex-

ample, is a critical application in the semiconductor industry. Other applications in-
volve metabolic pathways, kinetic models, and communications and transportation
networks. Spherical applications involve mapping the physical nodes of the Internet
and world trade routes.
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he graph-drawing (or graph-layout) problem is as follows. Given a planar graph,
how do we produce an embedding on the plane or sphere? And if a graph is not pla-
nar, how do we produce a planar layout that minimizes edge crossings? he standard
text on graph drawing is Di Battista et al. (), which is a comprehensive bibliog-
raphy. Kruja et al. () give a history of the problem. See also the various years
of the Proceedings of the International Symposium on Graph Drawing, published by
Springer.
Different types of graphs require different algorithms for clean layouts. We begin

with trees. hen we discuss laying out networks and directed cyclic graphs. In most
examples, the basic input data are nonnumeric. hey consist of an unordered list of
vertices (node labels) and an unordered list of edges (pairs of node labels). If a graph
is connected, then we may receive only a list of edges. If we have a weighted graph,
the edge weights may be used in the loss function used to define the layout. We will
discuss other forms of input in specific sections.

Hierarchical Trees 5.3.1

Suppose we are given a recursive list of single parents and their children. In this list,
each child has one parent and each parent has one or more children. One node, the
root, has no parent. his tree is a directed graph because the edge relation is asym-
metric. We can encapsulate such a list in a node class:
Node{

Node parent;
NodeList children;

}

Perhaps the most common example of such a list is the directory structure of a hi-
erarchical file system. A display for such a list is called a tree browser. Creating such
a display is easy. We simply walk the tree, beginning at the root, and indent children
in relation to their parents. Figure . shows an example that uses the most common
vertical layout. Figure . shows an example of a horizontal layout. Interestingly, the
“primitive” layout in Fig. . has been found to be quite effective when compared to
more exotic user-interface tree layouts (Kobsa ).
Suppose nowwe are given only a list of edges and told to lay out a rooted tree. To lay

out a tree using only an edge list, we need to inventory the parent–child relationships.
First, we identify leaves by locating nodes appearing only once in the edge list. We
then assign a layer value to each node by finding the longest path to any leaf from
that node.hen we begin with the leaves, group children by parent, and align parents
above the middle child in each group. Ater this sweep, we can move leaves up the
hierarchy to make shorter branches. Figure . shows an example using this layout
algorithm. he data are adapted from weblogs of a small website. he thicknesses of
the branches of the tree are proportional to the number of visitors navigating between
pages represented by nodes in the tree.
If the nodes of a tree are ordered by an external variable such as joining or splitting

distance, then we may locate them on a scale instead of using paternity to determine
ordering. Figure . shows an example of this type of layout using a cluster tree. he
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Figure .. Linear tree browser for a Java project

Figure .. Hierarchical tree browser for a file system
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Figure .. Layout of a website tree

data consist of FBI-reportedmurder rates for US states in . A single linkage clus-
ter analysis with leaves ordered by murder rates produced the tree.
his is an interesting example for several reasons. First, we ordinarily do not think

of clustering a set of objects on a single variable. Clustering in one dimension is equiv-
alent to mode hunting or bump hunting, however. Hierarchical clustering (as in this
example) can yield a -D partitioning into relatively homogeneous blocks. We are
seeking intervals in which observations are especially dense. We see, for example,
that there are clusters of southern and midwestern states whose murder rates are
relatively similar. he mode tree (Minnotte and Scott ) is another instance of
a tree representation of a -D dataset. his tree plots the location of modes in the
smoothed nonparametric density estimator as a function of kernel width. Second,
a topological sort on a total order is the same as an ordinary sort. hat is, by sorting
the leaves of this tree on murder values, we have produced a topological sort. For
hierarchical clustering trees on more variables there exist more than one topological
sort to help organize a tree for viewing. Wilkinson () discusses some of these
strategies.
Hierarchical trees with many leaves can become unwieldy in rectangular layouts.

In Fig. . we lay out the same cluster tree in polar coordinates. Other types of cir-
cular layouts (e.g. Lamping et al. ) can accommodate even larger trees. Circular
layouts are popular in biological applications involving many variables because of
their space-saving characteristics. It is best, of course, if the polar orientation has an
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Figure .. Hierarchical cluster tree of US murder rates

intrinsic meaning, but sometimes making room for labels and other information is
sufficient justification.
In some cases, the nodes of hierarchical trees may represent nested collections

of objects. Classification and regression trees, for example, hierarchically partition
a set of objects. For these applications, Wilkinson () invented a tree display called
amobile. Figure . shows an example using data on employees of a bank. Each node
contains a dot histogram; each dot represents a bank employee. he dot histograms
are hierarchical; a parent histogram aggregates the dots of its children.hehorizontal
branches represent a beambalancing two sibling dot histograms. By using thismodel,
we highlight themarginality of splits.hat is, outlying splits are shited away from the
bulk of the display. his layout is relatively inefficient with regard to space, and it is
not well suited to a polar arrangement because the balance metaphor has nomeaning
in that context.
Figure . shows an alternative display for classification trees (Urbanek ).his

form uses the width of branches to represent the size of subsplits. his tree is similar
to earlier graphics shown in Kleiner and Hartigan (), Dirschedl (), Lausen
et al. () and Vach ().
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Figure .. Polar hierarchical cluster tree of US murder rates

Figure .. [his figure also appears in the color insert.] Mobile of bank employee data

Suppose we have a directed geometric tree with one root having many children.
Such a tree may represent a flow from a source at the root branching to sinks at the
leaves. Water and migration flows are examples of such a tree. Phan et al. ()
present a suite of algorithms (including hierarchical cluster analysis and force-direc-
ted layout) for rendering a flow tree.he data consist of the geographic location of the
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Figure .. Urbanek classification tree

Figure .. Flow map

source and the locations of the sinks. here is one edge in the tree for each sink. Fig-
ure . shows an example using Colorado migration data from  to . Notice
that edges are merged as much as possible without compromising the smoothness
and distinctness of the terminal flows.
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Spanning Trees 5.3.2

It makes sense that we might be able to lay out a spanning tree nicely if we approxi-
mate graph-theoretic distance with Euclidean distance.his should tend to place ad-
jacent vertices (parents and children) close together and push vertices separated by
many edges far apart. he most popular algorithm for doing this is a variant of mul-
tidimensional scaling called the springs algorithm. It uses a physical analogy (springs
under tension represent edges) to derive a loss function representing total energy in
the system (similar to MDS stress). Iterations employ steepest descent to reduce that
energy.

Laying out a Simple Tree
Figure . (Wilkinson ) shows an example using data from a small website.
Each node is a page and the branches represent the links between pages; their thick-
ness represents traffic between pages (this website has no cross-links). It happens
that the root is located near the center of the display. his is a consequence of the
force-directed algorithm. Adjacent nodes are attracted and nonadjacent nodes are
repelled.
he springs algorithm brings to mind a simple model of a plant growing on a sur-

face. his model assumes branches should have a short length so as to maximize

Figure .. Force-directed layout of a website tree
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Figure .. A rooted tree, otherwise known as Knotweed (Polygonum arenastrum). Photo courtesy of

Bill Hosken

water distribution to the leaves and assumes leaves should be separated as much as
possible so as tomaximize exposure to sunlight. Figure . shows an example. Given
a planar area for uninhibited growth and uniform sunshine, this weed has assumed
a shape similar to the web tree in Fig. ..

Laying out Large Trees
Laying out large spanning trees presents special problems. Even in polar form, large
trees can saturate the display area. Furthermore, the springs algorithm is computa-
tionally expensive on large trees.
One alternative was developed by Graham Wills (Wills ), motivated by the

hexagon binning algorithm of Carr (Carr et al. ). Wills uses the hexagon layout
tomake edges compact and improve computation through binning. Figure . shows
an example based on website resources (Wills ).

Additive Trees
Additive trees require rather complex computations. We are given a (presumably ad-
ditive) distance matrix on n objects and are required to produce a spanning tree in
which the graph-theoretic distances between nodes correspond as closely as possible
to the original distances. Figure . shows an example fromWhite et al. ().he
gray rectangles highlight three clusters in the data. he article notes that the angles
between edges are not significant. he edges are laid out simply to facilitate tracing
paths.
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Figure ..Wills hexagonal tree

Figure .. Additive tree
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Networks5.3.3

Networks are, in general, cyclic graphs. Force-directed layout methods oten work
well on networks. here is nothing in the springs algorithm that requires a graph
to be a tree. As an example, Fig. . shows an associative network of animal names
from an experiment in Wilkinson (). Subjects were asked to produce a list of
animal names. Names found to be adjacent in subjects’ lists were considered adjacent
in a graph.

Directed Graphs5.3.4

Directed graphs are usually arranged in a vertical (horizontal) partial ordering with
source node(s) at top (let) and sink node(s) at bottom (right). Nicely laying out a di-
rected graph requires a topological sort. We temporarily invert cyclical edges to con-
vert the graph to a directed acyclic graph (DAG) so that the paths-to-sink can be
identified. hen we do a topological sort to produce a linear ordering of the DAG
such that for each edge (u, v), vertex u is above vertex v. Ater sorting, we iteratively
arrange vertices with tied sort order so as to minimize the number of edge cross-
ings.
Minimizing edge crossings between layers is NP-hard. We cannot always be sure

to solve the problem in polynomial time. It amounts to maximizing Kendall’s τ cor-
relation between adjacent layers. Heuristic approaches include using direct search,
simulated annealing, or constrained optimization.
Figure . shows a graph encapsulating the evolution of the UNIX operating sys-

tem. It was computed by the AT&T system of graph layout programs.

Figure .. Cyclic graph of animal names
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Figure .. Evolution of UNIX operating system; directed graph layout produced by Graphviz

(Pixelglow sotware), courtesy Ian Darwin, Geoff Collyer, Stephen North and Glen Low

Treemaps 5.3.5

Treemaps are recursive partitions of a space. he simplest form is a nested rectan-
gular partitioning of the plane (Johnson and Shneiderman ). To transform a bi-
nary tree into a rectangular treemap; for example, we start at the root of the tree.
We partition a rectangle vertically; each block (tile) represents one of the two chil-
dren of the root. We then partition each of the two blocks horizontally so that the
resulting nested blocks represent the children of the children. We apply this algo-
rithm recursively until all the tree nodes are covered. he recursive splits alternate
between vertical and horizontal. Other splitting algorithms are outlined in Bederson
et al. ).
If we wish, we may color the rectangles using a list of additive node weights. Oth-

erwise, we may use the popular device of resizing the rectangles according to the
node weights. Figure . shows an example that combines color (to represent poli-
tics, sports, technology, etc.) and size (to represent number of news sources) in a vi-
sualization of the Google news site. his map was constructed by Marcos Weskamp
and Dan Albritton.
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Figure .. Treemap of Google news headlines

Geometric Graphs5.4

Geometric graphs form the basis for many data mining and analytic graphics meth-
ods.he reason for this is the descriptive richness of geometric graphs for character-
izing sets of points in a space. We will use some of these graphs in the next section,
for example, to develop visual analytics.
Given a set of points in a metric space, a geometric graph is defined by one or

more axioms. We can get a sense of the expressiveness of this definition by viewing
examples of these graphs on the same set of points in this section; we use data from
the famous Box–Jenkins airline dataset (Box and Jenkins ), as shown in Fig. ..
We restrict the geometric graphs in this section to:

 Undirected (edges consist of unordered pairs)
 Simple (no edge pairs a vertex with itself)
 Planar (there is an embedding in R with no crossed edges)
 Straight (embedded edges are straight-line segments)

here have been many geometric graphs proposed for representing the “shape” of
a set of points X on a plane.Most of these are proximity graphs. A proximity graph (or
neighborhood graph) is a geometric graphwhose edges are determined by an indicator
function based on distances between a given set of points in ametric space. To define
this indicator function, we use an open disk D. We say D touches a point if that point
is on the boundary of D. We say D contains a point if that point is in D. We call the
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Figure .. Airline dataset

smallest open disk touching two points D ; the radius of this disk is half the distance
between the two points and the center of this disk is halfway between the two points.
We call an open disk of fixed radius D(r). We call an open disk of fixed radius and
centered on a point D(p, r).
Disk Exclusion 5.4.1

Several proximity graphs are defined by empty disks. hat is, edges exist in these
graphs when disks touching pairs of points are found to be empty.

Delaunay Triangulation
In aDelaunay graph, an edge exists between any pair of points that can be touched
by an open disk D containing no points.

heDelaunay triangulation and its dual, the Voronoi tessellation, are powerful struc-
tures for characterizing distributions of points. While they have higher-dimensional
generalizations, their most frequent applications are in two dimensions. here are
several proximity graphs that are subsets of the Delaunay triangulation:

Convex Hull
A polygon is a closed plane figure with n vertices and n −  faces. he boundary of
a polygon can be represented by a geometric graph whose vertices are the polygon
vertices andwhose edges are the polygon faces. Ahull of a set of points X in Euclidean
space R is a collection of one or more polygons that have a subset of the points in
X for their vertices and that collectively contain all the points in X. his definition
includes entities that range from a single polygon to a collection of polygons each
consisting of a single point. A polygon is convex if it contains all the straight-line
segments connecting any pair of its points.
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Figure .. Delaunay triangulation

Figure .. Convex hull

he convex hull of a set of points X is the intersection of all convex sets contain-
ing X.

here are several algorithms for computing the convex hull. Since the convex hull
consists of the outer edges of the Delaunay triangulation, we can use an algorithm
for the Voronoi/Delaunay problem and then pick the outer edges. Its computation
thus can be O(n log n).
Nonconvex Hull
A nonconvex hull is a hull that is not a convex hull. his class includes simple shapes
like a star convex or monotone convex hull, but it also includes some space-filling,
snaky objects and some that have disjoint parts. In short, we are interested in a gen-
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Figure .. Alpha shape

eral class of nonconvex shapes. Some of these shapes are complexes (collections of
simplexes). We take the hull of these shapes to be the collection of exterior edges of
these complexes.

In an alpha-shape graph, an edge exists between any pair of points that can be
touched by an open disk D(α) containing no points.

Complexes
here are several subsets of the Delaunay triangulation that are complexes useful for
characterizing the density of points, shape, and other aspects.

Figure .. Gabriel graph
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Figure .. Relative neighborhood graph

Figure .. Minimum spanning tree

In a Gabriel graph, an edge exists between any pair of points that have a D con-
taining no points.
In a relative neighborhood graph, an edge exists between any pair of points p and
q for which r is the distance between p and q and the intersection of D(p, r) and
D(q, r) contains no points. his intersection region is called a lune.
A beta skeleton graph is a compromise between the Gabriel and relative neighbor-
hood graphs. It uses a lune whose size is determined by a parameter β. If β = ,
the beta skeleton graph is a Gabriel graph. If β = , the beta skeleton graph is
a relative neighborhood graph.
Aminimum spanning tree is an acyclical subset of a Gabriel graph.
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Disk Inclusion 5.4.2

Several proximity graphs are defined by disk inclusion. hat is, edges exist in these
graphs when predefined disks contain pairs of points. hese graphs are not generally
subsets of the Delaunay triangulation.

In a k-nearest-neighbor graph (KNN), a directed edge exists between a point p
and a point q if d(p, q) is among the k smallest distances in the set �d(p, j) �  �
j � n, j � p�. Most applications restrict KNN to a simple graph by removing
self loops and edge weights. If k = , this graph is a subset of the MST. If k � ,
this graph may not be planar. Figure . shows a nearest-neighbor graph for

Figure .. Nearest-neighbor graph

Figure .. -Nearest-neighbor graph
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the airline data. Figure . shows a -nearest-neighbor graph on the same set of
points.
In a distance graph, an edge exists between any pair of points that both lie in
aD(r).he radius r defines the size of the neighborhood.his graph is not always
planar and is therefore not a subset of the Delaunay.
In a sphere-of-influence graph, an edge exists between a point p and a point q if
d(p, q) � dnn(p) + dnn(q), where dnn(.) is the nearest-neighbor distance for
a point.

Figure .. Distance graph

Figure .. Sphere-of-influence graph
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Graph-theoretic Analytics 5.5

Some graph-analytic procedures naturally lend themselves to visualization or are
based on geometric graphs. We discuss a few in this section.

Scagnostics 5.5.1

A scatterplot matrix, variously called a SPLOMor casement plot or dratman’s plot, is
a (usually) symmetric matrix of pairwise scatterplots. An easy way to conceptualize
a symmetric SPLOM is to think of a covariance matrix of p variables and imagine that
each off-diagonal cell consists of a scatterplot of n cases rather than a scalar number
representing a single covariance. his display was first published by John Hartigan
() and was popularized by Tukey and his associates at Bell Laboratories.
Large scatterplot matrices become unwieldy when there are many variables. First

of all, the visual resolution of the display is limited when there are many cells. his
defect can be ameliorated by pan and zoom controls. More critical, however, is the
multiplicity problem in visual exploration. Looking for patterns in p(p − )� scat-
terplots is impractical for more than  variables. his problem is what prompted the
Tukeys’ solution.
heTukeys reduced anO(p) visual task to anO(k) visual task, where k is a small

number of measures of the distribution of a -D scatter of points.hesemeasures in-
cluded the area of the peeled convex hull of the -D point scatters, the perimeter
length of this hull, the area of closed -D kernel density isolevel contours, the perim-
iter length of these contours, the convexity of these contours, a modality measure of
the -D kernel densities, a nonlinearity measure based on principal curves fitted to
the -D scatterplots, the median nearest-neighbor distance between points, and sev-
eral others. By using thesemeasures, the Tukeys aimed to detect anomalies in density,
distributional shape, trend, and other features in -D point scatters.
Ater calculating these measures, the Tukeys constructed a scatterplot matrix of

the measures themselves, in which each point in the scagnostic SPLOM represented
a scatterplot cell in the original data SPLOM. With brushing and linking tools, un-
usual scatterplots could be identified from outliers in the scagnostic SPLOM.
Wilkinson et al. () extended this procedure using proximity graphs. his ex-

tension improved scalability, because the graph calculations are O(n log n), and al-
lowed the method to be applied to categorical and continuous variables. Wilkinson
et al. () developed nine scagnostics measures: Outlying, Skewed, Clumpy, Con-
vex, Skinny, Striated, Stringy, Straight and Monotonic.
Figure . shows the output of the program developed inWilkinson et al. ().

he dataset used in the example is the Boston housing data cited in Breiman et al.
(). he let SPLOM shows the data. he larger scagnostics SPLOM in the mid-
dle of the figure shows the distribution of the nine scagnostics. One point is high-
lighted. his point is an especially large value on the Outlying scagnostic statistic.
Its corresponding scatterplot is shown in the upper-right plot superimposed on the
scagnostics SPLOM.his plot involves a dummy variable for whether a tract bounds
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Figure .. Scagnostics

the Charles River (CHAS) and proportion of residential land zoned for lots over
 t . (ZN).he scagnosticOutlyingmeasure flagged the few cases that bounded
the Charles River. he locations of this scatterplot point in the other scagnostics
SPLOM characterize the plot as relatively skewed, skinny, striated, and stringy, but
not convex.

Sequence Analysis5.5.2

A sequence is a list of objects, e.g. �x , y, z
.he ordering of the list is given by an order
relation. Inmany applications of sequence analysis, objects are represented by tokens
and sequences are represented by strings of tokens. In biosequencing, for example,
the letters A, C, T and G are used to represent the four bases in a DNA strand.
Suppose we are given a length n string of tokens and want to find the most fre-

quently occurring substrings of length m in the string (m l n). A simple (not espe-
cially fast) algorithm to do this involves generating candidate substrings and testing
them against the target string. We begin with strings of length , each comprised of
a different token.henwebuild candidate subsequences of length .We count the fre-
quency of each of these subsequences in the target string. Using any of these length 
subsequences with a count greater than zero, we build candidate subsequences of
length . We continue the generate-and-test process until we have tested the can-
didates of length m or until all counts are zero. his stepwise procedure traverses
a subset of the branches of the tree of all possible subsequences so we do not have as
many tests to perform.
Embedding a sequence analysis in a graph layout oten gives us a simple way to

visualize these subsequences. he layout may be based on known coordinates (as in
geographic problems) or on an empirical layout using adjacency in the sequence list
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Figure .. Animal name sequences

as edge information. Figure . shows an example using the same data represented
in Fig. .. We have superimposed the sequences using arrows.

Comparing Sequences
Suppose we have two sequences of characters or objects and we wish to compare
them. If the sequences are of length n, we can construct an n by n table of zeroes and
place a  in a diagonal cell if the value in each sequence at the corresponding posi-
tion is the same. We would have an identity matrix if both sequences were identical
and we can plot this matrix as a square array of pixels. With real data, however, we
are more likely to encounter matching runs of subsequences that occur in different
locations in each sequence. Consequently, we more oten see subsequences as runs
off the diagonal.
Figure . (Altschul et al. ) shows an example of this type of plot. Subse-

quences appear in the plot as diagonal runs from upper let to lower right.he longer
the diagonal bars, the longer the matching subsequences.

Critical Paths
Suppose we have a directed acyclic graph (DAG) where the vertices represent tasks
and an edge (u, v) implies that task u must be completed before task v. How do we
schedule tasks to minimize overall time to completion?his job-scheduling problem
has many variants. One customary variant is to weight the edges by the time it takes
to complete tasks. We will mention two aspects of the problem that involve graph-
ing. First, how do we lay out a graph of the project? We use the layout for a directed
graph and flip the graph to a horizontal orientation. he result of our efforts is called
a CPM (critical path method)) graph. Second, how do we identify and color the crit-
ical path? Identifying the critical path is easy if the edges are not weighted. We sim-
ply do a breadth-first search of the DAG and keep a running tally of the path length.
Finding the shortest path through a weighted graph requires dynamic programming.
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Figure .. Comparing two sequences (courtesy Steven Altschul)

Figure .. CPM chart

Graph layouts of large projects can become messy. Even without edge crossings,
a large CPM graph can be difficult to interpret. An alternative to this display is called
a Gantt chart. he horizontal axis measures time. he length of a bar represents the
duration of a task.he vertical axis separates the tasks.he coloring categorizes tasks.
he original form of the chart did not have the benefit of the graph theory behind
CPM, but modern incarnations have blended the bars of the Gantt chart with the
information on the critical path. Most computer project management packages com-
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Figure .. Gantt chart

pute the critical path with graph-theoretic algorithms and display the results in some
variety of the Gantt chart.

Graph Matching 5.5.3

Given two graphs, how do we determine if there is an isomorphism between them?
And if they are not isomorphic, can we identify isomorphic subgraphs or compute an
overall measure of concordance? hese questions have many answers; we will cover
only a few.
Matching graphs has many applications in biology, chemistry, image processing,

computer vision, and search engines. To the extent that a body of knowledge can be
represented as a graph (a set of vertices and relations among them), graphmatching is
a core application. It provides, for example, the foundation for searching a database
of graphs for a particular graph. If images and other material can be represented
as graphs, then graph matching provides a powerful indexing mechanism for large
databases of disparate materials. Indeed, since a relational table can be represented as
a graph,matching can be used to identify congruent tables of primitives in a database.
Given the topic of this chapter, however, we will focus on matching D geometric
graphs.

Exact Graph Matching
Exact graph matching consists of identifying the isomorphism between two graphs.
his amounts to finding () a vertex in one graph for every vertex in the other (and
vice versa) and () an edge in one graph for every edge in the other (and vice versa). If
both graphs are connected, then the second condition suffices to establish the isomor-
phism. Because this is a standard sorting-and-searching problem, it has polynomial
complexity.
he problem ismore general, however, becausewe are usually interested in finding

isomorphisms under a permutation transformation. hat is, we seek a vertex relabel-
ing of G such that an isomorphism between G and G exists ater the relabeling.
his more general matching problem has unknown complexity. For planar graphs,
however, Hopcrot andWong () prove linear time complexity. Skiena () and
Shasha et al. () discuss this topic further and review sotware for graphmatching.
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Figure .. Medial axes (courtesy homas Sebastian, Philip Klein and Benjamin Kimia)

Approximate Graph Matching
Approximate graph matching consists of maximizing an index of concordance be-
tween two graphs under relabeling. Many indices have been proposed. Early ap-
proaches computed simple graph-theoretic measures and used these to compute dis-
tance or correlation coefficients. he cophenetic correlation, for example, is a Pearson
correlation between the entries of a distance matrix and the corresponding ultra-
metric distances derived from a hierarchical clustering tree. his approach implies
a matching index based on correlating ultrametric distances from two different trees
(possibly ater relabeling).
More recent approaches use other measures to derive concordance measures. he

most famous example is the Google search engine (Brin and Page ), which uses
a graph spectral measure to assess similarity. In the field of shape recognition, prox-
imity graphs have been constructed from polygons by using disks similar to those we
discussed in the previous section. Klein et al. (), for example, developed a shape-
matching procedure using a derivative of themedial axis.hemedial axis of a polygon
is the locus of the centers of maximal circles that touch the polygon boundary more
than once. Figure . shows an example.
Klein et al. () used an edit distance measure to evaluate matching of medial

axis graphs. Edit distance is the number of elementary operations needed to trans-
form one graph into another. In the simple case, there are two editing operators:
delete an edge, and relabel an edge. By subjecting the topology of the medial axis
representations of shape to a specific edit distance measure, Klein et al. () were
able to characterize D projections of D shapes with a high degree of accuracy, re-
gardless of orientation or scale. Torsello () extended these methods.
Any proximity graph can be applied to the shape-recognition problem using edit

distance or measures of similarity. Gandhi (), for example, measured the shape
of leaves by recording turning angles at small steps along their perimeters.his mea-
sure transformed a shape into a single time series. Gandhi () then used dynamic
time warping (Sakoe and Chiba ) to compute a distance measure between leaf
shapes.

Conclusion5.5.4

his chapter has covered only a fraction of the visualization applications of graph
theory. Graph-theoretic visualization is a rapidly developing field because only in the
last few decades have the connections between data representation and graph theory
been made explicit. Tukey and Tukey () anticipated the role graph theory would
play in visualization and John Tukey was especially interested in convex hulls, mini-
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mum spanning trees, and other graphs for characterizing high-dimensional data. But
as Tukey said many times, more powerful computing environments would be needed
to realize the power of these methods. hat time has arrived.
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One of the biggest challenges in data visualization is to find general representations
of data that can display the multivariate structure of more than two variables. Sev-
eral graphic types like mosaicplots, parallel coordinate plots, trellis displays, and the
grand tour have been developed over the course of the last three decades. Each of
these plots is introduced in a specific chapter of this handbook.
his chapter will concentrate on investigating the strengths and weaknesses of

these plots and techniques and contrast them in the light of data analysis problems.
One very important issue is the aspect of interactivity. Except for trellis displays,

all the above plots need interactive features to rise to their full power. Some, like the
grand tour, are only defined by using dynamic graphics.

Introduction6.1

It is sometimes hard to resist the problem that is captured in the phrase “if all you
have is a hammer, every problem looks like a nail.” his obviously also holds true for
the use of graphics. A grand tour expert will most likely include a categorical variable
in the high-dimensional scatterplot, whereas an expert on mosaicplots probably will
try to fit a data problem as far as possible into a categorical framework.
his chapterwill focus on the appropriate use of the different plots for high-dimen-

sional data analysis problems and contrast them by emphasizing their strengths and
weaknesses.
Data visualization can roughly be categorized into two applications:

. Exploration

In the exploration phase, the data analyst will use many graphics that are mostly
unsuitable for presentation purposes yet may reveal very interesting and impor-
tant features. he amount of interaction needed during exploration is very high.
Plotsmust be created fast andmodifications like sorting or rescaling should hap-
pen instantaneously so as not to interrupt the line of thought of the analyst.

. Presentation
Once the key findings in a data set have been explored, these findings must be
presented to a broader audience interested in the data set. hese graphics oten
cannot be interactive but must be suitable for printed reproduction. Further-
more, some of the graphics for high-dimensional data are all but trivial to read
without prior training, and thus probably not well suited for presentation pur-
poses – especially if the audience is not well trained in statistics.

Obviously, the amount of interactivity used is the major dimension to discriminate
between exploratory graphics and presentation graphics.
Interactive linked highlighting, as described by Wills (, Chapter II. same

volume), is one of the keys to the right use of graphics for high-dimensional data.
Linking across different graphs can increase the dimensionality beyond the number
of dimensions captured in a single multivariate graphic.hus, the analyst can choose
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the most appropriate graphics for certain variables of the data set; linking will pre-
serve the multivariate context.
Although much care has been taken to ensure the best reproduction quality of

all graphics in this chapter, the reader may note that the printed reproduction in
black and white lacks clarity for some figures. Please refer to the book’s website for
an electronic version that offers full quality.

Mosaic Plots 6.2

Mosaic plots (Hartigan and Kleiner, ; Friendly, ; Hofmann, ) are prob-
ably the multivariate plots that require the most training for a data analyst. On the
other hand, mosaicplots are extremely versatile when all possible interaction and
variations are employed, as described by Hofmann (, Chapter III. same vol-
ume).
his sectionwill explore typical uses ofmosaicplots inmany dimensions andmove

on to trellis displays.

Associations in High-dimensional Data 6.2.1

Meyer et al. (, Chapter III. same volume) already introduced techniques for
visualizing association structures of categorical variables using mosaicplots. Obvi-
ously, the kind of interactions we look at in high-dimensional problems is usually
more complex. Although statistical theory for categorical data oten assumes that all
variables are of equal importance, this may not be the case with real problems. Us-
ing the right order of the variables, mosaicplots can take the different roles of the
variables into account.

Example: Detergent data
For an illustration of mosaicplots and their applications, we chose to look at the -D
problem of the detergent data set (cf. Cox and Snell, ). In this data set we look at
the following four variables:
. Water sotness

(sot, medium, hard)
. Temperature

(low, high)
. M-user (person used brand M before study)

(yes, no)
. Preference (brand person prefers ater test)

(X, M)

he major interest of the study is to find out whether or not preference for a deter-
gent is influenced by the brand someone uses. Looking at the interaction of M-user
and Preference will tell us that there is an interaction, but unrelated to the other two
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variables. Looking at the variablesWater Sotness and Temperature we will find some-
thing that is to be expected: harder water needs warmer temperatures for the same
washing result and a fixed amount of detergent.
Mosaic plots allow the inspection of the interaction ofM-user and Preference con-

ditioned for each combination ofWater Sotness and Temperature, resulting in a plot
that includes the variables in the order inwhich they are listed above. Figure . shows
the increasing interaction ofM-user and Preference for harder water and higher tem-
peratures.
Several recommendations can be given for the construction of high-dimensional

classical mosaicplots:
he first two and the last two variables in a mosaicplot can be investigated most
efficiently regarding their association. hus the interaction of interest should be
put into the last two positions of the plot. Variables that condition an effect should
be the first in the plot.
To avoid unnecessary clutter in a mosaicplot of equally important variables, put
variables with only a few categories first.
If combinations of cells are empty (this is quite common for high-dimensional
data due to the curse of dimensionality), seek variables that create empty cells at
high levels in the plot to reduce the number of cells to be plotted (empty cells at
a higher level are not divided any further, thus gathering many potential cells into
one).
If the last variable in the plot is a binary factor, one can reduce the number of
cells by linking the last variable via highlighting. his is the usual way to handle
categorical response models.

Figure .. he interaction of M-user and Preference increases for harder water and higher

temperatures
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Subsets of variables may reveal features far more clearly than using all variables at
once. In interactive mosaicplots one can add/drop or change variables displayed
in a plot. his is very efficient when looking for potential interactions between
variables.

Response Models 6.2.2

In many data sets there is a single dependent categorical outcome and several cat-
egorical influencing factors. he best graphical representation of such a situation is
to put all influencing factors in a mosaicplot and link the dependent variable with
a barchart. his setup is shown in Fig. . for the Caesarean data set (cf. Fahrmeir
and Tutz, ). he data set consists of three influencing factors – Antibiotics, Risk
Factor, and Planned and one dependent categorical outcome, Infection, for  cae-
sarean births. he question of interest is to find out which factors, or combination of
factors, have a higher probability of leading to an infection.
At this point it is important to rethinkwhat the highlighted areas in themosaicplot

actually show us. Let us look at the cases were no caesarean was planned, a risk fac-
tor was present, and no antibiotics were administered (the lower let cell in Fig. .,
which is highlighted to a high degree). In this combination,  of the  cases got an
infection, making almost .%. hat is

P(Infection� Antibiotics � Risk Factor � Planned) = ..
But there is more we can learn from the plot. he infection probability is highest
for cases with risk factors and no antibiotics administered. here is also one oddity

Figure .. he categorical response model for the caesarean birth data is visualized using a mosaicplot

for the influencing factors and a barchart for the response variable. Infection cases have been

highlighted



156 Martin Theus

in the data. Whereas the fact of a planned caesarean reduces the infection risk by
around half, we do not have a single infection case for unplanned caesareans without
risk factors and antibiotics – although at least three would be expected. Note that
the chosen order is crucial for seeing this feature most easily. All these results can be
investigated by looking at Fig. . but are harder to find by using classical models –
nonetheless, they should be used to check significance.

Models6.2.3

Meyer et al. (, Chapter III. same volume) presents a method for displaying
association models in mosaicplots. One alternative to looking at log-linear models
with mosaicplots is to plot the expected values instead of the observed values. his
also permits the plotting of information for empty cells, which are invisible in the
raw data but do exist in the modeled data. In general, a mosaicplot can visualize any
continuous variable for crossings of categorical data, be it counts, expected values of
a model, or any other positive value. Figure . shows the data from Fig. . with the
two interactionsWater Sotness andTemperature andM-user andPreference included.
Remaining residuals are coded in red (negative) and blue (positive). he feature we
easily found in Fig. . – an increasing interaction between M-user and Preference –
would call for a four-way interaction or at least some nonhierarchical model. Neither
model can be interpreted easily or communicated to nonstatisticians. Furthermore,
the log-linear model including the two two-way interactions has a p-value far greater
than ., suggesting that the model captures all “significant” structure. A more de-

Figure .. A model of the Detergent data with the interactions ofWater Sotness and Temperature and

M-user and Preference included. he residuals are highlighted in red (darker shade) and blue (lighter

shade). A very faded color indicates a high p-value
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tailed discussion on log-linear models and mosaicplots can be found in heus and
Lauer ().

Trellis Displays 6.3

Trellis displays (called Lattice Graphics within the R package) also use conditioning
to plot high-dimensional data. But whereas mosaicplots use a recursive layout, trellis
displays use a gridlike structure to plot the data conditioned on certain subgroups.

Deinition 6.3.1

Trellis displays were introduced by Becker et al. () as a means to visualize mul-
tivariate data (see also heus, ). Trellis displays use a latticelike arrangement to
place plots onto so-called panels. Each plot in a trellis display is conditioned upon
at least one other variable. To make plots comparable across rows and columns, the
same scales are used in all the panel plots.
he simplest example of a trellis display is probably a boxplot y by x. Figure .

shows a boxplot of the gas mileage of cars conditioned on the type of car. Results can
easily be compared between car types since the scale does not change when visually
traversing the different categories. Even a further binary variable can be introduced
when highlighting is used, which would be the most effective way to add a third
(binary) variable to the plot.
In principle, a single trellis display can hold up to seven variables at a time. Nat-

urally five out of the seven variables need to be categorical, and two can be contin-
uous. At the core of a trellis display we find the panel plot. he up to two variables
plotted in the panel plot are called axis variables. (he current Lattice Graphics imple-
mentation in R does actually offer higher-dimensional plots like parallel coordinate

Figure .. A boxplot y by x is a simple form of a trellis display
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plots as panel plots, which is only a technical detail and not relevant for data analy-
sis purposes). In principle the panel plot can be any arbitrary statistical graphic, but
usually nothing more complex than a scatterplot is chosen. All panel plots share the
same scale. Up to three categorical variables can be used as conditioning variables to
form rows, columns, and pages of the trellis display. To annotate the conditioning
categories of each panel plot, the so-called strip labels are plotted atop each panel
plot, listing the corresponding category names. he two remaining variables – the
so-called adjunct variables – can be coded using different glyphs and colors (if the
panel plot is a glyph-based plot).
Trellis displays introduce the concept of shingles. Shingling is the process of di-

viding a continuous variable into (possibly overlapping) intervals in order to convert
this continuous variable into a discrete variable. Shingling is quite different to con-
ditioning with categorical variables. Overlapping shingles/intervals leads to multiple
representations of data within a trellis display, which is not the case for categorical
variables. Furthermore, it is hard to judge which intervals/cases have been chosen to
build a shingle. Trellis displays show the interval of a shingle using an interval of the
strip label. his is a solution which does not waste plotting space, but the informa-
tion on the intervals is hard to read from the strip label. Nonetheless, there is a valid
motivation for shingling, which is illustrated in Sect. ...
In Fig. . we find one conditioning variable (Car Type) and one axis variable (Gas

Mileage).he panel plot is a boxplot. Strip labels have been omitted as the categories
can be annotated traditionally.
An example of a more complex trellis display can be found in Fig. .. For the

same cars data set as in Fig. ., the scatterplot ofMPG vs.Weight is plotted.hus the
panel plot is a scatterplot. he axis variables areMPG andWeight. he grid is set up
by the two conditioning variables Car Type along x andDrive along y. A fith variable
is included as adjunct variable. he Number of Cylinders is included by coloring the
points of the scatterplots. he upper strip label shows the category ofDrive, the lower
strip label that of Car Type. In Fig. . we find a common problem of trellis displays.
Although the data set has almost  observations,  of the  panels are empty, and
 panels have fewer than  observations.

Trellis Display vs. Mosaic Plots6.3.2

Trellis displays and mosaicplots do not have very much in common.his can be seen
when comparing Figs. . and .. Obviously the panel plot is not a -D mosaicplot,
which makes the comparison a bit difficult. On the other hand, the current imple-
mentations of trellis displays in R do not offer mosaicplots as panel plots, either.
In Fig. . the interaction structure is far harder to perceive than in the original

mosaicplot. In a mosaicplot the presence of independence can be seen by a straight
crossing of the dividing gaps of the categories (in Fig. . the user preference and
the prior usage of product M can be regarded as independent for sot water and low
temperatures; see lower right panel in the figure). But what does independence look
like in the conditioned barchart representation of the trellis display of Fig. .? Two
variables in the panel plot are independent iff the ratios of all corresponding pairs of
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Figure .. [his figure also appears in the color insert.] A trellis display incorporating five variables of the cars data set
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Figure .. A trellis display of the detergent data from Figs. . and .

levels of two variables are equal, i.e., the two barcharts are identical except for a scal-
ing factor.hus the only independence can be found in the panel for low temperature
and sot water. Obviously it is hard to compare the ratios for more than just two lev-
els per variable and for large absolute differences in the cell counts. Furthermore, it
is even harder to quantify and compare interactions. his is because it is nontrivial
to simultaneously judge the influence of differences in ratio and absolute cell sizes.
Nonetheless, there exist variations of mosaicplots (see Hofmann, , Chapter

III. same volume) that use an equal-sized grid to plot the data. Mosaic-plot vari-

Figure .. A mosaicplot in multiple multiple-barchart variation of the detergent data set that conforms

exactly to the representation used in the trellis display of Fig. .
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ations using an equal-sized grid to plot data are same bin size, fluctuation diagrams,
andmultiple barcharts.
Figure . shows a mosaicplot in multiple multiple-barchart view with splitting

directions x , y, x , x. he way the information is plotted is exactly the same as in
Figs. . and .. Flexible implementations of mosaicplots offering these variations
can be found inMondrian (heus, ) and MANET (Unwin et al., ).

Trellis Displays and Interactivity 6.3.3

he conditional framework in a trellis display can be regarded as static snapshots of
interactive statistical graphics. he single view in a panel of a trellis display can also
be thought of as the highlighted part of the graphics of the panel plot for the con-
ditioned subgroup. his can be best illustrated by looking at the cars data set again.
Figure . shows a screenshot of an interactive session. Selecting a specific subgroup
in a barchart or mosaicplot is one interaction. Another interaction would be brush-
ing. Brushing a plotmeans to steadily move a brush, i.e., an indicator for the selection
region, along one or two axes of a plot. he selected interval from the brush can be
seen as an interval of a shingle variable. When a continuous variable is subdivided
into, e.g., five intervals, this corresponds to five snapshots of the continuous brushing
process from the minimum to the maximum of that variable. For the same scatter-
plot shown in Fig. ., Fig. . shows a snapshot of a brush selecting the lowest val-
ues of the conditioning variables Engine Size andHorsepower. Now the motivation of
shingle variables is more obvious, as they relate directly to this interactive technique.
Brushing with linked highlighting is certainly far more flexible than the static view
in a trellis display. On the other hand, the trellis display can easily be reproduced in
printed form, which is impossible for the interactive process of brushing.

Figure .. Selecting the group of front-wheel-drive sedans in the mosaicplot in multiple-barchart view

(let), one gets the corresponding panel plot (scatterplot on right) from Fig. . in the highlighted

subgroup
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Figure .. Brushing in the conditioning scatterplot (let), one gets the panel plot (scatterplot on right)

from Fig. . in the highlighted subgroup

Visualization of Models6.3.4

he biggest advantage of trellis displays is the common scale among all plot panels.
his allows an effective comparison of the panel plots between rows, columns, and
pages, depending on the number of conditioning variables and the type of panel plot.
Trellis displays are most powerful when used for model diagnostics. In model diag-
nostics one is most interested in understanding for what data the model fits well and
for which cases it does not.
In a trellis display the panel plot can incorporate model information like fitted

curves or confidence intervals conditioned for exactly the subgroup shown in the
panels. For each panel, the fit and its quality can then be investigated along with
the raw data. Figure . shows the same plot as in Fig. . except for the adjunct
variable. Each scatterplot has a lowess smoother superimposed. One problem with
trellis displays is the fact that it is hard to judge the number of cases in a panel plot. For
example, in Fig. . it would be desirable to have confidence bands for the scatterplot
smoother in order to be able to judge the variability of the estimate across panels.

Wrap-up
As can be seen from the examples in this section, trellis displays are most useful for
continuous axis variables, categorical conditioning variables, and categorical adjunct
variables. Shingling might be appropriate under certain circumstances, but it should
generally be avoided to ease interpretability.
he major advantage of trellis displays over other multivariate visualization tech-

niques is the flat learning curve of such a display and the possibilities of static re-
production as current trellis display implementations do not offer any interactions.
Trellis displays also offer the possibility of easily adding model information to the
plots.



H
ig
h
-d
im

e
n
sio

n
a
lD

a
ta

V
isu

a
liza

tio
n

1
6
3

Figure .. he same trellis display as in Fig. . with an additional lowess smoother superimposed
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Nevertheless, interactive linked graphics are usually more flexible in exploratory
data analysis applications. Linking the panel plot to barcharts or mosaicplots of the
conditioning variables and/or adjunct variables or brushing over a shingle variable
is more flexible, though these techniques lack the global overview and the possibility
of static reproduction.

Parallel Coordinate Plots6.4

Parallel coordinate plots, as described by Inselberg (, Chapter III. same vol-
ume), escape the dimensionality of two or three dimensions and can accommodate
many variables at a time by plotting the coordinate axes in parallel. hey were intro-
duced by Inselberg () and discussed in the context of data analysis by Wegman
().

Geometrical Aspects vs. Data Analysis Aspects6.4.1

Whereas in Inselberg (, Chapter III. same volume), the geometrical prop-
erties of parallel coordinate plots are emphasized to visualize properties of high-
dimensional data-mining and classification methods, this section will investigate the
main use of parallel coordinate plots in data analysis applications. hemost interest-
ing aspects in using parallel coordinate plots are the investigation of groups/clusters,
outliers, and structures over many variables at a time. hree main uses of parallel
coordinate plots in exploratory data analysis can be identified as the following:

Overview
No other statistical graphic can plot so much information (cases and variables)
at a time. hus parallel coordinate plots are an ideal tool to get a first overview of
a data set. Figure . shows a parallel coordinate plot of almost  cars with 
variables. All axes have been scaled to min-max. Several features, like a few very
expensive cars, three very fuel-efficient cars, and the negative correlation between
car size and gas mileage, are immediately apparent.
Profiles

Despite the overview functionality, parallel coordinate plots can be used to visu-
alize the profile of a single case via highlighting. Profiles are not only restricted to
single cases but can be plotted for a whole group, to compare the profile of that
group with the rest of the data.
Using parallel coordinate plots to profile cases is especially efficient when the co-
ordinate axes have an order like time.
Figure . shows an example of a single profile highlighted – in this case, the
most fuel-efficient car.
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Figure .. Parallel coordinate plot for  variables on almost  cars

Monitor

When working on subsets of a data set parallel coordinate plots can help to relate
features of a specific subset to the rest of the data set. For instance, when looking
at the result of a multidimensional scaling procedure, parallel coordinate plots
can help to find the major axes, which influence the configuration of the MDS.
Figure . shows a -D MDS along with the corresponding parallel coordinate
plot. Querying the letmost cases in the MDS shows that these cars are all hy-
brid cars with very high gas mileage. he top right cases in the MDS correspond
to heavy cars like pickups and SUVs. Obviously, similar results could have been
found with biplots.

Figure .. PCP from Fig. . with the most fuel-efficient car (Honda Insight dr.) highlighted



166 Martin Theus

Figure .. MDS (bottom) and parallel coordinate plot (top) of the cars data set. he four cars in the

lower right of the MDS are highlighted and happen to be the most expensive and most powerful cars in

the data set

Limits6.4.2

Parallel coordinates are oten overrated with respect to the insight they provide into
multivariate features of a data set. Obviously scatterplots are superior for investigat-
ing -D features, but scatterplot matrices (SPLOMs) need far more space to plot the
same information as PCPs. Even the detection of multivariate outliers is not some-
thing that can usually be directly aided by parallel coordinates. Detecting features
in parallel coordinates that are not visible in a -D or -D plot is rare. On the other
hand, parallel coordinate plots are extremely useful for interpreting the findings of
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multivariate procedures like outlier detection, clustering, or classification in a highly
multivariate context.
Although parallel coordinate plots can handle many variables at a time, their ren-

dering limits are reached very soon when plotting more than only a few hundreds of
lines.his is due to overplotting, which is far worse than with scatterplots, since par-
allel coordinate plots only use one dimension to plot the information and the glyph
used (a line) prints far more ink than the glyphs in a scatterplot (points). One solu-
tion to coping with overplotting is to use α-blending. When α-blending is used, each
polygon is plotted with only α% opacity, i.e., ( − α)% transparency. With smaller α
values, areas of high line density are more visible and hence are better contrasted to
areas with a small density.
Figures . to . use α-blending to make the plots better readable or to empha-

size the highlighted cases. In the cars data set we only look at fewer than  cases,
and one can imagine how severe the overplotting will get once thousands of poly-
lines are plotted.
Figures . and . show two examples of how useful α-blending can be. he

so-called “Pollen” data used in Fig. . come from an ASA data competition in the
late s. he data are completely artificial and have the word “E U R E K A” woven
into the center of the simulated normal distributions. he almost  cases in five
dimensions produce a solid black band without any α-blending applied. Going down
to an alpha value of as little as . will reveal a more solid thin line in the center of
the data. Zooming in on these cases will find the word “Eureka,” which just increases
the simulated density in the center enough to be visible.
he data in Fig. . are real data from Forina et al. () on the fatty acid content

of Italian olive oil samples from nine regions. he three graphics show the same plot
of all eight fatty acids with α-values of ., ., and .. Depending on the amount
of α-blending applied, the group structure of some of the nine regions is more or less
visible.
Note that it is hard to give general advice on how much α-blending should be

applied because the rendering system and the actual size of the plot may change its

Figure .. he “Pollen” data with α =  (let) and α = . (right)
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Figure ..he “Olive Oils” data with α = . (top), α = . (middle), and α = . (bottom)
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appearance substantially. As with many exploratory techniques, the user should ex-
periment with different settings until he or she feels comfortable enough with the
insight gained.

Sorting and Scaling Issues 6.4.3

Parallel coordinate plots are especially useful for variables which either have an order
such as time or all share a common scale. In these cases, scaling and sorting issues
are very important for a successful exploration of the data set.

Sorting
Sorting in parallel coordinate plots is crucial for the interpretation of the plots, as
interesting patterns are usually revealed at neighboring variables. In a parallel coor-
dinate plot of k variables, only k −  adjacencies can be investigated without reorder-
ing the plot. he default order of a parallel coordinate plot is usually the sequence
in which the variables are passed to the plotting routine, in most cases the sequence
in the data file itself. In many situations this order is more or less arbitrary. Fortu-
nately, one only needs � k+

 � different orderings to see all adjacencies of k variables
(see Wegman, ).
Whenever all, or at least groups of, variables share the same scale, it is even more

helpful to be able to sort these variables according to some criterion. his can be
statistics of the variables (either all cases or just a selected subgroup) like minimum,
mean, range, or standard deviation, the result of a multivariate procedure, or even
some external information. Sorting axes can reduce the visual clutter of a parallel
coordinate plot substantially.
If data sets are not small, sorting options have to be provided both manually and

automatically.

Scalings
Besides the default scaling, which is to plot all values over the full range of each axis
between the minimum and the maximum of the variable, several other scalings are
useful. he most important scaling option is to either individually scale the axes or
to use a common scale over all axes. Other scaling options define the alignment of
the values, which can be aligned at:

he mean
he median
A specific case
A specific value

For an aligned display, it is not obvious what the range of the data should be when an
individual scale is chosen. For individual scales, a σ scaling is usually a good choice
to map the data onto the plot area.
Alignments do not force a common scale for the variables. Common scaling and

alignments are independent scaling options.
Figure . shows a parallel coordinate plot for the individual stage times of the

 cyclists who finished the  Tour de France bicycle race. In the upper plot we
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Figure ..hree scaling options for the stage times in the Tour de France : Top: all stages are

scaled individually between minimum and maximum value of the stage (usual default for parallel

coordinate plots)Middle: a common scale is used, i.e., the minimum/maximum time of all stages is

used as the global minimum/maximum for all axes (this is the only scaling option where a global and

common axis can be plotted) Below: common scale for all stages, but each stage is aligned at the

median value of that stage, i.e., differences are comparable, locations not
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see the default min-max scaling. Except for some local groups, not much can be seen
from this plot. he middle plot shows the common scaling option for the same data.
Now the times are comparable, but due to the differences in absolute time needed
for a short time trial and a hard mountain stage, the spread between the first and the
last cyclist is almost invisible for most of the stages. Again, except for some outliers,
there is hardly anything to see in this representation. he lower plot in Fig. . shows
the same data as the upper two plots, but now each axis is aligned at its median (the
median has the nice interpretation of capturing the time of the peloton). Note that
the axes still have the same scale, i.e., time differences are still comparable, but now
are aligned at the individual medians. his display option clearly reveals the most
information.
For a better description of the race as a whole, it is sensible to look at the cumula-

tive times instead of the stage times. Figure ., let, shows a parallel coordinate plot
for the cumulative times for each of the  cyclists who completed the tour for the
corresponding stage. he scaling is the typical default scale usually found in parallel
coordinate plots, i.e., individually scaled between minimum and maximum of each
axis. All drivers of the team “Discovery Channel” are selected. Although this scaling
option gives the highest resolution for these data, it is desirable to have a common
scale for all axes. A simple common scale won’t do the trick here, as the cumulative
times keep growing, dwarfing the information of the early stages. Figure ., right,
uses a common scale, but additionally each axis is aligned at the median of each vari-
able. (Time differences at early stages are not very interesting for the course of the
race). Figure ., right, now shows nicely how the field spreads from stage to stage
and how the mountain stages (e.g., stages  to  are stages in the Alps) spread the
field far more than flat stages. he drivers of the team “Discovery Channel” are also
selected in this plot, showing how the team was separated during the course of the
race, although most of the cyclists remained in good positions, supporting the later
winner of the race.
he development of the race can be compared in Fig. ., where the plot from

Fig. ., right, is shown along with two profile plots. he upper profile plot shows
the cumulative category of the stage, which is the sum of  minus the category of
a mountain in the stage. he peaks starting at stages  and  nicely indicate the
mountain stages in the Pyrenees and the Alps. he lower profile plot gives the av-
erage speed of the winner of each stage. Obviously both profiles are negatively cor-
related.

Wrap-up 6.4.4

Parallel coordinate plots are not very useful “out of the box,” i.e., without features
like α-blending and scaling options. he examples used in this chapter show how
valuable these additions are in order to get a sensible insight into high-dimensional
continuous data. Highlighting subgroups can give additional understanding of group
structures and outliers.
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Figure .. Results from  Tour de France. Let: each axis shows the cumulative results for all 

cyclists who finished the tour. Right: common scaling applied and axes aligned at medians of each stage.

(he eight riders from team “Discovery Channel” are selected)

Projection Pursuit and the Grand Tour6.5

he grand tour (see Buja and Asimov, ) is by definition (see Chen et al., ,
Chapter III.) a purely interactive technique. Its basic definition is:
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Figure .. he same plot as Fig. ., right, shown in the middle, with a profile plot of the cumulative

category of the mountains in the stage (top) and the average speed (of the winner) of each stage

(bottom)

Acontinuous -parameter family of d-dimensional projections of p-dimensional
data that is dense in the set of all d-dimensional projections in R

p . he pa-
rameter is usually thought of as time.

For a -D rotating plot, parameter p equals  and parameter d equals . In contrast
to the -D rotating plot, the grand tour does not have classical rotational controls but
uses successive randomly selected projections. Figure . shows an example of three
successive planes P, P, and P in three dimensions.
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Figure .. Example path of a grand tour

he planes between the randomly selected base planes are interpolated to get
a smooth pseudorotation, which is comparable to a physical -D rotation. A more
technical description of the grand tour can be found in Buja et al. (). Although
the human eye is not very well trained to recognize rotations in more than three di-
mensions, the grand tour helps reveal structures like groups, gaps, and dependencies
in high-dimensional data, which might be hard to find along the orthogonal projec-
tions.
Although projections are usually monitored using a scatterplot, any other plot like

a histogram or parallel coordinate plot can be used to display the projected data (see,
e.g., Wegman, ).
Projection pursuit is a means to get more guidance during the rotation process.

A new projection plane is selected by optimizing a projection pursuit index, which
measures a feature like point mass, holes, gaps, or other target structures in the data.

Grand Tour vs. Parallel Coordinate Plots6.5.1

he grand tour is a highly exploratory tool, even more so than the other methods
discussed in this chapter. Whereas in classical parallel coordinate plots the data are
still projected to orthogonal axes, the grand tour permits one to look at arbitrary
nonorthogonal projections of the data, which can reveal features invisible in orthog-
onal projections. Figure . shows an example of three projections of the cars data
set using the grand tour inside ggobi (see Swayne et al., ).he cases are colored
according to the number of cylinders. Each plot has the projection directions of the
 variables added at the lower let of the plot. Obviously these static screenshots of
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Figure .. hree example screenshots of three different projections of the cars data set. he cases are

colored according to the number of cylinders. he rightmost plot has the least discrimination of the

groups but the strongest separation of an outlier, the “Porsche GT”

the projections are not very satisfactory unless they reveal a striking feature.Whereas
the parallel coordinate plot of the same data (cf. Fig. .) can at least show the uni-
variate distributions along with some bivariate relationships, the grand tour fails to
do so, and focuses solely on the multivariate features, whichmay be visible in certain
projections.
he grand tour can help to identify the geometry of variables beyond the limits of

the three dimensions of a simple rotating plot. Nevertheless, examples of structures
inmore than five dimensions are rare, even when using the grand tour. In these cases
the fixed geometrical properties of parallel coordinate plots seem to be an advantage.
Monitoring the projected data in parallel coordinates instead of a simple scatter-

plot is a promising approach to investigating data beyond ten or even more dimen-
sions. Unfortunately, only very few flexible implementations of the grand tour and
projection pursuit exist, which limits the possibility of a successful application of
these methods.

Recommendations 6.6

his chapter showed the application, strengths, and weaknesses of the most impor-
tant high-dimensional plots in statistical data visualization. All plots have their spe-
cific field of application, where no other method delivers equivalent results.he fields
of application are broader or narrower depending on the method. All four methods
and techniques discussed in this chapter, i.e., mosaicplots, trellis displays, parallel co-
ordinate plots, and the grand tour and projection pursuit, need a certain amount of
training to be effective. Furthermore, training is required to learn the most effective
use of the different methods for different tasks.
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Some of the plots are optimized for presentation graphics (e.g., trellis displays),
others, in contrast only make sense in a highly interactive and exploratory setting
(e.g., grand tour).
he high-dimensional nature of the data problems for the discussed plots calls

for interactive controls – be they rearrangements of levels and/or variables or differ-
ent scalings of the variables or the classical linked highlighting – which put different
visualization methods together into one framework, thus further increasing the di-
mensionality.
Figure . illustrates the situation. When analyzing high-dimensional data, one

needs more than just one visualization technique. Depending on the scale of the vari-
ables (discrete or continuous) and the number of variables that should be visual-
ized simultaneously, one or another technique is more powerful. All techniques –
except for trellis displays – have in common that they only rise to their full power
when interactive controls are provided. Selection and linking between the plots can
bring the different methods together, which then gives even more insight. he re-
sults found in an exploration of the data may then be presented using static graph-
ics. At this point, trellis displays are most useful to communicate the results in an
easy way.
Finally, implementations of these visualization tools are needed in sotware. Right

now, most of them are isolated features in a single sotware package. Trellis displays
can only be found in the R package, or the corresponding commercial equivalent

Figure .. Diagram illustrating the importance of interactivity and linking of the high-dimensional

visualization tools in statistical graphics
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S-Plus, and grand tour and projection pursuit only in the ggobi package. It would be
desirable to have a universal tool that could integrate all of the methods in a highly
interactive and tightly linked way.
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Introduction7.1

In the context of data visualization, a glyph is a visual representation of a piece of
data where the attributes of a graphical entity are dictated by one or more attributes
of a data record. For example, the width and height of a box could be determined by
a student’s score on the midterm and final exam for a course, while the box’s color
might indicate the gender of the student.hedefinition above is rather broad, as it can
cover such visual elements as the markers in a scatterplot, the bars of a histogram,
or even an entire line plot. However, a narrower definition would not be sufficient
to capture the wide range of data visualization techniques that have been developed
over the centuries that are termed glyphs.
Glyphs are one class of visualization techniques used for multivariate data. heir

major strength, as compared to techniques such as parallel coordinates, scatterplot
matrices, and stacked univariate plots, is that patterns involving more than two or
three data dimensions can oten be more readily perceived. Subsets of dimensions
can form composite visual features that analysts can be trained to detect and classify,
leading to a richer description of interrecord and intrarecord relationships than can
be extracted using other techniques.
However, glyphs do have their limitations. hey are generally restricted in terms of

how accurately they can convey data due to their size and the limits of our visual per-
ception system to measure different graphical attributes. here are also constraints
on the number of data records that can be effectively visualized with glyphs; exces-
sive data set size can result in significant occlusion or the need to reduce the size of
each glyph, both of which make the detection of patterns difficult, if not impossi-
ble. hus glyphs are primarily suitable for qualitative analysis of modest-sized data
sets.
his paper describes the process of glyph generation – the mapping of data at-

tributes to graphical attributes – and presents some of the perceptual issues that can
differentiate effective from ineffective glyphs. Several important issues in the use of
glyphs for communicating information and facilitating analysis are also discussed,
including dimension order and glyph layout. Finally, some ideas for future directions
for research on visualization using glyphs are presented.

Data7.2

Glyphs are commonly used to visualize multivariate data sets.Multivariate data, also
called multidimensional or n-dimensional data, consist of some number of items or
records, n, each of which is defined by a d-vector of values. Such data can be viewed
as a dxn matrix, where each row represents a data record and each column repre-
sents an observation, variable, or dimension. For the purpose of this paper, we will
assume a data item is a vector of scalar numeric values. Categorical and other nonnu-
meric values can also be visualized using glyphs, though oten only ater conversion
to numeric form (Rosario et al., ). Nonscalar values can also be incorporated by
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linearizing the embedded vectors or tensors. We also assume that a data set consists
of one or more of such data items/records and that for each position in the vector we
can calculate a minimum and maximum value. his allows us to normalize the data
to facilitate mapping to graphical attributes.
Variables/dimensions can be independent or dependent, which might imply that

some ordering or grouping of dimensions could be beneficial. hey can be of homo-
geneous type, such as a set of exam grades, or of mixed/heterogeneous types, such as
most census data.hismight suggest the use of a consistent mapping (e.g., all dimen-
sions map to line lengths) or separation based on type so that each distinct group of
related dimensions might control one type of mapping.

Mappings 7.3

Many authors have developed lists of graphical attributes to which data values can be
mapped (Cleveland and McGill, ; Cleveland, ; Bertin, ). hese include
position (-, -, or -D), size (length, area, or volume), shape, orientation, material
(hue, saturation, intensity, texture, or opacity), line style (width, dashes, or tapers),
and dynamics (speed of motion, direction of motion, rate of flashing).
Using these attributes, a wide range of possible mappings for data glyphs are pos-

sible. Mappings can be classified as follows:
One-to-one mappings, where each data attribute maps to a distinct and different
graphical attribute;
One-to-many mappings, where redundant mappings are used to improve the ac-
curacy and ease at which a user can interpret data values; and
Many-to-one mappings, where several or all data attributes map to a common
type of graphical attribute, separated in space, orientation, or other transforma-
tion.

One-to-one mappings are oten designed in such a way as to take advantage of the
user’s domain knowledge, using intuitive pairings of data to graphical attribute to
ease the learning process. Examples include mapping color to temperature and flow
direction to line orientation. Redundant mappings can be useful in situations where
the number of data dimensions is low and the desire is to reduce the possibility of
misinterpretation. For example, one might map population to both size and color to
ease analysis for color-impaired users and facilitate comparison of two populations
with similar values. Many-to-one mappings are best used in situations where it is
important to not only compare values of the same dimension for separate records,
but also compare different dimensions for the same record. For example, mapping
each dimension to the height of a vertical bar facilitates both intrarecord and inter-
record comparison. In this paper, we focus primarily on one-to-one and many-to-
one mappings, although many of the principles discussed can be applied to other
mappings.
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Examples of Existing Glyphs7.4

he following list (from Ward, ) contains a subset of glyphs that have been de-
scribed in the literature or are in common use. Some are customized to a particular
application, such as visualizing fluid flow, while others are more general purpose. In
a later section we examine many of these mappings and try to identify some of their
strengths and weaknesses.

Profiles (du Toit, ): height and color of bars (Fig. .a).
Stars (Siegel et al., ): length of evenly spaced rays emanating from center
(Fig. .b).
Anderson/metroglyphs (Anderson, ; Gnanadesikan, ): length of rays
(Fig. .b).
Stick figures (Pickett and Grinstein, ): length, angle, color of limbs (Fig. .c).
Trees (Kleiner and Hartigan, ): length, thickness, angles of branches; branch
structure derived from analyzing relations between dimensions (Fig. .c).
Autoglyph (Beddow, ): color of boxes (Fig. .d).
Boxes (Hartigan, ): height, width, depth of first box; height of successive
boxes (Fig. .d).
Hedgehogs (Klassen andHarrington, ): spikes on a vector field, with variation
in orientation, thickness, and taper.
Faces (Chernoff, ): size and position of eyes, nose,mouth; curvature ofmouth;
angle of eyebrows (Fig. .e).
Arrows (Wittenbrink et al., ): length, width, taper, and color of base and head
(Fig. .f).
Polygons (Schroeder et al., ): conveying local deformation in a vector field via
orientation and shape changes.
Dashtubes (Fuhrmann and Groller, ): texture and opacity to convey vector
field data.
Weathervanes (Friedman et al., ): level in bulb, length of flags (Fig. .f).
Circular profiles (Mezzich and Worthington, ): distance from center to ver-
tices at equal angles.
Color glyphs (Levkowitz, ): colored lines across a box.
Bugs (Chuah and Eick, ): wing shapes controlled by time series; length of
head spikes (antennae); size and color of tail; size of body markings.
Wheels (Chuah and Eick, ): time wheels create ring of time series plots, value
controls distance from base ring; -D wheel maps time to height, variable value
to radius.
Boids (Kerlick, ): shape and orientation of primitivesmoving through a time-
varying field.
Procedural shapes (Rohrer et al., ; Ebert et al., ): blobby objects con-
trolled by up to  dimensions.
Glyphmaker (Ribarsky et al., ): user-controlled mappings.
Icon Modeling Language (Post et al., ): attributes of a -D contour and the
parameters that extrude it to -D and further transform/deform it.
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Figure .. Examples of multivariate glyphs (fromWard, )

he list above is ample evidence that a significant number of possible mappings exist,
many of which have yet to be proposed or evaluated. he question then becomes
determining which mapping will best suit the purpose of the task, the characteristics
of the data, and the knowledge and perceptual abilities of the user. hese issues are
described in the sections below.

Biases in GlyphMappings 7.5

One of the most common criticisms of data glyphs is that there is an implicit bias
in most mappings, i.e., some attributes or relationships between attributes are easier
to perceive than others. For example, in profile or star glyphs, relationships between
adjacent dimensions are much easier to measure than those that are more separated,
and inChernoff faces, attributes such as the length of themouth or nose are perceived
more accurately than graphical attributes such as curvature or radius.
In this section I attempt to isolate and categorize some of these biases, using both

results from prior studies on graphical perception as well as our own empirical stud-
ies. It is clear, however, that much more substantial work is needed in measuring and
correcting for these biases when designing and utilizing glyphs in data analysis.
Perception-based bias Certain graphical attributes are easier to measure and com-

pare visually than others. For example, Cleveland () reports on experiments
that show length along a common axis can be gauged more accurately than, say,
angle, orientation, size, or color. Figure . shows the same data with three differ-
ent mappings. Relationships are easier to see with the profile glyphs (length on
a common base), followed by the star glyphs (length with different orientations).
he pie glyph fares the worst, as the user is required to compare angles. hus in
mappings that are not many-to-one (i.e., those that employ a mixture of graphi-
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Figure .. Profile, glyphs, and pie glyphs of a subset of data regarding five economic indicators, as

generated with SpiralGlyphics (Ward and Lipchak, ). Features within and between glyphs are

generally easier to compare with profile glyphs

cal attributes), there is an inherent difference in our ability to extract values from
different data dimensions.

Proximity-based bias In most, if not all, glyphs, relationships between data dimen-
sions mapped to adjacent features in a glyph are easier to perceive and remember
than those mapped to nonadjacent features. To the best of my knowledge, no one
has performed experiments to quantify the degree of this bias, althoughChernoff
and Rizvi () reported asmuch as % variance in results by rearranging data
mappings within Chernoff faces. It is likely that the amount of bias will depend
as well on the type of glyph used, as comparing lengths of bars with a common
baseline will be easier than comparing the lengths of rays in a star glyph.

Grouping-based bias Graphical attributes that are not adjacent but may be seman-
tically or perceptually grouped may result in the introduction of bias as well. For
example, if we map two variables to the size of the ears in a face, the relationship
between those variables may be easier to discern than, say, mapping one to the
shape of the eye and the other to the size of the adjacent ear.

Ordering of Data Dimensions/Variables7.6

Each dimension of a data set will map to a specific graphical attribute. By modify-
ing the order of dimensions while preserving the type of mapping, we will generate
alternate “views” of the data. However, barring symmetries, there are N! different
dimension orderings, and thus distinct views. An important issue in using glyphs is
to ascertain which ordering(s) will be most supportive of the task at hand. In this
section, I will present a number of dimension-ordering strategies that can be used
to generate views that are more likely to provide more information than random
ordering.
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Correlation-driven 7.6.1

Many researchers have proposed using correlation and other similarity measures
to order dimensions for improved visualization. Bertin’s reorderable matrix (Bertin,
) showed that by rearranging the rows and columns of a tabular display, groups
of related records and dimensions could be exposed. Ankerst et al. () used cross-
correlation and a heuristic search algorithm to rearrange dimensions for improved
interpretability. Friendly and Kwan () introduced the notion of effect ordering,
where an ordering of graphical objects or their attributes would be decided based on
the effect or trend that a viewer seeks to expose. In particular, they showed that by
ordering the dimensions of a star glyph based on their angles in a biplot (basically
each dimension is represented by a line whose angle is controlled by the first two
eigenvectors), related dimensions would get grouped together. his is related to the
method reported by Borg and Staufenbiel (), where they compared traditional
snow flake and star glyphs with what they called factorial suns, which display each
data point using the dimension orientations generated via the first two eigenvectors
rather than uniformly spaced angles.heir experiments showed significant improve-
ment by naive users in interpreting data sets.

Symmetry-driven 7.6.2

Gestalt principles indicate we have a preference for simple shapes, and we are good
at seeing and remembering symmetry. In Peng et al. (), the shapes of star glyphs
resulting from using different dimension orders were evaluated for two attributes:
monotonicity (the direction of change is constant) and symmetry (similar ray lengths
on opposite sides of the glyph). he ordering that maximized the number of simple
and symmetric shapes was chosen as the best. User studies showed a strong prefer-
ence for visualizations using the ordering optimized in this fashion. We conjecture
that simple shapes are easier to recognize and facilitate the detection of minor shape
variations; for example, shapes with only a small number of concavities and con-
vexities might require less effort to visually process than shapes with many features.
Also, if most shapes are simple, it is much more apparent which records correspond
to outliers. More extensive formal evaluations are needed to validate these conjec-
tures, however. See Fig. . for an example.

Data-driven 7.6.3

Another option is to base the order of the dimensions on the values of a single record
(base), using an ascending or descending sorting of the values to specify the global
dimension order. his can allow users to see similarities and differences between the
base record and all other records. It is especially good for time-series data sets to
show the evolution of dimensions and their relationships over time. For example,
sorting the exchange rates of ten countries with the USA by their relative values in
the first year of the time series exposes a number of interesting trends, anomalies,
and periods of relative stability and instability (Fig. .). In fact, the original order is
nearly reversed at a point later in the time series (not shown).
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Figure .. Star glyphs for a subset of the cars data set using a random dimension ordering and one

based on shape analysis. More simple shapes can be seen in the second version than the first, which we

believe can facilitate detection of groups of similar shapes as well as outliers

User-driven7.6.4

As a final strategy, we can allow users to apply knowledge of the data set to order and
group dimensions by many aspects, including derivative relations, semantic simi-
larity, and importance. Derivative relations mean that the user is aware that one or
more dimensions may simply be derived through combinations of other dimensions.
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Figure .. [his figure also appears in the color insert.] Exchange rate data using the original ordering

of dimensions and then ordered by the first data record. Significant features in the ordered version,

such as the sudden rise in value of one of the lower currencies during the third year and the progressive

alignment of several of the inner currencies, are difficult to detect in the original ordering
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hese derivative relations might ormight not get exposed in correlation-based order-
ing. Semantic similarities indicate dimensions that have related meanings within the
domain; even if the values do not correlate well, users might logically group or or-
der them to help in their analysis task. Finally, some dimensions are likely to have
more importance than others for a given task, and thus ordering or assigning such
dimensions to more visually prominent features of the glyph (or, in some cases, the
features the user is likely to examine first, such as the letmost bar of a profile glyph)
will likely have a positive impact on task performance.

Glyph Layout Options7.7

he position of glyphs can convey many attributes of data, including data values or
structure (order, hierarchy), relationships, and derived attributes. In this section I will
describe a taxonomy of glyph layout strategies, presented in detail in (Ward, ),
based on the following considerations:

Whether the placement will be data driven, e.g., based on two or more data di-
mensions, or structure driven, such as methods based on an explicit or implicit
order or other relationship between data points.
Whether overlaps between glyphs will be allowed. his can have a significant im-
pact on the size of the data set that can be displayed, the size of the glyphs used,
and the interpretability of the resulting images.
he tradeoff between optimized screen utilization, such as found in space-filling
algorithms, versus the use of white space to reinforce distances between data
points.
Whether the glyph positions can be adjusted ater initial placement to improve
visibility at the cost of distorting the computed position. Overlapping glyphs can
be difficult to interpret, but any movement alters the accuracy of the visual de-
piction. We need to know, for the given domain, what the tradeoffs are between
accuracy and clarity.

Data-driven Placement7.7.1

Data-driven glyph placement, as the name implies, assumes a glyph will be posi-
tioned based entirely on some or all of the data values associated with the corre-
sponding record. We differentiate two classes of such techniques based on whether
the original data values are used directly or whether positions are derived via com-
putations involving these data values. An example of the first would be the position-
ing of markers in a scatterplot using two dimensions (Fig. .), while an example of
the second would be to use PCA to generate the x and y coordinates of the result-
ing glyph (Fig. .). More complex analysis has also been used in glyph placement.
Several researchers (Globus et al., ; Helman and Hesselink, ) have proposed
methods for placing glyphs at critical points within flow fields from fluid dynamics



Multivariate Data Glyphs: Principlesand Practice 189

Figure .. Example of positioning glyphs according to two dimensions. In this case, the cars data set

displayed with star glyphs using MPG and horsepower to specify position. Groupings of similar shapes

and some outliers are visible

simulations. he advantages of using the direct method is that position has an easily
interpreted meaning and can act to emphasize or even replace two of the data di-
mensions. he derived methods can add to the information content of the display
and draw the user’s attention to implicit relationships between data records.
Data-driven methods almost always result in some overlap between glyphs, which

can lead tomisinterpretation and undetected patterns. Many methods have been de-
veloped to address this problem via distorting the position information. Random
jitter is commonly added to positions in plotting, especially for data that take on
only a small number of possible values. Other methods use spring- or force-based
methods to minimize or eliminate overlaps while also minimizing the displacement
of glyphs from their original positions (Keim and Hermann, ). Woodruff et al.
() proposed a relocation algorithm that attempts to maintain constant density
across the display. Since distortion introduces error into the visual presentation, it is
best to allow users to control the amount of distortion applied by either setting the
maximum displacement for an individual glyph or the average among all glyphs or
by using animation to show the movement of glyphs from their original positions to
their distorted positions.

Structure-driven Placement 7.7.2

Structure-driven glyph placement assumes the data have some implicit or explicit
structural attribute that can be used to control the position. A common type of struc-
ture is an ordering relationship, such as in time-series or spatial data. Ordering can
also be derived via one or more dimensions (Fig. .).his is different, however, from
data-driven placement algorithms in that the data values only define the ordering re-
lationship, which is thenused in generating the position. A related structure is a cyclic
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Figure .. Example of positioning glyphs using derived dimensions. In this case, the breakfast cereal

data set is shown using the first two principal components to generate the positions. Again, groups of

similar shapes are clearly visible

relationship, where on top of the linear ordering is a cycle length, which implies that
each glyph is related not only to the adjacent glyphs in the sequence but also the
glyphs in the previous and following cycles. Examples of such cyclic placement are
shown in Fig. ..
Another type of structure that can be used for positioning is hierarchical or tree-

based structures (Ward and Kein, ). hese may be a fixed attribute of the data
(e.g., a computer file system) or computed via, say, a hierarchical clustering algo-
rithm. A wide range of options exist for computing the positions given such a hi-
erarchical structure, as can be seen in the tree-drawing literature (Di Battista et al.,
). Hierarchically structured glyphs allow easy access both to the raw data as well
as aggregation information (Fig. .). Finally, data records might have a network or
graph-based structure, such as geospatial data or the web pages associated with an
organization. Again, methods from the graph-drawing community can be used to
generate the positions for glyphs.
Different structure-driven placement strategies will have different degrees of over-

lap; a grid layout of ordered data records can assure no overlaps, while tree and graph
layouts for dense data sets can result in significant overlap. In cases of overlap, distor-
tionmethods are quite common, as structuremay be easily preserved and visible even
with significant movement of glyphs. Most nonlinear distortion (lens) techniques
(Leung and Apperley, ) allow the user to view one region of the data space in
greater detail than others, shiting the distribution of screen space to provide more
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Figure .. Example of ordering glyphs according to one dimension. In this case, the data set is a subset

of the cars data, sorted by the MPG variable (top to bottom corresponds to low to high MPG). he

highlighted (dark) glyphs represent four-cylinder cars. A clear grouping of shapes is visible. A few

outliers can be seen near the bottom of the figure, which represent six-cylinder cars with good MPG

room for the user’s focus region(s). his usually enables users to see subsets of the
data without the problem of occlusion. Distortion can also be used to enhance sep-
aration of subsets of data into groups. hus in an order-based layout, gaps between
adjacent glyphs can be set proportional to a similarity metric. In a sense, this can be
seen as a combination of structure and data-driven methods (Fig. .).

Evaluation 7.8

Evaluation of the effectiveness of glyphs for information presentation and analysis
can be performed in a number of different ways. In this section, I describe several
such assessment processes, including:

Evaluation based on ranking of human perceptual abilities for different graphical
attributes;
Evaluation based on the speed and accuracy of users performing specific tasks;
Evaluation based on ease of detection of data features in the presence of occlusion
and clutter; and



192 MatthewO.Ward

Figure .. Examples of cyclic data glyph layouts, as generated by SpiralGlyphics (Lipchak and Ward,

; Ward and Lipchak, ). he data consist of five economic indicators over  years. In the first

layout, each row constitutes a cycle, while in the second, each ring of the spiral is one cycle. While both

allow the user to see both intracycle and intercycle variations in the data, the spiral more easily allows

comparison of the end of one cycle and the beginning of the next. In addition, space appears to be

more effectively utilized in the spiral layout for long cycles



Multivariate Data Glyphs: Principlesand Practice 193

Figure .. Profile glyphs of a hierarchically clustered subset of the Iris data. Nonterminal nodes are

computed as the average values of their descendents. he clustering algorithm appears to have done

a reasonable job, though a few outliers exist, such as the cluster associated with the fith node in the

third row

Figure .. Star glyphs of Iris data set, ordered by one dimension and positioned with horizontal

spacing proportional to the distance between adjacent data points. his nonoverlapping layout makes it

easy to identify both clusters and large gaps in the N–D distance where the values for the ordering

dimension are similar to each other
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Evaluation based on the scalability of techniques in terms of number of records
and dimensions.

A large number of evaluation studies on glyphs and other forms of multivariate data
analysis have been carried out over the years. Some of these have been rather ad hoc,
or based just on the opinions and observations of the authors, while others have in-
volved detailed and carefully orchestrated user studies.
Cluff et al. () evaluated and categorized  methods of multivariate data pre-

sentation, including several forms of glyphs. heir evaluation criteria fell into three
groups: objectives, information level and dimension capacity, and global criteria. Un-
der the objectives group they considered accuracy, simplicity, clarity, appearance, and
design. In the information level and dimensional capacity criterion, visualizations are
classified as to what extent they retain the level of information present in the data. At
the lowest level (elementary) is the ability to convey the individual data values, while
at the intermediate level, relationships among subsets of the data can be seen. he
highest level (overall) provides linkages between multiple relationships and allows
users to understand the data sufficiently to solve real tasks. he global criteria group
includes flexibility, interpretability, visual impact, time to mastery, and computa-
tional tractability. For each visualization method, each of these criteria was classified
(subjectively by the authors) as  = does not sufficiently meet objective,  =meets ob-
jective satisfactorily, and  =meets objective in an excellent manner.While the results
of the classifications lack statistical significance due to the small sample size, the cat-
egorization of evaluation criteria was far more extensive than in most other studies.
Lee et al. () analyzed the effectiveness of two glyph techniques (Chernoff faces

and star glyphs) and two spatial mappings, where each data record was simply rep-
resented by a marker whose position was based on similarity to other data records.
Binary data was used, and  subjects were asked a range of questions regarding re-
lationships between records (both local and global). Results showed that the sub-
jects answered many of the questions more quickly and accurately, and with more
confidence, using the spatial mappings. his confirmed the hypothesis of many re-
searchers, which is that glyph interpretation can be quite slow for tasks that involve
a significant scanning and comparison. However, questions regarding the values of
particular data features could not readily be answered with the spatial mappings.he
implication is that, given a known set of questions, it may be possible to assign posi-
tions of simple points to facilitate a task. For general tasks, however, a combination
involving positioning of glyphs based on data relationships, as suggested in the glyph
layout section of this paper, would likely be most effective.
As mentioned earlier, Borg and Staufenbiel () compared snowflake and star

glyphs with factorial suns, with the angles of the lines conveying relationships be-
tween dimensions. In their experiment, they used the classification of  prototypical
psychiatric patients across  attributes into  categories, as determined by  experts.
hen, using each of the  glyph types, they generated drawings of each of the  cases.
hirty beginning psychology students were asked to group the drawings into  cate-
gories based on shape similarity. hey then studied the frequency with which draw-
ings of the same category (according to the experts) were grouped together by the
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students. he results showed a significantly greater success rate with factorial suns as
compared to snowflakes and star glyphs.
Several evaluations of Chernoff faces have been reported since their introduction.

One interesting set of experiments was reported in Morris et al. (), who focused
on studying the effectiveness and preattentiveness of different facial features. Sub-
jects were shown images containing varying numbers of faces, and they were asked
to determine if a face with a designated feature existed. he amount of time required
to complete each task was measured and analyzed. Not surprisingly, the amount of
time needed was proportional to the number of glyphs on the screen. However, the
authors determined that it is not likely that preattentive processing was involved, as
tests done with short duration, even with small numbers of glyphs, yielded poor re-
sults. heir conclusion was that, because glyph analysis with Chernoff faces was be-
ing done sequentially, they are unlikely to provide any advantage over other types of
multivariate glyphs.
A study that placed Chernoff faces ahead of several other glyph types was reported

byWilkinson (). In this study, subjectswere asked to sort sets of glyphs frommost
similar to least similar. he glyphs used were Chernoff faces (Chernoff, ), Blobs
(Andrews, ), castles (Kleiner and Hartigan, ), and stars (Siegel et al., ).
he results were that faces produced results with the best goodness of fit to the real
distances, followed by stars, castles, and blobs. he author felt that the memorability
of the faces helped users to better perform this type of task.

Summary 7.9

Glyphs are a popular, but insufficiently studied, class of techniques for the visualiza-
tion of data. In this paper, we’ve discussed the process and issues of glyph formation
and layout, including the identification of problems of bias due to perceptual limi-
tations and dimension ordering. We also presented techniques for evaluating the ef-
fectiveness of glyphs as a visualization method and some results obtained from eval-
uation.
Many avenues exist for future development and application of glyphs for data and

information visualization. here is a continuing need for glyph designs that mini-
mize bias while maximizing the accuracy of communicating data values. While the
majority of recent designs have been tailored to particular domains and tasks, we be-
lieve there is still room for work on general-purpose glyph designs. Scalability is also
a big issue, as most glyph methods in use are limited either by the number of data
records or data dimensions that can be easily accommodated.Given the growth in the
size and dimensionality of commondata sets, novelmechanisms are needed to enable
users to explore larger and larger amounts of data. Work on aggregation glyphs (Yang
et al., ) or othermultiresolution strategies may be the key to the problem of scale.
Finally, rigorous evaluation is essential to help identify the strengths and weaknesses
of each proposed glyph in terms of user perception, analysis tasks, and data charac-
teristics. Most efforts at evaluation to date have been ad hoc or very limited in scope.



196 MatthewO.Ward

Acknowledgement. he author would like to thank Jing Yang, Ben Lipchak, and Wei Peng
for their help in designing and implementing the sotware systems used to generate the fig-
ures in this paper (XmdvTool and SpiralGlyphics). his work was supported by NSF grants
IIS- and IIS-.

References
Anderson, E. (). A semigraphical method for the analysis of complex problems.

Proc Natl Acad Sci USA, :–.
Andrews, D.F. (). Plots of high dimensional data. Biometrics, :–.
Ankerst, M., Berchtold, S. and Keim, D. (). Similarity clustering of dimensions
for an enhanced visualization of multidimensional data. In: Proceedings of 
IEEE symposium on information visualization, pp. –. IEEE Computer Society
Press, Los Alamitos, CA.

Beddow, J. (). Shape coding of multidimensional data on a microcomputer dis-
play. In: Proceedings of  IEEE conference on visualization, pp. –. IEEE
Computer Society Press, Los Alamitos, CA.

Bertin, J. (). Semiology of graphics. University of Wisconsin Press, Madison, WI.
Borg, I. and Staufenbiel, T. (). Performance of snow flakes, suns, and factorial
suns in the graphical representation of multivariate data. Multivariate Behav Res,
:–.

Chernoff, H. (). he use of faces to represent points in k-dimensional space
graphically. J Am Stat Assoc, :–.

Chernoff, H. and Rizvi, M.H. (). Effect on classification error of random per-
mutations of features in representing multivariate data by faces. J Am Stat Assoc,
:–.

Chuah, M., Eick, S. (). Information rich glyphs for sotware management data.
IEEE Comput Graph Appl, :–.

Cleveland, W. and McGill, R. (). Graphical perception: theory, experimentation
and application to the development of graphical methods. J Am Stat Assoc,
:–.

Cleveland, W. ().Visualizing Data. Hobart, Summit, NJ.
Cluff, E., Burton, R.P. and Barrett, W.A. (). A survey and characterization of
multidimensional presentation techniques. J Imag Technol, :–.

Di Battista, G., Eades, P., Tamassia, R. and Tollis, I. (). Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River, NJ.

du Toit, S., Steyn, A. and Stumpf, R. (). Graphical Exploratory Data Analysis.
Springer, Berlin Heidelberg New York.

Ebert, D., Rohrer, R., Shaw, C., Panda, P., Kukla, J. and Roberts, D. (). Procedural
shape generation for multi-dimensional data visualization. In: Proceedings of Data
Visualization ’, pp. –. Springer, Berlin Heidelberg New York.

Friedman, J., Farrell, E., Goldwyn, R., Miller, M. and Sigel, J. (). A graphic way
of describing changing multivariate patterns. In: Proceeding of the th Interface
Symposium on Computer Science and Statistics, pp. -.



Multivariate Data Glyphs: Principlesand Practice 197

Friendly, M. and Kwan, E. (). Effect ordering for data displays. Comput Stat
Data Anal, :–.

Fuhrmann, A. and Groller, E. (). Real-time techniques for D flow visualization.
In: Proceedings of  IEEE conference on visualization, pp. –. IEEE
Computer Society Press, Los Alamitos, CA.

Globus, A., Levit, C. and Lasinski, T. (). A tool for visualizing the topology
of three-dimensional vector fields. In: Proceedings of  IEEE conference on
visualization, pp. –. IEEE Computer Society Press, Los Alamitos, CA.

Gnanadesikan, R. (). Methods of Statistical Data Analysis of Multivariate
Observations. Wiley, New York.

Hartigan, J. (). Printer graphics for clustering. J Stat Comput Simulat, :–.
Helman, J. and Hesselink, L. (). Visualizing vector field topology in fluid flows.

Comput Graph Appl, :–.
Keim, D. and Hermann, A. (). he Gridfit algorithm: an efficient and effective
approach to visualizing large amounts of spatial data. In: Proceedings of 
IEEE conference on visualization, pp. –. IEEE Computer Society Press, Los
Alamitos, CA.

Kerlick, G. (). Moving iconic objects in scientific visualization. In: Proceedings
of  IEEE conference on visualization, pp. –. IEEE Computer Society
Press, Los Alamitos, CA.

Klassen, R. and Harrington, S. (). Shadowed hedgehogs: a technique for visu-
alizing D slices of D vector fields. In: Proceedings of  IEEE conference on
visualization, pp. –. IEEE Computer Society Press, Los Alamitos, CA.

Kleiner, B. and Hartigan, J. (). Representing points in many dimension by trees
and castles. J Am Stat Assoc, :–.

Lee,M.D., Reilly, R.E. and Butavicius, M.A. (). An empirical evaluation of Cher-
noff faces, star glyphs, and spatial visualizations for binary data. In: Proceedings of
 Australasian symposium on information visualisation. Australian Computer
Society, Australia.

Leung, Y. and Apperley, M. (). A review and taxonomy of distortion-oriented
presentation techniques. ACM Trans Comput-Hum Interact, :–.

Levkowitz, H. (). Color icons: merging color and texture perception for inte-
grated visualization of multiple parameters. In: Proceedings of  IEEE conference
on visualization, pp. –. IEEE Computer Society Press, Los Alamitos, CA.

Lipchak, B. and Ward, M. (). Visualization of cyclic multivariate data. In:
Proceedings of  IEEE conference on visualization, Late Breaking Hot Topics, pp.
–. IEEE Computer Society Press, Los Alamitos, CA.

Mezzich, J.D. (). A comparison of graphical representations of multidimen-
sional psychiatric diagnostic data. In: Wang, P. (ed) Graphical Representation of
Multivariate Data. Academic, New York.

Morris, C.J., Ebert, D.S. and Rheingans, P. (). An experimental analysis of the
effectiveness of features in Chernoff faces. In: Proceedings of SPIE AIPR Workshop:
D visualization for data exploration and decision making, :–.



198 MatthewO.Ward

Peng, W., Ward, M. and Rundensteiner, E. (). Clutter reduction in multi-
dimensional data visualization using dimension reordering. In: Proceedings of
 IEEE symposium on information visualization, pp. –. IEEE Computer
Society Press, Los Alamitos, CA.

Pickett, R. and Grinstein, G. (). Iconographic displays for visualizing multi-
dimensional data. In: Proceedings  IEEE conference on systems, man, and
cybernetics, pp. –.

Post, F., Walsum, T., Post, F. and Silver, D. (). Iconic techniques for feature vi-
sualization. In: Proceedings of  IEEE conference on visualization, pp. –.
IEEE Computer Society Press, Los Alamitos, CA.

Ribarsky, W., Ayers, E., Eble, J. and Mukherjea, S. (). Glyphmaker: creating
customized visualizations of complex data. Computer, :–.

Rohrer, R., Ebert, D. and Sibert, J. (). he shape of Shakespeare: visualizing text
using implicit surfaces. In: Proceedings of  IEEE conference on visualization,
pp. –. IEEE Computer Society Press, Los Alamitos, CA.

Rosario, G.E., Rundensteiner, E.A., Brown, D.C., Ward, M.O. and Huang, S. ().
Mapping nominal values to numbers for effective visualization. Inf Visualizat,
:–.

Schroeder, W., Volpe, C. and Lorensen, W. (). he Stream Polygon: a technique
for D vector field visualization. In: Proceedings of  IEEE conference on
visualization, pp. –. IEEE Computer Society Press, Los Alamitos, CA.

Siegel, J., Farrell, E., Goldwyn, R. and Friedman, H. (). he surgical implication
of physiologic patterns in myocardial infarction shock. Surgery, :–.

Ward, M. and Keim, D. (). Screen layout methods for multidimensional
visualization. In: Proceedings of  CODATA Euro-American workshop on
visualization of information and data

Ward, M. and Lipchak, B. (). A visualization tool for exploratory analysis of
cyclic multivariate data. Metrika, :–.

Ward, M. (). A taxonomy of glyph placement strategies for multidimensional
data visualization. Inf Visualizat, :–.

Wilkinson, L. (). An experimental evaluation of multivariate graphical point
representations. In: Proceedings of the conference on human factors in computing
systems, pp –. Association for Computing Machinery, New York.

Wittenbrink, C., Pang, A. and Lodha, S. (). Glyphs for visualizing uncertainty
in vector fields. IEEE Trans Visualizat Comput Graph, :–.

Woodruff, A., Landay, J. and Stonebraker, M. (). Constant density visualization
of non-uniform distributions of data. In: Proceedings of  ACM symposium on
user interface sotware and technology, pp –.

Yang, J., Ward, M.O. and Rundensteiner, E.A. (). Interactive hierarchical dis-
plays: a general framework for visualization and exploration of large multivariate
data sets. Comput Graph, :-.



II.8Linked Views
for Visual Exploration

Adalbert Wilhelm

8.1 Visual Exploration by Linked Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.2 Theoretical Structures for Linked Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Linking Sample Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Linking Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Linking Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Linking Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.3 Visualization Techniques for Linked Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Overlaying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Repetition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Special Forms of Linked Highlighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214



200 AdalbertWilhelm

Visual Exploration by Linked Views8.1

he basic problem in visualization still is the physical limitation of the -D presen-
tation space of paper and computer screens. here are basically four approaches to
addressing this problem and to overcoming the restrictions of two-dimensionality:
. Create a virtual reality environment or a pseudo--D environment by rotation

that is capable of portraying higher-dimensional data at least in a -D setting.
. Project high-dimensional data onto a -D coordinate system by using a data-

reductionmethod such as principal component analysis, projection pursuit,mul-
tidimensional scaling, or correspondence analysis.

. Use a nonorthogonal coordinate system such as parallel coordinates which is less
restricted by the two-dimensionality of paper.

. Link low-dimensional displays.

he idea of linked views has been around for quite some time in order to escape the
limitations of -D paper or, as Tute () puts it, “the -D poverty of endless flat-
lands of paper and computer screen.” Identical plot symbols and colors are a com-
mon way to indicate that different displays refer to identical cases. his has been
widely used in the development of static displays; see Tute () and Diaconis and
Friedman (). InMcDonald () this concept of linked graphics was first imple-
mented in a computer program to connect observations from two scatterplots. Still
by now, the linking in scatterplots and scatterplotmatrices, also known as “scatterplot
brushing” as promoted by Becker et al. (), is the most prominent case of linked
views.
he main advantages of linked views are the easiness of the underlying graphical

displays and the speed and flexibility with which different aspects of the data can be
portrayed – three features that are essential in the exploratory stage of data analysis.
Linking a barchart with a histogram, for example, provides the opportunity to com-
pare not only those groups that are defined by each particular category but also those
that originate from uniting similar categories without actually changing the under-
lying data. Figure . shows in the background an average shited histogram for the
total population and in the foreground the average shited histogram for a selected

Figure .. Does students reading behavior have an impact on their performance in mathematics? he

distribution for those students who do not read at all outside school falls below the overall distribution
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Figure .. Does students reading behavior have an impact on their performance in mathematics? he

distribution for those students who read more than  h a day is shited toward the higher scores

subgroup. In Fig. . three categories are selected at the same time and the resulting
conditional distribution is displayed in the histogram.hedata used here and inmost
other examples which follow are a subset of thehird International Mathematics and
Science Study, an international survey to assess the level of and possible influences
on the mathematics and science achievements of - and -year-old students. he
dataset used here consists of a German sample of  students. he dataset is rather
typical for surveys in the social sciences and contains a few continuous variables, like
the scores on the mathematics and science test, and a large number of categorical
variables originating from a questionnaire using a five-point Likert scale.
Another main advantage of linked views is the applicability to complex data struc-

tures.he linking concept comes quite naturally with geographically referenced data
by connecting the measurements with the geographic location at which themeasure-
ments were made. Figure . shows a map of Bavaria that indicates those counties
with a high percentage of forestry.

Anselin (),Wills () and Roberts () provide a comprehensive discus-
sion of linking in spatial data exploration.
hemain application focus of linked displays is in statistical exploration of datasets,

in particular, addressing issues such as
Investigating distributional characteristics,
Finding unusual or unexpected behavior, and
Detecting relationships, structure, and patterns.

A particular asset of linked views comeswith categorical data and the easy availability
of conditional views. Figure . shows the conditional distribution of the variable
reading for pleasure for male students. Since the number of students in the group of
students who read outside school is in inverse relation to the amount of time spent
reading, it is difficult to see whether the males show a particular pattern.
By switching the barchart on the right to a spine plot (Hummel, ), we can see

the proportions of males falling into each category of reading habits. Here it becomes
immediately obvious that males are underrepresented in the medium class. Male stu-

 he dataset used here is from the Bavarian Office of Statistics and includes information
about land usage for the  counties in Bavaria.
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Figure .. Land usage on the county level in Bavaria. Highlighted are those counties with a high

percentage of forestry

dents tend to spend less time reading than females, but in the class of reading addicts
the share of males equals the share of females.
As we have seen with the previous examples, visual exploration of data requires

a flexible and adaptive framework of sotware ingredients to enable the user to inves-
tigate possibilities in a quick and intuitive manner. While flexibility is a virtue on one
hand, a stabilizing element is needed on the other hand that makes plots compara-
ble and ensures that the patterns seen in the linked displays are in fact data features
and not visual artifacts. he general paradigm of linked views to be described in the
following sections provides a systematic approach to flexible and adaptive visualiza-
tion tools while at the same time offering guidelines and principles for the infor-
mation exchange between plots and the user. In the following sections, the general
paradigm of linked views will be explained pointing to the essential characteristics

Figure .. Barchart of gender linked to barchart displaying student reading habits. As you move to

the right, the bars indicate a higher percentage of time spent by students on reading outside school.

( = female students,  = male students)
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Figure .. Instead of a barchart as in Fig. . a spine plot is used to portray a different reading

behavior. he share of males first decreases but then increases again for the groups of students who

spend a lot of their spare time reading

that are needed for linked views so that their concept can be used for a successful
exploration of datasets.

Theoretical Structures for Linked Views 8.2

As a general paradigm, linking views means that two or more plots share and ex-
change information with each other. To achieve the exchange of information, a link-
ing procedure needs to establish a relationship between two or more plots. Once a re-
lation between two plots has been established, the question is which information is
shared and how the sharing of information can be realized? To explore the wide range
of possibilities of linking schemes and structures, we use the separation of data dis-
plays in their components as proposed in Wilhelm (). According to this defini-
tion, a data analysis display D consists of a frame F , a type, and its associated set of
graphical elements G as well as its set of scale representing axes sG , a model X and
its scale sX , and a sample population Ω, i.e.,D = (F , (G , sG), (X , sX ), Ω). he pair((X , sX ), Ω) is the data part and (F , (G , sG)) is the plotting part.
To effectively put the idea of linked views into practice, a communication scheme

between the plots has to be established. he (external) linking structure controls the
exchange and transfer of information between different plots. In principle, informa-
tion from all plots may be used and combined; in practice it is reasonable to label
one plot “the active plot,” while all other plots are labeled “passive.” his distinc-
tion is analogous to the notions “sender” and “receiver” in communication theory.
he active plot sends a message to all passive plots, which act accordingly. he def-
inition of data displays and the abstract concept of linking opens the possibility of
defining a linking structure as a set of relations among any two components of the
two displays. However, only relations between identical layers of the data displays
are of practical relevance. he diagram in Fig. . illustrates the possible linking
schemes between the active display D = (Ω ,X ,G ,F) and the passive displayD = (Ω ,X ,G ,F) under this restriction.
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Figure .. A general view on possible linking structures between the active plotD and the passive

plotD assuming that information sharing is only possible among identical plot layers

hus, four types of linking structures can be distinguished: linking frames, linking
types, linking models, and linking sample populations. At the type and at the model
level the linking structures can be further differentiated into data linking and scale
linking, the latter being used when scales or scale representing objects are involved
in the linking process.
Sharing and exchanging information between two plots can now be resolved in

twodifferentways.heone involves using the direct linking scheme fromone layer in
displayD to the corresponding layer in displayD . he other is a combined scheme
that first propagates the information internally in the active plot to the sample pop-
ulation layer; then the sample population link is used to connect the two displays,
and the linked information is then internally propagated in the passive plot to the
relevant layers. Hence the most widely used and most important linking structure is
sample population linking.

Linking Sample Populations8.2.1

Sample population linking connects two displays and provides a general platform for
all different kinds of user interactions. In general, sample-population-based linking
for two data displaysD andD can be defined as a mappingm � Ω � Ω that maps
the elements of the sample population space Ω to some elements of the space Ω .
Sample population linking is usually used to create subsets of a dataset and to look at
conditional distributions. From this point of view it is intrinsically necessary that the
relation between Ω and Ω generates a joint sample space such that the conditional
distributions to be investigated are properly defined. Somenatural sample population
linking structures encompass this property by default.
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Identity Linking
heeasiest andmost common case of sample population linking, which is also known
as empirical linking, uses the identitymapping id � Ω � Ω.his linking schemeorig-
inates from the goal to visualize the connection between observations that have been
taken at the same individual or case. It provides the means to use the natural connec-
tion between features observed on the same set of cases. It is intrinsically built into
the common data matrices used in statistics in which each row represents one case
and each column a variable that has been measured for this case. Identity linking is
not necessarily restricted to identical sample populations. Whenever two variables
have the same length they can be bound together in a single data matrix and then
all sotware programs will treat the variables as if they have been observed with the
same individuals. However, one has to be careful when interpreting such artificially
linked variables.

Hierarchical Linking
In practice, databases to be analyzed come from different sources and use different
units of analysis. Nevertheless, data bases that are to be analyzed together typically
show some connection between the various sample populations. A quite common
case is some kind of hierarchy for the various sample populations. his hierarchy can
result from different aggregation levels ranging from the micro level of individual
persons via different social groups up to the macro level of different societies. Simi-
lar situations arise quite common with spatial data which are measured on different
geographical grids, like on the local, the regional, the country and the continental
level. For such kind of data it is convenient to visualize the connection obtained by
the hierarchical aggregation also in the displays.he connection between the sample
population spaces has then to be established by a relation m � Ω � Ω for which
each element of Ω is mapped to an element of Ω in such a way that some kind of
filtration is generated.

Neighborhood or Distance Linking
A special case arises when we work with geographic data where quite oten the most
important display is a (chorochromatic) map and the focus is on investigating local
effects. It is thus quite oten desirable to see differences between one location and its
various neighbors. So here the linking scheme points also toward the same display
and establishes a self-reference to its sample population. A variety of neighborhood
definitions are used in spatial data analysis, each one leading to a somewhat different
linking relation of the kindm � Ω � Ω ,m(ω�) = �ω � Ω � dist(ω� ,ω) � d�. Each
definition of neighborhood or distance leads to a new variant of linking relation, but
the main principles remain the same.

Linking Models 8.2.2

As presented inWilhelm ()models are symbols for variable terms and define the
set of observations that shall be represented in the displays. Models are the central
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part of the data display definition and describe exactly the amount of information that
is to be visualized. he histogram of a quantitative variable, for example, is based on
the categorization model. his model is determined by a vector C = (C , . . . ,Cc) of
real values that segments the range of a variable A. For each segment the frequencies
of observations that fall into the category are counted and stored. he scale compo-
nent of the histogram model consists of the categorization vector C, the ordering πc

of the values in C (due to the ordered nature of real values only two orderings make
sense, ascending or descending, and the ascending one is the standard used for his-
togram representations), and the maximum number of counts for any bin. his also
implicitly assumes that the vertical axis of the histogram starts at  and shows the full
range of values from  to themaximum number of counts in a category. Notationally,
the categorization model can be written as:

A� C = ��[C ,C], (C ,C], . . . , (Cc− ,Cc];
count(AC) �= �� �

i �C�A i�C

count(A i), . . . , �
i �C c−<A i�C c

count(A i)����
sX = (C, πc , max (count(AC))) .

Amodel link for this example cannowbe established either via the set of observations
A � C or the scale sX . Linking scales for the above example of the categorization
operator yields three different cases: linking the categorization vector C, linking the
ordering of the categorization values, and linking the maximum count for one bin.
Assuming that the categorization operator model is represented by a histogram, the
third case basically links the scales used for the vertical axes of the histograms, and
the other two link the scales of the horizontal axes, in particular, the bin width and
the anchor point.
Linking histogram scales is implemented, for example, in Manet. In Fig. . two

histogram scales are linked. he plot to the right is the active plot that propagates its
scale to the one at the let. For the plot at the let also the frame size is adjusted. he

Figure .. Two histograms with linked scales. Both histograms start with the same anchor point, have

the same bin width, and use the same scaling for the vertical axes. he plot on the right does not fully

extend to the upper border of the plot because the maximum number of counts for a bin is smaller than

the one for the let plot. Hence it becomes clear that in this instance, the let plot is the active plot.

Otherwise, the largest bins of the let plot would exceed the frame boundaries of the plot
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Figure .. hree histograms for the same variable. he two plots on the right have the same frame size,

but different scales. he plot in the top right uses the same scale as the plot on the let. he differences

in the visual impact are only due to the different uses of frame size or scales

histogram definition in Manet specifies five parameters, the lower and upper limit
of the horizontal scale, the bin width, the number of bins, and the maximum height
of a bin. Any two of the first four parameters combined with the fith one are suffi-
cient for a complete specification of a histogram. Via linking all these parameters can
be shared. Moreover, the user has the choice of adjusting the frame size as well. For
a proper comparison, it is essential to also use the same frame size and not only the
same scales. Figure . shows three histograms for the same variable. he plot on the
let is the active one, the plot on the bottom right is not linked at all, and the one on the
top right has the same scales as the active one, but a different frame size.hese simple
examples of linked scales point toward the importance of linking scale information
in general. A very widespread use of linking scales is in the form of sliders. Sliders
are -D graphical representations of model parameters, which the user can change
dynamically. Moving the slider yields a change of the underlying model parameter
that is then automatically propagated to all plots that display the model. Sliders are
a widely used tool to provide a visual representation for dynamic queries (Shneider-
man, ) to filter and dissect the data into manageable pieces following the visu-
alization mantra: overview first, zoom, and filter, then details on demand (Shneider-
man, ). Another common application for such sliders is interactively controlling
Box–Box transformations or checking various lags for time-series analyses.
he order of the categorization values is of less importance for continuous data

displayed in a histogram. his scale component becomes more important for nomi-
nal categories that do not have a clearly defined natural ordering. Linking this scale
parameter is common and helpful for barcharts and mosaicplots. For the histogram,
the categorization vector C actually belongs to both the observation component and
the scale component. Using the same categorization vector could thus also be seen
as a form of linking the observations of a model. In general, however, it is more ap-
propriate to restrict the concept of linking observations to the variables that are used
in the model and not the categorization vector. In this sense, linking models means
that plots share the same variables. In Fig. . all three plots are in principle linked
via the model observations because all three plots represent the same variable. In
this static form, this kind of linking does not really provide a particular achievement.
However, using this form of linking in a prespecified cluster of graphical displays can
give a rather complete picture of a dataset. Young et al. () have created a system
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in which various views of the same dataset are combined in one window. One plot –
typically a scatterplot matrix – controls which variables are displayed in all the other
plots included in the window. Clicking a cell in the scatterplot matrix showsmarginal
views for these variables, for example. he aim of such a system – called empirical
linking in Young et al. () – is to create multiple views that act as a single visu-
alization of the data space and provide a complete picture by offering a magnitude
of view points and visual aspects. he major benefit lies in the fact that the user can
routinize and partially automatize the exploration of a dataset. Once interesting and
appropriate plots have been found for one variable, the user can investigate similar
or related variables from the same angles by simply exchanging the variables in the
control plot.
he model layer of a data display is flexible enough to comprise also more com-

plex models such as regression models, grand tours, and principal components. For
these models, a straightforward model link consists of a system of intertwined plots
that display the raw observations, the model, and residual information. Young et al.
() had introduced such a form in the context of grand tour plots. hey designed
a spread plot consisting of a rotating plot and two scatterplots presenting residual
information for the main components. Similarly, in Manet each biplot is accompa-
nied by two scatterplots of residuals showing the residuals against the first and sec-
ond principal component; seeHofmann (). Changes in themodel, as for example
initiated by rotating the point cloud in a spread plot, results in an immediate update
of the residual information. Young et al. () called this form of linking algebraic
linking.

Linking Types8.2.3

he type layer covers most of the visible components in a graphical display and aims
at representing the model as well as possible. he distinction between type level and
model level basically lies in the fact that, due to the limited plot space and screen
resolution, not all models can be visualized without loss of information. he close
connection between the two layers also means that congruities at the type level of
two displays almost always is a consequence of linked models. For example, it is clear
that two histograms that use the same categorization operator also have the same bin
widths. A direct link between the type levels of two displays without having a cor-
responding linkage between the models is rather uncommon. Color and size are at-
tributes of graphical elements that can be linked, in most cases either with or without
establishing a corresponding model link. Pie charts, for example, use different colors
for the slices to enhance the differentiation between the various categories. hese
colors are typically assigned individually for each plot and do not carry any intrin-
sic meaning. Colors could be linked on a type level by assigning identical colors to
the first slice in each plot, the second slice, and so on. As long as the ordering of the
slices does not reflect information of the model level, the linking will be on the type
level only. Alternatively, if the slices are ordered alphabetically or by size, the color
also carries some model information and linking via colors could be a realization of
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a model link. A similar situation might arise with color maps. Whether these link-
ages of color constitute a meaningful information exchange depends on the context.
At least using an identical color scheme reduces the effect of misinterpretation due
to color effects. Linking axis information typically comes down to the fact that all
linked displays use the same axis parameters. Also for the axis information it can
be said that in most instances the axis parameters are identical to the correspond-
ing scale parameters. For histograms, for example, the limits of the axes are typically
depending on the scale specified in the model. Differences between scales and axes
usually yield an inefficient usage of the available plot space because part of the plot
remains deliberately unused. his can be intended if, for example, observations that
are expected to fall in a similar range cover completely different portions of the obser-
vation space. If the axes are adjusted tomatch exactly the scales, one would not notice
this feature immediately. If the same axes are used, the different range of the obser-
vations becomes clearly visible. A similar situation can also occur with choropleth
maps and their corresponding color scheme. Linking type information is usually an
essential ingredient for proper comparisons between various plots. he prototypes
of incorrect visual representations that can be found in many books (e.g., Wainer,
; Monmonier, ; Tute, ) are all based on adjusting the axis parameters
too closely to the corresponding scale parameters and then interpreting the visual
differences in the plots independently of the scales.

Linking Frames 8.2.4

he frame level is the coarsest level of a data display and basically determines the
general shape and size of a plot window. Linking the size of frames is not only relevant
for a screen-space-saving layout of displays, but it is also one of the prerequisites
for a correct comparison of graphical displays, as has been already seen in Fig. ..
Using different frame sizes distracts the analyst and can lead to wrong conclusions.
Linking of other attributes, such as background color, printing black on white or
white on black, is not directly important for correct interpretations and comparisons.
However, a common framework to set and change these parameters is convenient,
especially for creating different scenarios of data analysis.

Visualization Techniques for Linked Views 8.3

he linking paradigm advocates the sharing of information between displays. his
can happen whenever a new display is created by making use of the information
that is available in the current displays. A second instance for information sharing is
present in interactive environments whenever the user makes changes to a plot while
investigating and exploring the data. While the first case is typically easily realized by
creating an additional plot window, the second case introduces the question of where
the information goes and how the information can be best represented. Roberts et al.
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() distinguish three different strategies of exploration: replacement, overlay, and
replication.

Replacement8.3.1

In the replacement mode, old information is typically lost and gets replaced by new
information. While this strategy is reasonable for plot parameters, it is rather useless
for the subsetting and conditioning approach because the important information on
the marginal distributions is lost. It only works fine when we have individual plot
symbols for each observation, as in scatterplots for example, where some attributes
are changed by the user interaction. But even when replacing plot parameters the
user loses the possibility to compare the current plot with previous versions. he
user can only compare the current image with a mental copy of the previous image
and hence the comparison might get distorted. Especially in the exploratory stage of
data analysis for which interactive graphics are designed, it is helpful to keep track of
changing scenarios and the different plot versions. A history system that stores the
history of plot changes as they are implemented in some geovisualization systems
(Roberts, ) is very helpful.

Overlaying8.3.2

In the realm of direct manipulation graphics, overlaying is the typical strategy when
looking at conditional distributions in area plots. In Fig. . a histogram is linked to
a barchart. he two classes to the let of the barchart are selected and a histogram
for these data points is overlaid on the original plot. he representation of the con-
ditional distribution inherits the plot parameters of the original plot. his eases the
comparison between the conditional distribution and the marginal distribution. It
also provides a common framework for a comparison of two conditional distribu-
tions if the user changes the selection of the conditioning set.

Figure .. Two categories in the barchart are selected. his selection is propagated to the histogram in

which a histogram representing the selected subset is overlaid. he overlaid histogram uses the same

axis, scale, and plot parameters as the original display and hence establishes comparability between the

subgroup and the total sample
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Figure .. Overlaying a boxplot for the selected group covers part of the graphical elements of the

original box plot. To minimize the confusion and the loss of information, a slightly different style is

used for drawing the subgroup boxplot

Overlaying creates two kinds of problems: the one is a basic restriction in the free-
dom of parameter choice for the selected subset since the plot parameters are inher-
ited from the original plot; the other is the problem of occlusion or overplotting.
Part of the original display might become invisible due to the fact that the new plot
is overlaid. his can occur in particular when the data representing objects on the
type level differ substantially for the subset and the total sample. While this problem
might not be present for most area-based displays and while it is rather unimportant
for scatterplots, it is essential for more complex plots such as boxplots (Fig. .).

Repetition 8.3.3

Repetition is the third strategy of visualizing linked interactions. Here, the displays
are repeated and different views of the same data are available at the same time. he
advantage is a rather comprehensive picture of the data; the user has a complete
overview on all different representations and can clearly observe the impact of pa-
rameter changes and other user interactions. he disadvantage is that the user might
get lost in the multitude of slightly changed and adapted views. he repetition strat-
egy requires an easy way to keep track of the various changes and adaptations that
have been issued by the user. It also requires an easy and powerful system to arrange
the displays on a computer screen. A condensed form of the repetition strategy that
works very well for the purpose of subsetting is juxtaposition. his means placing
the plot for the selected subgroup not directly on top of the original plot but close
to it to the side. Juxtaposition avoids masking important features of the original plot
and still allows easy comparison between the two representations. he comparative

Figure .. Instead of overlaying the plot for the selected subgroup, it is placed next to the original one

such that no overlapping occurs
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frame of the original plot remains available and the subset is clearly visible as well.
Juxtaposition is well known for static plots but has not yet gained acceptance in inter-
active graphical systems. here seems to be a psychological barrier that prevents the
use of juxtaposition because usually it requires rearrangement of the original plot to
make space for the additional plot. It also means that each plot has to be fully redrawn
ater each user interaction, which can be quite demanding depending on the size of
the dataset and the complexity of the graphical display. But current computer power
should render the interactive creation of juxtaposed plots possible. Juxtaposition also
opens the possibility of seeing a full sequence of user interactions and thus allows
one to meticulously inspect the flow of subsetting. Juxtaposition also is a worthwhile
representation scheme for dynamic animations. he principle of juxtaposition can
be straightforwardly extended from graphical displays to statistical model displays.
Having calculated a statistical model for the whole sample, we might be interested in
particular subsets. Interactively specifying a subset of the sample population should
then run the model for the selected subgroup only. he new results could then be
juxtaposed to the original ones to allow for easy model comparison.

Special Forms of Linked Highlighting8.3.4

Different problems occur when the linking scheme is not a simple -to- linking but
a more complex form such as m-to- linking as occurs in hierarchical linking. As-
sume that there are two levels in the hierarchy: the aggregated macro level, a set of
counties for example, and the micro level, a set of towns in these counties. When-
ever some but not all towns in a county are selected, it would be nice to represent
this partial selection of the county by a partial highlighting. If the representation of
the macro level is based on regular shapes, the partial highlighting can be done by
subdividing this shape into a selected and a nonselected component to indicate the
amount of selected objects on the micro level. he more general approach, however,
is to use different intensities of the filling color of graphical elements to represent the
various selected proportions. his is not only recommended for displays with graph-
ical elements that have a nonrectangular layout, but it is the more general approach
that is usually easier to decode. Figure . refers to the Bavaria dataset of Fig. . and
shows twomaps, the letmap portraying the micro level of  counties, the right map
showing the macro level of  regions in Bavaria. he selection of some elements of
the micro level in the letmap is propagated to the right plot and portrayed there.he
varying intensities of the filling color reflect the proportion of highlighted counties
in a region.
Although the general linking schemes in this paper have been introduced under

the restriction of a directed linking process, a few comments shall be made on bidi-
rectional linking, which allows the mutual exchange and sharing of information be-
tween plots. Such bidirectional links would be useful when linking plot parameters
that govern the general layout and size of a display. In the unidirectional case, one
plot inherits the axis limits from the other. hese boundaries might be too small for
the passive plot and hence lead to a misrepresentation in the linked plot. It would be
much better in such instances to change both sets of plot parameters in such a way
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Figure .. Visualization of a hierarchical linking scheme for two maps. he map on the right

constitutes a coarser grid of geographic locations than the map on the let. Selection of some counties

in the let map are represented by varying intensities in the regions of the right map. he darker

a region is colored, the more counties in this region are selected in the let plot

that both plots represent their model in a meaningful way, e.g., by choosing the joint
axis parameters as the minimum and the maximum of the individual limits. A bidi-
rectional link based on the selection of a subset in a plot is implemented inManet for
the trace plot.he linking scheme that is used there is a combination of -to-n linking
and m-to- linking. When a region in the map is selected, then all points in the trace
plot are highlighted that depend on the value observed at the selected region. When
a point in the trace plot is selected, then all regions that contribute to this value are
highlighted. his highlighting action is then returned to the trace plot and all points
are highlighted that depend on the currently highlighted regions (Wilhelm, ).

Software 8.4

Although linked views are readily available inmany statistics research sotware pack-
ages, e.g., LispStat (Tierney, ),DataDesk (Velleman, ),Mondrian (heus,
), or Manet (Unwin et al., ; Hofmann and heus, ), they have not yet
been widely included in the major commercial statistics programs. However, some
features of linking, usually in a noninteractive realization, can be found in the com-
mercial flagships, like SPSS and SAS. he principles of the linking paradigm laid out
in this text have been mostly inspired by Data Desk and Manet. Lately, interactive
features have been added to the R project (Urbanek and heus, ). With respect
to sotware it is also worthwhile mentioning that the increasing size of datasets puts
challenges to most of the sotware in terms of speed. While Manet works pretty fast
with datasets of up to   cases, it slows down significantly for datasets with  
cases. As large datasets might acquire the new standard, implementation might im-
prove. However, for research sotware this might require a complete reprogramming.
DataDesk ismore robust in this respect and works even with datasets of onemillion
cases fairly quickly.
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Conclusion8.5

he use of multiple linked views is a well-known concept in interactive statistical
graphics. By establishing a close connection between plots that show different aspects
of related data, the analyst can explore the data in an easy and flexible way. Linking
simple low-dimensional views enables the user to understand structures and patterns
of more complex datasets. Multiple linked views are an essential contribution to the
field of visual data mining and can provide the required human–computer interac-
tion (Fayyad et al., ) to understand the hidden structures and relations. Embed-
ded in efficient sotware systems, the paradigm of linked views is a powerful tool to
explore a broad range of data.he simplicity of the individual plots combined with an
intuitive, easy-to-use, and flexible user interface is especially rewarding when using
it for consulting experts in the data domains. Applied researchers are familiar with
most of the displays used as ingredients in linked systems. Hence a broad audience
can easily use and interpret these plots.
Linking procedures become particularly effective when datasets are complex, i.e.,

they are large (many observations) and/or high-dimensional (many variables), con-
sist of a mixture of categorical and continuous variables, and have a lot of incomplete
observations (missing values). Generalization of linking aims to give consistent views
of data, consistent not only for each individual point but also for a plot as a whole. To
offer consistent comparisons of visual displays, plots should have the same scale and
should allow one to compare proportions. he interactive spirit of an analysis offers
a way to build in prior knowledge and metadata. Impressive results have been ob-
tained in the exploratory analysis of spatial data; the same can be expected for other
areas.
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he linked views paradigm is a method of taking multiple simple views of data and
allowing interactions with one to modify the display of data in all the linked views.
A simple example is that selecting a data case in one view shows that data case high-
lighted in all other views. In this section we define the underlying methodology and
show how it has been applied historically and how it can be extended to provide
enhanced power. In particular we focus on displays of aggregated data and linking
domain-specific views such as graph layouts and maps to statistical views.

Motivation: Why Use Linked Views?9.1

A “data view” can be thought of as anything that gives the user a way of examin-
ing data so as to gain insight and understanding. A data view is usually thought of as
a barchart, scatterplot, or other traditional statistic graphic, but we use the termmore
generally, including “views” such as a display of the results of a regression analysis,
a neural net prediction, or a set of descriptive statistics. A plot of geographic infor-
mation, such as a map of a country, is a data view. A node and edge graph displaying
interrelationships between relatives (more commonly known as a “family tree”) is
a data view. A printout of the R value from a regression is a data view, albeit a very
simple one. Views of data are also known as graphs, charts, diagrams, plots, and visu-
alizations, but each of those terms has connotations that can restrict how we think of
a linked view. hus, in this chapter, we use the simple term “data view” – something
that allows us to view data.
A linked data view is a data view that communicates with another view. If a mod-

ification is made to one of the views, the other view will change its appearance in
reaction to the modification. A simple example of linked data views is a scroll bar in
a text editor that is linked to the text view. he scroll bar has a “thumb” that shows
which part of the document is being displayed. When the user modifies the scroll
bar by dragging the thumb around, the text view updates to show that portion of
the document. his example is presented first to highlight the ubiquity of the linked
views approach; the linked views paradigm is used in standard user interfaces (Apple
Computer, ;Microsot, ) and in game sotware (Maxis, ) as well in more
specifically data-analytic sotware.
Figure . shows a more directly data-analytic version of linked views. he dataset

used is described in the appendix, which gives details of the data used to generate each
figure in this chapter.hedata are taken froman archive of baseball statistics collected
 and . In this figure we are interested in comparing players’ salaries to their
performance and so create a scatterplot showing the relationship between salary and
batting average (the singlemost commonly usedmeasure of a player’s batting ability).
We create a histogram of the year for this dataset (which incidentally shows us that
salary data only became available starting in ) and then select the histogram bars
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Figure .. Simple linking between a barchart and a scatterplot. he let view is a histogram of the

number of players in baseball by year, and the right view is a scatterplot of players’ salaries (on a log

scale) against their batting average. A quadratic curve has been imposed on the salary data to show level

differences between the selected and unselected groups; it is not intended to be a good fit to the data

for years  through . In both the histogram and the scatterplot, those selected
data elements are shown in black and the unselected ones in light gray.
he linking between the views is achieved by allowing the user to select part of

one view, in this example using a rectangular selection device, which has the effect of
selecting the graphic elements that intersect that rectangle. In Fig. . above, the link-
ing shows us that there is a level effect for years on salaries, but there is no evidence
that it affects the basic relationship between batting average and salary.
A fundamental question for any visualization technique that should always be

asked is: “Why should I use this?” or “Why should I need to link views together –
what benefit do I get from this?” From the analyst’s point of view, if the analyst has
created a view of the data and seen something of interest (or, as can also oten occur,
not seen something of interest when they expected to), then they will want to explore
further. hey will want to know, for example, if data form clusters under a particular
projection of the grand tour or if there is a change in the relationship between salary
and years playing baseball when the latter is above a given threshold? When they see
something interesting, theywant to explain it, usually by considering other data views
or by including additional variables. With some types of view, it is not hard to add in
variables and see if those variables can explain the feature, or indeed if they have any
effectwhatsoever. In a regression analysis, you can add a variable to the set of explana-
tory variables (taking due care with respect to multicollinearity and other confound-
ing factors). If a histogram of X shows something of interest, you can “add” a variable
Y to it by making a scatterplot of X against Y . If you want to explain something in
a scatterplot, then it is possible to turn it into a rotating point cloud in -D. Using
projection pursuit or grand tour techniques, you can go to still higher dimensions.
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Despite the undoubted utility of this approach, it does present some problems that
prevent it from being a complete solution. he main ones are:

As plots become increasingly complex, they become harder to interpret. Few peo-
ple have problems with -D plots. Scatterplots, tables, and grouped boxplots or
other displays involving two dimensions are easily learnable. But the necessity of
spinning and navigating a -D point cloud or understanding the contributions
to a multivariate projection make views that contain many variables intrinsically
less intuitive.
It is harder for monolithic data views to accommodate differences in the basic
types of data. High-dimensional projection techniques assume the variables are
numeric, as do techniques that display multivariate glyphs and, to a large extent,
parallel-axis techniques. Given a table of two categorical variables, adding a nu-
meric variable requires changing to a quite different type of view, such as a trellis
display.
Data that are of a type specific to a particular domain can be impossible to add
directly. Exploring relationships inmultivariate data collected at geographical lo-
cations, on nodes of a graph, or on parts of a text document is very hard because
of the difficulty of building views that correlate the statistical element and the
structural element of the data. Oten, two completely different packages are used
for the analysis, with results from one package mangled to fit the input form of
the other package – a frustrating situation to be in.

he linked views paradigm can be used to overcome these problems.he idea is sim-
ple; instead of creating one complex view, create several simpler views and link them
together so that when the user interacts with one view the other views will update
and show the results of such an interaction. his allows the user to use views that
require less interpretation and views that are directly aimed at particular combina-
tions of data. It also allows the easy integration of domain-specific views; views of
networks or maps can easily be linked to more general-purpose views.
It should not be argued that linked data views are a uniformly superior method to

that of monolithic complex views mentioned above. hat is not the case, as there are
examples where a single multivariate technique is necessary to see a given feature,
and multiple simpler views simply won’t do. It is also generally harder to present the
results of an interactive view exploration to another person than it is to present the
results if displayed as a single view. Having said that, for many problems, especially
those where conditional distributions are of interest, the linked data views technique
works extremely effectively.
In Fig. ., we have changed the variable being displayed in the histogram to be

the number of years in the league. ( indicates a rookie,  indicates one previous year
of experience, etc.). he shape of the histogram fits our intuition by being close to
a Poisson distribution. We select those players with  years of experience or greater
in the league and see that not only do they have a higher salary on average, but the
relationship between batting average and log(salary) is much closer to linear. For the
younger players, a reasonable case might be made that performance has no strong
effect on pay unless the batting average of a player is itself better than average.
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Figure .. Changing variables in one view. he right view is similar to Fig. ., with the addition of

a . % confidence interval for the mean fitted value. he let view has been let unchanged in

definition, except that a different base variable has been used; the histogram is now of the number of

years a player has been in the league

The Linked Views Paradigm 9.2

In Sect. ., we showed examples of the linked views paradigm. In this section we will
define it more exactly and detail how a linked views paradigm may be implemented.
To implement a linked views system, the fundamental need is an interactive en-

vironment. Linking is an interaction mechanism and therefore requires a computer
or other system for interaction with graphical representations of data. Given such an
environment, a linked views environment needs to have more than one view, and the
views available to the user must satisfy the following conditions:
. At least one view must be capable of detecting user interaction and translating

that user interaction into a measure of the degree of interest that user has in the
data being displayed in that view. he degree of interest must be able to distin-
guish between subsets of the data based on the user’s interaction.

. A mechanism is needed to propagate the degree of interest measures created in
view () to other views in the system.

. At least one view that is not the view described in () should be capable of re-
sponding to the measure of interest propagated to it under (). he response
should be to change its visual appearance so as to show the degree of interest
measures as they relate to the data being displayed by this view.

he concept of “degree of interest” is worth considering in more detail. It is intended
to measure the degree to which the user finds any subset of data interesting. By se-
lecting the bars corresponding to five or more years in the league in Fig. ., the
user indicates which portion of the data they are interested in, namely rows where
the number of years in the league is  ormore.he degree-of-interest measure should
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return some value in a known range for every possible subset of the data; this is neces-
sary when displaying results in aggregated views. An aggregated view is a view where
a single graphic item represents multiple cases of data, as is the case for a histogram
or barchart where a single bar summarizes multiple data rows. In contrast, an unag-
gregated view is one where each row of the data gets a separate visual representation,
as is the case for scatterplots. In this section we use the terms data case and data row
interchangeably, defined as a single observation of data, typically encoded as a row
in a data table. A graphic item is slightly harder to define but should be thought of as
a visually distinct representation that is perceived as a distinguishable unit. A bar in
a barchart, a glyph in a scatterplot, and a -D surface are all graphic items. A segment
of a path is not; the path is a perceptual whole and is thought of and manipulated as
a single entity.
In practice, a simplified form of degree of interest can be used where each row of

data (each data “case”) is given a degree of interest value, and the measure of a subset
is defined as a summary function of the degrees of interest of the cases comprising
the subset. hroughout this chapter, we use a degree of interest for the cases in the
range [, ], where “” corresponds to “no interestwhatsoever” and “” corresponds to
“maximal interest.” For a subset, we will use the mean value summary to summarize
the values in the subset. his remains in the range [, ] and has the useful property
that subsets of different sizes that have the same distribution of measures of interest
on their cases will have similar measures of interest. However, it should be noted
that other summaries can be useful for certain tasks. For example, the maximum
summary function will highlight subsets that have any selected items in them. his
will be very useful for spotting outliers, as typically outliers are small in number, so
using themean summarywhenoutliers are the source of a degree-of-interestmeasure
will result in most subsets having zero or near-zero measure of interest, whereas the
maximum summary statistic will show immediately any subset containing one or
more outliers.
An additional simplification we can make is to state that any view that defines

a degree-of-interest value for each case must define it as either zero or one. In other
words, the process of interacting with a data view to perform linking will result in
a split into selected cases (s) and unselected cases (s). his technique is by far the
most commonly implemented technique, but there are cases where the more general
version is useful. In Sect. ., we explore distance-based linking, and in Sect. . we
show examples of how multiple views can create nonbinary degrees of interest for
cases.
For requirement () above, we need a means for the user to indicate what is of

interest to them. here are multiple means of doing so, the most common of which
are:
Brushing. In the brushing paradigm, the user has a fixed shape (typically a rectangle

or circle) that they drag over a view of data. As this brush moves over graphic
items in the view, it paints them.his is defined as setting the degree of interest to
 for those items and then typically using colour to code the degree of interest in
all linked views. In Sect. . we give more details on scatterplot brushing, which
was one of the earliest implementations of linked views.
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Rectangle or rubber-band selection. For this selectionmechanism, the user clicks and
drags with the mouse to define a rectangle (or other shape, such as a circle) and,
on releasing the mouse, the graphic items intersecting the shape are considered
selected and their associated cases’ degree of interest set to .

Lassoing. For this mechanism, the user clicks and drags to create a polygon selection
shape, either by clicking and dragging to define a shape or by successive clicks to
define a polygon. When completed, either by releasing the mouse or by complet-
ing the polygon, the graphic items intersecting the lasso/polygon are considered
selected and their associated cases’ degree of interest set to .

To fulfill requirement (), a view must be capable of displaying the base data for the
view together with a representation of the degree of interest. If we think of the degree
of interest as a variable, then we can imagine it being used in the same way as any
other variable. Using the language of the Grammar of Graphics (Wilkinson, ),
we can use a variable such as:

A positional variable, used to define the geometry of the view;
An aesthetic variable, used to modify the appearance of a graphic element;
A faceting variable, used to define a paneling of the view.

In Fig. . below, barcharts showing the three basic methods are displayed. Note that
for the -D barchart, the degree of interest could easily have been a continuous vari-
able; the locations along the z-axis would have been well defined. For the aesthetic
version, we split each bar in two to show the relative proportion of selected and non-
selected data. his requires the degree of interest to be at worst a finite number of

Figure .. hree basic methods for displaying a degree of interest. he basic chart is a barchart of

counts of players at different fielding positions. he let view adds a “z” position variable to the bar

chart, splitting the dataset along the z-axis. he center view sets the brightness of bars by the degree of

interest, with the “interesting” bars shown in black. he right view facets (panels) views by the degree of

interest (although there are two facets, we term this a single “view”). he data show players’ fielding

positions in baseball, and we have selected those players with more putouts than assists. Clearly this is

highly correlated with the fielding position
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Figure .. Faceting and degree of interest. he let view shows players since , faceted by the league

in which they played. Note the brief existence of the Federal League (FL: –). On the right

a binned scatterplot of the putout-to-assist ratio is shown. Ater selecting players playing post- in

the let panel, the let view shows the interesting cases in black, whereas the right view uses degree of

interest to define the vertical paneling (“interesting” cases are in the lower row) and uses brightness to

show the counts of points in the binned scatterplot

categories and works best with binary variables. Systems for displaying aggregated
data elements are discussed in Sect. .. We could have used a summary function
instead to display the mean degree of interest, mapping it to a brightness scale. Sec-
tion . gives details on the dataset being displayed, with notes on the meanings of
the variables used.
he rightmost view in Fig. . splits the data into two panels, one for the selected

and one for the unselected subsets. his faceting should not be considered a special
functionality but should fit into existing faceting schemes, so that, for example, a trel-
lis view would simply incorporate the degree of interest as another variable within
the tablelike structure. As a further example, Fig. . shows how a binary selection
status is incorporated into the faceting structure. Baseball has had many different
leagues over its history, which are separate pools of teams; each team is a member of
one league only in any year and plays almost exclusively members of its league. Note
that post-, the putout-assist scatterplot resolves itself into two clusters, whereas
pre- there is good evidence for at least another cluster. We investigate that more
closely later.

Brushing Scatterplot Matrices
and Other Nonaggregated Views9.3

One of the earliest linked views works to achieve wide attention was the scatterplot
brushing technique of Becker, Cleveland, andWilks (Becker et al. ). By arranging
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scatterplots of n variables in a table so that all the n(n-) ordered combinations of axes
are present, the eye can quickly scan a row or column and see how a given variable
depends on every other variable. his useful arrangement technique is enhanced by
the use of a brush as described in Sect. .. As in typical later scatterplot brushing
tools, the data points brushed over are painted in a different colour, both in the panel
in which the brush is active and in all other panels of the matrix. In our terminology,
the brush is the mechanism that creates the degree of interest “variable” that links the
scatterplot data views.
One of the reasons this technique is effective is that in each linked view, there is

a one-to-one correspondence between cases of the data matrix and graphical repre-
sentations of these cases, so that in each scatterplot we have complete freedom as to
what colour or glyph to use to represent this data item. Linking scatterplots do not
require considerations of aggregation; each data row maps directly to a single glyph
in the scatterplot. his simplicity can be seen in Figs. . and ., where we selected
bars and linked to the scatterplot; if we had reversed the direction of interaction, we
would have been let with bars that were partially selected. Deciding how to display
such views requires some thought and will be discussed in Sect. ..
Even when restricted to data views that display distinct graphical elements for

each case, linking is a powerful tool. An example of a successful tool in this area is
XGobi (Swayne et al. ). XGobi is an X-Windows-based tool that presents the user
with several glyph-based views (dotplots, scatterplots, rotating plots, grand tour, and
projection pursuit tours) and uses brushing to link the views along the above lines.
he latest incarnation of this sotware is GGobi (Swayne et al. ).
Scatterplots and dotplots are the most obvious examples of unaggregated views.

Raw tables of data can also be considered unaggregated. One useful technique is to
show a table of only those data that have been selected. his is oten termed a “drill-
down” view but is actually a simple example of linked views. Selection in one view
leads to a second view where the “visibility” aesthetic is used to code the degree of
interest – only the selected rows are shown.
Parallel coordinates views are a relatively novel form of view introduced by Insel-

berg (). hey work well only for relatively small numbers of cases as they show
an n-dimensional point as a line in -D, taking up a lot of display space for each row.
However, within this limitation, they are an ideal candidate for linked views, as they
are unaggregated and encourage the user to spot differences between the selected and
unselected lines.
Figure . below shows data for players in the  season. Even restricting our-

selves to a few thousand players makes this chart hard to read, but we can see the
higher values on each scale are in the selected group and the ones at the bottom are
in the unselected group. For this many lines it is hard to distinguish them either by
colour or by dashing style and the result is not illuminating. In Sect. . we will show
more compelling uses for parallel coordinates for linking to maps and hierarchical
clustering plots.
One interaction feature that is important for brushing is that of the brush mode or

paint mode. In transient mode, where the user drags the brush over the plot, when
the brush moves away from an item, the item reverts to unselected state. In additive



226 GrahamWills

Figure .. Faceting and parallel coordinates. For the  season, the let view shows a histogram of

salary on a log scale. Players earning over $,, were selected and are shown in the linked parallel

coordinates plot as dashed line. he parallel coordinates view shows four major measures of

performance: batting average, on-base percentage, home-run rate, and slugging average

mode, the brush leaves the item in a selected “painted” state. In subtractive mode,
the brush is used to change state from selected to unselected, “unpainting” the items.
hese modes are examples of the general case, in which we have two possible ini-
tial states (selected and unselected) and a brush or other selection mechanism states
whether or not an item was indicated by the user. For each of the  combinations of
states there are two possible outputs (selected or unselected), and so we have  dif-
ferent possible modes. However, some of these modes, such as the mode that simply
selects everything, or the mode that ignores the user’s input, are of little use. Wills
() argues that the useful modes are:

Replace: the original state is ignored; the selection defines the output exactly. his is
equivalent to the transient mode.

Toggle: the new state is an exclusive OR of the original state with the selection status.
his is what happens when we control-click on files in the Windows operating
system, for example.

Add: the new state is an inclusive OR of the original state and the selection status.
his is the additive mode for brushing scatterplot matrices.

Subtract: the new state is an AND of the original state with the negation of the se-
lection status. his is the subtractive mode for brushing scatterplot matrices.

Intersect: the new state is an AND of the original state with the selection status.
his mode is not common but has a strong advantage for data analysis in that it
allows repeated conditioning in an interactive environment. In Sect. . we use
it for multiple linked views.
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Generalizing to Aggregated Views 9.4

he unaggregated approach runs into problems with more than small amounts of
data. If you have tens of thousands of points, oten you want to look at views that ag-
gregate the data, such as barcharts, histograms, and frequency tables. In this chapter,
we use a reasonably sized dataset to examine linking; there are about   play-
ers represented over a total of ca.   player seasons. A quick review of Figs. .
through . should convince the reader that the summary views are easier to use than
the unaggregated views for these numbers. herefore, in this section, we consider
techniques for linking aggregated views.
One of the first commonly available tools to feature linking was the statistical anal-

ysis package Data Desk (Velleman, ). It was originally built as a teaching tool but
is now a full-featured statistical package that has linked views designed in at the core.
Brushing works with aggregated views such as barcharts and histograms as well as
within unaggregated views, and the outputs of analyses such as regression and corre-
lation analysis can be visualized and are linked to the other views. If a user spots some
unusual cases in a view of residuals from an analysis, they can brush those points, see
if there is anything that might explain it in other variables, modify the model, and
instantly see the residual view update to reflect the new model. By incorporating
model results as linkable views, Data Desk provides a rich set of linking paradigms.
In this section we consider simply the way it performs linking to aggregated views.
Figure . shows an example of such linking. his figure is similar to Fig. ., except
that the linking is being performed in the reverse direction – from the scatterplot to
the barchart.
As in Fig. ., the degree of interest for a bar has been represented by dividing the

bar into two sections; one for the selected subset and one for the nonselected subset.
An alternative method is used by LispStat (Tierney, ), in which each data item
is assigned its own place in the bar and that section of the bar has an appropriate
brightness. his solution is very close to the “one-to-one” relationship method in the
previous section, as under this display system each bar is really a set of stacked rect-

Figure .. Linked views in Data Desk. Points selected in a scatterplot of miles per gallon vs. weight are

highlighted in the country barchart. Selecting the points in the low end of the weight scale shows which

country makes the lightest cars
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angles, one for each case. Both drawing and brushing over the bars is handled as if
the bars were a collection of separate little boxes.
One of themore powerful novel features of LispStat is its implementation in Lisp –

as an interpreted language, the user is free to write any function that can link views
together, and indeed can write any desired data view. If you want to interactively
colour items in a scatterplot based on their distance from the center of the brush (as
we do in Sect. .), it is an easy job for Lisp programmers.
So for bars one technique is to stack sections of the bar on top of each other – either

grouping all the selected items together or leaving them in a fixed location on the
bar. hen we can use an aesthetic (typically colour or pattern) to colour the separate
sections. Another technique was alluded to in Sect. ; instead of dividing a bar up,
we use a summary function to create a single value for the bar that summarizes the
cases it contains and then map that to an aesthetic. his approach is more general
in that it can handle numeric degrees of interest beyond the – binary selection
needed for stacked bars, and it is also generalizable to graphical objects that cannot
be as conveniently split into components, such as lines and paths. Both techniques
are valuable and should be considered for use in any set of linked views. Figure .
shows both techniques in action.
his figure combines five different variables for over   cases – aggregation is

clearly needed and a monolithic view that would adequately show the data is not ob-
vious. In the bottom let panel we show a hexagonal binning of the data and represent
each bin with a circle. he mean summary statistic has been applied to the degree of
interest for the cases in the bin, each of which is either  or . his effectively gives
us the fraction of the elements that are selected. Figure . below shows two alterna-
tive ways of displaying the information, using the size aesthetic and by dividing up
the glyph. In both cases the mean degree of interest maps to a circle area, not radius,
facilitating a better mental model of the distribution.
Although Fig. . is easier to interpret for most people, Fig. . might be preferred

in certain circumstances. For example, if we wished to use hue to encode another
characteristic, the mind has a tendency to combine hue and brightness into a gestalt
colour, which would make a colour aesthetic added to the scatterplot of Fig. .
a more confusing view than if we added colour to either view of Fig. .. Conversely,
we might want to show the distribution of heights and weights rather than just the
fraction of designated hitters in each bin. To do that we might use a size aesthetic to
show the count of players in each bin and apply that aesthetic to the scatterplot of
Fig. ..
From Fig. . we can see that, although designated hitters tend to be of average

height, with relatively few very short or tall players, they are well over average weight.
his makes intuitive sense if we consider their role. hey are players who do not
field or pitch. heir only role is to bat when the pitcher would otherwise be batting,
replacing him in the batting order. he designated hitter position was introduced
because the gap between the pitcher’s ability to hit the ball and the rest of his team’s
ability is generally large. herefore, rather than have a known poor performance on
every rotation through the team, one league, the American League (AL), decided
to introduce this position. It is a “power hitter” position. he designated hitter has
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Figure .. Multiple linked aggregated views. Top let view: barchart of players’ fielding positions. he

“designated hitter” position has been selected. Below is a hex-binned scatterplot showing players’ height

and weight, with the brightness indicating the fraction of designated hitters in each bin. On the right is

a paneled view of league against year, with each bar’s size proportional to the count of the number of

players in the league for that year. Each bar is split into designated hitters and other positions. he

selected cases (designated hitters) are drawn in black throughout

exactly one job – to hit the baseball hard – and so the players are powerful players,
as the height–weight scatterplot shows.
On the right-hand side of Fig. ., amodified faceted barchart represents the num-

ber of players in the various different baseball leagues since . he flurry of early
leagues settled down into the National League (NL) in , which then shrank as
players were raided to form the American League in . Both these leagues then
grew in size, with the Federal League a minor blip on the way.he degree of interest,
here representing the presence of designated hitters, has been represented by splitting
the bars and setting the brightness of the sections corresponding to the two subsets.
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Figure .. Degree of interest for aggregated points. he let view shows the mean degree of interest

mapped to the size aesthetic. he right view divides each circle into a selected area and an unselected

area

You can clearly see the appearance of the designated hitter starting in . Seeing the
position also appear in the NL in recent years was at first a surprise for the author.he
reason is that only in recent years have there been regular-season games between the
two existing leagues. Previously, two teams from different leagues would only meet
in the World Series. Now it is common for NL players to play AL players. When they
do so at an AL ballpark, they play under their rules and so must field a designated
hitter. hus we have statistics for designated hitters in the NL.
he Grammar of Graphics (Wilkinson, ) provides a useful list of basic ele-

ments that are used in graphics. All elements can be used in an augmented coordi-
nates system where one coordinate is used for the degree of interest variable, and all
may be faceted by a categorical degree of interest variable. For our final choice – us-
ing an aesthetic – we have already discussed points and intervals (bars). Since lines
and paths are hard to split into parts, we will generally use a summary statistic for
them or draw two different elements superimposed, one for selected and one for un-
selected. Areas and polygons (maps, for example) will similarly require a summary
operation. Areas have the additional advantage of being able to be displayed with se-
lected and unselected subsets stacked on top of each other in a similar fashion to bars
(e.g., Fig. .).
he schema element – defined in the Grammar of Graphics as a composite elem-

ent – is trickier. Examples of schemas are boxplots and Chernoff faces. For these ele-
ments, superimposition is hard to interpret; the elements generally look too confus-
ingly overlaid. A better choice is to add a dimension to differentiate between selected
and unselected subsets, as in Fig. . below.
Figure . is similar to Fig. ., with the boxplots replacing the parallel coordinates

plot. It is much easier to compare the performance of highly paid players; they ap-
pear not to be paid for average batting and getting on base, but for power hitting –
home runs and slugging.he linked boxplots allow us to compare distributions more
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Figure .. Faceting and boxplots. For the  season, the let view shows a histogram of salary on

a log scale. Players earning over $  were selected and are also shown in the linked boxplot,

which shows four major measures of performance: batting average, on-base percentage, home-run rate,

and slugging average

efficiently than the linked parallel coordinates plot, but, with the exception of Barry
Bonds, who is an outlier in all stats, it does not allow us to see individuals’ statistics
in each category. We have no idea from this chart whether high on-base percentage
implies a high home-run rate. Both parallel coordinates views and multiple boxplots
views are useful, but they facilitate different analytic goals.

Distance-based Linking 9.5

In Sect. . we proposed a simplification to the general implementation in which
the degree-of-interest value for each case must be either zero or one. Although this
is the most common implementation, other methods have been proposed that relax
this condition. One of particular interest is distance-based linking. In distance-based
linking, instead of defining a region of the screen that is used for selection and using
that to define a zero-one variable, a location in the data display is indicated, and the
degree of interest measures how close each item is to that location. We demonstrate
a simple version of it below in Fig. ..
Interested by the relationship between body shape (height and weight) and field-

ing position, the analyst creates a chart of the two major fielding statistics and links
it with the height/weight hex-binned scatterplot. Distance linking is used to relate
the two together, with a brightness scale used to map the mean degree of interest in
the binned scatterplot. Players in this cluster with more assists than putouts tend to
be short and light. Other variations on distance-based linking are possible. In this
example, we used the distance between items’ graphical representations to define the
distance. An alternative might be to use a distance measure based directly on the
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Figure .. Distance-based linking. he view on the right shows a scatterplot of the two major fielding

statistics. he user has clicked at approx. the (, .) coordinate to investigate this cluster and the degree

of interest is set to reflect the closeness to this point in this plot. he let view shows a hex binning of

the players’ physical statistics, and the mean degree of interest for a bin is coded using the same

brightness coding as the other plot. In both cases we are using a brightness scale with black mapping to

% selected (complete interest) and light gray mapping to % selected (no interest)

data – defining a location in the data space based on the view and then using dis-
tance as measured in the data space. Normalization of the data dimensions would
also probably be necessary for this. he transfer function that converts distance into
degree of interest is also important. he choice of function involves similar issues as
are found with choice of kernel and bandwidth for kernel density estimation. he
function should give a value of one at a distance of zero and should decrease to zero
as the distance increases, so that the point selected is given complete interest and
points further away are assigned decreasing degrees of interest. Following are some
choices that have been found effective in practice. No research has been done into the
optimality of any of the following possibilities; they have been chosen in an ad hoc
manner. he third method was used in the creation of Fig. . above.

DoI = max(,  − d � C), for some constant C.
DoI =  − d � (d + )
DoI =  � (d + C), for some constant C.

Linking fromMultiple Views9.6

In Sect. . we discussed how to combine an existing degree-of-interest measure with
a new selection, in the case of a binary degree of interest. he goal was to allow users
to repeatedly modify the degree of interest by successive interactions with the same
view. he same principle can be used to link multiple views together. We term this



LinkedData Views 233

a memoryless system. In a memoryless system, no history is kept of previous selec-
tions; only the current degree of interest is kept track of, with no knowledge of how
that state was achieved.hus when a selection interaction is performed, only the pre-
vious degree of interest and the view selection are used to create the resulting degree
of interest. By contrast, in a systemwith memory, each selection operation is remem-
bered and changing one selection runs through all existing selection operations to
determine the final selection. An example is Ahlberg and Shneiderman’s implemen-

Figure .. Multiple linked views with memory. he let barcharts show counts of number of players

by fielding position and by year. he scatterplot shows the relationship between putouts and assists –

two measures of fielding effectiveness. he user has selected sections of both barcharts independently;

in each chart the bars corresponding to that selection are displayed with a hash pattern. he top let

view has the catcher (C) position selected; the lower view has years before  selected. he

intersection of those selection states defines the degree of interest, which is displayed in all views in

black
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tation of dynamic queries in the FilmFinder (Ahlberg and Shneiderman, ).Here,
each variable maintains its own selection state (for example,  � year �  or
actor = Connery) and the overall selection is defined as the intersection of the indi-
vidual variable selections. In Fig. . below, we showmemory-based linking applied
to the baseball data.
In the discussion of Fig. ., we noted the extra cluster in the fielding scatterplot

and the linking in that figure showed the cluster appearing only pre-. Figure .
was created to follow up on this cluster. he position bar chart was added, as it is
known that fielding position and fielding statistics are related! he linked views have

Figure .. Multiple linked views with memory and nonbinary degree of interest. his figure is similar

to Fig. ., with the hashed bars showing the user’s selection as in that figure. In this figure, however,

the degree of interest is not a binary variable but takes three values: , when a case is completely

unselected; �, when it is selected in one of the two bar charts; and , when it is selected in both
barcharts. he mapping from degree of interest to brightness is: =light gray, �=medium gray, =black
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been set up to havememory, so the user was able to select the critical year rangemore
closely, and then each bar was successively selected in the position bar chart. When
the catcher position was selected, the intersection with the year histogram identified
the cluster in the scatterplot. It appears that catchers had a fundamentally different
method of fielding prior to .
he advantage of a system with memory is that it allows the user to make a query

involving a number of variables with little effort, and is forgiving; if you make an
error in adjusting one selection, it is easy to change it. he advantage of a memo-
ryless system is in power and adaptability. It is hard to generalize a memory-based
system while retaining an intuitive interface (imagine the difficulties in coordinating
selections from a map, a scatterplot and a network view, for example), and it makes
choosing different selection operations difficult as the method of combination of the
different selections is typically fixed. From observation of existing systems, it appears
that the memory-based approach is particularly good for directed queries and an-
swering the question “Which objects satisfy this description?” and the memoryless
approach is better for discovering structure in the data and answering the question
“Are there unusual features in these data?”
Figure . is the most complex figure in this chapter. Each barchart keeps track of

its own selection and displays that selection using a hash pattern.We are also defining
a nonbinary degree of interest, in this case with three levels. As well as showing the
black cluster that was the focus of the investigation, we can also see an interesting
gap in the linear feature along the bottom of the scatterplot. A putout ratio of about
eight putouts per game was rarely observed prior to  and was not observed for
catchers ever. he use of a nonbinary degree of interest, while more complex to use,
shows additional information that would have been missed otherwise.

Linking to Domain-speciic Views 9.7

One of the attractions of the linked views paradigm is that it makes it easy to integrate
a view that is useful only for a particular form of data into a general system. All that is
needed is that a view be able to fulfill requirements () and/or () of Sect. . and the
view can be added directly into the general system. For spatial data, Unwin andWills
built a system that combined a number of statistical views with geographical views.
REGARD (Haslett et al. ) allowed the user to manipulate maps of geographical
information, containing layers of data representing sets of geographical information
(towns, rivers, countries, etc.). hese different layers contain entities with statistical
data, so that users can create data views on one or more of these variables and use
the linking system to tie the views together.
Figure . shows the simplest and most intuitive way to add a geographic view

to a linked views system. We simply code the selection by brightness to give the well-
known choropleth map.hismethod will work for nonbinary degrees of interest and
is an intuitive view. In this figure, we can see that there is a strong relationship between
marriage patterns and spatial location. It is let as an exercise to the reader to guess
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Figure .. Map linking. Let: choropleth map of states of the United States, with the brightness

indicating degree of interest. Right: parallel coordinates view of four variables, each of which indicates

the percentage of people married at four different age categories. States where fewer people marry

young were selected for this view

which state is the one defined by the line at the top of the parallel coordinates plot,
having uniformly higher marriage rates than all other states at all age groups.
REGARD also pioneered view linking in networks, which was further developed

inNicheWorks (Wills, ).Here the domain-specific data consist of information on
nodes and links of a graph, and the goal is to use the linking mechanism to facilitate
exploration of relationships between the two sets of data, as in Fig. .. A variation
on distance-based linking was used in this application, with distance being defined
in terms of data as the graph-theoretic distance between nodes. So selecting an in-
dividual node would give it a degree of interest of , and then the degree of interest
would flow along the graph, so nodes n steps away might have degree of interest rn,
for some r < .
A final and important domain that we will discuss is the domain of modeling re-

sults. In Sect. ., we noted that Data Desk incorporated text descriptions of models
within the linking paradigm. It is also useful to develop model-specific views and in-
corporate them within a framework. Consider hierarchical clustering, for example.
Hierarchical clustering clusters data using similarities and has a natural tree repre-
sentation. Figure . shows a representation of such a model for the data of Fig. .,
namely, the marriage patterns of states.
In the hierarchical clustering view, a leaf node has a degree of interest of either 

or , depending on the selection propagated from the parallel coordinates view. Each
parent node created by the clustering algorithm is defined as containing all its chil-
dren and has been displayed using the mean summarymethod, displayed as a bright-
ness scale between black (all data rows in this cluster were selected) and light gray (no
data rows in this cluster were selected). his continuous degree of interest allows the
clustering to be explored in the context of the original data, and, by selecting clusters
and showing the linking in the parallel coordinates view, it allows users to understand
what those clusters represent.
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Figure .. Linking between a node-edge graph and a barchart. he graph represents web pages. he

barchart shows the type of the page, with the largest bar representing “normal” pages (not images or

queries/scripts) selected

Figure .. Linking between hierarchical clustering and a barchart. he right graph is a parallel

coordinates view of marriage percentages for four different age ranges. he view on the let is a linked

hierarchical clustering view showing aggregations into groups. As usual, the brightness scale represents

degree of interest, with black representing % interest and light gray % interest

We are not even tied down to one particular representation of the clustering tree.
In Fig. . we show several different representations of the same clustering tree.
hepolar version is a simple transformation of the tree view shown in Fig. ..he

treemap in the bottom two views was invented by Shneiderman (). It is a space-
filling design reminiscent of mosaic displays. In a treemap, we repeatedly subdivide
a rectangular area in proportion to the size of the children of a node. hus the total
space is represented by the whole rectangle, which is then split into two sections (the
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Figure .. Different linked hierarchical clustering views. Top right: original parallel coordinates view.

Top let: tree view of Fig. ., rendered in polar coordinates. Bottom: two treemap views of the tree, in

two and three dimensions

hierarchical clustering algorithm used produces a binary tree). Each of those is then
split up based on the number of children they contain, and so on until leaf nodes
are encountered. In this display a gap has been added between children to allow the
inclusion to be seen more clearly.

Summary9.8

he power of the linking technique lies in its ability to display data in one view con-
ditionally on a user’s interaction with a second view. It is therefore most useful for
goals that involve comparisons of a subset of data to the remainder. Questions like
“How are these outliers different?”, “If X is high, what effect does that have on the
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relationship between Y and Z?”, and “My clustering algorithm made these items into
a group. Now what does this group actually look like?” are some of the questions for
which this technique is highly suitable. Linked views is also a powerful system for in-
tegrating domain-specific views into a general-purpose system. Designing a linked
view, or modifying an existing view to fit the paradigm, is typically simple and, most
importantly, does not require many changes to a specific view that is known to work
well. his chapter has presented the necessary techniques and decisions that need to
be considered to implement or use a system of linked views. We have demonstrated
both simple and advanced versions of the linking environment using real-world data
with sizes up to   records. Linked views is a general technique that is widely ap-
plicable, works for all types and sizes of data, and is as robust as the views that it links
together. It has been implemented in several systems and with increasing computer
power, and it is anticipated that it will continue to advance as a standard analysis
technique.

Data Used in This Chapter 9.9

he baseball dataset is taken from he Baseball Archive, version ., November ,
, collected by Sean Lahman, which is available at http://www.baseball.com/.
Access to the dataset is provided free of charge (although donations are suggested)
and has been available for many years. It contains  different tables, indexed to allow
database joins. he tables used in this chapter are:
Master table: data about players including name, height, weight, handedness, birth-

place, and birthdate.
Batting table: detailed data about how a player batted in a given regular season: at-

bats, hits, runs, multibase hits, stolen bases, etc.
Fielding table: detailed data about how a player fielded in a given regular season:

assists, putouts, errors, games played, etc.
Salary table: how much a player was paid in a given season.

Baseball players can be divided into two groups. Pitchers, who throw the ball, and
batters, who attempt to hit the ball and score runs by doing so. In this section we con-
sider only batters. he statistics for games(G) and at-batsmeasure how oten a batter
played. he other batting statistics measure how well they performed during their
appearances.
Batters also play a defensive role when the opposition team is batting. hey field

the ball in an attempt to limit runs and to dismiss the opposition batters. A fielder
has a designated position to play, with infielders [B (first base), B (second base), B
(third base), and SS (shortstop)] playing close to the opposition batters and outfielders
playing further away and seeing less action in a game. An important special position
is the designated hitter – DH. A player at this position is not required to field and
has no role on the team except to attempt to hit the ball. Effectively he will have no
fielding statistics. he putout statistic counts the number of times a fielder dismisses
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an opponent, and the assists statistic counts the number of times a player throws
the ball to another player who then puts an opposition batter out. Errors count the
number of plays that should have resulted in a putout but did not. he decision on
whether a play is an error is made by game officials.
here is a considerable amount of missing data, especially for earlier time periods.

Also, when calculating rates, some players played too few games for the results to be
meaningful. herefore the following filters were applied:

For batting data, we limit the figures to player seasons forwhich at least  at-bats
were recorded.
Fielding data are similarly restricted to player seasons for which at least  games
were recorded.
Salary data are only known from  onwards. Any figure with salary data is
restricted to the years for which salary data are available (–)

Figures ., ., and . use data from theUS  census, aggregated by the census
bureau to the state level.
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Introduction10.1

Tree-basedmodels provide an appealing alternative to conventionalmodels formany
reasons. hey are more readily interpretable, can handle both continuous and cat-
egorical covariates, can accommodate data with missing values, provide an implicit
variable selection, andmodel interactionswell.Most frequently used tree-basedmod-
els are classification, regression, and survival trees.
Visualization is important in conjunction with treemodels because in their graph-

ical form they are easily interpretable even without special knowledge. Interpretation
of decision trees displayed as a hierarchy of decision rules is highly intuitive.
Moreover tree models reflect properties of the underlying data and have other

supplemental information associated with them, such as quality of cut points, split
stability, and prediction trustworthiness. All this information, along with the com-
plex structure of the trees themselves, gives plenty of information that needs to be
explored and conveyed. Visualization provides a powerful tool for presenting differ-
ent key aspects of the models in a concise manner that allows quick comparisons.
In this chapter we will first quickly introduce tree models and present techniques

for visualizing individual trees. hose range from classical hierarchical views up to
less widely known methods such as treemaps and sectioned scatterplots.
In the next section we will use visualization tools to discuss the stability of splits

and entire tree models, motivating the use of tree ensembles and forests. Finally we
present methods for displaying entire forests at a glance and other ways for analyzing
multiple tree models.

Individual Trees10.2

hebasic principle of all tree-based methods is a recursive partitioning of the covari-
ates space to separate subgroups that constitute a basis for prediction.hismeans that
starting with the full dataset at each step a rule is consulted that specifies how the data
are split into disjoint partitions. his process is repeated recursively until there is no
rule defined for further partitioning.
Commonly used classification and regression trees use univariate decision rules in

each partitioning step, that is, the rule specifying which cases fall into which partition
evaluates only one data variable at a time. For continuous variables the rule usually
creates two partitions satisfying the equations xi < s and xi 	 s, respectively, where s
is a constant. Partitions induced by rules using categorical variables are based on the
categories assigned to each partition. We refer to a partitioning step oten as split and
speak of the value s as the cut point.
he recursive partitioning process can be described by a tree.he root node corre-

sponds to the first split and its children to subsequent splits in the resulting partitions.
he tree is built recursively in the same way as the partitioning and terminal nodes
(also called leaves) represent final partitions. herefore each inner node corresponds
to a partitioning rule and each terminal node to a final partition.
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Each final partition has been assigned a prediction value or model. For classifi-
cation trees the value is the predicted class, for regression trees it is the predicted
constant, but more complex tree models exist such as those featuring linear models
in terminal nodes. In what follows we will mostly use classification trees with binary
splits for illustration purposes, but all methods can be generalized for more complex
tree models unless specifically stated otherwise. We call a tree consisting of rules in
inner nodes regardless of the type of prediction in the leaves a decision tree.

Hierarchical Views 10.2.1

Probably the most natural way to visualize a tree model is to display its hierarchical
structure. Let us describe more precisely what it is we want to visualize. To describe
the topology of a tree, we want to borrow some terminology for the graph theory.
A graph is a set of nodes (sometimes called vertices) and edges. here a tree is defined
as a connected, acyclic graph. Topologically, decision trees are a special subset of
those, namely, connected directed acyclic graphs (DAGs) with exactly one node of
indegree  (the root – it has no parent) and outdegrees other than  (i.e., at least two
children or none at all).
To fully describe a decision tree, additional information is associated with each

node. For inner nodes this information represents the splitting rule; for terminal
nodes it consists of the prediction. Plots of tree models attempt to make such infor-
mation visible in addition to displaying the graph aspect of themodel.hree different
ways to visualize the same classification tree model are shown in Fig. ..
he tree model is based on the Italian olive oil dataset (Forina et al. ), which

records the composition of Italian olive oils from different regions of Italy. Each co-
variate corresponds to the proportion (in / th) of a fatty acid (in the order of
concentration): oleic, palmitic, linoleic, stearic, palmitoleic, arachidic, linolenic, and
eicosenoic acid. he response variable is categorical and specifies the region of ori-
gin. he goal is to determine how the composition of olive oils varies across re-
gions of Italy. For illustration purposes we perform a classification using five regions:
Sicily, Calabria, Sardinia, Apulia, and North (the latter consolidating regions north
of Apulia).
Although the underlying model is the same for all plots in Fig. ., the visual

representation is different in each plot. Visualization of a tree model based on its
hierarchical structure has to contemplate the following tasks:

Placement of nodes
Visual representation of nodes
Visual representation of edges
Annotation

Each task can be used to represent additional information associated with the model
or data. Visual representation of a node is probably the most obvious way to add such
information. In the first (top let) plot, a node consists solely of a tick mark with an
annotation describing the split rule for the let child. In the second (top right) plot,
a node is represented by a rectangle whose size corresponds to the number of cases
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Figure .. Different ways to visualize a classification tree model

of the training data falling into that node.he annotation describes the split variable.
Finally, in the third (bottom) plot, each node is represented by a rectangle of the
same size, but the colors within show the proportions of classes falling into a given
node.
Advanced techniques known from area-based plots can be used in hierarchical

views as well if we consider nodes as area-based representations of the underlying
data. Figure . illustrates the use of censored zooming in conjunction with tree node
size.
he top plot shows node representation without zoom, that is, the size of the root

node corresponds to all data. All subsequent splits partition these data, and hence the
node area, until terminal nodes are reached. If plotted truly proportionally, the last
two leaves split by the stearic variable would be hardly visible. herefore a minimal
size of a node is enforced, and the fact that this representation is not truly propor-
tional is denoted by a red border.
To provide a truly proportional comparison of small nodes, we can enlarge all

nodes by a given factor. In the bottom plot a factor of four was used. Now those
small nodes can be distinguished along with the class proportions, but large nodes
would need to be four times as big as in the first plot, obscuring large portions of the
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Figure .. Censored zoom of nodes. Bottom plot: censored zoom (�) of top plot. Nodes that would

appear too large are censored at a maximum allowed size and flagged by a red line

plot and possibly other nodes. herefore we also enforce a maximal size of a node.
Again, to denote nodes that are not shown proportionally due to upper censoring,
we use a red line along the top edge of the node.
he placement of nodes is a task that has been discussed intensely in the graph visu-

alization community. For small trees, simple approaches, such as a bottom-up space
partitioning, workwell. As the trees grow larger, node layout becomesmore challeng-
ing. For tree model visualization, however, associated information is in most cases
more important than differences in local topology, especially where the structure is
imposed by the tree-growing algorithm. herefore interactive approaches, allowing
the user to explore the tree model by local magnification while retaining global con-
text, are recommended for large tree models.
In the above examples, basic lateral placement is performed by an equidistant par-

tition of the available space. Only the first plot uses nonequidistant placement of
nodes in the direction of tree depth, namely, the distance of two nodes in this di-
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rection is proportional to the impurity decrease and thus in a sense to the “quality”
of the split. he third plot uses special placement in that it is rotated � counter-
clockwise relative to the usual representation and all terminal nodes are aligned to
facilitate easy comparison of the class proportions.
he visual representation of edges is usually restricted to drawing direct or orthog-

onal lines. Nevertheless, more elaborate representation of edges, such as polygons
whose width is proportional to the number of cases following that particular path, is
another possibility, creating a visual representation of the “flow” of data through the
tree.

Annotations are textual or symbolic representations displayed along the nodes or
edges. In Fig. . annotations describe predictions and splitting rules. Although an-
notations can be useful, they should be used with caution because they can easily
clutter the plot and thus distract from the key points to be conveyed.
Overloading plots with information can offset the benefits of the plot, in particular

its ability to provide information at a glance.When the representation of a node is too
large, because it, e.g., includes a list of statistics or additional plots, it will consume so
much space that it is only possible to display very few levels of the tree on a screen.
he same applies to a printed version, because the size of a sheet of paper is still
limited.herefore additional tools are necessary to keep track of the overall structure
in order not to get lost. Most of these tools, such as zoom, pan, overview window, or
toggling of different labels, are available in an interactive context only. Especially for
an analysis, a visualization of additional information is required. here are basically
two possibilities for providing such information:

Integrate the information in the tree visualization.
Use external linked graphics.

Direct integration is limited by the spatial constraints posed by the fixed dimension
of a computer screen or other output medium. Its advantage is the immediate impact
on the viewer and therefore easier usage. It is recommended to use this kind of visu-
alization for properties that are directly tied to the tree. It makes less sense to display
a histogram of the underlying dataset directly in a node because it displays derived
information that can bemore comfortably displayed outside the tree, virtually linked
to a specific node. It is more sensible to add information directly related to the tree
structure, such as the criterion used for the growth of the tree.
External linked graphics are more flexible because they are not displayed directly

in the tree structure for each node but are only logically linked to a specific node. Spa-
tial constraints are less of a problem because one graphic is displayed instead of many
for each node. he disadvantage of linked graphics is that they must be interpreted
more carefully. he viewer has to bear in mind the logical link used to construct the
graphics as it is not visually attached to its source (node in our case).
here is no fixed rule as of what kind of information should be displayed inside or

outside the tree structure. A rule of thumb says that more complex graphics should
use the external linked approach, whereas less complex information directly con-
nected with the tree structure should be displayed in the tree visualization.
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Recursive Views 10.2.2

In the introductionwedescribed treemodels as recursive partitioningmethods. Con-
sequently it is only natural to display partitions induced by the tree, resulting in an
alternative way of visualizing tree models. In what follows we will describe visualiza-
tion methods that are based on the partitioning aspect of the models instead of the
hierarchical structure.

Sectioned Scatterplots
Splitting rules are formulated in the covariate space; therefore a way to visualize a tree
model is to visualize this space along with the induced partition boundaries. For uni-
variate partitioning rules those boundaries lie on hyperplanes parallel to the covariate
axes.
Due to this fact we can use something as simple as a scatterplot as a -D projection.

In this view, all splits featuring any of the two plotted variables are clearly visible. Such
sectioned scatterplot featuring the first two split variables is shown in Fig. . along
with the associated tree.
It is the same model as in Fig. .. Each region is denoted by a particular color in

the scatterplot, and partition boundaries are added based on the tree model.
he first split of the tree uses an eicosenoic variable to separate oils originating in

northern Italy and Sardinia from other regions. It is clearly visible in the sectioned
scatterplot that this split is indeed very distinctive.

Figure .. [his figure also appears in the color insert.] Sectioned scatterplot (let) showing root splits

and splits in its children of a classification tree (right)
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Both of the following inner nodes use a linoleic variable to further separate Sar-
dinian oils from northern parts of Italy and on the right-hand side Apulian oils from
Sicily and Calabria. Further splits are no longer visible in this projection because
they feature other variables and are thus parallel to the visible plane. Nevertheless, it
is possible to analyze such subsequent splits, especially in an interactive context, by
a succession of sectioned scatterplots using drill-down techniques, following a few
basic rules.
Sectioned scatterplots should be preferably created using variables that are adja-

cent in the tree, that is, using split variables of nodes that are connected by an edge.
his ensures that both splits are visible in the projection.
Also, the plotted data should be restricted to the data falling in the node closer

to the root. In Fig. . we have used the entire dataset, since we were interested
in showing splits of the root node and its children. Figure . presents a sectioned
scatterplot based on data further down the tree, namely, the partition in the bottom-
right part of the scatterplot in Fig. ..
Sectioned scatterplots are useful for investigating the vicinity of a cut point. Some

cut points are placed in a noisy area, while others are much more clear, as is illus-
trated in Fig. .. However, they cannot capture more than two covariates used in
subsequent splits and thus remain suitable mainly for local analysis of a tree model.
In an interactive setting, however, it is possible to quickly “drill-down” from Fig. .
to Fig. .. Linked highlighting further helps to retain the context, especially with
the help of a linked hierarchical view.

Figure .. Drill-down using a sectioned scatterplot based on a subgroup induced by the tree model
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A generalization to multiple dimensions is not straightforward. Although a ro-
tating -D scatterplot with splits as hyperplanes represented by meshes proves to be
useful, higher dimensions are beyond reach.
Several extensions to sectioned scatterplots are useful in specific situations. In

cases where the same variable is used in the tree several times at different depths,
it is advisable to vary the opacity or luminance of the partition boundary lines ac-
cording to their depth, making more “deep” splits lighter. his provides a visual aid
when interpreting the plot.
Another technique involves shading of the plot background based on either the

depth of the visible partition (depth denoted in shades of gray: depth-shading) or the
predicted value (semitransparent category color or hue of the predicted value: predic-
tion shading).he latter emphasizes misclassified cases or outliers with high absolute
residual value because correctly predicted cases blend better into the background.
Scatterplots are primarily useful for continuous variables. If a tree model uses cat-

egorical variables, a local treemap can prove useful. Such a plot is in principle similar
to mosaicplots, but categories falling into the same node are grouped together. We
will discuss treemaps in the following section.

Treemaps
One way of displaying all partitions is to use area-based plots where each terminal
node is represented by a rectangle. Treemaps belong to this plot category. he main
idea is to partition available rectangular plot space recursively in the same way that
the tree model partitions data. herefore treemaps are data-driven representations of
the model.
he rectangular area of the treemap corresponds to the full dataset. In the first step

this area is partitioned horizontally according to the proportions of cases passed to
each child node. In the next step each such partition is partitioned vertically corre-
sponding to case proportions in its children.his process is repeated recursively with
alternating horizontal and vertical partitioning directions, as illustrated in Fig. .,
until terminal nodes are reached.
In the resulting plot each rectangle corresponds to a terminal node. he area of

each rectangle is proportional to the number of cases falling into that terminal node.

Figure .. Construction of a treemap consisting of three subsequent binary splits
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Figure .. Treemap with stacked bars representing response classes. Color coding and data are the

same as in Fig. .

It is helpful to adjust spaces between partitions to reflect the depth at which a given
partitioning took place, showing splits closer to the root with larger gaps.
Treemaps are useful for assesing the balance of a tree model. In very noisy scenar-

ios trees tend to attempt splitting off small, reasonably homogenous subgroups, while
leaving a large chunk of cases in one node that is hard to separate. Such behavior is
easily detected in treemaps as large terminal nodes.
Moreover, treemaps are suitable for highlighting or brushing, allowing the com-

parison of groups within terminal nodes. A treemap of the model from Fig. . with
colors stacked by group is shown in Fig. ..
It is clearly visible that the tree model is able to split off large homogenous groups

successfully, butmore subsequent splitting is necessary for nodes visible in the upper-
let part of the plot.
Treemaps described here are an extension of those used in computer science in-

formation visualization of hierarchically stored contents. hey are also related tomo-
saicplots. More precisely a mosaicplot is a treemap of a decomposition tree, that is,
a tree whose splits of the same depth use the same categorical splitting variable and
have as many children as there are categories in the data.
he main advantage of treemaps is their very efficient use of display space. hey

allow absolute comparison of nodes and subgroup sizes while maintaining context
of the tree model. hey scale well with both increasing dataset size and tree model
complexity. What they cannot show is information about splitting criteria, and they
do not allow direct relative comparison of groups within nodes. An alternative visu-
alization technique exists for the latter task.

Spineplots of Leaves
Another useful plot for tree model visualization is the spineplot of leaves (SPOL). By
not alternating the partitioning direction as in treemaps, but constantly using hori-
zontal partitioning, we obtain a plot showing all terminal nodes in one row.
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Figure .. [his figure also appears in the color insert.] Spineplot of leaves brushed by response

categories with superimposed tree model. he associated tree is sketched on top for easier identification

of individual leaves

Due to the fixed height, it is possible to visually compare sizes of the terminal
nodes that are proportional to the width of the corresponding bar. Moreover, relative
proportions of groups are easily comparable when using highlighting or brushing.
A sample spineplot of leaves is shown in Fig. ..hedisplayed data andmodel are

the same as in Fig. ., as well as the color brushing. Each bar corresponds to a leaf,
and the width of each bar is proportional to number of cases in that particular node.
We can clearly see relative proportions of groups within each node. In addition, it

is possible to add a simple annotation on top of the plot in the form of a dendrogram
of the represented tree. As with treemaps, it is advantageous to choose the size of gaps
between bars according to the depth of the split.
SPOLs are mainly useful for comparing group proportions within terminal nodes.

hey are similar to spineplots, which allow the comparison of groups within cate-
gories of a variable. hey differ in that a “category” is in fact membership of a partic-
ular terminal node and uses different rules for gaps between bars.
In this section we have discussed several alternative techniques for visualizing tree

models based on the idea of recursive partitioning. he shownmethods focus on the
visualization of splits, their sequence, and the application of the model to data. One
important property of all visualization techniques presented is their applicability to
arbitrary subsets of the data. Although most illustrations used training data and the
corresponding fitted tree model, it is also feasible to visualize test data instead.Where
a view of the training data highlights the adaptability of the model, the view of test
data focuses on stability and overfitting. Moreover, it is possible to compare both
views side by side.
his leads us to further important aspects of a tree model – the credibility and

quality of the splits and the entire model. In the next section we want to briefly dis-
cuss tree model construction and present visualization methods that incorporate in-
formation about split quality into both existing and new plots.
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Fitting Tree Models10.2.3

So far we have discussed methods for visualizing tree models on their own and in-
cluding data the models are applied to. here is, however, more information associ-
ated with each node that waits to be visualized. In order to understand tree models
better, we need to know more about the process of fitting tree models.
Although a tree model is straightforward to interpret and apply, its construction

is not trivial. In theory, we would like to consider all possible tree models and pick
the one that fits the given data best, based on some loss function. Unfortunately this
proves to be unfeasible save for trivial examples because the computational cost in-
creases exponentially with tree size.
herefore several other approaches have been suggested for fitting tree models.

hemost commonly used algorithmCART (Classification and RegressionTrees) was
introduced by Breiman et al. (). It performs a greedy local optimization as fol-
lows: for a given node, consider all possible splits and choose the one that reduces the
relative impurity of the child nodes most relative to the parent node.his decrease of
impurity (and hence increase of purity) is assessed using an impurity criterion. Such
a locally optimal split is then used and the search is performed recursively in each
child node.
he growth is stopped if one of the stopping rules is met.hemost common stop-

ping rules are aminimal number of cases in a node and aminimal requirement on the
impurity decrease. In practice it is common to relax the stopping rule and use prun-
ing methods; however, discussion of pruning methods is beyond the scope of this
chapter. Nevertheless, visualization can be useful for pruning, especially in an inter-
active context where pruning parameters can be changed on the fly and reflected in
various displays.
Measures of impurity can be any arbitrary convex functions, but the commonly

used measures are entropy and Gini index, which have theoretical foundations (cf.
Ripley, ). It is important to note that this search looks for a local optimum only.
It has no way to “look ahead” and consider multiple splits at once. Nevertheless, it
is computationally inexpensive compared to a full search and performs considerably
well in practice.
he consequence of committing to a local optimum at each split point is a poten-

tial instability of the model. Small changes in the training data can cause a different
split to be chosen. Although the alternate split may lead to a very similar decrease of
impurity, the resulting partition can be entirely different. his will have a big impact
on any following splits and thus produce an entirely different tree model. We want to
present a visualization technique that allows us to learn more about decisions made
at the node level during tree model fitting.

Mountain Plots
he basic idea of amountain plot (Urbanek, ) is to visualize the decrease of im-
purity over the entire range of the split variable. his is illustrated on a binary clas-
sification problem in Fig. .. In this particular example a binary response denotes
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Figure .. Stacked dotplot side by side with split variable (Age) and target variable (Recover) along

with the corresponding mountain plot showing the impurity decrease for each cut point. he optimal

cut point is denoted as a solid red line, runner-up splits as dotted red lines

whether a patient was able to recover from a diagnosed meningitis disease, whereas
the predictive variable Age refers to the patient’s age at the time of the diagnosis.
he top part of the figure shows a stacked dotplot of the split variable grouped by

binary response. he bottom part of the plot shows a mountain plot. he value of
the empirical impurity measure is constant between data points and can change only
at values taken by the data. he value of the impurity decrease is by definition zero
outside the data range.
In the presented example it is clearly visible that there are three alternative splits

that come very close to the “optimal” cut point chosen by the greedy algorithm.
he competition for the best split is not limited to a single variable. Figure . il-

lustrates a competition among two different variables in a regression tree.hemodels
are based on the Boston housing dataset by Harrison and Rubinfeld ().
Although both splits have almost identical impurity-decrease maxima, the data

show different patterns. he relationship seen in the let part of the plot is probably
better modeled by a linear model, whereas on the right-hand side we see a change in
behavior around the chosen cut point.
By plotting mountain plots of candidate variables on the same scale, we can assess

the stability of a split. If there is a dominating covariate with a clear optimum, the
split will be stable. On the other hand the presence of competing splits in the range
of the optimal split indicates possible instability. Mountain plots also show which re-
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Figure .. Two mountain plots of variables Rooms and LowStat and corresponding scatterplots vs.

response variable. Red lines: optimal splits; gray lines in scatterplots: means for each partition

gions of competing variables are in the vicinity of the optimum, thus allowing domain
knowledge to be taken into account.
he name “mountain” plots is derived from the fact that the plots usually resem-

ble a profile of a mountain range. hey are mainly useful for assessing the quality of
a split along with potential competing splits. his information can be used to inter-
actively influence the tree construction process or to construct multiple tree models
and compare their behavior.

Visualizing Forests10.3

So farwe have beendiscussing visualization of individual treemodels.Wehave shown,
however, that there is an inherent volatility in the choice of splits that may affect the
stability of a given model.herefore it is useful to growmultiple trees. Inwhat follows
we will briefly introduce tree ensemble methods and present visualization methods
for forests consisting of multiple tree models.
here are two main approaches to generating different tree models by making

changes to:
Training data: changes in the training data will produce differentmodels if the orig-

inal treewas unstable. Bootstrapping is a useful technique to assess the variability
of the model-fitting process.

Splits: allow locally suboptimal splits that create different partitions in order to pre-
vent the greedy algorithm from getting stuck in a local optimum, whichmay not
necessarily be a global optimum.
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Model ensemble methods leverage the instability of individual models to improve
prediction accuracy by constructing a predictor as an aggregate ofmultiple individual
models. Bagging (Breiman, ) uses bootstrapping to obtain many tree models and
combines their prediction results by aggregation: majority voting for classification
trees and averaging for regression trees. In addition, random forests (Breiman, )
add randomness by choosing candidate split variables from a different random set in
each node.

Split Variables 10.3.1

Bootstrapping models provide a useful tool to analyze properties of the fitted models
and therefore shed more light on the underlying data. One of the many advantages
of tree models is their ability to perform implicit variable selection. Given a dataset,
a tree-growing algorithm will create a hierarchical structure of splits forming the tree.
Only variables used in the splits will be evaluated by the model; therefore any other
variables are implicitly dropped. In the following discussion we want to illustrate the
visualization of forests on Wisconsin breast cancer data (Mangasarian and Wolberg,
).
For this purposewe generate  trees using bootstrapping. In each bootstrap itera-

tion we grow a tree using the regular CART algorithm. Let us first concentrate on the
variables used in the models. A global overview is given in the let plot of Fig. ..
Each bar displays how oten the corresponding variable was used in the models. he
most oten used variable is UCS ( times) and the least oten used variable is Mts,
which was used just once. Due to the rather small number of variables to choose
from, there is no variable omitted by all models.
Clearly this view is very coarse, because it does not take into account what role the

variable plays in the models. he number of splits can double with increasing depth,
whereas the number of involved cases decreases. herefore the fact that a variable is
used oten does not necessarily mean that it is really important, especially if it used

Figure .. Let: frequency of use of individual variables in  bootstrapped tree models. Right:

cumulated deviance gain in splits featuring the corresponding variable
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mainly in the fringe for small groups. herefore it is advisable to weight the contri-
bution of each split by a cumulative statistic such as the decrease of impurity.
he cumulative value of impurity decrease for each variable of the  bootstrapped

trees is displayed in the right plot of Fig. ..he variables in each plot are ordered
by the bar height, representing their importance. We see that UCS is by far the most
influential variable, followed by UCH and BNi.
When making inference on the displayed information, we need to be cautious

and keep the tree properties in mind. Variable masking can heavily influence the
results of such analyses. Given two highly correlated variables, it is very likely that
they will produce very similar split results. herefore the CART algorithm guided
by the bootstrap will pick one of them at random. Since the decision was made, the
other variable is not likely to be used anymore. If one of the variables is “weaker,” it
will hardly appear in any model, even though in the absence of the stronger variable
it may still perform the best out of all the other variables.
To analyze that behavior, but also to see how different the tree models are, it is

necessary to take both the variable and the individual tree into account. Two-dimen-
sional weighted fluctuation diagrams showing trees and split variables are shown in
Fig. .. Variables are plotted on the y-axis, the models on the x-axis. he area of
each rectangle is proportional to the cumulative impurity decrease of all splits using
a specific variable in the tree model. In general, fluctuation diagrams are useful for
detecting patterns and comparisons in both the x and y directions.
Focusing on the largest gains, we can distinguish four different model groups. In

 models, UCS is the most influential variable, followed by UCH with  models and
BNi and BCn with one model each. Looking at the large group of  models we can
also spot several patterns. In  cases, UCH is also used, although not contributing as
heavily as in its dominant position, but then we see another  cases where UCH is
not used at all. Visually we get the impression that BNi replaces UCH in those cases,
which hints at variable masking. We see a similar behavior with UCS and UCH, too.

Figure .. Fluctuation diagram of trees and variables displaying cumulated deviance gain of splits

featuring that combination of tree and split variable
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his overall impression indicates that bootstrapping indeed produces very different
models, and we see a confirmation of the tree model instability for this dataset.
With large numbers of trees, an alternative representation based on parallel co-

ordinate plots can be used. Each coordinate corresponds to a tree and each case to
a variable. he value of the cumulative gain for each combination of tree and variable
is then plotted on the axes.he ordering of axes is important to obtain a coherent pic-
ture. Some possible heuristics include ordering by the value of the most influential
variable and distance measures based on the global weight of each variable.

Data View 10.3.2

he importance and use of variables in splits is just one aspect of the tree models to
consider. In Sect. .., we discussed another way of visualizing trees that allowed
an assessment of cut point in the data context, sectioned scatterplots. Fortunately,
sectioned scatterplots can also be used for the visualization of forests, preferably using
semitransparent partition boundaries.
Such a sectioned scatterplot of a forest is shown in Fig. .. To make the classi-

fication more difficult, we have increased the granularity of the response variable of
the olive oil data to nine regions. he sectioned scatterplot displays variables linoleic
vs. palmitoleic and partition boundaries of  bootstrapped trees. he use of semi-
transparent boundaries allows us to distinguish between occasionally used cut points
that are shown as very faint lines and frequently used cut points shown in dark blue.

Figure .. [his figure also appears in the color insert.] Sectioned scatterplot of a forest of  trees
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In contrast to sectioned scatterplots for individual trees, we do not have the conve-
nient ability of a drill-down, unless several models agree on the same subset. here-
fore the aim of the visualization technique described in the next section is to show
all trees and their splits at a glance.

Trace Plot10.3.3

he aim of a trace plot is to provide a plot that allows comparison of arbitrarily many
trees with respect to splits, cut points, and the hierarchical structure. his is not pos-
sible using any of the visualization methods described so far.
he basis of the trace plot is a rectangular grid consisting of split variables as

columns and node depths as rows. Each cell in this grid represents a possible tree
node. To distinguish actual split points, each cell contains a glyph representing pos-
sible split points. For continuous variables it consists of a horizontal axis, and a split
point is represented by a tick mark. Categorical variables are shown as boxes cor-
responding to possible split combinations. Every two adjacent inner nodes are con-
nected by an edge between their split points.
A classification tree and its trace plot is shown in Fig. ..he root node features

a split on the variable palmitoleic, which is represented by the rightmost column. Its
child nodes use splits on the variables linoleic and oleic, hence the two edges leading
from the root node to the next row of splits. here are no further inner nodes as
children of the linoleic split; therefore the branch ends there. Analogously, all inner
nodes are drawn in the trace plot until terminal nodes are reached.
It is evident that all splits of the tree can be reconstructed from its representation in

the trace plot because every cut point is shown in the trace plot. Equally, it is possible
to reconstruct the hierarchical structure of the tree due to the presence of edges in
the trace plot.
Moreover, the trace plot removes an ambiguity known from hierarchical views:

the order of the child nodes is irrelevant for the model, whereas swapping let and
right children in the hierarchical view produces quite different hierarchical plots. In
a trace plot the order of the child nodes is defined by the grid and therefore fixed for
all trees in the plot.
One important advantage of trace plots is the ability to display multiple tree mod-

els simultaneously, superimposing all models on the same grid. A trace plot of 
bootstrapped classification trees is shown in Fig. .. his confirms the ability of
bootstrapping to produce models that deviate from certain local optima.
To prevent overplotting, we use semitransparent edges. Consequently, oten used

paths are more opaque than infrequently used paths. We can clearly see that the first
split always uses the palmitoleic variable. In the next step, however, there are several
alternatives for the splits. Some patterns seem to be repeated further down the tree,
indicating a rather stable subgroup that can be reached in several different ways along
the tree. In this particular example we can recognize substructures that affirm the
partial stability of the tree models.
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Figure .. A classification tree and its trace plot

he remaining instability in this particular example is in most cases given by the
sequence inwhich the subgroups are separated.his is partially due to the fact that we
are dealing with amulticlass problem; thus the reduction of impurity can be achieved
by splitting off an arbitrary class or a group of classes. Nevertheless, our tree specimen
from Fig. . is a rather rare one, as we see in the trace plot in Fig. ., because its
trace does not match with the main, opaque paths.
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Figure .. Trace plot of  bootstrapped trees

Conclusion10.4

Tree models are very rich and versatile. Equally rich is the variety of possible visu-
alization techniques that provide various views of trees, each time shedding light on
different properties of the models.
Hierarchical views are the most commonly used graphical representations and

highlight the sequence of splits. hey are easy to interpret even by untrained per-
sonnel. Node placement and representation can convey additional information as-
sociated with the model or data. Size of nodes can be intuitively associated with the
size of the data passed into that node. Highlighting and brushing is easily possible in
this context, which facilitates interpretation in conjunction with available data. Hier-
archical views oten allow for additional annotation and supplemental information,
such as split quality. Complemental methods are available for large trees and data,
such as censored or context-preserving local zoom.
A less known group of tree model visualization techniques are those based on the

recursive partitioning aspect. Direct view of the partition boundaries in the observa-
tion space can be obtained using sectioned scatterplots. he focus here lies on the cut
points and their relative position in the data space. hey are limited in terms of the
number and types of covariates used but prove to be useful as a drill-down technique
for local analysis of subgroups throughout the tree model.
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Other methods based on recursive partitioning of the plot space are treemaps and
spineplots of leaves. Both allow a concise view of all terminal nodes while retaining
hints of the splitting sequence. In conjunction with highlighting and brushing, the
main focus here is on themodel behaviorwith respect to data points. As such the plots
can be created using training and test data separately and compared. Treemaps are
more suitable for absolute comparisons and large, complex trees, whereas spineplots
of leaves can be used for relative comparison of groups within terminal nodes up to
moderately complex trees.
Tree models are possibly unstable, that is, small changes in the data can lead to

entirely different trees. To analyze the stability of splits it is possible to visualize the
optimality criterion for candidate variables using mountain plots. Competing splits
within a variable become clearly visible and the comparison of mountain plots of
multiple candidate variables allows a quick assessment of the magnitude and cause
for potential instability.
he instability of a tree model can be used to obtain additional insight in the data

and to improve prediction accuracy. Bootstrapping provides a useful method for the
analysis ofmodel variation by creating awhole set of tree models. Visualization of the
use of covariates in the splits as weighted barcharts with aggregate impurity criterion
as weight allows quick assessment of variable importance. Variable masking can be
detected using weighted fluctuation diagrams of variables and trees. his view is also
useful for finding groups of related tree models.
Sectioned scatterplots also allow the visualization of partition boundaries formul-

tiple trees. he resulting plot can no longer be used for global drill-down due to the
lack of shared subgroups, but it provides a way of analyzing the “fuzziness” of a cut-
point in conjunction with the data.
Finally, trace plots allow us to visualize split rules and the hierarchical structure

of arbitrarily many trees in a single view. hey are based on a grid of variables and
tree levels (nodes of the same depth) where each cell corresponds to a candidate split
variable, corresponding to a potential tree node. Actually used cells are connected in
the same way as in the hierarchical view, thus reflecting the full structure of the tree.
Multiple trees can be superimposed on this grid, each leaving its own “trace.” he
resulting plot shows frequently used paths, common subgroups, and alternate splits.
All plots in this chapter have been produced using R sotware for statistical com-

puting and KLIMT interactive sotware for visualization and analysis of trees and
forests. Visualization methods presented in this chapter are suitable for both presen-
tation of particular findings and exploratory work. he individual techniques com-
plement each other well by providing various different viewpoints on the models and
data.herefore they can be successfully used in an interactive framework. Trace plots,
for example, represent a very useful overview that can be linked to individual hierar-
chical views. Subgroups defined by cells in the trace plot can be linked to data-based
plots, its edges to sectioned scatterplots.
he methods presented here were mostly illustrated on classification examples,

but they can be equally used for regression trees and mostly for survival trees as well.
Also, all methods described here are not limited to binary trees, even though those
represent the most commonly used models. he variety of tree models and further



264 SimonUrbanek

development of ensemble methods still leaves room for enhancements or new plots.
For exploratory work it is of benefit to have a big toolbox to choose from; for presen-
tation graphics it is important to have the ability to display the “key point” we want
to convey.
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Introduction1.1

Over the last decade, researchers have developed many improvements to make sta-
tistical graphics more accessible to the general public. hese improvements include
making statistical summaries more visual and providing more information at the
same time. Research in this area involved converting statistical tables into plots (Carr,
; Carr and Nusser, ), new ways of displaying geographically referenced data
(Carr et al., ), and, in particular, the development of linkedmicromap (LM) plots,
oten simply called micromaps (Carr and Pierson, ; Carr et al., , a). LM
plots, initially called map row plots as well as linked map-attribute graphics, were
first presented in a poster session sponsored by the American Statistical Association
(ASA) Section on Statistical Graphics at the  Joint Statistical Meetings (Olsen
et al., ). More details on the history of LM plots and their connection to other re-
search can be found in these early references on micromaps. More recent references
on LM plots (Carr et al., b; Carr, ) focused on their use for communicating
summary data from health and environmental studies.
he basic idea behind LM plots is to link geographic region names and their val-

ues, as shown in quality statistical graphics such as row-labeled dotplots, with their
locations, as shown in a sequence of small maps, called micromaps. his provides
the opportunity to see patterns in a geospatial context as well as in the traditional
statistical graphics context. Figure . shows a simple example of LM plots. his fig-
ure shows the  US states with the highest white female lung and bronchus cancer
mortality rates for . he states are sorted in descending order by the mortality
rates and partitioned into groups of five to promote focused comparisons. he let-
hand column consists of linked micromaps with onemicromap for each group of five
states. he top micromap has five regions with black outlines. Within each group of
five states, the shade of grey fill for a region links to the shade of grey in the dot beside
the region’s name and to the shade of grey in the dot indicating the region’s mortal-
ity rate. he same five shades of grey or distinct hues in color plots are links within
each group of five states. he linking is basically horizontal within groups of five. he
right column of Fig. . has familiar dotplot panels showing US state mortality rates
estimates and % confidence intervals. he data are from the US National Cancer
Institute (NCI) Web site http://www.statecancerprofiles.cancer.gov/micromaps, fur-
ther discussed in Sect. ...
Figure . shows a useful variant of linked micromaps that accumulates states out-

lined in black. hat is, states featured in previous groups of five are outlined in black
and shown with a white fill or with a sixth distinctive hue in color versions. he black
outline brings the outlined states into the foreground and creates a contour composed
of state polygons.he bottommicromap contour includes states with values above 
deaths per  . While the political boundaries are less than ideal for accurately
communicating geospatial patterns of local mortality rates, the progression of con-
tours and the visible clusters in the bottom micromap are much more informative
geospatially than the values in a table or a dotplot.
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Figure .. LM plots, based on data from http://www.statecancerprofiles.cancer.gov/micromaps,

showing lung and bronchus cancer mortality rates for white females in . he let column shows five

micromaps, with five states highlighted in different colors in each of the maps. he same color

information is used to link to the names of the US states in the middle column and to the data in the

right column. his data column displays US state mortality rates estimates (dots) and % confidence

intervals (lines)

Many statistical graphics, such as dotplots, means with confidence bounds, box-
plots, and scatterplots, start with a strong foundation toward quality by encoding
information using position along a scale. Position along a scale encoding has a high
perceptual accuracy of extraction (Cleveland and McGill, ). Quality statistical
graphics oten represent estimate uncertainty and reference values using position
along scale encodings, provide grid lines to reduce distance effect problems in judg-
ing values against a scale, and follow the guidance of Tute () and others for
visually layering information. Good visual layering makes the most important in-
formation the most salient. Estimates are generally more important than confidence
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bounds and should be layered within the foreground. Grid lines always belong in
the background. here are many factors related to statistical graphics quality, start-
ing with content and context, and extending to additional visual considerations, such
as perceptual grouping and sorting. While specific instances of LM plots may pro-
vide opportunities for improvement, the paradigm can incorporate much knowledge
about quality statistical graphics design.
LM plots oten provide a good alternative to displaying statistical information us-

ing choroplethmaps. Choroplethmaps use the color or shading of regions in amap to
represent region values. Choropleth maps have proved very popular but have many
problems and limitations as indicated by writers such as Robinson et al. (), Dent
(), and Harris (). Reviewing these problems helps to indicate why LM plots
are a good alternative.
here are two kinds of choropleth maps, called unclassed and classed. Unclassed

maps use a continuous color scale to encode continuous values (statistics). his is
problematic because perception of color is relative to neighboring colors and because
color has poor perceptual accuracy of extraction in a continuous context. Classed
choropleth maps ameliorate this problem and dominate in the literature.
Classed choropleth maps use class intervals to convert continuous estimates into

an ordered variable with a few values that can be represented using a few colors.
When a few colors are easily discriminated and regions are sufficiently large for color
perception, color identification problems are minimal. he color scheme also needs
to convey the class ordering based on values. Brewer () and Brewer et al. ()
provided results evaluating different color schemes in a mapping context. he Web
site http://colorbrewer.org (see Leslie, , for a short description) contains guid-
ance on ordered color schemes and additional issues such as suitable schemes for
people with color vision deficiencies and for different media. Perfect examples on
how colors should be used in choropleth maps can be found in the  “Atlas of
United States Mortality” (Pickle et al., ).
Even with a good color scheme, three key problems remain for classed choropleth

maps. he first problem relates to region area. As suggested above, some map re-
gions can be too small to effectively show color. Examples include Washington, DC,
on amap of the United States (US) and Luxembourg on a Europeanmap.Map carica-
tures, such as Monmonier’s state visibility map (Monmonier, ), can address this
problem, by enlarging small regions in a way that maintains region identifiability
and shows each region touching the actual neighboring regions. Another facet of the
area problem is that large areas have a strong visual impact while in many situations,
such as in the mapping of mortality rates, the interpretation should be weighted by
the region population. Dorling () addressed this problem by constructing car-
tograms that changed region shapes to make areas proportional to population. Is-
sues related to this approach are region identifiability, and map instability over time
as their shapes change with changing populations. Area related problems persist in
choropleth maps.
A second key problem is that converting a continuous variable into a variable with

a few ordered values results in an immediate loss of information. his loss includes
the relative ranks of regions whose distinct values become encoded with the same
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value. he task of controlling conversion loss has spawned numerous papers about
proposing methods for defining class intervals. Today, guidance is available based on
usability studies. Brewer and Pickle () indicated that quintile classes (roughly
%of regions in each class) tend to perform better than other class intervalmethods
when evaluated across three different map-reading tasks. Still, the best of the class
interval selection approaches loses information.
he third key problem is that it is difficult to show more than one variable in

a choropleth map. MacEachren et al. (, ) were able to clearly communi-
cate values of a second binary variable (and indicator of estimate reliability) by plot-
ting black-and-white stripped texture on regions with uncertain estimates. However,
more general attempts such as using bivariate colors schemes have been less success-
ful (Wainer and Francolini, ).hus, choroplethmaps are not suitable for showing
estimate standard errors and confidence bounds that result from the application of
sound statistical sampling or description. It is possible to use more than one map to
show additional variables. However, Monmonier (, p. ) observed that when
plotting choroplethmaps side by side it can easily happen that “similarity among large
areas can distort visual estimates of correlation by masking significant dissimilarity
among small areas.” he change blindness (Palmer, , p. ) that occurs as the
human eyes jump from one map to another makes it difficult to become aware of all
the differences that exist in multiple choropleth maps and hard to mentally integrate
information in a multivariate context.
Carr proposed the use of micromaps and the LM plots design in response to An-

thony R. Olsen’s [from the US Environmental Protection Agency (EPA), Corvallis,
OR] challenge to extend traditional statistical graphics called row-labeled plots in
Carr () to include geospatial context. As indicated earlier, traditional statistical
graphics otenuse position along scale encodings for continuous values and can read-
ily show estimates and confidence intervals together.Olsen, Carr, Courbois, and Pier-
son unveiled this new design with a  �  foot poster at  JSM. he map regions
were  Omernik ecoregions for the continental US. he various ecoregion barplots
and boxplots summarized detailed elevation information and detailed land class in-
formation derived frommultiple advanced high-resolution radiometer (AVHRR) re-
mote sensing images over time.
he first example in the literature of LM plots (Carr and Pierson, ) showed

state values for the US. his example adapted the state visibility map of Monmonier
to address the visibility problems for small regions.hat paper presented amicromap
plot of unemployment by state with two data columns (unemployment rate with
% confidence interval and total number of unemployed persons). he LM plots
paradigm supports the display of different kinds of statistical panels, such as dotplots,
barplots, boxplots, binned scatterplots, time series plots, and plots with confidence
bounds. In particular, Carr et al. () presented three micromap plots: (i) CO
emissions in theOrganization for Economic Cooperation andDevelopment (OECD)
states with one data column (annual time series), (ii) wheat prices by state with two
data columns (average price and monthly time series), and (iii) an improved version
of the micromap plot from Carr and Pierson (). Carr et al. (a) presented
four micromap plots based on the Omernik ecoregions: (i) three data columns with
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boxplots, (ii) bivariate binned boxplots, (iii) time series plots, and (iv) line height
plots. he level  Omernik ecoregion micromaps involved large US regions, so re-
gion visibility was not a problem. However, highly detailed boundaries lead to a slow
graphics production. Faster production in the context of more numerous ecoregions
and over  US counties as opposed to  US states also motivated the develop-
ment of generalized micromaps. Geographers traditionally use the best encoding,
position along a scale, to show region boundaries. However, they also desire to show
statistics more precisely, and thus static LM plots soon appeared in the geographic
literature (Fonseca and Wong, ) as well.
In this chapter, we continue with amotivational example in Sect. . that shows the

same data via choropleth maps and LMplots. In Sect. ., we discuss design issues for
LM plots and outline their main purposes. All of the early examples of LM plots were
created as static plots to be displayed as printed pages or as large posters. In Sect. .
we discuss how micromaps can be used interactively on the Web. We return to pro-
duction resources for static LM plots via statistical sotware packages in Sect. .. We
finish with a discussion and comparison of LM plots with other graphical tools in
Sect. ..

AMotivational Example1.2

Figure . shows two variables, the soybean yield and acreage from the  Cen-
sus of Agriculture for the US, displayed in two choropleth maps. Five equal-size
class intervals were chosen for each of the maps. A “-class sequential Greys” color
scheme, obtained from http://colorbrewer.org and reprinted in Table ., was chosen,
with the lightest grey representing states where no soybeans were planted. he maps
in this figure were produced with the Geographic Information System (GIS) Arc-
View .. We obtained the data from the US Department of Agriculture–National
Agricultural Statistics Service (USDA–NASS) Web site http://www.nass.usda.gov/
research/apydata/soyapy.dat. Section .. provides further details on these data and
the USDA–NASS Web site.
he two choropleth maps in Fig. . indicate that the highest yields and highest

acreages for soybeans occur in the Midwest. here seems to be some spatial trend,
i.e., some steady decrease for both variables from theMidwest to the Southeast. Over-

Value  Value  Value 

  

  

  

  

  

  

Table .. Values for the “-class sequential Greys”
color scheme, obtained from http://colorbrewer.org,
for use in ArcView .. Instead of breaking down the
range of possible values ( to ) into equally wide
intervals, the chosen values represent similar
perceptual differences. he first triple (, , )
represents the lightest grey, the last triple (, , )
the darkest grey. When represented as red, green,
and blue (RGB) values, the zeros will be replaced by
the nonzero value, i.e., (, , ) will become (,
, ) and so on
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Figure .. Choropleth maps of the  Census of Agriculture, showing the variables soybean yield (in

bushels per acre) and acreage (in millions of acres) by state. he data represent the  US states where

soybeans were planted

all, there appears to be a positive correlation between these two variables since high
yields/high acreages and low yields/low acreages seem to appear in the same geo-
graphic regions. he correlation coefficient between yield and acreage is only .,
suggesting departures from linearity that would be better revealed using scatterplots
or LM plots.
he LMplots paradigm sorts the list of regions based on their values or names and

partitions the list into perceptual groups of size five or less, which is further discussed
in Sect. .. he micromap design assigns a distinct color to each region in a group.
he same color is used for plotting the region polygon in the micromap, the dot by
the region name, and the region values in one or multiple statistical panels. Figure .
provides a LM plot example with  US states and shows three statistical panels with
dotplots for three variables: yield, acreage, and production. his example is accessi-
ble at http://www.nass.usda.gov/research/gmsoyyap.htm. In fact, Fig. . shows the
LM plots of the same two variables as Fig. ., plus a third statistical panel for the
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variable production. Data are available for  of the  US states only. An identical
color links all of the descriptors for a region. Successive perceptual groups use the
same set of distinct colors. In Fig. ., the sorting is done (from largest to smallest)
by soybean yield in those  US states where soybeans were planted. Here, the points
within a panel are connected to guide the viewer’s eyes and not to imply that inter-
polation is permitted. he connecting lines are a design option and can be omitted
to avoid controversy or suit personal preferences.he list of  US states is not evenly
divisible by five. Two perceptual groups at the top and two groups at the bottom con-
tain four states, while three perceptual groups in the middle contain five states. he
middle groups require the use of a fith linking color. Using distinct hues for linking
colors works best in full-color plots. For grey-level plots, colors need to be distinct
in terms of grey level. Figure . shows different shades of green and is suitable for
production as a grey-level plot. Readers new to LM plots sometimes try to compare
regions with the same color across the different perceptual groups, but they quickly
learn the linkage is meaningful only within a perceptual group.
While the micromaps in Fig. . are not ideally suited to show geospatial patterns,

the statistical panels nevertheless are more revealing than the choropleth maps in
Fig. .. It is immediately obvious from this graphical display that there is a positive
correlation between the two variables yield and acreage (high values for yield are as-
sociated with high values for acreage while low values for yield are associated with
low values for acreage). However, there were some considerable spatial outliers that
could not be detected easily in the two choropleth maps in Fig. .. Wisconsin (in
a favorable geographic region for soybeans, neighboring Iowa, Illinois, and Indiana)
had a high yield, but only a very small acreage was used for soybeans. On the other
hand, Arkansas, with a relatively low yield (similar to its neighboring states in the
Central South), used a surprisingly high acreage for soybeans. Geographically, the
highest yields for soybeans were obtained in the Midwest, with a spatially declin-
ing trend toward the Southeast. When visually comparing acreage and production,
these two variables almost perfectly correlate. Overall, the LM plots in Fig. . pro-
vide a much better and simpler geographic reference to the underlying data than the
two choropleth maps in Fig. ..

Design Issues and Variations
on Static Micromaps1.3

Figure . shows one possible partitioning of  regions into perceptual groups of size
five or less. However, for different numbers of regions there may exist more than just
one meaningful partitioning. Table . shows different ways to partition regions into
groups of size five or less. In fact, the partitioning in Fig. . is called Partitioning 
in Table .. An algorithm, coded in S-Plus (Becker et al., ), produces symmetry
about the middle panel or the pair of middle panels (Partitioning ). It puts small
counts in the middle. For complete data situations, a single region appearing in the
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Figure .. [his figure also appears in the color insert.] LM plots of the  Census of Agriculture,

showing soybean yield (in bushels per acre), acreage (in millions of acres), and production (in millions

of bushels) by state. he data are sorted by yield and show the  US states where soybeans were

planted. he “US Average” represents the median, i.e., the value that splits the data in half such that half

of the states have values below the median and the other half of the states have values above the

median. For example, Tennessee is the state with the median yield. his figure has been republished

from http://www.nass.usda.gov/research/gmsoyyap.htm without any modifications (and ideally should

contain much less white space in the lower part)
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middle panel shows the median value for the variable used in sorting. Carr et al.
() exploit this in a special design for the  US states plus Washington, DC. In
other situations, it might be preferable to avoid creating groups with few regions.
he right column (Partitioning ) in Table . is also symmetric, but it avoids small
counts where possible.he visual appeal of symmetry is lost when there are toomany
groups to display in one page or one screen image. In this case, it suffices to fill all
panels except a single panel that contains the letover regions modulo the grouping
size. It does not seem to matter whether the partially filled panel appears at the top,
near the middle, or at the bottom of the page.
he micromaps in LM plots are intended to be caricatures that generally serve

three purposes.he first purpose is to provide a recognizable map. Boundary details
are not important here. Boundaries only need to communicate region identity and
neighbor relationships.
he second purpose is to provide a visible color link. Tiny areas do not support

easy color identification. As indicated above, early micromaps for states adapted the
hand-drawn state visibility map of Monmonier (). his map simplified bound-
aries and increased the size of small US states such as Rhode Island. he EPA Cumu-
lative Exposure Project (CEP) Web site (Symanzik et al., ) made it necessary to
develop an algorithm to generalize boundaries for US states and US counties. Most
of the Web-based micromaps described in Sect. . use these generalized boundaries
for US states and US counties. New projects may entail the production of map cari-
catures or generalizations when the available boundaries are not suitable.
he third purpose of micromaps is to show geospatial patterns. Figure . shows

individual perceptual groups of states. his simple version is good as an introduction
and reveals some geospatial grouping. More sophisticated variations on micromaps
have also called attention to contours constructed from region polygons. One ap-
proach shows background states in light grey with white outlines. States highlighted
previously in a perceptual group can appear in an additional color such as light yel-
low and have a black outline.he nongrey black-outlined states then appear as a fore-
ground contour. Examples with two complementary contours for regions above and
below the median will be further discussed in Sects. .. and ...

Web-based Applications of LM Plots1.4

Over the last decade,USFederal Agencies and other institutions have increasingly fo-
cused attention on distributing large amounts of geographically referenced statistical
data, either in print or through theWeb.heWeb-based distribution of data is aimed
at replacing printed tabular displays and at providing access to current data quickly.
Several approaches have been developed that provide a user-friendly Web-based in-
terface to tabular and graphical displays of federal data. he user can interactively
and dynamically query and sort the data, compare different geographic regions, and
look at the data at different spatial resolutions, e.g., at the state or the county level.
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Table .. Full symmetry partitionings with targeting groups of size . he let column (#) contains the

number of regions. he middle column (Partitioning ) puts the smallest counts in the middle.

Full-symmetry alternatives that avoid small counts appear in the right column (Partitioning ).

Abandoning full symmetry can lead to fewer panels. he table ends with  regions (the number of US

states plus Washington, DC), but it can be easily extended

# Partitioning  Partitioning 

 
 
 
 
 

  
      
  
      
  

      
      
      
   
   

        
          
        
          
    

          
          
     
     
     

            
              
            
              
      

              
              
              
       
       

                
                  
                
                  
        

                  
                  
                  
         
         

                    
                      
                    
                      
          

                      
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Carr and Olsen () provide examples on the visual appearance of patterns in data
when properly sorted.
he direction of LMplot development shited from static LMplots toward interac-

tive micromap displays for theWeb.Work done for the EPACEPWeb site (Symanzik
et al., ) was the first in this regard.his project was soon followed byWeb-based
examples of micromaps produced by the USDA–NASS such as in Fig. ..
he Digital Government (dg.o) initiative (http://www.diggov.org) is a major re-

search initiative funded by the National Science Foundation (NSF) and several fed-
eral agencies such as the EPA, the USDA–NASS, the US Census Bureau, the NCI,
the US Bureau of Labor Statistics (BLS), etc. his initiative addresses multiple as-
pects related to federal data such as visualization, access, disclosure, security, etc. One
of the proposals funded under dg.o was the Digital Government Quality Graphics
(DGQG) project that included the development of LM plots (http://www.geovista.
psu.edu/grants/dg-qg/index.html).
In the reminder of this section, we look at four main applications of interactive

Web-based LM plots, three of them on federal Web sites. A short overview of inter-
active micromaps, as well as a micromap of the “Places” data (Boyer and Savageau,
), can be found in Symanzik (). However, additional details are given in this
section.

Micromaps on the EPA CEPWeb Site1.4.1

he idea of using micromaps on the Web was first considered for the EPA CEPWeb
site (previously accessible at http://www.epa.gov/CumulativeExposure/). Initially, the
EPA wanted to provide fast and convenient Web-based access to its hazardous air
pollutant (HAP) data for . In this dataset, concentrations of  air pollutants
were estimated for each of the   US census tracts in the  contiguous US states
(Rosenbaum et al., ).he EPAWeb site was designed to allow the user to easily
move through the dataset to find information on different air pollutants at differ-
ent geographical locations and at different levels of geographic resolution (e.g., state,
county, census tract) via interactive tables and micromaps. Unfortunately, no part of
the interactive CEP Web site was ever published due to concerns that the  data
were outdated on the intended release date in . Only a static version of the CEP
Web site without tables and micromaps was accessible for several years. More de-
tails on the work related to the planned interactive CEP Web site can be found in
Symanzik et al. (a,b, ).

Micromaps on the USDA–NASS Web Site1.4.2

he USDA–NASS Research and Development Division released a Web site (http:
//www.nass.usda.gov/research/sumpant.htm) in September  that uses interac-
tive micromaps to display data from the  Census of Agriculture. he USDA–
NASSWeb site displays acreage, production, and yield of harvested cropland for corn,
soybeans, wheat, hay, and cotton.
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A user of this Web site can sort the states by acreage or by yield with respect to
a selected crop. Figure ., already discussed in more detail in Sect. ., shows LM
plots from this Web site for soybeans, with states sorted by decreasing yield. It is
possible to select another crop type and to access and download the raw data for
further analysis or additional maps such as the choropleth maps in Fig. . that are
based on these data. While a user who accesses this Web site gets the impression of
full interactivity, this is not the case. he ten micromaps ( crops �  arrangements)
plus one overview micromap were precalculated in S-Plus (see Sect. .. for more
details) and were stored as jpeg images. It is not possible to create any newmicromap
display “on the fly” on this Web site. Precalculating all possible micromaps is oten
not possible or desirable for all datasets, as we will see in the next section.

Micromaps on the NCI Web Site 1.4.3

heNCI released the State Cancer Profiles Web site in April  that provides inter-
active access to its cancer data via micromaps.hisWeb site is Java based and creates
micromaps “on the fly.” Wang et al. () and Carr et al. () provide more de-
tails on the design of the NCI Web site, http://www.statecancerprofiles.cancer.gov/
micromaps.
LM plots with interactive and dynamic features are the main content on NCI’s

State Cancer Profiles Web site that combines the latest research in data visualization
sponsored by the NSFDGQG initiative with features to ensure accessibility by the vi-
sually impaired.he State Cancer ProfilesWeb site provides a “quick stop” for cancer-
related statistics for planners, policymakers, and epidemiologists. It was developed by
theNCI in collaboration with the Centers for Disease Control and Prevention (CDC)
and is an integral component of NCI’s Cancer Control PLANET, a Web portal that
links to resources for comprehensive cancer control. heWeb site provides national
(US), state, and county views of cancer statistics collected and analyzed in support
of annual federal reports. he focus is on eight major cancer types for which there is
evidence of the potential to improve outcomes either by prevention or by screening
and treatment.
Cancer statistics include mortality and incidence counts, rates, and trends by sex

and race/ethnicity. Recent incidence data are available for cancer registries partici-
pating in CDC’s National Program of Cancer Registries (NPCR) that met selected
eligibility criteria. Both historical and recent incidence data are available for cancer
registries participating in NCI’s Surveillance, Epidemiology and End Results (SEER)
program. Prevalence of risk factors and screening,Healthy People USobjectives,
and demographics complete the profiles. he interactive graphic capabilities allow
a user of theWeb site to quickly explore patterns and potential disparities. For exam-
ple, the user can easily compare graphs of national (US) or state trends for Whites,
Blacks, Hispanics, Asian or Pacific Islanders, and American Indian/Alaskan Natives.
LM plots provide the primary graphic template for users to explore spatial relation-
ships among the latest rates, percents, and counts for cancer statistics, demographics,
risk factors, and screening.
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Figure .. LM plots from the NCI Web page, showing lung and bronchus cancer for the year .

his interactive version of micromaps is accessible at

http://www.statecancerprofiles.cancer.gov/micromaps
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Figure ., a screenshot from the NCI Web site, shows LM plots with state names,
lung and bronchus cancer mortality rates, current smoking rates, and micromaps.
his figure illustrates some design changes (e.g., variable selection on the let and
maps on the right) that are specific to the NCI micromap implementation. he ma-
jor design challenge for thisWeb site arose from taking LMplots from a portrait print
image to a landscape screen image. he change in orientation significantly affected
the number of rows that could be displayed. he requirement for a standard ban-
ner and logos for branding exacerbated the problem by further reducing the vertical
screen real estate. Since only a few panels could simultaneously appear in view, the
revised design provides scrolling within the Java applet that keeps the variable scales
and other context information in view. In the current design, there is no scrollbar for
the browser window if the screen area setting is for � pixels or more. Usabil-
ity studies identified many health care planners using a  �  pixel resolution.
A notice now suggests increasing the screen resolution to avoid this problem.
he main features of the NCI micromap Web site are as follows. he scrollbar

to the right of the micromaps in Fig. . controls a small set of statistical and geo-
graphical panels, leaving the reference information above and below the statistical
and micromap displays in place. he default for the user controllable placement of
micromaps puts them by the scrollbar in the right for easy scanning of contours re-
vealed by the cumulative micromaps. Clicking a triangle above one of the columns
specifies the sort order that determines how the regions accumulate. he panels of-
ten show Healthy People  US target intervals (the green region), estimates, and
confidence intervals.
Moving themouse over an estimate shows the underlying numerical values.More-

over, moving the mouse over any of the linked items (region name, graph glyphs,
andmap region) causes these items to blink. Clicking on a state name invokes a drill-
down to show the counties of the selected state.
Due to the interest in region rankings, the statistical panels have been augmented

with numbers indicating the rank order.he interpretation of “” is explicitly labeled
since usability assessment found people who interpret “” as best.
he color selection options for this Web site include one color scheme suitable for

the two most common kinds of color vision deficiencies. here are additional items
including popup overviews that augment the LM plots.

Micromaps at Utah State University 1.4.4

Micromaps and other graphical displays were found to be very useful for the display
and analysis of the geographic spread of the West Nile Virus (WNV) and other dis-
eases (Symanzik et al., ) across the US. For this reason, researchers at Utah State
University (USU) obtained the NCI Java micromap code and adapted it for the dis-
play of WNV data (Chapala, ). Similar to the NCI micromap application, a user
can now select among WNV infection rates and counts, and death rates and counts,
starting with the WNV data for the US for the  season. A drill-down into US
counties is possible given that data at the county level are available. New features
of the USU Web site include the plotting of the data for  years side by side in one
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Figure .. LM plots from the USU WNV Web page, showing WNV death rates and death counts for

the years  (small dots) and  (big dots). Red lines indicate an increase and green lines a decrease

from  to . his interactive version of micromaps is accessible at

http://webcat.gis.usu.edu:/index.html
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panel and additional sorting criteria such as sorting from the highest increase over
no change to highest decrease in two selected years. he USUWNVmicromap Web
site can be accessed at http://webcat.gis.usu.edu:/index.html. Figure . shows
WNV death rates (let data panel) and death counts (right data panel) for the years
 and . he data are sorted by highest WNV death rate in . A big dot
represents the year , a small dot the year . Red lines indicate an increase in
the rates/counts from  to  in a state, while green lines indicate a decrease
in the rates/counts from  to . A strong geospatial pattern can be observed,
with highest WNV death rates in  in the Midwestern states. While death rates
(and counts) considerably increased from  to  for most of the states that
are currently visible in this scrollable micromap, the opposite holds for some of the
Central states such as Louisiana, Ohio, Mississippi, and Kentucky.

Constructing LM Plots 1.5

While the previous section describes major Web sites that provide access to their ge-
ographically referenced statistical data via LM plots, this section summarizes how
individual micromap plots can be constructed. his can be done using the statistical
sotware package S-Plus, by providing appropriate data and map files to an applica-
tion based on the sotware development kit (SDK) nViZn (Wilkinson et al., ), or
by using recent Java code developed at the NCI. In particular, when high-resolution
LM plots in postscript (.ps) format are required and a screenshot from aWeb site or
one of the Java applications is not sufficient, a usermost likely will have to use existing
S-Plus code or will have to make changes to this existing code.

Micromaps via S-Plus 1.5.1

Individual LMplots can best be created via S-Plus. Sample S-Plus code, data files, and
resulting plots can be obtained from Dan Carr’s micromaps Web site at http://www.
galaxy.gmu.edu/~dcarr/micromaps. Included are files related to the early micromap
articles (Carr and Pierson, ; Carr et al., ) as well as a frontend to S-Plus that
allows the user to create time series micromap plots and dotplot micromap plots. In
fact, the micromaps that are accessible at the USDA–NASS Web site were created by
USDA–NASS personnel using these tools.
S-Plus functions in the rlStateplot library, boundary files, data, and an example

S-Plus script file are also available at Dan Carr’s micromaps Web site introduced
above. his library supports dotplots, dotplots with confidence bounds, barplots, ar-
row plots to show change, and boxplots based on county values. Boundary files are
available for US states and US counties. he datasets are cancer mortality rates from
the NCI.he script file addresses how to obtain moremortality rates over theWeb as
well as examples showing different kinds of plots. More general S-Plus functions for
other regions and for times series that may need panel-specific scaling are available
from the second author.
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It seems to be possible to adapt the S-Plus micromap code for use in the R sta-
tistical package (Ihaka and Gentleman, ), which can be freely obtained from
http://www.r-project.org/. Although no full implementation of a micromap library
in R exists at this point, the basic panel functions and simple examples of LM plots
have been converted from S-Plus to R by Anthony R. Olsen.
Figure . is based on data from the NCImicromapWeb site and illustrates several

variations of LM plots, implemented via the S-Plus rlStateplot library. his example
uses a special layout for  regions that differs slightly from the two suggested par-
titionings in Table . and calls attention to the middle state ater sorting the states
based on one of the variables displayed. Figure . bases the sorting on white male
lung and bronchus cancer mortality rates during the years  to . Vermont is
the middle (th) state in the sorted order and thus has the median value. Instead
of showing eleven panels with micromaps as suggested by both partitionings in Ta-
ble ., the micromap panel layout shows the middle state as a sixth highlighted state
in the micromaps immediately above and below the median divider. his layout calls
attention to symmetry and saves space by removing the need for an eleventh mi-
cromap. he US federal agencies produce so many graphics and tables for the  US
states plus Washington, DC that it is worthwhile to develop a special layout for rou-
tine use. Other situations such as producing LM plots for the major regions of other
countriesmay benefit fromdeveloping special layouts. Carr () considered special
layouts for the counties of selected states and made first use of the S-Plus functions
assembled in the rlStateplot library. his library was written for students to produce
LM plots such as in Fig. ..
he micromap construction in Fig. . introduces another useful design feature.

It accumulates states when moving up from the bottom panel or down from the top
panel toward the median divider. Ater highlighting five states in a micromap panel
with foreground colors and black outlines, this design continues to show the previ-
ously highlighted states with black outlines in panels closer to the median divider.
his black outline lits the states into the foreground, and the micromap progression
shows a sequence of foreground contours. A cluster of states from the Northwest and
much of the inland US emerges when moving up from the bottom panel. he mi-
cromaps immediately above and below the median divider are duals of each other
except for Vermont, which is in the foreground of both of these micromaps. Human
perception does not treat foreground and background equally, so the logical equiva-
lence of the two panels may not be noticed. hemicromap just above the median di-
vider calls attention tomost of theUS border states other than those in theNorthwest.
Full-color LM plots typically use distinct saturated hues to highlight the selected

regions in each panel. he nonhighlighted black-outlined regions are shown in a de-
saturated hue such as light yellow while the background regions are light grey with
white outlines. he grey-level representation of Fig. . makes it harder to distin-
guish between foreground (black-outlined) states with the lightest colors and the
near-white states highlighted in panels further from the median divider. However,
the reader can still easily look at one of the two micromaps by the median divider,
note whether or not a particular state is in the foreground, based on the black outline,
and know which direction to scan in to find the panel where the state is highlighted.
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Figure .. [his figure also appears in the color insert.] LM plots, based on data from the NCI Web

page, showing summary values for the years  to  and for the years  to  in the let data

panel, rates and % confidence intervals in the middle data panel, and boxplots for each of the

counties of each state in the right data panel
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he Fig. . approach of accumulating foreground regions from the ends toward
the center is one of several micromap variations tried over the years. Accumulating
regions from one end to the other has been popular and is easier to explain. One
drawback is that micromaps look more complicated when more than half of the re-
gions appear in the foreground. A second drawback is that the chances increase of
a background region being completely surrounded by outlined states. his will cause
the background region to appear in the foreground. he region color fill will clarify
but may not be noticed. Usability studies could help in ranking the various options.
Figure . illustrates different kinds of statistical panels. he first statistical panel

shows summary values for the -year period  to  as filled dots. It shows
the values for the -year period from  to  as arrow tips. Both encodings
are position along scale encodings. Arrow length encodes the difference in rates for
the two time intervals. Length is a good encoding in terms of perceptual accuracy of
extraction. he huge increase in mortality rates for all US states is obvious.
he second statistical panel in Fig. . shows rate estimates and % confidence

intervals for the -year period from  to . Typically, the confidence intervals
are considered secondary information and the rates are plotted on top. In Fig. .,
this totally obscures the confidence intervals except for Alaska, Hawaii, and Wash-
ington, DC. here are various remedies, such as showing % confidence intervals.
Our purpose in Fig. . is to call attention to how well the state rates are known and
how little this conveys about the geospatial variation within the states.
he third and rightmost statistical panel in Fig. . shows boxplots of the rate esti-

mates for the -year period from  to  for the counties of each US state. he
outliers appear as open circles. he geospatial variation based on  years of data is
substantial. Note that the scale has changed from the panel with state rates and con-
fidence intervals. Using the county scale for both columns would better convey the
county variability. Of course, the -year state rate estimates are also hiding variation
over time.
In recent years, US federal agencies have placed increasing emphasis on confiden-

tiality. he suppression of data is increasingly common. One approach toward mak-
ing something available to the public has relied on aggregation to obscure details.his
leads to aggregation over important factors such as time, geospatial regions, race,
and sex. here is currently a serious consideration for suppressing all county-level
mortality-rate estimates. Suppression of data is a problem for the public concerned
about human health. here are additional issues related to data that is not collected.
For example, data are not collected on cigarette smoking in terms of packs per day at
the county level.

Micromaps via nViZn1.5.2

nViZn (Wilkinson et al., ) (read en vision) is a Java-based SDK, developed and
distributed by SPSS (http://www.spss.com/visualization/services/). nViZn was in-
spired by the idea of building on the BLS Graphics Production Library (GPL), de-
scribed in Carr et al. (), with a formal grammar for the specification of statisti-
cal graphics (Wilkinson, ). nViZn was created as a distinct product whose wide
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range of capabilities includes creating interactive tables and linked micromaps. Ex-
periences with nViZn, its advantages and current problems, and its capabilities for
the display of federal data are described in more detail in Jones and Symanzik (),
Symanzik and Jones (), Symanzik et al. (), and Hurst et al. ().
While themain application ofmicromaps under nViZn was intended to be a proof

of concept, based on the original EPAHAP data, the implementation of this applica-
tion is very flexible.When additional data files in the appropriate format are provided,
these data will be immediately usable within the nViZn application. he current ap-
plication uses data at the national (US), state, county, and census tract level.
he micromaps created under the nViZn application are dynamic. he user can

sort the regions in ascending or descending order with respect to the six statistical
criteria minimum, mean, maximum, first quartile, median, and third quartile of the
underlying census tract level.he number of regions that are displayed permicromap
can be changed “on the fly” via a slider, so a user is not restricted to the perceptual
grouping of size five or less that was introduced in Sect. . and can experiment with
other group sizes. Micromaps and tables of the data can be created by selecting aHAP
andUS state in a drill-downmap.Multiple LMplots or tabular displays can be viewed
simultaneously.
he nViZnmicromap application only works together with nViZn.hemicromap

application can be obtained freely from the first author upon request. At this point,
SPSS no longer sells nViZn as a commercial product. However, the nViZn visualiza-
tion service is a free simple service-based Java servlet application, accessible via the
nViZn Web site mentioned above. Users pass GPL statements to the service via http
requests and get a graph in return.

Micromaps via Java and Other Statistical Packages 1.5.3

he NCI recently developed a Java application to make LM plots available to those
who are not familiar with statistical packages. hemicromap producer must provide
region boundary files in the form of .gen (or .shp files in the near future) and data
files in the form of comma delimited (.csv) files. he interactive dialog enables the
selection of plot types and the selection of columns from the data file to associate
with the specific plot. For example, a dotplot with precalculated confidence bounds
requires three variables. At the time of this writing, the sotware is still being tested in
the classroom at George Mason University (GMU) and at other NCI-approved sites
prior to general release.he sotware will most likely be available to the public before
this chapter is published.
Most major statistical packages are flexible enough to produce LMplots.he basic

issues are availability of boundary files, convenience of production, quality of appear-
ance, and output format. For example, LM plots appeared some time ago in Wilkin-
son (), introducing the grammar of graphics. SPSS version . (http://spss.com/
spss/) provides an implementation of this grammar, so this should make the produc-
tion of LM plots easy for those who are familiar with the grammar of graphics.
he NCI LM plot applet in the State Cancer Profiles Web site, discussed in more

detail in Sect. .., provides LM plots to health planners in countries around the
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world. his applet is available with Java Docs to other federal agencies and may be
generally available for other developers as well. In fact, as already stated, the USU
WNVWeb-based micromap application described in Sect. .. is based on the NCI
Java code.he places in the Java code to make changes for other applications are iso-
lated. he graphical user interface (GUI) prompts, options, and subsequent database
access need to be modified for boundary files if regions other than the  US states
and underlying counties are used. Similarly, the GUI prompts, options, and database
access need to be modified for different data. his is straightforward for experienced
Java programmers. Two GMU students were able to make the modification to obtain
EPA’s toxic release inventory data over theWeb, andmainly one USU student did the
adaptation for the WNVmicromap server.
Implementations of LM plots are appearing in new settings. he Economic Re-

search Service (ERS) of the USDA now has the capability to produce LM plots using
sotware called Pop Charts. Micromaps recently were created for French régions and
départements andmay be included in the exploratory spatial analysis package GeoXP
(http://w.univ-tlse.fr/GREMAQ/Statistique/geoxppageR.htm).

Discussion1.6

In this chapter, we have demonstrated the use of interactive linked micromap plots
for the display of geographically referenced statistical data. Some of the restrictions of
choropleth maps do not apply for LM plots. It is possible to displaymultiple variables
at a time in LM plots, provide summary statistics, and maintain the exact ranking of
different subregions. he recent use of interactive LM plots on federal (and other)
Web sites and their use in geographic publications are encouraging indicators for
their widespread acceptance. We want to finish with a comparison of LM plots with
ConditionedChoroplethMaps (CCmaps), introduced inCarr et al. (b) andCarr
et al. (), andTrellisGraphics, based on ideas used inCleveland () and further
discussed in Sect. . in Venables and Ripley ().
Carr et al. (b) developed conditioned choropleth maps as a way to show three

variables using choropleth maps.he basic idea was to use the conditioning method-
ology described by Cleveland et al. () to partition the regions in a map in a � 
set of panels containing partial maps. Figure . provides a CCmaps example based
on the data from Fig. .. he top slider in Fig. . shows boundaries to convert the
 soybean production (in bushels) per state into three color classes for use in
a choropleth map. he bottom slider in Fig. . shows acreage boundaries for par-
titioning states into the columns of the �  set of map panels. he right slider in
Fig. . shows the yield boundaries for partitioning states into rows of the map panels.
States with high acreage and high yield appear in the top right panel and, as expected,
have a high number of bushels. he let column of panels highlights states with low
acreage. Maryland and Pennsylvania are in the middle and high yield classes and are
in the middle class in terms of bushels. All the other states in the let column are in
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Figure .. CCmaps, based on data from the USDA–NASS Web page. he same three variables

production, acreage, and yield and the same data are shown as in Fig. .; however, production is

conditioned on acreage and yield here

the low class in terms of bushels. Since yield is calculated as production divided by
acreage, there are no big surprises here.
Carr et al. () presented CCmaps in the context of hypothesis generation. Even

in this simple examplewith just three classes per variable (low,middle, and high), one
maywonder why the high-yield states in the top row are not all in the rightmost panel
with the four high acreage states as shown. Are less-soybean-acreage states smaller
states in terms of total area or do they have less available fertile acreage? Is water an
issue? Are there other crops that aremore profitable?he comparative layout encour-
ages thought and the mapping context oten provides memory cues to what people
know about the regions shown.
he cautious reader may wonder how much the specific slider settings influence

the visual impression, and the curious reader may also wonder about all the numbers
that appear in Fig. .. Since CCmaps is dynamic sotware, it is trivial to adjust the
two internal boundaries for each slider to see what happens. hemaps change in real
time and so do the numbers.he percents by the sliders indicate the percent of region
weights in each class. In this example, all states involved in soybean production are
weighted equally. For production, % of the states ( out of ) with the highest
production are highlighted in dark green across all  maps. he next % of the
states ( out of ) with production in the middle range are highlighted in medium
green across all maps. Finally, the remaining % of the states ( out of ) with the
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lowest production are highlighted in light green across all maps. For acreage, % of
the states ( out of ) fall into the let column, % ( out of ) into the middle
column, and % ( out of ) into the right column. Similarly, for yield, % of the
states ( out of ) fall into the top row, % ( out of ) into the middle row, and
% ( out of ) into the bottom row.hus, the four states highlighted in dark green
(i.e., Indiana, Illinois, Iowa, andMinnesota) in the top rightmap belong to the  % of
states with the highest production, % of states with the highest acreage, and %
of states with the highest yield. Wisconsin, one of the spatial outliers identified in
Sect. ., is one of the states highlighted in medium green in the top central map and,
thus, belongs to the % of states with the medium production, % of states with
the medium acreage, and % of states with the highest yield.
Most of the remaining numbers by the sliders indicate the class boundaries with

the units communicated in the slider label. he top and bottom sliders have tails on
the right.his reflects the presence of very large values relative to the body of the data.
he lowest row of labels by each slider gives the minimum value, the upper adjacent
value from a box plot calculation (Cleveland, ), and the maximum value. he
slider scale changes more quickly over the tail. his leaves space for greater slider
resolution in the body of the data.
he values in the upper right corner of each map show the weighted means for

production for the states highlighted in those maps. Note that no state is highlighted
in the bottom right map and, thus, no weighted mean is available. he fitting of these
means to state values for the states highlighted in the maps leads to the R-squared
value at the bottom right of Fig. ..
he CCmaps sotware has several other features such as enlarged views of indi-

vidual maps and the possibility to obtain specific values when the mouse is moved
over a particular region. he sotware also provides zoom features to focus on a por-
tion of a map and conditioned scatterplot smoothers. It is freely available at http:
//www.galaxy.gmu.edu/~dcarr/ccmaps.
So, finally, howdoLMplots andCCmaps compare? First, the encoding of values in

the Fig. . LM plots retains much more detail. he CCmaps encoding of three vari-
ables each into three classes loses much detail. Second, LM plots can include many
additional statistics. For example, Fig. . shows two values for different time periods
in the first statistical panel, rates with a % confidence interval and a reference value
in the second statistical panel, and the boxplots distributional summaries in the third
statistical panel. CCmaps convey just three values per region. Carrying LMplots a bit
further, Carr et al. () illustrate sorting on one dot plot encoded variable, using
this as the independent variable to obtain a smoothed fit to another variable. A sec-
ond LM plots panel then shows observed and fitted values as well as the smooth in
a vertical rank-repositioned smooth.his can help in seeing a functional relationship
and large residuals. CCmaps does provide a separate view to show one-way dynam-
ically conditioned smoothers. Since a similar separate view could be added to LM
plots, this is not really a plus for CCmaps.
he CCmaps sotware does have a few merits. First, CCmaps scale better to maps

involving more regions. Fairly commonCCmaps examples show over US coun-
ties on the screen. he NCI State Cancer Profiles Web version of LM plots discussed
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in Sect. .. will only show counties within a given state, and then only a few coun-
ties are on the screen at one time. Texas has so many counties that the vast majority
of them are out of sight in any view. Refreshing human memory about a big visual
space via a scrollbar that reveals little pieces is not very effective. Second, the par-
titioning sliders in CCmaps are fun to use. If a search starts to get tedious, there is
a built-in option to find initial slider settings with relatively good fits with respect to
the R-squared value. hird, the CCmaps sotware is useful as educational sotware as
it emphasizes two-way comparisons and weighted averages, and the sliders even lead
to discussions about the difficulties related to long-tailed univariate distributions.
Trellis Graphics in S-Plus provide another approach to the display of data. Since

Trellis Graphics are programmable, discussion here focuses on what is relatively easy
and what is harder to do with Trellis Graphics. he perceptual grouping in LM plots
can easily be fed to Trellis Graphics as an ordered categorical variable for the control
of panel production. Showing dotplots with confidence bounds is not hard, nor is
showing reference values. However, Trellis Graphics are primarily designed to handle
a single dependent variable. hey are poorly suited for showing multiple dependent
variables in side-by-side columns such as the lung and bronchus cancer mortality
and the percent of current smokers as in Fig. .. Trellis Graphics were not designed
to provide a variety of options such as geographic drill-down into subregions and
blinking of linked symbols that are built into the Web-based sotware that produced
Fig. ..hough Trellis Graphics can provide some alternative views that may be very
useful, they are not ideal for producing LM plots.
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Introductory Notes2.1

How do we find structure in multidimensional data when computer screens are only
two-dimensional? One approach is to project the data onto one or two dimensions.
Projections are used in classical statistical methods like principal component anal-

ysis (PCA) and linear discriminant analysis. PCA (e.g., Johnson and Wichern )
chooses a projection to maximize the variance. Fisher’s linear discriminant (e.g.,
Johnson and Wichern ) chooses a projection that maximizes the relative sep-
aration between group means. Projection pursuit (PP) (e.g., Huber ) generalizes
these ideas into a common strategy, where an arbitrary function on projections is
optimized. he scatterplot matrix (e.g., Becker and Cleveland ) also can be con-
sidered to be a projection method. It shows projections of the data onto all pairs of
coordinate axes, the -Dmarginal projections of the data. hese projection methods
choose a few select projections out of infinitely many.
What is hidden from the user who views only a few static projections? here could

be a lot. he reader may be familiar with an ancient fable from India about the blind
men and the elephant. One grabbed his tail and swore the creature was a rope. An-
other felt the elephant’s ear and yelled it was a hand fan. Yet another grabbed his trunk
and exclaimed he’d found a snake. hey argued and argued about what the elephant
was, until a wise man settled the fight. hey were all correct, but each described dif-
ferent parts of the elephant. Looking at a few static projections of multivariate data is
like the blind men feeling parts of the elephant and inferring the nature of the whole
beast.
How can amore systematic presentation of all possible projections be constructed?

Static projections can be strung together into a movie using interpolation meth-
ods, providing the viewer with an overview of multivariate data. hese interpolation
methods are commonly called tours.hey provide a general approach to choose and
view data projections, allowing the viewer to mentally connect disparate views, and
thus supporting the exploration of a high-dimensional space. We use tours to ex-
plore multivariate data like we might explore a new neighborhood: walk randomly
to discover unexpected sights, employ a guide, or guide ourselves using a map.hese
modes of exploration are matched by three commonly available types of tours. hey
are the tours available in the sotware, GGobi (Swayne et al., ), which is used in
this chapter to illustrate the methods.

In the grand tour, we walk randomly around the landscape discovering unex-
pected sights – the grand tour shows all projections of the multivariate data. his
requires time and we may spend a lot of time wandering around boring places
and miss the highlights.
Using a PP guided tour, we employ a tour guide who takes us to the features that
they think are interesting. We improve the probability of stopping by the inter-
esting sights by selecting more views that are interesting based on a PP index.
Manual control takes the steering wheel back from the guide, enabling the tourist
to decide on the next direction. We choose a direction by controlling the projec-
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tion coefficient for a single variable.his allows us to explore the neighborhood of
an interesting feature or to understand the importance of a variable on the feature.

Some Basics on Projections 2.1.1

What is a projection? We can think of a projection as the shadow of an object. Espe-
cially if it is a -D projection, then the projection is the shadow the object casts under
a bright light (Fig. .). If the object rotates in the light, we see many different -D
shadows and we can infer the shape of the object itself.

Figure .. Projections are like shadows. When many projections are viewed, it is possible to obtain

a sense of the shape of a dataset. What may look like a horse in one projection may be revealed as

a carefully oriented pair of hands by another
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Mathematically, a projection of data is computed bymultiplying an n� p data ma-
trix, X, having n sample points in p dimensions, by an orthonormal p� d projection
matrix, A, yielding a d-dimensional projection. For example, to project a -D object
( columns, or variables, of data) onto a -D plane (the shadow of the object), we
would use an orthonormal  �  matrix.
Here is a concrete example. Suppose our data matrix and projection were these:

X =

����������������� 

  
  
  
  
  
  
  
  

!""""""""""""""""#�

and A =
������ 
 
 
 

!"""""#�
then XA =

����������������� 
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is the first two columns of the data matrix. If instead

A =
������ 
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is a combination of all three variables.
hese projections are illustrated in Fig. ..he top row shows the data projections,

XA and XA, respectively. he bottom row displays the projection coefficients, A

and A. A row in A can also be interpreted as the projection of the coordinate axis
(p-dimensional to d-dimensional) for each variable, and it is represented by a line in
this display. he length and direction of the line displays the contribution each vari-
able makes to the projected data view. InA the data projection is constructed purely
from variable  in the horizontal direction and variable  in the vertical direction. In
A variables  and  share the horizontal direction, and variable  makes no contri-
bution horizontally. Vertically all three variables make a contribution, but variable 
has twice the contribution of the other two variables. his type of axis display is used
to match structure in a data projection with the variable dimensions of the data and,
hence, enable to the analyst to interpret the data.
We also commonly use -D projections in data analysis. With a -D projection we

typically use a histogram or density plot to display the data. Consider the -D data
in Fig. . (let plot) and two -D projections (middle, right). he projection matrices
are:

A = ���� 




!"""# and A = ���� 
−�− 



!"""#
respectively.
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Figure .. Two -D data projections. he two top plots are the data projections, and the two bottom

plots are illustrations of the projection coefficients

Figure .. Two -D projections of -D data

What Structure Is Interesting? 2.1.2

When we use tours, what are we looking for in the data? We search for data pro-
jections that are not bell-shaped and, hence, not normally distributed, for example,
clusters of points, outliers, nonlinear relationships, and low-dimensional substruc-
tures. All of these can be present in multivariate data but hidden from the viewer
who only chooses a few static projections. Figures . and . show some examples.
In Fig. . a scatterplot matrix of all pairwise plots is shown at let, and a tour

projection is shown at right.he pairwise plots show some linear association between
three variables, particularly between the variables TEMP and PRESS, and TEMP and
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Figure .. he three variables show some association in the scatterplot matrix (all pairwise marginal

projections in let plot), but they are revealed to be almost perfectly related by a tour (right plot)

Figure .. he six variables show some clustering in the scatterplot matrix (all pairwise marginal

projections in let plot), but the three clusters are much better separated in a tour projection (right plot)

CODE. However, viewing the data in a tour reveals that the three variables are really
perfectly related, with perhaps a slight nonlinear association. he projection of the
data revealing the perfect relationship is:

A =
������ 
−. .−. −.−. .
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TEMP
PRESS
CODE
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In Fig. . (let) the pairwise scatterplots suggest there is some clustering of the data
points in this six-variable dataset.he tour projection (right) reveals threewell-separ-
ated clusters. he projection revealing the clusters is:

A =
������������ 

−. .−. −.
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. −.
. .−. −.
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aede
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which is primarily a combination of three of the six variables: tars, aede, aede.

Tours 2.2

Most of us are familiar with -D rotation, which is something we can do in the real
world. We can take an object and rotate it with our hands or walk around an object
to view it from all sides. Views of p-dimensional data can be computed in analogous
ways, by rotating the entire p-dimensional data (Wegman, ; Carr et al., ; Tier-
ney, ) or bymoving a d(< p)-dimensional plane through the space and projecting
the data onto it. he latter approach is like looking at the data from different sides.
Movement of a projection plane is achieved by selecting a starting plane and a tar-

get plane and computing intermediate planes using a geodesic interpolation. A geo-
desic is a circular path, which is generated by constraining the planar interpolation
to produce orthonormal descriptive frames. his is the method used in GGobi. It is
more complicated to compute but it has some desirable properties, primarily that
within-plane spin is eliminated by interpolating from plane to plane, rather than
frame to frame. he frame that describes the starting plane is carried through the
sequence of intermediate planes, preventing the data from rotating within the plane
of view.hat is, we avoid doing a rotation of the data as in Fig. ..his type of within-
plane rotation is distracting to the viewer, akin to viewing a scene while standing on

Figure .. Two different frames that describe the same plane, and the resulting rotated views of the

data
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a wobbly platform. Planar rotations are discussed in detail in Asimov (), more
simply in Buja and Aasimov (a), and very technically in Buja et al. (), and
in Asimov and Buja (), and Buja et al. (b) as well.
Differences in the method of selecting the target plane yield different types of

tours.hegrand tour uses a random selection of target plane.heguided tour quanti-
fies the structure present in each projection and uses this to guide the choice of target
plane. Manual controls let the user choose the target direction by manipulating the
values of projection coefficients.

Terminology: Plane, Basis, Frame, Projection2.2.1

It is conventional to use a p-dimensional orthonormal basis:��������� 

  . . . 

 $ %
 

!""""""""#p�p

to describe p-dimensional Euclidean space. A d-dimensional plane in p-space can be
defined by an infinite number of d-dimensional orthonormal frames. For example,
consider the d = -dimensional frames:
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both of which describe the same -D plane. We conventionally use A as the frame
describing the -D plane, but we could just as validly useA. Figure . illustrates the
two frames, which result in the same but rotated projections of the data.
In GGobi tours, we generate a new target basis and use this to define the target

plane. But the actual basis used to create the data projection is awithin-plane rotation
of the target basis that matches the basis describing the starting plane.

Interpolating Between Projections: Making a Movie2.2.2

Amovie of data projections is created by interpolating along a geodesic path from the
current (starting) plane to the new target plane. he algorithm follows these steps:
. Given a starting p � d projection Aa , describing the starting plane, create a new

target projection Az , describing the target plane. It is important to check that
Aa and Az describe different planes, and generate a new Az if not. To find the
optimal rotation of the starting plane into the target plane we need to find the
frames in each plane that are the closest.
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. Determine the shortest path between frames using singular value decomposi-
tion. A′aAz = VaΛV′z , Λ = diag(λ 	 ċ ċ ċ 	 λd), and the principal directions in
each plane are Ba = AaVa , Bz = AzVz , a within-plane rotation of the descriptive
bases Aa ,Az , respectively. he principal directions are the frames describing the
starting and target planes that have the shortest distance between them. he ro-
tation is defined with respect to these principal directions. he singular values,
λi , i = , . . . , d, define the smallest angles between the principal directions.

. Orthonormalize Bz on Ba , giving B�, to create a rotation framework.
. Calculate the principal angles, τi = cos− λi , i = , . . . , d.
. Rotate the frames by dividing the angles into increments, τi(t), for t � (, ], and

create the ith column of the new frame, bi , from the ith columns of Ba and B�,
by bi(t) = cos(τi(t))bai + sin(τi(t))b�i . When t = , the frame will be Bz .

. Project the data into A(t) = B(t)V′a.
. Continue the rotation until t = . Set the current projection to beAa and go back

to step .

Choosing the Target Plane 2.2.3

Grand Tour
he grand tour method for choosing the target plane is to use random selection.
A frame is randomly selected from the space of all possible projections.
A target frame is chosen randomly by standardizing a random vector from a stan-

dard multivariate normal distribution: sample p values from a standard univariate
normal distribution, resulting in a sample from a standardmultivariate normal. Stan-
dardizing this vector to have length equal to one gives a random value from a (p−)-
dimensional sphere, that is, a randomly generated projection vector. Do this twice to
get a -D projection, where the second vector is orthonormalized on the first.
Figure . illustrates the tour path, using GGobi to look at itself. Using GGobi, we

recorded the sequence of  D projections displayed of -D data. his tour path
is a set of  points on a -D sphere, where each point corresponds to a projection.
We use a tour to view the path (top let plot). he starting projection is A′ = (  ),
indicated by a large point (•) or solid circle in the display. It is at the center right in
the plot, a projection in the first two variables. he corresponding data projection is
shown at top right. he grand tour path zigzags around the -D sphere. he grand
tour can be considered as an interpolated random walk over the space of all planes.
With enough time it will entirely cover the surface of the sphere. he bottom row
of plots shows two views of a grand tour path of   -D projections of -dimen-
sional data.

Projection Pursuit Guided Tour
In a guided tour (Cook et al., ) the next target basis is selected by optimizing
a PP index function. he index function numerically describes what is interesting
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Figure .. Some views of -D grand tour paths in  dimensions (top let) and  dimensions (bottom).

he path consists of a sequence of points on a -D and -D sphere respectively. Each point corresponds

to a projection from  dimensions (or  dimensions) to  dimension. he solid circle indicates the first

point on the tour path corresponding to the starting frame, yielding the -D data projection (top right)

shown for the -D path. he solid square indicates the last point in the tour path, or the last projection

computed

in a projection: higher values correspond to more interesting structure in the pro-
jections. Used alone, PP seeks out low-dimensional projections that expose interest-
ing features of the high-dimensional point cloud. In conjunction with the interpola-
tion, a PP guided tour shows many projections to the viewer, in a smooth sequence.
Using a PP index function to navigate the high-dimensional data space has the ad-
vantage over the grand tour of increasing the proportion of interesting projections
visited.
he PP index, f (XA), is optimized over all possible d-dimensional projections of

p-dimensional data, subject to orthonormality constraints on A. he optimization
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procedure is an important part of a PP guided tour. he purpose of PP optimization
is to find all of the interesting projections, so an optimization procedure needs to be
flexible enough to find global and local maxima. It should not doggedly search for
a global maximum, but it should spend some time visiting local maxima.
Posse () compared several optimization procedures and suggest a random

search for finding the globalmaximumof a PP index. Cook et al. () used a deriva-
tive-based optimization, always climbing the nearest hill, which when merged with
a grand tour was a lot like interactive simulated annealing. Klein and Dubes ()
showed that simulated annealing can produce good results for PP.
Lee et al. () use the modified simulated annealing method. It uses two differ-

ent temperatures, one for neighborhood definition and the other (cooling parameter)
for the probability that guards against getting trapped in a local maximum. his al-
lows the algorithm to visit a local maximum and then jump out and look for other
maxima. he temperature of the neighborhood is rescaled by the cooling parameter
enabling escape from the localmaximum.heoptimization algorithmused inGGobi
follows these steps:
. From the current projection,Aa , calculate the initial PP index value, I = f (XAa).
. Generate new projections, A�i = Aa + cAi , from a neighborhood of the current

projection where the size of the neighborhood is specified by the cooling param-
eter, c, and Ai is a random projection.

. Calculate the index value for each new projection, Ii = f (XA�i ).
. Set the projectionwith the highest index value to be the new target,Az = Amaxi I i ,

and interpolate from Aa to Az .

Figure . (top two plots) shows a PP guided tour path (-D in three dimensions). It
looks very similar to a grand tour path, but there is a big difference: the path repeat-
edly returns to the same projection and its negative counterpart (both highlighted by
large solid black circles). he middle plot traces the PP index value over time. he
path iterates between optimizing the PP function and random target basis selection.
he peaks (highlighted by large solid black circles) are the maxima of the PP index,
and for the most part, these are at the same projection. he corresponding data pro-
jections (approximately positive and negative of the same vector) are shown in the
bottom row.he index is responding to a bimodal pattern in the data.
here are numerous PP indices. Here are a few that are used in GGobi. For sim-

plicity in the formula for holes, central Mass, and PCA indices, it is assumed that X
is sphered using PCA, that is, the mean is zero and the variance–covariance is equal
to the identity matrix. his assumption is not necessary for the LDA index.

Holes:

IHol es(A) =  − 
n &n

i= exp(− 
y
′
iyi)

 − exp(− d
 )

where XA = Y = [y , y ,' , yn]T is a n � d matrix of the projected data.
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Figure .. Projection pursuit guided tours. Top: path of -D projections in  dimensions. Middle: time

trace of PP index. Bottom: data projections corresponding to PP index maxima. he maxima are

highlighted by large solid circles. It is interesting here that the optimization keeps returning the tour to

similar neighborhoods in the projection space, corresponding to bimodal densities in the -D

projections
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Central mass:

ICM(A) = 
n &n

i= exp(− 
y
′
iyi) − exp(− d

 )
 − exp(− d

 )
where XA = Y = [y , y ,' , yn]T is an n � d matrix of the projected data.

LDA:

ILDA(A) =  − �A′WA��A′(W + B)A�
where B = &g

i= ni(X̄i . − X̄. .)(X̄i . − X̄. .)′,W = &g
i=&n i

j=(Xi j − X̄i .)(Xi j − X̄i .)′
are the “between” and “within” sum-of-squaresmatrices from linear discriminant
analysis, g = is the number of groups, ni , i = , . . . , g is the number of cases in
each group.

PCA: his is only defined for d = .
IPCA(A) = 

n
Y′Y = 

n

n�
i=

yi

where XA = Y = [y , y ,' , yn]T is an n � d matrix of the projected data.

Figure . shows the results of using different indices on the same data. he holes
index finds a projection where there is a gap between two clusters of points. he
central mass index finds a projection where a few minor outliers are revealed. he
LDA index finds a projection where three clusters can be seen. he PCA index finds
a trimodal data projection.

Manual Controls
Manual controls enable the user to manually rotate a single variable into or out of
a projection. his gives fine-tuning control to the analyst. Cook and Buja () has
details on the manual controls algorithm. It is similar to a method called spiders
proposed by Duffin and Barrett ().
Figure . illustrates the use of manual controls to examine the results of the LDA

index (top let plot, also shown at bottom let in Fig. .). In this view there are three
very clearly separated clusters of points. he projection is mostly PC (a large posi-
tive coefficient), with smaller coefficients for PC and PC.he remaining PCs have
effectively zero coefficients. We explore the importance of these small coefficients for
the three-cluster separation. From the optimal projection given by the LDA index
we manually rotate PC out of the projection and follow by rotating PC out of the
projection:
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Figure .. One-dimensional data projections corresponding to maxima from four different PP indices

computed on the same data. he interesting feature of the data is the separation of the three classes. Top

let: the holes index finds a projection with a hole in the middle, where one cluster is separated from the

other two. Top right: the central mass index finds a projection where most points are clumped in the

center, revealing a few outliers. Bottom let: LDA, using the class information, finds a separation of all

three clusters. Bottom right: the PCA index finds a projection where all three classes are somewhat

distinct

PC is rotated out of the projection first (Fig. ., top right). Note that all the co-
efficients change some because they are constrained by the orthonormality of the
p-dimensional data frame. But notice that the coefficient for PC is effectively re-
duced to zero. here is very little change to the projected data, so this variable might
be ignored. Next we explore the importance of PC by rotating it out of the projection
(Fig. ., bottom row). A small change in the coefficient for PC results in a blurring
of the gap between the two letmost clusters (bottom let plot). When PC is com-
pletely removed (bottom right plot), the two letmost clusters are indistinguishable.
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Figure .. Manual controls used to examine the sensitivity of the clustering revealed by the LDA

index to PC and PC is explored. Top let to top right plots: coefficient on PC reduced from . to

. gives a smaller gap between clusters, but the clusters are still separable. Bottom let to bottom

right: coefficient for PC reduced from . to . which removes the cluster structure

But the right cluster is still separated. his suggests that PC is important for sepa-
rating the two letmost clusters but not important for separating the right cluster.

Precomputed Choices
One of the simplest choices of target planes that creates a smooth transition from
scatterplot matrices is the little tour (McDonald, ) that interpolates between the
frames of a scatterplot matrix of all pairwise marginal projections. Conway et al.
() proposes a method for choosing a fixed number of target planes that are ap-
proximately equispaced. It chooses the target planes using packing methods on poly-
topes and determines a shortest (Hamiltonian) path through the set of targets. Nei-
ther of these methods is implemented in GGobi.
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A Note on Transformations2.2.4

When analyzing data it is common to transform variables to examine them on differ-
ent scales. Transformation plays a useful role prior to PP as well. he most common
transformation before PP is to “sphere” the data. Sphering the data means to com-
pute the principal components of the data and to use the resulting variables instead
of the original variables. he major reason to do this is that we are not interested
in covariance structure. his is adequately captured by PCA. Consequently we com-
monly remove the covariance from the data before running PP and search for other
types of structure in the data. In Fig. . the labels of the variables in some of the plots
PC, PC, . . . reflect that the data were sphered prior to running the PP guided tour.
Sometimes transformations are performed to relieve the data of outliers or skewness.
When these occur in single variables, they can be detected and addressed before run-
ning PP, but PP is useful for detecting multivariate outliers and nonlinear dependen-
cies in high-dimensional data.

A Note on Scaling2.2.5

Plots of data are generally constructed by scaling the data using the minimum and
maximum data values to fit the data into a plotting space, on a computer screen win-
dow, or sheet of paper. Axes are provided so the viewer can convert the points into
the original scales.
For high-dimensional data each variable is scaled to a uniform scale using themin-

imum and maximum, packing the data into a p-dimensional hyperrectangle. hese
scaled data are projected into a plotting space. It might interesting to think about
scaling the data ater a projection is computed, but the effect of this approach is a dis-
continuity from one projection frame to the next. It would be like watching a movie
where the camera lens constantly zooms and pans.
hePP guided tour operates on the unscaled data values. (Itmay also be important

to transform the data by standardizing variables or sphering before running PP, as
discussed in the previous paragraph.)he process of scaling data into a plotting space
is called the data pipeline and is discussed in detail in Buja et al. (), Sutherland
et al. (), and in a different sense, in Wilkinson () and Pastizzo et al. ().

Using Tours with Numerical Methods2.3

Tours are useful when used along with numerical methods for certain data analyses,
such as dimension reduction and supervised and unsupervised classification. We’ll
demonstrate with an example from supervised classification.
In supervised classification we seek to find a rule for predicting the class of new

observations based on training a classifier using known classes. here are many nu-
merical methods that tackle this problem.
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Figure .. Let plot: scatterplot matrix of three of the important variables for separating the three

classes. A single classification tree usually produces the result to split the three classes based on two

variables, linoleic and eicosenoic. Right: a projection of linoleic and arachidic, along with eicosenoic,

produces a better gap between the classes

For the dataset shown in Fig. . there are eight variables and three known classes.
A classification tree chooses just two of the variables, eicosenoic and linoleic, to sep-
arate the three classes. For the training sample eicosenoic separates one class (plot-
ted as circles) from the other two, and linoleic separates the remaining two classes
(plusses and triangles). he separation of these last two groups, although difficult to
see in the plot of eicosenoic against linoleic, is real (scatterplot matrix at let). here
is no gap between the groups of points, but it is possible to draw a line with points
from one class on one side of it and the points from the other class on the other
side. By using a tour we would have noticed that there is a big gap between the three
classes using all eight variables, and also that choosing just three provides a very neat
separation. It would be difficult to guess from pairwise plots that arachidic has an
important role, but from the tour we can see that when arachidic is combined with
linoleic the two classes are much better separated (right plot). he tour projection
shows the combination of linoleic and arachidic plotted horizontally that reveals the
gap. he tree solution was simple but inadequate, and a small change to the solution
provides a much better result.
he tree algorithm was hampered by both variable wise operation and greediness.

It did not see the combination of linoleic and arachidic because it could only use
one variable at each step. It also stopped immediately when a separation between the
classes was found, having no sense of a bigger gap elsewhere. All numerical methods
have assumptions or algorithm constraints or complexity that sets limits on the re-
sults. A classical method such as linear discriminant analysis assumes that the classes
in the data arise from a mixture of normal distributions having equal variance–co-
variance. Linear discriminant analysis finds a best separating projection similar to
the tree solution; one group is well-separated and the other two groups slightly over-
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lapped. It is blinded by the assumption that the three classes have equal variance–
covariance. Quadratic discriminant analysis does better in making a rule but cannot
provide a good picture of the solution. he solution of black-box methods such as
forests and neural networks are generally difficult to understand, but by mapping out
a picture of the class structure of these data using a tour we can better understand
how they have worked and the resulting solution.
Tours can help numerical approaches in many ways: to choose which of the tools

at hand works best for a particular problem, to understand how the tools work in
a particular problem, and to overcome the limitations of a particular tool to improve
the solution.

End Notes2.4

here are numerous recent developments in tours that should be noted. Huh and
Kim () describes a grand tour with trailing tails marking the movement of the
points in previous projections. he tour can be constructed in different projection
dimensions and constraints. Yang () describes a grand tour with -D data pro-
jections in virtual environments.he correlation tour described byBuja et al. (b),
and available in GGobi, runs two independent tours of -D projections on horizontal
and vertical axes.his paper also describes constraining the tour to special subspaces
such as principal components or canonical coordinates. XGobi (Swayne et al., )
contained tools for freezing some axes and touring in the constrained complement
space, and also a section tour, where points outside a fixed distance from the projec-
tion place were erased.Wegman et al. () and Symanzik et al. () discuss a tour
on the multivariate measurements constrained on spatial locations, which is similar
to the multivariate time series tour discussed in Sutherland et al. (), where -D
projections are shown against a time variable.
In summary, tours support exploring real-valued data. hey deliver many projec-

tions of real-valued data in an organized manner, allowing the viewer to see the data
frommany sides.
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Suppose dissimilarity data have been collected on a set of n objects or individu-
als, where there is a value of dissimilarity measured for each pair. he dissimilarity
measure used might be a subjective judgement made by a judge, where for example
a teacher subjectively scores the strength of friendship between pairs of pupils in her
class, or, as an alternative, more objective, measure, she might count the number of
contacts made in a day between each pair of pupils. In other situations the dissimilar-
ity measure might be based on a data matrix. he general aim of multidimensional
scaling is to find a configuration of points in a space, usually Euclidean, where each
point represents one of the objects or individuals, and the distances between pairs
of points in the configuration match as well as possible the original dissimilarities
between the pairs of objects or individuals. Such configurations can be found us-
ing metric and non-metric scaling, which are covered in Sects.  and . A number
of other techniques are covered by the umbrella title of multidimensional scaling
(MDS), and here the techniques of Procrustes analysis, unidimensional scaling, in-
dividual differences scaling, correspondence analysis and reciprocal averaging are
briefly introduced and illustrated with pertinent data sets.
Much of the initial impetus and theory of MDS was developed by mathematical

psychologistswhopublishedmany of their findings in the journal Psychometrika. Al-
though its roots are in the behavioural sciences, MDS has now become more widely
popular and has been employed in a wide variety of areas of application. his popu-
larity is reflected by its inclusion inmany computer-based statistical packages. Books
on the subject include those by Borg and Groenen (), Cox and Cox () and
Young ().

Proximity Data3.1

Proximity means nearness in whatever space is under consideration. he “nearness”
of objects, individuals or stimuli needs defining prior to any analysis. In some situa-
tions, such as with simple Euclidean distance, this is straightforward. here are two
types of basicmeasure of proximity, similarity and dissimilarity, with these being em-
ployed to indicate how similar or dissimilar objects are. he similarity/dissimilarity
measured between two objects is a real function, resulting in similarity srs or dis-
similarity δrs between the rth and sth objects. Usually all measures are taken to be
non-negative. he dissimilarity of an object with itself is taken to be zero, while the
similarity of an object with itself is themaximum similarity possible, with similarities
usually scaled so that the maximum similarity is unity. he choice of proximity mea-
sure will depend on the problem under consideration. Sometimes the measure be-
tween two individuals is not based on any underlying observations and is totally sub-
jective as with the teacher scoring friendship between pupils. In other situations, sim-
ilarities (dissimilarities) are constructed from a data matrix for the objects. hese are
then called similarity (dissimilarity) coefficients. Several authors, for example Cor-
mack (), Jardine and Sibson (), Anderberg (), Sneath and Sokal (),
Diday and Simon (), Mardia et al. (), Gordon (),Hubalek (), Gower
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(), Gower and Legendre (), Digby and Kempton (), Jackson et al. (),
Baulieu () and Snijders et al. (), discuss various similarity and dissimilarity
measures together with their associated problems. Table . lists the more popular
dissimilarities for quantitative data, where X = [xr i] denotes the data matrix ob-
tained for n objects on p variables (r = , . . . , n; i = , . . . , p). he vector for the rth
object is denoted by (x)r and so X = [xT

r ]. he �wi� are weights, and these and the
parameter λ are chosen as required.
When all the variables are binary, it is customary to construct a similarity coeffi-

cient and then to transform this into a dissimilarity coefficient with a transformation
such as δrs =  − srs . he measure of similarity between objects r and s is based on
Table ..he table shows the number of variables, a, out of the total p variableswhere
both objects score “”, the number of variables, b, where r scores “” and s scores “”,
etc. Table . gives a list of similarity coefficients based on the four counts a, b, c, d.
Various situations call for particular choices of coefficients. In practice, more than
one can be tried, hoping for some robustness against choice. Hubalek () gives
a very comprehensive list of similarity coefficients for binary data.

Table .. Dissimilarity measures for quantitative data

Dissimilarity measure Formula

Euclidean distance δrs = ��i(xr i − xs i)��
Weighted Euclidean δrs = ��i w i(xr i − xs i)��
Mahalanobis distance δrs = �(x r i − x s i)′Σ−(x r − x s)	�
City block metric δrs = �i �xr i − xs i �
Minkowski metric δrs = ��i w i �xr i − xs i �λ��λ λ 
 
Canberra metric δrs = �i

�xr i − xs i �
xr i + xs i

Divergence δrs = 
p �i

(xr i − xs i)(xr i + xs i)
Bray-Curtis δrs = 

p

�i �xr i − xs i ��i(xr i + xs i)
Soergel δrs = 

p

�i �xr i − xs i ��i max(xr i , xs i)
Bhattacharyya distance δrs = ��i �
xr i −


xs i�
Wave–Hedges δrs = �i � − min(xr i , xs i)

max(xr i , xs i)�
Angular separation δrs =  − �i xr ixs i

��i x

r i �i x


s i��

Correlation δrs =  − �i(xr i − x̄r)(xs i − x̄s)[�i(xr i − x̄r) �i(xs i − x̄s)]�
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Table .. Summary of binary totals

Object s

 

 a b a + b
Object r

 c d c + d

a + c b + d p = a + b + c + d

Table .. Similarity coefficients for Binary Data

Coefficient Formula

Braun, Blanque srs = a

max�(a + b), (a + c)	
Czekanowski, Sørensen, Dice srs = a

a + b + c

Hamman srs = a − (b + c) + d

a + b + c + d

Jaccard coefficient srs = a

a + b + c

Kulczynski srs = a

b + c

Kulczynski srs = 

� a

a + b
+ a

a + c
�

Michael srs = (ad − bc)(a + d) + (b + c)
Mountford srs = a

a(b + c) + bc
Mozley, Margalef srs = a(a + b + c + d)(a + b)(a + c)
Ochiai srs = a�(a + b)(a + c)
Phi srs = ad − bc�(a + b)(a + c)(b + d)(c + d)
Rogers, Tanimoto srs = a + d

a + b + c + d

Russell, Rao srs = a

a + b + c + d

Simple matching coefficient srs = a + d

a + b + c + d

Simpson srs = a

min�(a + b), (a + c)	
Sokal, Sneath, Anderberg srs = a

a + (b + c)
Yule srs = ad − bc

ad + bc
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For categorical data, agreement scores can be used where, for example, if objects
r and s share the same category, then δrs =  and δrs =  if they do not. Other, more
elaborate, agreement scores can be devised.
When data are mixed, with binary, quantitative and categorical variables, Gower

() suggests using a general similarity coefficient,

srs = &p
i= wrsi srsi&p

i= wrsi
, (.)

where srsi is the similarity between the rth and sth objects based on the ith variable
alone and wrsi is unity if the rth and sth objects can be compared on the ith variable
and zero otherwise. For quantitative variables, Gower suggests srsi = −�xr i −xs i ��Ri ,
where Ri is the range of the observations for variable i. For presence/absence data,
Gower suggests srsi =  if objects r and s both score “presence,” and zero otherwise,
while wrsi =  if objects r and s both score “absence,” and unity otherwise. For nom-
inal data Gower suggests srsi =  if objects r and s share the same categorization, and
zero otherwise.

Metric MDS 3.2

Given n objects with a set of dissimilarities �drs�, one dissimilarity for each pair of
objects, metric MDS attempts to find a set of points in some space where each point
represents one of the objects and the distances between points �drs� are such that

drs = f (δrs) , (.)

where f is a continuous parametric monotonic function. he function f can either
be the identity function or a function that attempts to transform the dissimilarities
to a distance-like form. he first type of metric scaling described here is classical
scaling, which originated in the s when Young and Householder () showed
that, starting with a matrix of distances between all pairs of the points in a Euclidean
space, coordinates for the points could be found such that distances are preserved.
Torgerson () brought the subject to popularity using the technique for scaling,
where distances are replaced by dissimilarities.
he algorithm for recovering coordinates from distances between pairs of points

is as follows:
. Form matrix A = [− 

 δ

rs].

. Form matrix B = HAH, whereH is the centring matrixH = I − n−nnT , with
n a vector of ones.

. Find the spectral decomposition of B, B = VΛVT , where Λ is the diagonal ma-
trix formed from the eigenvalues of B, and V is the matrix of corresponding
eigenvectors.
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. If the points were originally in a p-dimensional space, the first p eigenvalues ofB are nonzero and the remaining n − p are zero. Discard these from Λ (rename
as Λ), and discard the corresponding eigenvalues from V (rename as V).

. Find X = VΛ	
 , and then the coordinates of the points are given by the rows

of X .
As an example, rather than use distances between cities and towns in the UK, the
cost of rail travel between all pairs of the following mainland terminus rail stations
were used: Aberdeen, Birmingham, Blackpool, Brighton, Dover (Priory), Edinburgh,
Inverness, Liverpool, London, Newcastle upon Tyne, Norwich, Plymouth, Sheffield,
Southampton, Swansea. Figure . shows a plot of the stations having obtained the
coordinates using the above algorithm. his solution is not unique since any trans-
lation, rotation or reflection of the configuration of points will give rise to another
solution.

Figure .. A map of rail stations using classical scaling
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he plot produces a good representation of the map of the UK. he vertical axis
represents West–East, while the horizontal axis runs South–North. It would appear
that Newcastle upon Tyne has relocated to Scotland!
Had the exact distances between the rail stations been used in the above (and as-

suming the UK is in a -D Euclidean space!), coordinates would have been found
for the stations that would have exactly reproduced the pairwise distances between
them. All eigenvalues of B would have been zero except for the first two. In general,
rather than using distances or pseudo-distances between points, classical scaling uses
dissimilarities calculated betweenpairs of objects in place of these distances.he con-
figuration of points obtained in a -D space will not usually reproduce the pairwise
dissimilarities exactly, but will only approximate them. his implies that nearly all of
the eigenvalues of B are likely to be nonzero, and somemight be negative, which will
occur if the dissimilarity measure is not a metric. In practice the largest two (pos-
itive) eigenvalues and their associated eigenvectors are used for the coordinates of
the points. If a -D representation is required, then the three largest eigenvalues are
used, and so on. Ameasure of how well the obtained configuration represents the set
of pairwise dissimilarities is given by

&p
i= λi&n−

i= �λi � or
&p

i= λi&(positive eigenvalues) . (.)

Incidentally, if the dissimilarities are calculated as Euclidean distances, then classical
scaling can be shown to be equivalent to principal component analysis.
he next example consists of  viruses with rod-shaped particles affecting various

crops (tobacco, tomato, cucumber and others) recently employed by Ripley ()
and originally described by Fauquet et al. () and analysed by Eslava-Gomez ().
here are  measurements on each virus, the number of amino acid residues per
molecule of coat protein.hewhole data set consists of four groups of viruses,Horde-
viruses (), Tobraviruses (), Tobamoviruses () and Furoviruses (). For brevity
the initial four letters of their names will denote the four virus groups. Figure .
shows a classical scaling of the data.
While Tobr and Hord form clear clusters, Furo splits into three clear groups, one

of which is similar to Tobr. Similarly Toba forms two groups, one of which is similar
to Tobr. he first two eigenvalues have values  and . he sum of all  sig-
nificant eigenvalues is   out of a potential of  values. he first two dimensions
correspond to % and hence provide a reasonable description of the data.
Another metric scaling approach is to minimize a loss function. For a Sammon

map (Sammon ), a particular configuration of points with pairwise distances,�drs�, representing the dissimilarities �δrs�, has loss function
S = �

r<s
δ−rs (drs − δrs)��

r<s
δrs . (.)

A configuration is found that has minimum loss using an appropriate optimization
method such as a steepest descent method. Other loss functions have also been sug-
gested and used. Figure . shows a Sammon map for the virus data.
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Figure .. Classical scaling of virus data: Hord – Hordeviruses, Tobr – Tobraviruses, Toba –

Tobaviruses, Furo – Furoviruses

While the Sammon mapping produces a structure similar to that obtained using
classical scaling, the clusters are less clear cut. his differing view probably arises
because the mapping is an iterative procedure and is hence dependent on the initial
vector selected and the number of iterations performed.

Non-metric MDS3.3

A non-metric approach to MDS was developed by Shepard (a, b) and further
improved by Kruskal (a, b). In summary, suppose there are n objects with dis-
similarities �δrs�. he procedure is to find a configuration of n points in a space,
which is usually chosen to be Euclidean, so that each object is represented by a point
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Figure .. Sammon mapping of the virus data: Hord – Hordeviruses, Tobr – Tobraviruses, Toba –

Tobaviruses, Furo – Furoviruses

in the space. A configuration is sought so that distances between pairs of points �drs�
in the spacematch “as well as possible” the original dissimilarities �δrs�. Herematch-
ing means the rank order of �drs�matches the rank order of �δrs� as best as possible.
he matching of the distances �drs� to the dissimilarities �δrs� for a particular con-
figuration is measured by the STRESS (S), where

S =
-../&r ,s(drs − d̂rs)&rs drs

. (.)

Here, �d̂rs� is the primary monotone least-squares regression of �drs� on �δrs�, also
known as isotonic regression. Details of this regression are not entered into here, but
an example can be seen in Fig. ., the Shepard plot. Further details can be found
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in Cox and Cox (), Borg and Groenen () and elsewhere. A configuration is
found that minimizes S, usually using a gradient descent approach.
he rail data used for classical scaling were analysed using non-metric MDS. Fig-

ure . shows the configuration obtained, and again the solution is arbitrary up to
translation, rotation and reflection. he STRESS associated with the optimum so-
lution is %. It should be noted that  randomly selected starting points were
employed to ensure that the true optimum has been obtained.
A Shepard plot may also be utilized to assess the procedure.his is simply a plot of

drs and d̂rs against δrs and is shown in Fig. . for the rail station data. It shows how
well the distances within the configuration match the original dissimilarities accord-
ing to rank order. It makes the monotonic least-squares regression fit particularly
clear by joining the δrs and d̂rs pairs.
he next section gives a more detailed example and shows how the quality of the

fit of the model can be investigated.

Figure .. A map of rail stations from non-metric MDS
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Figure .. he shepard plot for the rail station data

Example: Shakespeare Keywords 3.4

Cox () uses classical scaling on frequency counts of keywords from  Shake-
speare plays. A similar analysis was carried out but using non-metric scaling with dis-
similarity defined by Euclidean distance calculated from the frequencies. Figure .
shows the configuration for the keywords, but where “lord” and “king” have been
excluded from the analysis since their inclusion forced all other words into a single
cluster producing zero STRESS. he STRESS obtained ater exclusion was %. It is
difficult to plot the configuration in such a small page area, and the only clearly visible
words are related to characters plus “god” and “dead.” Figure . shows the configura-
tion obtained for plays where the role of keywords and plays has been interchanged.
he STRESS for this configuration is %. It would appear that Hamlet is closest to
the historical plays, while the tragedies and comedies are hard to separate.
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Figure .. Non-metric MDS of Shakespearean keywords

In practice, the number of dimensions necessary for an informative solution is
oten investigated using a plot of STRESS against number of dimensions (scree plot).
his is shown in Fig. . for the Shakespeare plays and indicates that three or more
dimensions may have been preferable. However, then there is the eternal problem of
displaying the configuration in just two dimensions.
Although not oten carried out in practice, it is possible to investigate the MDS

analyses further by looking at outlying or ill-fitting points. Figure . shows the Shep-
ard plot of drs and d̂rs against δrs for the play data. Two points appear removed from
the main cluster of points showing large values of drs − d̂rs . hese are (tim, h) and
(ham, h). Figure . shows a histogram of the values of drs − d̂rs , showing a normal
type distribution with a few outliers.
Table . gives the mean squared differences of drs − d̂rs for each play (i.e. averaged

over s for each r). Henry IV, Part  appears discordant with the other plays.
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Figure .. Nonmetric MDS of Shakespearean plays: (plays colored blue are comedies) asy – As You

Like It, cym – Cymbeline, lov – Love’s Labours Lost, mer – Merchant of Venice, tam – Taming of the

Shrew, tem – he Tempest; (plays colored green are historical plays) h – Henry IV, Part , h –

Henry IV, Part , h – Henry V, h – Henry VIII, r – Richard II, r – Richard III; (plays colored red

are tragedies) ham – Hamlet, jc – Julius Caesar, mac – Macbeth, oth – Othello, rj – Romeo and Juliet,

tim – Timon of Athens, tit – Titus Andronicus, twe – Twelth Night

To find the effect of each δrs on the fitting of the configuration, each δrs can be let
out of the analysis in turn and the STRESS re-calculated. Also, the resulting config-
uration each time can be matched to the original and the resulting value of the Pro-
crustes analysis (Sect. ) noted.he lowest STRESS that was obtained was .%when
the dissimilarity between Timon of Athens and Henry IV, Part  was removed. he
next lowest STRESS was .% when the dissimilarity between Hamlet and Henry IV,
Part  was removed. For all other dissimilarities, the STRESS was back to approxi-
mately the original value. A similar exercise was carried out removing whole plays at
a time. Table . shows the STRESS values obtained each time a play was removed.
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Figure .. Screen plot for Shakespearean data

Table .. Mean (drs − d̂rs) �  for each Shakespearean play
play mean play mean

tam . r .

mer . r .

tem . twe .

mac . lov .

tit . h .

asy . cym .

h . rj .

h . ham .

oth . tim .

jc . h .

Again ifHenry IV, Part  is removed, then the STRESS is reduced, showing this play
is the worst fitting one. At the other end of the scale, removing Richard III increases
the STRESS to %, showing that that play fits the model well.
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Figure .. Shepard plot of Shakespearean data

Table .. STRESS� obtained when each play is removed in turn
Play STRESS Play STRESS

h . ort .

tim . h .

cym . mac .

ham . h .

rj . tem .

lov . asy .

h . mer .

twe . r .

jc . tam .

tit . r .
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Figure .. Histogram of drs − d̂rs for Shakespearean data

Procrustes Analysis3.5

he classical scaling analysis and the non-metric scaling of the terminal train station
data produced different, but similar, configurations of points. Since arbitrary trans-
lations, rotations and reflections of these configurations give equally valid solutions.
In order to make a clear visual comparison of the two, we need to match one config-
uration with the other.his is achieved using Procrustes analysis. Procrustes analysis
finds the isotropic dilation, translation, reflection and rotation that best match one
configuration to another. A detailed account of this and allied methods is given by
Gower and Dijksterhuis (). (According to Greek mythology Procrustes was an
innkeeper living near Athens who would subject his guests to extreme measures to
make them fit his beds. If they were too short, he would stretch them, or if they were
too long, he would cut off their legs.)
Suppose a configuration of n points in a q-dimensional Euclidean space, with co-

ordinates given by the n by qmatrix X , is to be matched to another configuration of
points in a p-dimensional Euclidean space (p 	 q), with coordinates given by the n
by p matrix Y . Note, it is assumed that the rth point in the X space is in a one-to-
one correspondence with the rth point in the Y space. First p − q columns of zeros
are added to the end of matrix X in order to give the matrices the same dimensions.
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Ameasure of the discrepancy between the two configurations is given by the sum of
squared distances, R, between corresponding points in the two spaces, i.e.

R = n�
r=

(yr − xr)T(yr − xr) , (.)

whereX = [x  , . . . , xn]T ,Y = [y , . . . , yn]T and xr and yr are the coordinate vectors
of the rth point in the two spaces.
he points in the X space are dilated, translated, rotated and reflected to new co-

ordinates, x′, where

x′r = ρAT(x)r + b , (.)

ρ is a dilation, A is an orthogonal matrix giving a rotation and possibly a reflection
and b is a translation. he optimal values of these that minimizes R are summarized
in the following procedure:
. (Optimum translation) Place the centroids of the two configurations at the ori-

gin.
. (Optimum rotation) FindA = (X TYYTX)	(YTX)− and rotate X to XA.
. (Optimum scaling) Scale theX configuration bymultiplying each coordinate by

ρ = tr(X TYYTX)�tr(X TX).
. Calculate the Procrustes statistic

R =  − �tr(X TYYTX)	��tr(X TX)tr(YTY) . (.)

he value of R can be between  and , where  implies a perfect matching of the
configurations. he larger the value of R, the worse the match.
Procrustes analysis was used on the cost of rail travel data. Figure . shows the

non-metric scaling result (Fig. .) matched to the metric (Fig. .). In this case the
Procrustes statistic is ., showing that the point configurations are remarkably sim-
ilar.
Extensions to basic Procrustes analysis of matching one configuration to another

include weighting of points and axes, the allowance of oblique axes and thematching
of more than two configurations; see Cox and Cox () or Gower and Dijksterhuis
() for a detailed account of the area.

Unidimensional Scaling 3.6

When the space in which the points representing objects or individuals has only one
dimension, the scaling technique becomes that of unidimensional scaling. he loss
function to be minimized is

S =�
r<s

(δrs − �xr − xs �) . (.)
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Figure .. Procrustes rotation of metric onto non-metric scaling for rail cost

Minimizing S can be difficult because of the possible large number of local minima.
Various algorithms have been proposed, for example Guttman (), Hubert and
Arabie (, ) and Lau et al. (). Here we use the algorithm by Guttman
() for the following example.
he data used to illustrate this method are ratings for World War II politicians

and are the lower triangle given by Everitt and Dunn (). Figure . shows the
resulting unidimensional scaling obtained.
For clarity, the points have been plotted on a diagonal, which represents a linear

axis starting fromMaoTse Tung at . and ending atMussolini at ..he countries
the leaders represent have also been added. What is interesting is that Stalin is most
closely identified with Hitler and Mussolini as opposed to his UK/US World War II
allies.
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Figure .. Unidimensional scaling of World War II political leaders

INDSCAL 3.7

Suppose data consist of several sets of dissimilarities between objects, the same ob-
jects in each case. For example, several panellists assess the dissimilarities between
all pairs of a set of products. MDS could be applied to each panelist’s data resulting
in many configurations. A better approach might be to combine the dissimilarities
in some manner.
Carroll andChang () proposed ametricmodel comprising two spaces: a group

stimulus space and a subject’s (or individual’s) space, both chosen to be of the same
dimension. Points in the group stimulus space represent the objects or stimuli and
form an “underlying” configuration. he individuals are represented as points in the
subject’s space. he coordinates of each individual are the weights required to give
the weighted Euclidean distances between the points in the stimulus space, the values
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Figure .. INDSCAL for BP data by country: Aust – Australia, Indo – Indonesia, Braz – Brazil,

Kaza – Kazakhstan, Cana – Canada, Mexi – Mexico, Chin – China, Roma – Romania, Colo –

Colombia, Unit – United Kingdom, Indi – India, USA – USA

Table .. Energy source codes for the BP data

Energy source code

Coal – Consumption in millions of tonnes of oil equivalent ColC

Coal – Production in millions of tonnes of oil equivalent ColP

Hydro – Consumption in millions of tonnes of oil equivalent Hydr

Natural Gas – Consumption in millions of tonnes of oil equivalent GasC

Natural Gas – Production in millions of tonnes of oil equivalent GasP

Nuclear – Consumption in millions of tonnes of oil equivalent NucC

Oil – Consumption in millions of tonnes OilC

Oil – Production in millions of tonnes OilP
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Figure .. INDSCAL for BP data by year

which best represent the corresponding dissimilarities for that individual. Hence the
acronym INDSCAL – INdividual Differences SCALing.
Let there be n objects under study and N subjects producing the dissimilarities.

Let the dimension of the spaces be p and the points in the group stimulus space be
denoted by xr t (r = , . . . , n; t = , . . . , p). Let the dissimilarity between objects r and
s for the ith subject be δrs , i and the points in the subjects’ space have coordinates wi t(i = , . . . ,N ; t = , . . . , p). hen the weighted Euclidean distance between the rth
and sth points for the ith subject is

drs , i = 0 p�
t=

wi t(xr t − xst)1	 . (.)



336 Michael A.A. Cox, Trevor F. Cox

Figure .. INDSCAL for BP data by data source

he individual weights �wi t� and coordinates �xr t� are sought which best match�drs , i� to �δrs , i�. Carroll and Chang () give an algorithm which uses a recursive
least-squares approach to do this.
he data used to illustrate INDSCAL are from the  edition of the BP Statistical

Review of World Energy. he review incorporates additional elements from the BP
Review ofWorld Gas.he review is a compendium of statistics on the primary forms
of energy (BP ).
he data are for all years from  to , with energy sources as shown in Ta-

ble .. Data are available for both production and consumption.
Initially dissimilarities were generated for countries and each year, averaging over

the energy sources. he INDSCAL analysis results are given in Figs. . and ..
Figure . shows the “group stimulus space” and Fig. . the “subjects space”.
Clearly China and the USA are exceptional. heUSA is the largest consumer/pro-

ducer of gas and oil, and also the largest consumer of nuclear. In coal (both produc-
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Figure .. Example plots from INDSCAL for BP data by year

tion and consumption) the USA and China are very close and significantly higher
than the other countries considered.
he years  and  are exceptional; these correspond to a marked percentage

increase in the consumption/production of coal by Indonesia.
A similar analysis may be conducted based on averaging over the countries. he

resulting plots are shown in Figs. . and ..
Clearly the production and consumption of each energy source are very close in

the plot showing consumption is highly linked to production. What is surprising is
the coincidence of nuclear and hydroelectric energy.
AProcrustes statisticwas employed to compare Figs. . and ., giving a value of

., suggesting the plots are dissimilar. In Fig. . the years, with slight adjustments,
are in sequential order , , , , , , , , , , the
exception being .
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Correspondence Analysis
and Reciprocal Averaging3.8

Correspondence analysis represents the rows and columns of a two-way contingency
table as points in Euclidean spaces of dimension usually chosen as two. It can also be
used on any data matrix that has non-negative entries and can also be extended to
higher way tables, but this aspect is not covered here. he technique will be illus-
trated using the contingency table displayed in Table ., which records the number
of papers in a research database which employ specific keywords in their descriptive
fields (title, keywords or abstract) over an -year period.
First distances are measured between the rows of the table. Ordinary Euclidean

distance, treating the  columns as  dimensions for the rows, is not appropriate,
since doubling the size of the sample for any one rowwill alter the Euclidean distance
dramatically. For contingency tables where only the overall total is fixed, this may be
not be a problem, but it will be for tables where row totals can be chosen arbitrarily.
To overcome this problem, χ distances are used. he χ distance, di i ′ , between the
ith and i′th rows is defined by

di i ′ = p�
j=



c j
2 xi j

ri
− xi ′ j

ri ′
3 , (.)

where xi j is the entry in the table in the ith row and jth column, ri is the ith row
sum and c j is the jth column sum. A space is now found where points in the space
represent the rows of the table and where Euclidean distance between points equals
the χ distance between the corresponding rows of the table. Greenacre () gives
a comprehensive account of how this space is found, but only a brief summary can
be given here.
Let X denote the table that has been normalized to have overall total equal to

unity. LetDr be the diagonal matrix of the row sums ofX , and letDc be the diagonal
matrix of column sums of X . Let the generalized singular value decomposition ofX
be given by

X = ADλBT , (.)

Table .. References employing keywords

Keywords            Total

Reciprocal av.            

Correspond. anal.            

Ind. diff. scal.            

Classical scaling            

Procrustes anal.            

Mult. scaling            

Total            
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whereATD−r A = BTD−c B = I . hen the space and coordinates for the row points
are given by D−r ADλ . Note there is a “trivial dimension” which has to be ignored
which corresponds to the singular value of unity with singular vector a vector of ones.
he Euclidean distances between the points in the D−r ADλ space equal the corre-
sponding χ distances between the rows of the table. However, this space has dimen-
sion equal to one less than the number of columns. As an approximation, only the
first two singular values and corresponding singular vectors are used (ignoring the
trivial dimension). Similarly, a space for the columns can be found as D−c BDλ , and
distances between points in this space equal the χ distances between corresponding
columns in the table.
Figure  shows the space for the rows of the contingency table, and Fig. . the

space for the columns of the table.

Figure .. Keyword plot for references
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he keyword (row) plot shows the similar popularity of correspondence analysis
and multidimensional scaling and how Procrustes analysis is related to them, while
the difference in use of reciprocal averaging, which is used sporadically, becomes
clear. Sometimes the row and column spaces are combined into one space since they
have both arisen from the singular value decomposition of X . Distances between
row points and column points are not defined, although row points close to column
points will have some association.
he year plot is consistent with a steady increase in the use of correspondence

analysis, Procrustes analysis and multidimensional scaling. Note that the years to the
lower right of the plot are the years that reciprocal averaging makes an entry into the
table.
Reciprocal averaging is used for binary data and is essentially the same as cor-

respondence analysis, although the construction appears different. It can be easily
explained using an ecological example. Suppose n different species of plants are each

Figure .. Year plot for references
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planted at p different sites which vary in exposure to the weather. Let xi j =  if the
ith species survives at the jth site, and zero if it does not. Let ui be a hardiness score
for the ith species and v j an exposure score for the jth site. It is assumed that the ex-
posure score at the jth site is proportional to the mean hardiness score of the species
at that site. hus

v j 4�
i

uixi j��
i

xi j . (.)

Similarly, it is assumed that the hardiness score of species i is proportional to the
mean exposure score of the sites occupied by that species. hus

u j 4 �
j

v jxi j��
j

xi j . (.)

Let ri = & j xi j, c j = &i xi j . Reciprocal averaging solves the equations

ρui =�
j

v jxi j�ri (i = , . . . , n) , (.)

ρv j =�
i

uixi j�c j ( j = , . . . , p) , (.)

where ρ is a scaling parameter, to obtain the hardiness and exposure scores.
Reciprocal averaging was used on the Shakespeare data used in Sect. , but where

it has been turned into a binary format scoring / if a word is absent/present in each
of the plays. he resulting plots are shown in Figs. . and ..
As in Fig. . it is the personal words (princess, bishop, clown, moor etc.) that

convey most information about the play.
When examining the plays, losing the detail (the word count for each play) has

clearly affected the detail displayed, although certain similarities within the plots can
be seen, for instance the cluster asy, cym, tam, tem, mer seen in Fig. . is within
a larger cluster within Fig. ..

Large Data Sets
and Other Numerical Approaches 3.9

BehindmostMDS techniques there is a need for accurate and efficient algorithms for
minimizing functions, but many MDS programs and algorithms cannot cope with
very large data sets, as they suffer from high computational complexity. hey cannot
feasibly be applied to data sets over a few thousand objects in size. However, meth-
ods have been proposed to overcome this problem, for example Fast Spring Model–
Visualisation (FSMvis). FSMvis adopts a novel hybrid approach based upon stochas-
tic sampling, interpolation, and spring models. Following Morrison et al. () the
mechanics of the spring model are described.
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Figure .. Reciprocal averaging of Shakespearean keywords

he concept of the “springmodel” comes fromwork by Eades () on a heuristic
approach for graph drawing. Eades described an approach for the layout of a general
graph through the physical analogy of a system of steel rings connected by springs.
A graph consists of vertices and edges, and here each vertex represents one of the
objects under consideration. he graph may be represented by a mechanical system
on replacing the vertices by rings and the edges by springs. Each relaxed spring length
or “rest distance” is set to be the dissimilarity measured between the corresponding
objects. Initially the vertices/rings are placed in random positions and the springs
connecting them are either stretched or compressed. When the system is released,
the forces exerted by the springs move the system to equilibrium, and presumably
to a state of minimal energy. he algorithm employed is iterative, with each iteration
refining the layout of the graph.
his procedurewas applied to dissimilarities calculated for a population of women

who were at least  years old, of Pima Indian heritage and living near Phoenix, AZ,
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Figure .. Reciprocal averaging of Shakespearean plays

and who were tested for diabetes according to World Health Organization criteria.
he results are displayed in Fig. .. he data were collected by the US National
Institute of Diabetes and Digestive and Kidney Diseases (Hettich et al., ). he
raw data consisted of  measurements on  individuals. he method successfully
partitions the  individuals into the  groups.
Agrafiotis et al. () present a family of algorithms that combine non-linear

mapping techniques using neural networks. he method employs an algorithm to
project a small random sample and then “learns” the underlying transform using
one or more multilayer perceptrons.his approach captures the non-linear mapping
relationship as an explicit function and allows the scaling of additional patterns as
they become available, without the need to reconstruct the entire map.he approach
is particularly useful for extracting low-dimensional Cartesian coordinate vectors
from large binary spaces, such as those encountered in the analysis of large chem-
ical data sets. Molecular similarity is used to analyse chemical phenomena and can
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Figure .. Example plot from FSMvis for Pima Indian data

aid in the design of new chemical entities with improved physical, chemical and bio-
logical properties. As a guide the authors report analysing one billion items in around
 h.
Genetic algorithms are an approach to optimization suggested by the biological

process of evolution driven by natural selection. he aim is to derive a parameter set
that minimizes the difference between a model’s expected values and those observed
from the data. For detailed reviews see Charbonneau () and Schmitt ().he
procedure employed for our comparisons uses the algorithm developed by Charbon-
neau and Knapp (). As expected, when tested on the rail journey cost data, the
results were indistinguishable. In principle this approach admits larger data sets, but
not necessarily of sufficient size to make the approach worthwhile.
Simulated annealing is a suitable approach for large-scale optimization problems.

It is claimed to be ideal for locating an ideal global minimum located among a num-
ber of localminima.hismethod has been employed to address the famous travelling
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salesman problem. he approach borrows its philosophy from theoretical physics.
By analogy the system is raised to a high temperature in which the individuals move
freely with respect to each other. As cooling occurs this mobility is lost. Some align-
ment occurs between the individuals, and the system approaches a minimum energy
state. To try to achieve the desired global minimum, the cooling must occur slowly.
his procedure has been encapsulatedwithin published algorithms (Goffe et al., ;
Corana et al., ). he approach differs from the conventional gradient descent
method in that an occasional step away from an apparent minimum might be used
to assist in escaping from local minima.
hemajorization approach tominimizationwas first proposed by de Leeuw ()

for use with MDS. Essentially, a complicated function f (x) is replaced by a more
manageable auxiliary function g(x , y) such that for each x in the domain of f , f (x) �
g(x , y), for a particular y in the domain of g, and also so that f (y) = g(y, y). he
function g is called the majorizing function. An initial value x is used and then
g(x , x) is minimized with respect to x. Let the value of x, which gives rise to the
minimum, be x. hen g(x , x) is minimized with respect to x, and so on until con-
vergence.
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Introduction 4.1

Many papers refer to Tukey’s () treatise on exploratory data analysis as the con-
tribution that transformed statistical thinking. In actual fact, new ideas introduced
by Tukey prompted many statisticians to give a more prominent role to data visual-
ization and more generally to data. However, J.W. Tukey in  had already begun
his daring provocation when at the annual meeting of the Institute of Mathematical
Statistics he gave his talk entitled “he Future of Data Analysis” (Tukey, ).
At the same time, the French statistician J.P. Benzécri brought his paradigm to the

attention of the international scientific community in his paper “L’ Analyse des Don-
nées” (Benzécri, ). As with Tukey’s ideas, it appeared totally revolutionary with
respect to the “classical” statistical approaches for two reasons: i) the absence of any
a priori model and ii) the prominent role of graphical visualization in the analysis
of output. Unfortunately most of Benzécri’s papers were written in French. Michael
Greenacre, in the preface to his well-known book heory and Application of Corre-
spondence Analysis (Greenacre, ), wrote: “In ‘ I was invited to give a paper
on correspondence analysis at an international conference on multidimensional graph-
ical methods called ‘Looking at Multivariate Data’ in Sheffield, England. [here] . . .
I realized the tremendous communication gap between Benzécri’s group and the Anglo-
American statistical school.”
hese simultaneous and independent stimuli for statistical analysis mainly based

on visualization did not occur by chance but as a consequence of extraordinary de-
velopments in information technology. In particular, technological innovations in
computer architecture permitted the storage of ever larger volumes of data and al-
lowed one to obtain even higher-quality graphical visualization (on screen and pa-
per).hese two elements contributed to giving a prominent role to data visualization.
he growth of data volume, on the other hand, determined the need for preliminary
(exploratory) analyses; graphical methods quickly proved their potential in this kind
of analysis. he performance of graphics cards permitted one to obtain more detailed
visualization, and the developments in dynamic and -D graphics have opened new
frontiers.

A posteriori we can state that at that time statisticians became conscious of the po-
tential of graphical visualization and of the need for exploratory analysis. However, it
appears quite strange that these two giants of the statistics world, Tukey and Benzécri,
are very rarely mentioned together in data analysis papers. heir common starting
point was the central role of data in statistical analysis; both of them were strong
believers that, in the future, the amount of available data would increase tremen-
dously, although the current abundance of data might be more than even they ex-
pected!
In light of this historical background, the title of the present contribution should

appear more clear to the reader. Our idea is to present visualization in the mod-
ern computer age following the precepts of data analysis theorists. Moreover, note
that the basic principles of data analysis are inspired by the elementary notions of
geometry.



352 Francesco Palumbo, Domenico Vistocco, AlainMorineau

Akey element in the success of data analysis is the strong contribution of visualiza-
tion: it exploits the human capability to perceive the -D space. On the other hand, the
role of the geometric approach in mathematics has a centuries-old story. Let us take
into account that many theorems were first enunciated in geometric notation and
mathematically formalized many, perhaps hundreds of years later. he Pythagorean
theorem is a well-known example.
Our perception of the real world is the result of a geometric space characterized by

orthogonal axes, the concept of distance, and the effects of light. he combination of
the first two elements defines ametric space. Cartesian spaces permit one to visualize
positions of a set of dimensionless points. Exploiting capabilities of current graphics
cards acting on brightness, points are enriched by point markers, characterized by
different sizes, shapes, and colors, that add information, helping the user interpret
results more easily and quickly.
Our mathematics based on the decimal system is clearly the result of having ten

fingers; similarly, it is obvious that our geometry, Euclidean geometry, is based on
a system of orthogonal axes due to our perception of the horizon line. As the binary
and hexadecimal numerical systems represent possible alternatives to the decimal
system, similarly there exist different geometries based on nonorthogonal systems
where parallel lines converge in a finite space. However, even if alternative geometries
exist, Euclidean geometry remains the only geometry that we apply in the solution
of real-world problems.
he concepts of far and close are native concepts. It is not necessary to be amathe-

matician to understand them. Distance represents the measure of closeness in space.
his contribution will introduce the concept of factorial space and of dendro-

grams; it intends to furnish guidelines for giving a correct representation of displayed
data. It will also show how it is possible to obtain enhanced representation where,
thanks to modern graphics cards, it is possible to obtain millions of colors, trans-
parencies, and man–machine interactions.

The Geometric Approach
to the Statistical Analysis4.2

here are several reasons to revisit principal coordinates and dendrograms. When
these methods appeared  years ago, the capabilities of computer devices were very
poor. his lack of capability in obtaining satisfactory graphical representations led
to ingenious and original solutions. Text ASCII printers were used to draw factorial
plans using the (base) ASCII character set, and -column printers were preferred
to -column printers to obtain wider and clearer representations. In some papers
from that time we also find hand-drawn factorial plans and dendrograms. Never-
theless, the data analysis approach prospered despite these technical difficulties and
even more data analysis methods appeared in the specialized literature. he reasons
for this success, presumably, lie behind the very easy interpretation keys. In fact, in-
terpretation is based on the notion of distance, which is a human concept.
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Nowadays many graphical tools permit one to enhance basic information with
many additional elements that transform a -D representation into a higher-dimen-
sional representation.
Wainer and Velleman () noted that some concepts of geometry are inconsis-

tently imported in the statistical literature. However, in spite of differences in defi-
nitions and notations, statisticians and mathematicians use visualization techniques
for the same goal: to reveal (hidden) relationships in the data structure (also known
as fitting in statistics).
In the next subsection we separately introduce the notions of Cartesian space,

distance, and metric space. hese are the foundations of principal coordinates and
dendrograms. hen, in the following sections, we present innovative visualization
techniques that can be realized by combining the old and the new.

Distance and Metric Space 4.2.1

hemethod statisticians use to collect multivariate data is the data matrix. An Xn ,p

data matrix represents a set of n multidimensional observations, described by a set
of p variables. From a geometric point of view, the generic row vector x i (where
i = , . . . , n) represents a point in the R

p Cartesian space. Of course the alterna-
tive representation consists in representing p points (variable) in the n-dimensional
space.
According to Euclidean geometry, Cartesian space refers to a couple of ordered

and oriented orthogonal axes, which admits a definition of a unit measure. In the
year  B.C. approximately, the Greek mathematician Euclid formalized the math-
ematical knowledge of his time. His book Elements is considered the second most
popular book in history, ater the Holy Bible. he greatness of his contribution is
demonstrated by the fact that most of our current knowledge in geometry is in so-
called Euclidean geometry.
However, we must wait for Descartes for the formalization of the isomorphism

between algebraic and geometric structures. In fact, what we call a Cartesian space
was first introduced by Newton several years later.
he interest and the long story behind the definition of Cartesian space demon-

strates the importance of such a mathematical concept.
Given a set Ω, any function d � Ω � Ω � R

+ satisfying the following three prop-
erties is a distance:
a) d(X i , X j) = 5 X i = X j

b) d(X i , X j) = d(X j , X i) (symmetry)
c) d(X i , X j) � d(X i , X h) + d(Xh , X j),

where �X i , Xh , X j� � Ω (triangular inequality)

We will call Ω ametric space if its elements define a distance.
Looking at the properties of distance, we can easily understand the reasons that

induced statisticians to turn to indexes having the properties of distance. It is impor-
tant to note that the most commonly used methods satisfy special cases of minimal
distance.
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he need to visualize over Cartesian axes these distances appeared when, thanks
to the capabilities of modern computers (and more specifically to the advent of the
personal computer), statisticians began to treat simultaneously many variables and
thousands of statistical units.
Some examples of the problems arising when plotting p-dimensional data will be

illustrated with the help of theOECDCountries dataset. he last sections of the paper
will show possible solutions when dealing with huge datasets.
he human mind can conceive, but not imagine, graphical representations in or-

thogonal spaces having more than three dimensions.
To overcome this limitation the use of dendrograms permits one to visualize the

distances among a set of statistical units belonging to an R
p space (∀p 	 ).

he assumption of a system of coordinates permits one to define the concept of
distance. Many common statistical indexes are rigorously bound to the notion of
distance.

OECD Countries Dataset4.2.2

he data consist of six short-term macroeconomic indicators provided by the Or-
ganisation for Economic Cooperation and Development (OECD). In particular, the
performance indicators are:
GDP: gross domestic product
LI: leading indicator (a composite indicator based on other indicators of economic

activity)
UR: unemployment rate
IR: interest rate
TB: trade balance
NNS: net national savings

he above indicators are observed on  OECD countries and are listed in Table ..
Ater considering many available and well-known datasets, we decided to use the
Vichi and Kiers () dataset. In spite of its small dimensionality, OECD data are
distinguished by features that can be explored using a visual approach. Illustrative
examples from this dataset will allow us to appreciate the capabilities and limits of
multidimensional data analysis. Distortion-free distances displaying any dataset vari-
ables are limited to -D Cartesian space: only in this case do distances on themap cor-
respond to actual distances. Any representations involving more than two variables
imply distance distortion and information loss.
Methods presented in the following sections share the same goal: to visualize the

correspondence within a set of variables and difference within a set of multivariate sta-
tistical units in terms of distance. Firstly, attention is devoted to factorial methods that
permit one to linearly combine a set of variables in a subset of latent variables; sec-
ondly a section is dedicated to hierarchical clustering methods and to other cluster-
ing methods allowing for the representation of the difference between (multivariate)
statistical units in terms of distance.
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Table .. Six macroeconomic performance indicators of  OECD countries (percentage change from

the previous year, September /)

Country Label GDP LI UR IR TB NNS

Australia A-lia . . . . . .

Canada Can . . . . . .

Finland Fin . −. . . . .

France Fra . . . . . .

Spain Spa . . . . . .

Sweden Swe . . . . . .

United States USA . . . . −. .

Netherlands Net . . . . . .

Greece Gre . . . . −. .

Mexico Mex . . . . . .

Portugal Por . −. . . −. .

Austria A-tria . . . . −. .

Belgium Bel . −. . . . .

Denmark Den . . . . . .

Germany Ger . −. . . . .

Italy Ita . −. . . . .

Japan Jap . . . . . .

Norway Nor . . . . . .

Switzerland Swi . . . . . .

United Kingdom UK . . . . −. .

Although we are aware that many innovative visualization methods appear every
year in the specialized literature, we will not discuss the capabilities of these methods
here; instead we will focus our attention on those visualization methods in which the
concept of distance plays a central role.

Factorial Analysis 4.3

In statistics, factorial analysis (FA) refers to a set of methods that permit one to re-
duce the dimension of a data matrix with respect to a least-squares criterion (Mizuta,
). he geometric formalization of the problem was one of the keys to the great
success and quick dissemination of the methods.
Given a generic data matrix X of order n� p, the aim of the methods is to replace

p original variables with a set of q ordered and orthogonal factors that are obtained
as a linear combination of the original variables, where q < p. Factors are ordered
according to the information they carry. Orthogonality ensures consistent represen-
tations based on Cartesian space and allows us to split the whole variability into an
additive linear model based on independent variables.
Of the factorialmethods, principal component analysis (PCA) is probably the best,

most used, and most implemented in statistical sotware packages. PCA deals with
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quantitative multivariate observations. he method is conceptually founded on the
singular value decomposition approach proposed by Eckart and Young () for
approximating a matrix with another one of lower rank.
Let us denote by X the generic n � p data matrix, where the general term xi j(i = , . . . , n; j =  . . . , p) indicates the value assumed by the ith statistical unit for the

jth variable. From a geometric point of view, rows and columns of X represent points
in theR

p and in theR
n space, respectively. Without loss of generality, we assume that

columns of data matrix X have been standardized in matrix Y having the same order
of X.
PCA allows one to find a q-dimensional subspace, where (q l p) holds position,

such that the distances among the n row vectors were approximated in this subspace
in a satisfactory manner. PCA problems allow for more than one formulation. he
following section offers only a brief overview of the geometric formulation of PCA
and mainly reflects the French approach to data analysis.
Readers interested in the PCA formulation problem are referred to, e.g., Hardle

and Simar (); Jolliffe (); Lebart et al. (, ) and Mardia et al. ().

Principal Component Analysis4.3.1

PCA was originally proposed by Hotelling () as a method for determining the
major axes of an ellipsoid derived from amultivariate normal distribution. Although
a common interpretation of PCA as one specific type of factor analysis is widespread,
data analysts have a different view of the method. hey use PCA as a technique for
describing a dataset without imposing any assumption about distribution or with-
out starting from an underlying statistical model (Benzécri, ; Lebart et al., ,
). In this framework the point of view is then geometrically oriented and PCA
aims to identify a subspace through the optimization of a given algebraic criterion.
Among the potential criteria useful for fitting a set of n points to a subspace, the
classical least squares is undoubtedly the most widespread method.
he problem, in a nutshell, consists in determining the unknown p � p matrix

U = 7u ,u , . . . ,u p8 that indicates the maximum variance directions. he vector
ψ j = Yu j represents the coordinates of the n row points over the axis u j (∀ j =
, . . . , p). he unknown matrix U is determined solving the following eigenanalysis
problem:

Y ′Y = UΛU ′ . (.)

Notice that the previous equation can be alternatively expressed as

Y ′YU = UΛ , (.)

where Λ is a square diagonal matrix of order p having as general element λ j, and U
must satisfy the constraint U ′U = I. It is straightforward to say that λ j and u j are
respectively the generic eigenvalue and eigenvector of the square symmetric matrix
Y ′Y . Notice that �λ , λ , . . . , λp� are ranked in decreasing order and U defines an
orthonormal basis.
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Taking into account Eq. . and premultypling the let and the right members of
the equation by Y , we obtain the following expression:

YY ′YU = YUΛ . (.)

Let us denote V = YU ; (.) then becomes

YY ′V = VΛ. (.)

he above expression identifies in R
n an orthogonal space in which to represent

the p variables.
We call principal components the coordinates of n points in the orthogonal basis

U q . hey are defined asΨ = YU q . Equivalently, variable coordinates are obtained by
Φ = Y ′V q . Matrices U q and V q are obtained by the first q � p columns ofU and V ′,
respectively.
FA output interpretation is a rather ticklish question. Very frequently we stumble

upon analyses limiting interpretation to the graphical representation of points over
the first or first two factorial plans. Even if this is the most evident aspect of the anal-
ysis, there is nothing worse than ignoring the rest of the output. Distances projected
over factorial plans represent approximations of real distances. A correct interpreta-
tion, hence, should combine graphical and analytical results.
Unbiased output interpretation assumes knowledge of the following two basic

principles: (i) Principal components are orthogonal by construction, so any orthog-
onal space defined by two or more axes represents an additive model. he additivity
of the model allows us to determine the explained inertia associated to each factorial
subspace as the sum of the respective eigenvalues. (ii) Original variables are centered,
so the axes’ origin corresponds to the average statistical unit. hen the distance from
the origin reveals the deviation with respect to the mean vector.
hese are very important and remarkable properties.
Taking into account these properties, let us consider the output of the OECD

countries. Figures . and . show respectively the configuration of the variables
and statistical units with respect to the first two factors of the OECD data table.
Standardization implies all variables are plotted inside a hypersphere having a ra-

dius equal to one; angles between variables and factors express the correlation. he
first factor has a strength positive association with variables GDP and UR and nega-
tive with theNNS indicator. Indicators IR and TB have respectively direct and inverse
relation with factor  and are almost uncorrelated with factor . We remark that the
LI indicator does not fit the first factorial plan. Taking into account the variable po-
sitioning with respect to the factors, we interpret the characteristics of the statistical
units according to their positioning. For example, the position of Spain in the lower
right area implies that this country has a UR indicator value significantly greater than
the variable mean. Looking at the data table, we notice that Spain has the greatest
value (.).
Figure . shows the OECD countries with respect to the first three factorial axes.

Notice the position of Portugal with respect to factor ; it contributes to the orienta-
tion of the third factor and has a coordinate equal to −..
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Figure .. Correlation circle with respect to F and F

Figure .. OECD countries with respect to the first two principal components
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Figure .. OECD countries with respect to the first three principal components

When the number of variables and statistical units remains moderate, statisticians
very familiar with data analysis have a good opportunity to make correct interpreta-
tions taking into account these aspects. When the number of units and/or variables
increases, it becomes hard and difficult to obtain a good interpretation. However, ba-
sic geometric principles still hold, and wemove throughout the interpretation on the
basis of the concepts “close” and “far”. Close points identify units with similar figures,
while far points refer to units with clearly different characteristics.

Supplementary units and supplementary variables
here is a very important property pertaining to all FAs that is rarely commented
upon in textbooks on multivariate analysis: the possibility of representing supple-
mentary units and/or supplementary variables. Having the means to produce inter-
active graphical representations, this functionality allows one to add and remove sub-
sets of statistical units and variables in graphical visualization in order to evaluate
their position with respect to the others. In exploratory analysis, deletion of extreme
points allows the analyst to evaluate the axes’ stability.
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Let us consider the two following matrices: Y r and Y c . We assume that they are
respectively of order n� � p and n � p�. Rows of Y r are centered and reduced with
respect to means and standard deviations of the matrix Xn ,p , and Y c contains stan-
dardized variables.
Row vectors in Y r can be projected as supplementary units and column vectors in

Y c as supplementary variables according to the following formulae:

Ψr = Y rU q ,

Φc = Y c′V q ,

where U and V are defined in (.) and (.), respectively.
Anybody with a little practice in FA knows that performing the analysis on the

results of a huge dataset will lose appeal, whereas choosing a subset as a reference
group and projecting other units as supplementary points ensures a much more in-
teresting interpretation. he same holds if we turn our attention to the representation
of variables. his procedure is advantageous to avoid heavy computational efforts on
the whole dataset. Clearly we should be able to recognize in the graphical displays
groups of active and supplementary units. Looking at the factorial plots in Fig. .
and ., we notice that there are two extreme points: Mexico and Portugal. Delet-
ing these points and projecting them as supplementary, the plots in Fig. . illus-
trate the changes in the variable relationships. As a direct consequence of the dele-
tion, the total inertia associated to the first factorial plan increases from .% to
.%.
Effects depending on the deletion of Portugal and Mexico are clearly evident on

the first principal plan (Fig. .): Portugalmoved through the axes’ origin; the vertical
axis presents a counterclockwise rotation, with no influence by Mexico.
hus far we have focused our attention on the main features of FA, and we have

provided the reader with guidelines on how to evaluate correct interpretations of
a factorial plan. In the following sections we will show how to exploit FA’s data anal-
ysis capabilities to produce useful exploratory analyses with the help of interactive
tools.

Distance Visualization in Rp
4.4

Previous sections showed how FA allows us to graphically evaluate the differences
among statistical units in terms of distances. Obviously, we can represent -D or
-D space, so that this task can be exploited taking into account no more than three
factors simultaneously. he question is: how can we evaluate the differences in terms
of the distance in R

p spaces when p � ? Even if we cannot graphically represent
distances over spaces having more than three dimensions, we can compute distances
in R

p (with p � ) using the Pythagorean theorem. he unresolved issue remains
how to visualize these distances. Hierarchical clustering approaches furnish a good
solution.
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Figure .. Variable correlation and OECD countries with respect to the first two principal

components (Portugal and Mexico supplementary)
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Given a set Ω of n statistical units described by p variables, the goal of cluster
analysis is to partition data into k homogeneous groups or clusters (Gordon, ).
Groups are defined to have high homogeneity within clusters and high heterogeneity
among clusters. his is accomplished by grouping units that are similar according to
some appropriate distance criterion. he choice of the distance criterion plays there-
fore a leading role in the group’s definition.
Unlike factorial methods, clustering methods involve a data matrix reduction in

the sense of the rows.
here are two main approaches in cluster analysis: nonhierarchical (partitioning)

and hierarchical methods. Methods directly producing a partition of the nts objects
into k clusters belong to the former approach. Many visualization techniques have
been proposed to graphically represent partitions obtained using nonhierarchical al-
gorithms. hese displays permit one to understand the extent to which clusters dif-
fer; in fact, they are based on the use of color maps, flags, bubbles, networks, etc.
However, these representations are completely loose with respect to metric space
(Dhillon et al., ; Yang, ; Kohonen, ). Hierarchical methods define in-
stead a unique sequence of nested partitions that can be visualized through dendro-
grams. Dendrograms represent the solution to our problem; they represent distances
on flat surfaces.
Aside from the clustering method used, the effective use of classification requires

interpretation rules to evaluate the heterogeneity of the obtained groups (in terms of
observed variables).
Each group is described by continuous and nominal variables of the original data-

set. Differences of conditional group means indicate the differences of groups and
proper tests can be used to rank the variables according to their discriminant class
power. Taking into account the nominal variables, useful measures to evaluate class
heterogeneity are based on the difference between the proportion of each modality
in classes with the respect to the proportion in the whole dataset.
Ater a description of hierarchical clustering methods, we focus our attention on

partitioning methods.

Hierarchical Clustering4.4.1

Given a set of n statistical units and a measure of distance or proximity, the main
steps of a hierarchical classification algorithm are as follows:
Step : the n � n square symmetrical distance matrix D() is computed,
Step : the two points having the minimum distance are aggregated into a cluster;

aggregated points are then treated as a new metapoint,
Step : the distance matrix is then updated to a D() matrix having order(n − ) � (n − ) by taking into account the new metapoint and disregarding

the aggregated original units.

he previous steps are iterated until all cases are grouped into a single cluster of size n.
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With respect to the distances to compute, the points to classify are reduced by one
unit at each step.here are n singletons to classify at the first step and n− i+  groups
and singletons at the ith step. Only one group of size n remains at the end of the
algorithm.
hefinal output ismainly affected by two algorithm parameters: the distance mea-

sure and the linkage or amalgamation criterion to determine the distance between
a point and a group or between two groups. here exist several distance measures
according to the nature of the analyzed data.
Various linkage or amalgamation criteria permit one to determine the two most

similar clusters (groups) to be merged into one new group:
Single linkage (nearest neighbor): the distance between two clusters is deter-

mined by the distance of the two closest objects in the different clusters.
Complete linkage (furthest neighbor): the distance between two clusters is deter-

mined by the distance of the two furthest objects in the different clusters.
Average linkage: the distance between two clusters is defined as the average dis-

tance between all pairs of objects in the two different clusters.
Centroid linkage: the distance between two clusters is determined as the differ-

ence between centroids. he centroid of a cluster is the average point in the mul-
tidimensional space defined by the dimensions.

Ward’s method: this method is based on theminimumvariance criterion approach
to evaluating the overall heterogeneity increase when collapsing two clusters. In
short, the method aggregates clusters according to the minimum resulting sum
of squares.

he end result of a hierarchical clustering algorithm is a sequence of nested and in-
dexed partitions.he sequence can also be visualized through a tree, also called a den-
drogram, which shows how the clusters are related to each other. he index refers to
the aggregation criterion and indicates the distance between two subsequent groups
(or objects). A dendrogram cut at a given level defines a partition of the data cases
into different k groups, where k increases by one at a time as the aggregation index
decreases. Figure . shows an example of a simple dendrogram and the resulting
clusters at the shown cutting level.
Choosing the level of the cut, and thus the number of the resulting classes in the

partition, can then be done by looking at the dendrogram: the cut has to be made
above the low aggregations, which bring together the elements that are very close to
one another, and under the high aggregations, which lump together all of the various
groups in the population.
When it has been decided where to cut the dendrogram, the next step is to try to

find out which variables have participated strongly to merge the cases in each cluster.
he dendrogram can therefore be used to provide visual grouping information,

i.e., to read the process of merging the single statistical units into homogeneous clus-
ters, thus playing a complementary role to the numerical algorithms in cluster
analysis.
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Figure .. A dendrogram and the agglomerative index
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Principal Axis Methods and Classiication:
a Uniied View 4.5

he actual knowledge base in numerical analysis and powerful modern PCs allow
us to successfully make use of the computational aspects in multidimensional data
analysis (MDA). However, there are many analysis strategies that, without loss of
efficiency, offer good solutions.
In the previous sections we have shown the centrality of the distance in facto-

rial and clustering methods. his common element has been largely used to perform
two-step analysis, namely, using both factorial and cluster analysis. Automatic classi-
fication techniques are used to group objects described by a set of variables; they do
not make any claim to optimality. Nevertheless, they give relatively fast, economical,
and easily interpretable results. PCA and other factorial methods rarely provide an
exhaustive analysis of a set of data. herefore, it is useful to perform a clustering of
the observations because this helps to reduce the FA complexity. Additionally, it is of
value to use classification analysis to summarize the configuration of points obtained
from a principal axis analysis. In other words, a further reduction in the dimension-
ality of the data is valuable and leads to results that are easier to analyze. So-called
“tandem analysis” represents a unified approach in which FA and clustering criteria,
both based on the same notion of distance, are simultaneously satisfied in an iterative
model (Vichi and Kiers, ).
All methods of multivariate descriptive statistical analysis are used in the same sit-

uation where the user is facedwith a rectangular matrix.hismatrix may be a contin-
gency table, a binary matrix (with values of  or  according to whether an object has
a certain attribute), or a matrix of numerical values. he use of automatic classifica-
tion techniques implies some basic underlying concepts with respect to the purpose
of the analysis. Either it is assumed that certain groupsmust exist among the observa-
tions or, on the contrary, the analysis requires a grouping of the observations. In other
words, a -D continuous visualization of the statistical relationships is not enough.
here is also an interest in uncovering groups of individuals or of characteristics.
A given set of results might be reached through different steps and might lead to

different interpretations. For example, the problem may be to discover a partition
that really exists and that was hypothesized before carrying out the statistical analy-
sis. Conversely, it may be useful to employ partitions as tools or as surrogates in the
computations that make it easier to explore the data. In any case, using principal axis
methods in conjunction with classification makes it possible to identify groups and
to determine their relative positions.
Oten partitions or tree structures are used to amplify the results of preliminary

principal axis analysis during the exploratory phases of data analysis. here are sev-
eral families of classification algorithms: agglomerative algorithms, inwhich the clus-
ters are built by successive pairwise agglomeration of objects and which provide a hi-
erarchy of partitions of the objects; divisive algorithms, which proceed by successive
dichotomizations of entire sets of objects and which also provide a hierarchy of parti-
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tions; and, finally, algorithms leading to partitions, such as the methods of clustering
about moving centers or other minimum variance algorithms.

Computational Issues4.6

Computational aspects in statistical datamining are treated comprehensively byWeg-
man and Solka (); we refer to their description of computational complexity to
better understand the impact of large and massive datasets in the MDA approaches.
Most critical issues become apparent when applying cluster analysis methods. As

amatter of fact, the necessary computational effort to attain results in FA depends on
the number of variables. Under the common situation in which the number of statis-
tical units is much larger than the number of variables, the computation of a solution
can be carried out on the matrix of order p � p, where p indicates the number of
columns. Looking at (.), it is straightforward to notice that the problem in R

p has
a very feasible computational complexity, of the order O(p). With very low com-
putational effort, transition formulae (Lebart et al., ) permit one to compute the
results in R

n .
Hierarchical clustering algorithms, conversely, are very time consuming, as the

computational effort for such algorithms is of the order O(m), where m denotes
the number of entries in the data matrix. According to Wegman and Solka (),
using a Pentium IV -GHz machine with -gigaflop performance assumed, the time
required for clustering a dataset with amedium number of entries ( bytes) is about
min, while about  d are required to handle a large number of entries ( bytes).
When the dataset size rises to  bytes (huge) it takes  years!
Nonhierarchical clustering algorithms offer good performance with decent com-

putation time even with huge datasets. In the following subsections, we briefly intro-
duce partitioning methods and describe a mixed two-step strategy (nonhierarchical
+ hierarchical) largely used in a MDA framework.
In Sect. . we will show how advanced graphical representations can add useful

information to a factorial plan and how the human–machine interaction helps us to
navigate throughout the data in search of interesting patterns.

PartitioningMethods4.6.1

Nonhierarchical clustering attempts to directly decompose a dataset into a set of dis-
joint clusters of similar data items. he partition is obtained through the minimiza-
tion of a chosen measure of dissimilarity. In particular, taking into account the vari-
ance decomposition, the method aims to minimize the ratio

Q = trace(W)
trace(T) , (.)

where trace(W) and trace(T) denote the within groups and total variance–covari-
ance matrices, respectively. According to the variance decomposition formula,
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minimizing the quantity in (.) is equivalent to maximizing the quantity
trace(B)�trace(T). Notice that trace() indicates the trace operator, trace(T) =
trace(W) + trace(B) (Mardia et al., ).
he algorithm family known as k-means is the most widely known nonhierarchi-

cal clustering approach; among the different k-means algorithms, that proposed by
Forgy is the most widely implemented in specialized sotware packages (Hartigan,
).
Let us assume partitioning of a set of n units characterized by p variables; themain

steps of a k-means algorithm are the following:
Step : k provisional group centers are randomly determined: c , c


 , . . . , c


k .

Step : a partition P = �C
 ,C


 , . . . ,C


k� of the n objects into k clusters is obtained

using the assignment rule: a unit belongs to C
k if it is nearer to ck than to all

other centers; an object x i is then assigned to the cluster C
k if d(x i , ck) = min.

Step : k new cluster centers are determined: c , c

 , . . . , c


k as the centers of gravity

of the clusters of the partition P . New centers are then used to define a new par-
tition P = �C

 ,C

 , . . . ,C


k� constructed according to the same rules used for P .

he previous steps are iterated until convergence to a final partition, i.e., when two
succeeding iterations lead to the same partition or when a chosen criterion is ob-
tained that describes the quality of the obtained partition. A further stopping crite-
rion can be based on the number of iterations.

Stable Groups Identiication
Although it is based on a relatively slight theoretical basis, the k-means classification
method has an efficacy largely attested to by empirical results (Milligan, ). As
a consequence, it is the partitioning method best adapted to large datasets. he k-
means method is used as an adjunct to other methods such as clustering prior to
principal axis analysis or directly as a descriptive tool. he method is particularly
well adapted to large numerical datasets because the data are read directly: the data
matrix is saved on auxiliary memory and is read several times in sequential fashion,
without requiring large amounts of computer memory.
As the within-group variance can only become smaller between two steps of iter-

ations, the algorithm does converge; however, it is not the convergence itself but its
very high rate of convergence that justifies using this method in practice.
Generally, obtained partitions depend on the centers chosen at the first iteration.

he algorithm could converge toward local optima. he procedure of finding stable
groups (Lebart et al., ) is a kind of remedy for this situation. Its main advantage
is that it elaborates the results obtained in the rigid framework of a single partition
by highlighting high-density regions of the object points. he technique consists in
performing several partitions starting with different sets of centers and keeping as
stable groups the sets of objects that are always assigned to the same cluster.
Let us consider, as a small illustrative example, partitioning  individuals into

several homogeneous groups. We perform a first basic partitioning into  groups
around moving centers (only a few iterations are necessary to ensure stability of the
groups). his procedure is repeated three times.
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Table .. Partition of  units into  homogeneous groups

 partitions into  groups      

Partition        

Partition        

Partition        

Table .. Stable groups: distribution of units

Stable groups: cardinalities in decreasing order

–          

–          

–          

–          

–          

Total 

Table . shows the cardinality of the  groups of the  successive partitionings.
In fact, this is only the first step to follow in order to pursue stable groups. he three
partitionings are then cross-tabulated, resulting in a subdivision of the  objects
into  =  cells. he individuals in each of these  cells are those who have al-
ways been grouped together in the three partitionings. hey constitute the potential
stable groups. In fact, only  groups are not empty, and  out of these  groups
contain less than  individuals. he distribution of the individuals is given in Ta-
ble .. In practice the number of stable groups with substantial cardinality is always
much smaller than the number of cells resulting from crossing the basic partitions
(in the example, only  cells among  have more than  individuals, compared to
 cells that have less than  individuals, while all the others are empty). In its first
phase, the method presented below uses a partitioning technique that is designed for
large data tables. he groups obtained from this phase are then clustered through an
agglomerative algorithm. his method combines the advantages of both approaches,
namely:
. he ability to treat very large matrices;
. A detailed description of the main clusters;
. he ability to make a critical choice with respect to the number of clusters.

Mixed Strategy for Very Large Datasets4.6.2

When a large number of objects are to be classified, the following classification strat-
egy will be used. he idea is to combine the two approaches presented above: find-
ing a partition and then building a classification tree. he first step is to obtain, at
a low cost, a partition of the n objects into k homogeneous groups, where k is far
greater than the “expected” number of groups in the population (say k =  when
n = ,). he second step is an ascending hierarchical classification, where the
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terminal elements of the tree are the k groups of the preliminary partition. he next
step is to cut the tree at themost appropriate level to obtain an interpretable partition.
his level may be chosen visually or automatically determined (some “Cattell crite-
ria”) (Cattell, ). he final partition will be a refinement of this crude partition.
A schema of the mixed strategy follows (Fig. .).
Step : preliminary partition

he first step is to obtain rapidly a large number of small groups that are very
homogeneous. We use the partition defined by the stable groups obtained from
cross-tabulating two or three base partitions. Each base partition is calculated
using the algorithm of moving centers (k-means) ater reading the data directly
so as to minimize the use of central memory. he calculations are generally per-
formed on the coordinates of the individuals of the first few principal axes of
a principal coordinate analysis. Note that the distance computations are accel-
erated on these orthogonal coordinates, as noise in the data (distributed within
the last coordinates) is eliminated and as principal coordinates may be efficiently
computed using any stochastic approximation algorithms.

Step : hierarchical aggregation of the stable groups
Some of the stable groups can be very close to one another, corresponding to
a group that is artificially cut by the preceding step.On the other hand, the proce-
dure generally creates several small groups, sometimes containing only one ele-
ment.he goal of the hierarchical aggregation phase is to reconstitute the groups
that have been fragmented and to aggregate the apparently dispersed elements
around their original centers.
he tree is built according toWard’s aggregation criterion, which has the advan-
tage of accounting for the size of the elements to classify as weight in the calcu-
lations of the loss of variance through aggregation. It is a technique of minimum
variance clustering that seeks to optimize, at every step, the partition obtained

Figure .. Mixed strategy for classifying huge datasets
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by aggregating two elements, using criteria linked to variance. he computations
are not time consuming when the clustering is performed ater a factorial analy-
sis (PCA orMCA) and the objects to be classified are located by their coordinates
on the first axes of the analysis.

Step : final partition
he partition of the population is defined by cutting the dendrogram. Choosing
the level of the cut, and thus the number of classes in the partition, can be done
by looking at the tree: the cut has to be made above the low aggregations, which
bring together the elements that are very close to one another, and under the high
aggregations, which lump together all the various groups in the population.

Some Considerations on the MIXED strategy
Classifying a large dataset is a complex task, and it is difficult to find an algorithm
that alone will lead to an optimal result. he proposed strategy, which is not entirely
automatic and which requires several control parameters, allows us to retain control
over the classification process. he procedure below illustrates an exploratory strat-
egy allowing the definition of satisfactory partition(s) of data. It is weakly affected by
the number of units and can offer good results in a fairly reasonable time. InMDAap-
plications on real datasets, especially in cases of huge databases, much experience is
required to effectively tune the procedure parameters (Confais and Nakache, ).
A good compromise between accuracy of results and computational time can be

achieved by using the following parameters:
. he number of basic partitionings, which through cross-tabulation define the

stable groups (usually two or three basic partitionings);
. he number of groups in each basic partitioning (approximately equal to the

unknown number of “real” groups, usually between  and );
. he number of iterations to accomplish each basic partitioning (less than five is

usually sufficient);
. he number of principal coordinates used to compute any distance and aggre-

gation criterion (depending on the decrease of the eigenvalues of principal axis
analysis: usually between  and  for a large number of variables);

. Finally, the cut level of the hierarchical tree in order to determine the number of
final groups (in general, by visual inspection).

Nearest-neighbor-accelerated algorithms for hierarchical classification permit one to
directly build a tree on the entire population. However, these algorithms cannot read
the data matrix sequentially. he data, which usually are the first principal coordi-
nates of a preliminary analysis, must be stored in central memory.his is not a prob-
lem when the tree is built on the stable groups of a preliminary k-means partition
(also computed on the first principal axes). Besides working with direct reading, the
partitioning algorithm has another advantage. he criterion of homogeneity of the
groups is better satisfied in finding an optimal partition rather than in the more con-
strained case of finding an optimal family of nested partitions (hierarchical tree). In
addition, building stable groups constitutes a sort of self-validation of the classifica-
tion procedure.
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Factorial Plans and Dendrograms:
the Challenge for Visualization 4.7

he synergy between computer graphics and visual perception permits one to design
statistical tools for the interactive visual exploration of statistical data (Unwin et al.,
). Data visualization is becoming an increasingly important tool in scientific re-
search. Nowadays, the availability of high-performance computing has definitively
changed the role of statistical graphics: they are not only a static view of the past but
also a dynamic partner and a guide to the future (Wainer and Velleman, ). Mo-
tivated readers are encouraged to visit the Web site managed by Friendly and Denis
(Visited on Oct. ), which presents a historical overview of advances in statistical
graphics and most of the widely used data representations (Friendly, ).
Based on psychometric experiments and anatomical considerations, Wegman has

pointed out the human eye’s capabilities in visually processing data. More specifi-
cally, Wegman’s () “recipe” is based on three ingredients: a geometric support,
a projecting function of original data into a suitable graphical space, and interaction
tools. Wegman’s analysis strategy is based on a system of parallel coordinates as visu-
alization support (Inselberg, ), a high-dimensional rotation algorithm (Asimov,
; Cook et al., ; Buja et al., ), and saturation brushing and color design
(Wegman, ).
Linking original data with graphical representation allows the user to have an in-

novative view of the data: by querying objects on the graph, the user directly interacts
with the data and with the analysis parameters.
According to Wegman’s recipe, but using different ingredients, we propose an-

other way to handle data visualization in a statistical context; we like to consider our
approach as a little more statistical and a little less computational.
Parallel-coordinate systems are replaced with Cartesian systems (where axes take

on a very special statistical meaning because they are factors); the similarity between
statistical units in R

p is evaluated in terms of distances by the use of dendrograms;
classical brushing and other more or less classical interactive tools that are presented
below ensure a smooth man–machine interaction.
here are many sotware programs and packages that allow the user to interact

with data: users can select groups of units and change the appearance of the plot.
With respect to classical interactions, the approach proposed byWegman allows the
user to affect visualization support by changing the analysis parameters.
In other words, the data display changes, either when there are changes in the data

(adding or deleting variables or units) or when the analysis parameters are modified.
In both cases the visualization satisfies a (statistical) criterion.
Interaction capabilities in the visual data exploration phase complete the interac-

tivity analysis toolkit. Results are presented in some visual forms providing insight
into the data, drawing conclusions, and interacting with the data.
A useful task-oriented criterion for pursuing an exploratory approach is the visual

information-seekingmantra (Shneiderman, ; Card et al., ).hebasic steps for
this kind of approach are listed in order of execution below:
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Overview
Zoom and filter
Details-on-demand

First, the user needs to get an overview of the data. In the overview phase, the user
identifies interesting patterns and subsets and focuses on one or more of them. Fo-
cusing consists in a distortion of the overview visualization or in using another vi-
sualization technique (Buja et al., ). Analyzing the patterns, the user highlights
the most important information, using the drill-down functionality. Finally, access-
ing the (selected) data subsets, the user can retrieve interesting patterns and subsets
in order to perform further detailed exploration (Antoch, ).
According to Shneiderman’s () proposal for designing advanced graphical

user interfaces, four more tasks supplement the previous list, namely:
Overview: the user gains an overview of the data.
Zoom: the user zooms in on items of interest.
Filter: the user filters out uninteresting items, by dynamic queries. By allowing

users to control the contents of the display, they can quickly concentrate on in-
teresting patterns. At this aim, the sotware should offer both controls and rapid
display update.

Details-on-demand: the user selects an item or a group of items in order to get
details.

Relate: the user views relationships among data items.
History: undo and replay support allows the user to progressively refine the explo-

ration; the run actionŠs history is stored to retrace the followed steps.
Extraction: allows the user to extract subsets through query parameter setting.

he analysis approach in an exploratory framework mainly focuses on the results
of direct visualization. hese results can be made dynamic offering user interaction
capabilities on the graphical representation. he incorporation of interactive tech-
niques implies that to any action on a screen corresponds a reaction either in numerical
analysis or in visualization (VITAMIN-S FSR, ).

The Use of Visual Variables
for Designing Useful Representations4.7.1

In an interview, Bertin () stressed the idea that the use of computers for visual-
ization should not ignore the real objectives of graphics, namely, treating data to get
information and communicating, when necessary, the information obtained.
According to the definition of an image as a sign’s structured set in a visual field,

Bertin identifies three dimensions: X and Y define the sign’s position in -D space,
and Z, the third dimension, specifies the informative content. In order to measure
the usefulness of any given construction or graphical invention and to avoid useless
graphics, Bertin warns us to answer the following three questions:

Which are the X, Y, and Z components of the data table? (What is it all about?)
What are the groups in X and Y that Z builds? (What is the information at the
general level?)
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What are the exceptions?

A useful representation must provide clear answers to these questions.
In addition, Csinger () refers to the Steven andWeber laws on human percep-

tive capabilities and highlights two basic behaviors of human perception: (i) differ-
ences are perceived in terms of relative variations; (ii) human perception of variations
is biased and the bias is against valuing distances and gradually becomes more favor-
able toward areas, volumes, and colors.
Traditional (sometimes overused) factorialmaps and dendrograms, thanks to their

full correspondence to Bertin’s principles, are very popular. Moreover, giving the
maximum prominence to distances, these representations are very helpful in min-
imizing biased perceptions.
In addition, to enrich information that can be transmitted through -D repre-

sentations, Bertin introduces seven visual variables: position, form, orientation, color,
texture, value, and size.
he display in Fig. . was realized from a real dataset and was chosen because

it is a good example to understand how to read this kind of enriched visualization.
At this point it is not relevant to know which data are represented: in Sect. . the
actual informative potentiality of enriched representations will be shown in practice.
Looking at Fig. ., the reader can appreciate how the inertia (of the first two PCs) is
distributed among the statistical units and according to the factorial axes. In partic-
ular, units are visualized by means of pies: sizes are calculated according to the total
contribution of each statistical unit; the slice color denotes the share of contribution
to each factor (accordingly colored). Influential units are characterized by the biggest
pies and can be easily and quickly identified even if there are thousands of points on
the plot.
It is possible to obtain a similar representation using either the absolute contri-

butions or the square cosinus associated with the points. hey consist of coefficients
computable for each axis allowing one to interpret the axes in terms of the units and
the adequacy of the unit representations, respectively (Lebart et al., ). In partic-
ular:
. Absolute contributions, which indicate the proportion of explained variance

by each variable with respect to each principal axis.
. Squared correlations, which indicate the part of the variance of a variable

explained by a principal axis.

It is also possible to represent both the above measures using an index for drawing
the pies and the other to attribute different brightnesses to the points (a darker point
could denote a high value of the index associated to it).
In the case of cluster representation, it is possible to query a given cluster on the

factorial plane in order to visualize its internal composition (in terms of both units
and variables) through the use of “drill-down” functionalities.
Obviously, clustering methods can be either nonhierarchical or hierarchical. It is

clear that in the case of a hierarchical method that exploits linking functionalities, it
is also possible to link two different views of the same data (the dendrogram and the
factorial plane) in order to obtain more information (Sect. .).
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Figure .. PCA unit display: absolute visualization of contributions through point size and color

(green and blue refer, respectively, to the first and second factors)

A useful interactive capability in this sense is based on the dendrogram dynamic
cutting: changing the cut level of the dendrogram, the user can consequently visualize
the resulting partition on the factorial plane. Obtained clusters can be described in
terms of descriptive tables and charts; the user can decide to drop a cluster from the
analysis or to aggregate two or more homogeneous clusters. As a consequence of the
user action, the analysis restarts again and the results change.
Aside from the classical dendrogram, alternative views can be obtained using the

tree views that are typical of modern operating system user interfaces. An illustrative
example is shown in Fig. .. It is an innovative representation useful for visualizing
results of a cluster analysis that also allows the user to query a particular level of the
tree.
he user can collapse (expand) a particular cluster in order to hide (to show) the

items included in that cluster. Drill-down functionalities allow one to browse a given
cluster, while linking functionalities between the tree-view representation and the
factorial plane provide the user the capability to select a different cut level in order
to visualize the corresponding clusters on the factorial plane.
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Figure .. A tree view clustering representation

Interactivity Within and Between Graphics 4.7.2

Global views are used to provide context for more detailed views, to help formulate
a search, identify patterns, or make a gestalt overview (Cleveland, , ; Boun-
ford, ).
Human–machine interaction confers substantial advantages to the power of statis-

tical graphics (Cleveland andMcGill, ). Interactivemanipulation is the capability
to directly interact with displays to query them for information, to link them, and to
change their shapes, scales, and other characteristics so that awide range of views can
be scanned. Interactive manipulation techniques can be developed and used within
each graphic as well as between graphics and between graphics and data.
Manipulation techniques can be classified into two main areas:

. Interactivity within graphics, aimed at promoting interactivity on a single
graphical representation. Among the available tools are: the ability to show/hide
parts of a graph, the ability to use color/size information in order to change the
representation according to the point attributes, and the ability to use the mouse
pointer to query the graphical representation. Moreover, the user can alter the
data table in order to observe changes on the graph. Such changes include the
deletion of data, the highlighting of data (the data will stand out against normal
data), and the focus of data (in order to show as mush detail as possible on the
data). Nevertheless, traditional tools can be used, i.e., context-sensitive querying,
zooming, flexible scaling, resizing of graphics and of objects, coloring of objects,
selecting (by points, areas, etc.), masking, and grouping (Dhillon et al., ;
Hurley and Buja, ).

. Interactivity betweengraphics, aimed at promoting the interactivity among
different views of the same data. It is straightforward to say that the previously
listed tools can be used also for this kind of interactivity, mainly based on the
linking concept: to any action on a view corresponds the same reaction on all
the related views of the same data (Symanzik, ).
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Previously we pointed out that the use of graphical representations could be a starting
point for data exploration. In other words, starting from these representations, the
main idea of graphical interactivity is to allow the user to visually query the data
(Unwin, ). hat is, once the data have been displayed on graphics, the next step
is to allow the user to manipulate the graphics in an interactive fashion, in order
to search for patterns in the data. We refer the interested reader to Wilhem’s survey
on “the paradigm of the linked view”, which recently appeared in Rao et al. ()
(Wilhelm, ).
According to their basic aims, a consistent taxonomy of graphical interactive tools

is as follows:
Finding patterns: clusters, outliers, unusual groups, and local densities are exam-

ples of features that should be interactively inspected by users. Very important is
the inspection of low-dimensional dependencies, which are helpful for dimen-
sion reduction.

Posing queries: ater the identification of interesting patterns, the user should be
able to highlight individual cases as well as subsets of data. he results of such
queries should be given in a graphic display.

Different interactive methods are used to carry out the previous tasks. he under-
lying idea that associates the different usable tools is the data consistency principle:
whatever changes the user causes, each available data view (numerical and graphical)
is consequently updated.
he analyst can thus act on the screen, generating parameter changes and causing

a new execution of the analysis and a subsequent redrawing of the graphical repre-
sentations. he user can take several different analysis pathways based on the use of
one or more interactive tools that allow the user to address different tasks:

Exploring the original dataset (drill-down functionalities);
Asking for a different representation of all the information (multiple views) or of
the information stored in a selected area of the graph (subset views);
Dropping points, units, and/or variables from the analysis (deletion): deleting
point(s) can help the user to evaluate the sensitivity of the analysis and of subse-
quent representation to particular units and in order to compare this sensitivity
among the different views;
Aggregating/disaggregating (grouping/ungrouping) units in order to reduce/in-
crease the level of detail of the representation;
Filtering the representation in order to visualize only part of the information. he
filtering criteria can be based both on values of one or more variables (using suit-
able tools to build and/or query) and on indexes (the user can ask to graph units
characterized by given values of one or more indexes). With respect to the last
point, in particular, a set of statistical measures can be used to filter the relevant
information so as to reduce the amount of represented points according to the
importance of the information lying below;
Focusing on specific characteristics: the user can decide which feature of the data
to visualize and theway to display it.his includes the choice of variables, the scale
and aspect of the plots, the possibility to animate the plots using real-time controls
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in order to have different views of the same set of data, the choice of particular
range of values for a numerical variable, the use of tools to obtain a better visual
perception of the data (in the case of multiple points in the same plotting location
one simple solution is jittering, i.e., a small amount of uniform random noise is
added to the data before graphing);
Asking for a representation of part of the information, namely, starting from unit
attributes (subset selection) or querying a given region (selection of an area), that
is, the user can concentrate on particular points and regions. hese are made to
stand out from the background and highlighted using a different color, dimen-
sion, or filling in order to look for clusters or behavior different with respect to
unselected points;
Analyzing several linked views of the same data (linking, brushing, slicing). Mul-
tiple graphics is an old technique used to propagate information through differ-
ent plots that display different aspects (dimensions) of the same dataset. When
points are selected on a view through an input device, all views of that case are
highlighted on each of the other plots simultaneously. In this way the user can an-
alyze if the selected points have some particular features in the other dimensions
or views. Linking, brushing, and slicing are based on the idea that by emphasiz-
ing the common identity of cases in multiple displays, the analyst can more easily
relate several displays to one another. hey allow one to look for clusters, to ex-
plore the relationships among variables, or to investigate if a particular pattern
or position is confirmed on different views of the same data. Moreover, the link-
ing capability can be used not only among different graphical displays but also
between a graph and the input data;
Redrawing the views using only certain selected levels of a strata variable (con-
ditional selection), mainly categorical variables, even if intervals of a quantitative
variable can be used. he redrawing of the graphs requires one to rerun the sta-
tistical analysis in order to visually concentrate on groups of units characterized
by the same level(s) of the strata variable. his tool provides a powerful method
to execute conditional analysis.

An Application: the Survey
of Italian Household Income andWealth 4.8

Previous ideas are best transmitted through a typical application. Results shown in
the present section have been obtained using the sotware VITAMIN-S. VITAMIN-S
(VIsual daTA MINing System) is a prototype sotware realized in the framework
of the – IST-- project; the project was sponsored by EC
fith FP.
his contribution has been greatly affected by the authors’ experience in the devel-

opment of the VITAMIN-S sotware. he most innovative aspect of VITAMIN-S
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is the connection between MDA techniques and graphic interaction tools (Klinke,
). he sotware was designed as a data-mining tool to work with huge amounts
of data.
Data presented in this section come from the Italian Survey of Household Income

and Wealth (SHIW), a large-scale household survey run biannually by the Bank of
Italy on a panel of about  Italian households (  individuals) spanning about
 Italian municipalities (Bank of Italy, ). he SHIW began in the s with
the aim of gathering data on the income and savings of Italian households, and it
is widely used in studies on saving behavior by Italian households. It collects de-
tailed information on Italian household demographic characteristics, consumption,
income, and balance sheet items. For our analysis, we consider data of the last survey
(year ). For an exhaustive description of the data and related issues, see D’Alessio
et al. ().
For the sake of simplicity, among the available indicators we have selected are the

following:
ETA: age (years)
Q: working status ( = employed,  = self-employed,  = unemployed)
AREA: geographical area

( = northeast,  = northwest,  = central,  = south,  = islands)
YL: compensation of employees
YT: pensions and net transfers
YM: net income from self-employment
YC: property income
CD: consumption (durables)
CN: consumption (nondurables)
S: Saving
AR: real assets
AF: financial assets
PF: financial liabilities
BD: consumer durables

Data exploration and feature extraction can be well presented through the visual ap-
proach. Unfortunately, static views presented in this section do not allow us to ap-
preciate the human–machine interaction analysis power that comes fromMDA.
he following results refer to a two-step analysis (factorial analysis and clustering).

Looking at the point configuration on the factorial plans, the user can modify the
analysis parameters or add and remove variables or statistical units.
VITAMIN-S sotware was designed to be used also by users not having a high

level of skill inMDA. Indeed, specifying the type of variables and the desired analysis
strategy is enough to start.
In this examplewe classed all variables as continuous exceptQ andAREA. In par-

ticular we used the AGE variable and the two categorical variables as supplementary.
hen we specified factorial analysis plus clustering as a strategy. Once these parame-
ters were established, VITAMIN-S performs the whole analysis and then the user can
act on the graphic displays. Any action performed on one display causes methods to
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run again (if necessary), and new results updating the current views automatically
appear.
Let us start the analysis results interpretation by looking at the representation of

variables with respect to the first two factors. In Fig. . we see the first factorial
plan whose total associated inertia is .%. We observe all indicators, but YT con-
tributes to the first factor. With respect to the second factor, instead, they split into
two groups.
Ater the factorial axes are interpreted according to the variables in the analysis, we

shit our attention to the statistical units’ configuration on the same factorial space.
In Fig. . we observe the configuration of points on the first factorial plan. As in the
most of data-mining applications, we notice that the largest part of the statistical units
is massed on the axis origins. his happens because the analysis is strongly affected
by a few influence points.
In order to detectwhich kind of units have the greatest influence, the system allows

the user to differentiate points according to the modalities of a categorical variable.
In this example, on the right-hand side of Fig. . points are colored according to
the modalities of variable Q (working status): blue points correspond to “employed”,
cyan indicates “self-employed”, and black indicates “unemployed”.

Figure .. Representation of variables: SHIW data



380 Francesco Palumbo, Domenico Vistocco, AlainMorineau

Figure .. Statistical units on the first factorial plan (SHIW data). (a) Classical view. (b) Units

distinguished according to categories of Q variable

Some interesting patterns can also be revealed using a scatterplot matrix repre-
sentation obtained by representing the first factor with respect to the other ones, as
shown in Fig. .. he plot, as above, uses highlighting to explore the position of
employees (black points) in the different spaces.
Figure . shows the contribution representation for the units.With respect to the

classical representation that uses dimensionless points, the same units are represented
by pies proportional to their contribution. Notice that pies are characterized by two
colors (blue and green): green refers to the contribution to the first factor (horizontal
axis) and blue to the second one. Configuration of the points in the graphics is en-
hanced bymany useful bits of information for the analyst. To investigate the masking
effect, on the right-hand side only the units with a contribution to the first plane of
up to % are shown using the filtering capabilities of VITAMIN-S.
he exhibited pattern of the unit plot is typical in data-mining applications: an

overwhelming majority of points shows features similar to the average unit. his in-
volves a masking effect in revealing interesting variability. he next step is to make
these units supplementary. Removing units or variables is a simple and fast task with
VITAMIN-S: one simply selects and cuts the points on the screen. A removal implies
that factors are recalculated: this is immediately done in VITAMIN-S and displays
are updated in real time. he UNDO functionality allows the user to go forward and
backward in the different configurations. By evaluating changes in distances among
points and absolute contributions the user understands the relationships in the data.
Ater the deletion, we take a look at the variable and unit configuration in Fig. ..

From the variable representation it is evident that a remarkable change occurred: on
the first axis two variables move to the right side of the plane while the variables are
again split on the second factor.
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Figure .. Multiple factorial plane representation (SHIW data)

Figure .. (a) Unit representation using contribution. (b) Units with contribution � % (SHIW data)

Another typical strategy in data-mining exploration consists in studying the influ-
ence of anomalous observations.Using again the filtering capabilities of VITAMIN-S,
units with a related contribution greater than % are isolated in Fig. ..



382 Francesco Palumbo, Domenico Vistocco, AlainMorineau

Figure .. Variable and unit representations ater the deletion of the less important units

In exploratory MDA, to evaluate the influence of anomalous observations, statis-
ticians remove units having the greatest contributions and, projecting these as sup-
plementary points, compare the two-point configurations.
High-contribution units are thenmade supplementary using the deletion tool and

the resulting planes are shown in Fig. ..
It is evident that a remarkable change occurred: while the variables preserves their

position on the first axis with respect to Fig. ., they move on the second factor, that
is, they are more influenced by anomalous observations.
he user can reiterate the point deletion step or, if the point configuration is be-

lieved to be sufficiently stable, go to the analysis of the classification step.

Figure .. Units with a contribution � % (SHIW data)
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Figure .. Variable and unit representations ater the deletion of the most important units

VITAMIN-S was expressly designed to perform exploratory analysis also on large
and very large datasets, so it can exploit hierarchical and nonhierarchical cluster anal-
ysis algorithms. he current example, consistent with the structure of the contribu-
tion, is realized using an agglomerative hierarchical approach: Ward’s classification
algorithm. As described in Sect. ., cluster analysis assumes as input data the unit
coordinates on the factors (the principal components). Finally, the exploratory pro-
cess ends with a dendrogram display (let-hand side in Fig. .), whereas the analysis
process goes on to obtain cluster descriptions. In this phase there are several different
data and analysis parameters the user can set. Looking at the dendrogram, we notice
the yellow vertical line. Moving the line from right to let, the user can set the classi-
fication tree cutting point and the number of partition classes as a consequence. At
the same time, on another display there is the cluster display on the factorial plan.
he user can act on both displays. In particular, when a cluster on the factorial rep-
resentation is deleted, the set of active units changes and the whole analysis process
works in the background to recalculate all the results of the entire analysis. Results
are immediately displayed in the updated views.
Finally, when the user is satisfied with the obtained configurations, the user can

click on a command button to save all results, graphical and analytical.

Conclusion and Perspectives 4.9

Recent visualization techniques are based on the highly intensive exploitation of PC
graphics cards capabilities. We should expect that these capabilities will further im-
prove in coming years. However, the risk is that these representations, which are
very attractive from an aesthetic point of view, will not be readable using a statis-
tical approach. Statistical reading of graphical representations must necessarily be
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Figure .. Clustering results: dendrogram and cluster displays on the first factorial plan

based on key elements for the correct interpretation (Wilkinson, ; Wilkinson
et al., ). he use of space colors, shapes, and sizes are linked to statistical con-
cepts (Tute, , b,a, ). As in Chernoff ’s face representations, every detail
of the graphic should represent a particular aspect of the data. We can appreciate
different and even nicer representations; they could be useful to quickly and easily
provide information, but they are not statistical representations. he present contri-
bution has proposed some well-known data representation techniques from MDA
in a new light, where human–computer interaction together with modern graphic
capabilities can offer simple and highly informative representations.
For the sake of brevity, we did not mention many other statistical methods in the

MDA framework that can ensure the same capabilities and are founded on the same
paradigm. In the factorial methods framework, it is worth mentioning correspon-
dence analysis (Greenacre, ),multidimensional scaling (Cox andCox, ), and
Procrustean analysis (Mardia et al., ). It is necessary to remark that Euclidean
distance is one among hundreds of available metrics. he central role of Euclidean
distance in geometry captures researchers’ attention more than other distances and
dissimilarity indexes. As has been pointed out by many authors, the role of distance
is prominent and much attention must be paid to this choice.
he choice of classification algorithm would require a wide and deep review of

the most recent literature. As a final remark, we would like to stress the fact that
the analysis process described in this paper can succeed in exploratory analysis if
the same distance, the same yardstick, is kept constant through the whole analysis
process.
Our example has been realized with the help of VITAMIN-S sotware; however,

using the most recent metalanguages, the same results can be obtained by someone
with very little programming experience. Some important computational aspects of
exploratory data analysis are treated in the book by Martinez and Martinez ().
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Density estimation and related methods provide a powerful set of tools for visual-
ization of data-based distributions in one, two, and higher dimensions. his chapter
examines a variety of such estimators, as well as the various issues related to their
theoretical quality and practical application.
he goal of understanding data leads to the notion of extracting as much informa-

tion as possible.his begins by understanding how each individual variable varies. If
the parametric form is well known, then a few statistics answer the question. How-
ever, if the parametric form is unknown, then visual examination of a well-con-
structed nonparametric density estimate is the recommended route. In this way, fea-
tures of the density, such as the number and location of modes, can be identified.
With multivariate density estimates, we can extend this ability to understand the dis-
tributional relationships between variables in two or more dimensions.

Univariate Density Estimates5.1

Given a univariate sample �x , . . . , xn� 9 f (x) of an unknown parametric form, vi-
sualization of an estimate of f is an important part of the analysis process for multiple
reasons. It allows for direct examination of possibly important structure in f , such
as skewness or multiple modes. In addition, it provides for a means of considering
assumptions such as that of normality for further analysis. Such visualization can
provide an alternative to a formal goodness-of-fit test, particularly for large sample
sizes where such tests may reject even quite reasonable models.

Histograms5.1.1

he form of density estimation most familiar to analysts is the univariate histogram.
While it owes its popularity to its simplicity, the histogram can provide a serviceable,
if crude, idea of a dataset’s distribution.
Construction of a histogram requires a mesh of bin edges, �t < t < t < . . . <

tk�, covering the range of the data. Define the jth bin as B j = [t j , t j+), its width as
h j = t j+− t j , and its count as ν j = &n

i= IB j(xi), where IA(x) is an indicator function,
taking  if x � A and  otherwise. A frequency histogram plots

ĝ(x) = ν j x � B j , (.)

while a percentage histogram plots

ĝ(x) =  ν j

n
x � B j . (.)

As long as the widths for all bins equal a constant h j = h, either of these will give
a reasonable visual depiction. But as neither integrates to , neither is a true density
estimate. If bin widths vary, neither frequency nor percentage histograms should be
used, as they will give excessive visual weight to the larger bins.
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A density histogram, in contrast, plots

f̂ (x) = ν j

nh j
x � B j . (.)

A simple calculation demonstrates that the density histogram integrates to  and is
therefore a true density, and it can be shown to provide a reasonable estimate of f .
he use of h j in rescaling means that f will be well estimated, even with varying bin
widths.
See Fig. . for an example of a density histogram.he data consist of average win-

ter (December, January, and February) temperature minimums, in degrees Celsius,
for n = ,  grid points in the US state of Colorado over the period –.
his -year average of temperature minimums, as well as average temperature maxi-
mums (degrees Celsius) and total precipitation (millimeters), were constructed from
monthly datasets available from the Spatial Climate Analysis Service at Oregon State
University (http://www.ocs.oregonstate.edu/prism/). hese high-resolution, gridded
datasets are based on the parameter-elevation regressions on the independent slopes
model (PRISM) discussed in Daly et al. () and Gibson et al. () that incor-
porates station-level meteorological data, a digital elevation model, as well as other
spatial datasets, in a type of “expert system”designed to represent how an experienced
climatologist would create a climate map.
he histogram in Fig. . clearly shows a bimodal structure relating to the geog-

raphy of the state, a sharp mode to the right for the eastern plains, and a shorter,
broader mode indicating the lower temperatures of the mountain grid points.
he choice of bin width plays a critical role in the appearance and accuracy of the

histogram. heoretical analysis of the density histogram involves the multinomial
distribution and aTaylor’s series on the true distribution f ; see Scott () for details.
he variance of f̂ (x) is dominated by a term of the form f (x)�nh j, for x in B j ,

Figure .. Density histogram of average minimum winter temperature (degrees Celcius) over a grid of

locations in the US state of Colorado
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indicating that the variance will be reduced for large bin width. On the other hand,
the bias of f̂ (x) for x � B j is dominated by

: t j+ + t j


− x; f ′(x) = (m j − x) f ′(x) , (.)

where m j is the midpoint of bin B j . Not surprisingly, the piecewise-constant his-
togram has greatest bias in bins where the true density has the largest (positive or
negative) slope. However, this effect can be reduced by the use of smaller bins, since�m j − x� < h j� for all x � B j .
Clearly, no single bin width will perform optimally for both variance and bias, but

we can balance these competing forces by considering the mean integrated squared
error (MISE), found as the sum of the integrated variance and the integrated square
of the bias. Optimization over a single bin width h suggests that asymptotic MISE
will be minimized for bin width

h� = 2 

R( f ′)3
	

n−	 , (.)

where the “roughness” functional,R, is defined byR(g) = ∫ g(x) dx. Unfortunately,
the presence of R( f ′) limits the applicability of this rule, as it is highly unlikely to be
known when f itself must be estimated.
As a more practical alternative, many computer packages follow a recommenda-

tion by Sturges () that the number of bins be roughly  + log(n). Sturges chose
the bin counts ν j = >K−

j ? for j = , , . . . ,K − , so that
n = K−�

j=
ν j = ( + )K− = K− . (.)

Hence the number of bins K = + log(n). Sturges’ bin counts are proportional to the
binomial B(K − , ) probabilities, which is approximately normal for moderate K.
Hence, Sturges’ rule is a version of a normal reference rule but motivated by binomial
approximations rather than by mean squared error considerations.
While Sturges’ rule gives fairly reasonable widths for small samples from smooth

densities, the number of bins increases (and therefore h decreases) at a rate far slower
than optimal for AMISE purposes. Better rules replace R( f ′) in the theoretical for-
mula with the value for a normal distribution, resulting in h� = . σ n−	 . Scott
() suggests using the sample standard deviation s in hS = . s n−	 , while Freed-
man and Diaconis () suggest using the more robust interquartile range IQR in
hFD =  IQR n−	 . Usually, hFD < hS , since σ = IQR�. for the normal density and
hence . σ = . IQR, which is % wider than hFD . Although less oversmoothed
than the estimates generated by Sturges’ rule, estimates using the normal-based rules
can still be smoother than optimal for more complicated underlying densities. his
may not be terrible; oversmoothed histograms oten look better to many viewers, as
the bias of overly large bins can be easier to mentally smooth out than the multiple
smallmodes that can appear in undersmoothed estimates.Nonetheless, the strong ef-
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fect of bin width suggests that for visualization purposes, it is wise to view a collection
of histograms with more than one choice of bin width; a particular sequence recom-
mended in practice is h = hS�.k for k = , , . . ., until h is obviously too narrow.
he exact locations of the bin edges does not enter into the expression for h� be-

cause the bin edge is generally theoretically less important than the bin width. he
exception occurs when f has a known point of discontinuity. Placing a bin edge at
such a point will provide a simple, automatic adjustment. As  is frequently a point
of discontinuity, selecting bin edges as t = , t j = jh, is oten a wise choice. Despite
the lower-order theoretical effect, placement of bin edges can have substantial visual
effect on histograms of moderate sample size. As with bin width, inspecting multiple
histograms with different bin edges is highly recommended. A JAVA applet is avail-
able in theRiceVirtual Lab in Statistics to explore the interaction of binwidth and bin
edge selections; see the histogram applet at http://www.ruf.rice.edu/~lane/rvls.html.
Features that appear in most or all alternative histogram views should be given much
more credence than those that appear only once.

Improved Binned Density Estimates 5.1.2

Visual and theoretical improvement can be obtained in density estimates from histo-
gram-style binned data through the use of interpolation. he oldest such technique
is the frequency polygon, generated by linearly interpolating histogram bin centers.
By this means, the slope of f may be tracked, and the bias improves from O(h),
depending on f ′(x), to O(h), depending on f ′′(x); details may be found in Scott
().
he edge frequency polygon of Jones et al. (), instead interpolates the his-

togram bin edges, at heights representing the averages of adjacent histogram bin
heights.he result reduces variance and optimal MISE, at the cost of a small increase
in bias.
Minnotte’s () biased-optimized frequency polygon interpolates histogram bin

centers, but at heights calculated to ensure that the multinomial probabilities repre-
sented by the bin data proportions are maintained. Although the estimates may go
negative, and have higher optimal MISE properties than the edge frequency poly-
gon, their minimal bias recommends them in cases where large amounts of data are
collected into coarse bins and no finer binning is possible. hese can be improved
still further by interpolating with cubic or higher-order splines.he resulting higher-
order histosplines (Minnotte, ) achieve O(h) or higher levels of bias, and can
strongly outperform other estimates when large samples are prebinned into wide
bins.
Figure . shows examples of the standard frequency polygon, edge frequency

polygon, bias-optimized frequency polygon, and cubic higher-order histospline com-
puted from the histogram information of Fig. ..
he effects of the bin origin nuisance parameter can be minimized by comput-

ing several histograms, each with the same bin width, but with different bin ori-
gins. Scott’s () averaged shited histogram (ASH) is a weighted average ofm his-
tograms, f̂ , f̂ , . . . , f̂m , all constructed with the same bin width, h, but with shited
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Figure .. Frequency polygon and variants constructed from the histogram information of Fig. .

bin origins, �, h�m, h�m, . . . , (m − )h�m�. he data are prebinned into inter-
vals of width δ = h�m. Let the bin count νk denote the number of points in bin
Bk = ((k − )δ, kδ]. hen the equally weighted ASH is defined by the equation

f̂ (x) = 

m

m�
j=

f̂ j(x) x � Bk . (.)

Using weights wm(i), the weighted ASH becomes

f̂ (x) = 

nh

m�
j=−m

wm( j) νk+ j x � Bk . (.)

Figure . shows the effect of equally weighted averaging of increasing numbers of
histograms for the data and bin width of Fig. ..

Kernel Density Estimates5.1.3

he bin origin can be eliminated altogether by the use of a kernel density estimate.
he result is superior theoretically as well as smoother and thus more appealing vi-
sually.
he estimate requires a smoothing parameter, h, that plays a role similar to that

of the bin width of a histogram and that is sometimes referred to as the bandwidth
of the estimate. It also requires a kernel function, K, which is usually selected to be
a probability density function that is symmetric around .
From these, the estimator may be written as

f̂ (x) = 

nh

n�
i=

K : x − xi

h
; = 

n

n�
i=

Kh(x − xi) , (.)
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Figure .. Averaged shited histograms constructed from the data and bin width of Fig. . with

increasing numbers of averaged bin edges

with Kh(t) = K(t�h)�h. he estimate is the sum of a collection of n probability
masses, each with shape K and size n− , centered on the observations. Figure .
demonstrates the construction of such an estimate for the percentage of silica in 
chondritemeteorites (fromAhrens, ), with a standard normal kernel and a band-
width of .

Figure .. Example of kernel density estimate construction for percent silica in chondrite meteorites.

he original observations and individual kernel functions are displayed. he final estimate is the

vertical sum of all n= kernel functions
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Choice of kernel is relatively unimportant, as any reasonable p.d.f. will provide
a similar picture. Optimal mean integrated squared error may be achieved using the
Epanechnikov kernel, a truncated parabola with form

KE(t) = 


( − t) −  � t �  . (.)

he discontinuous derivative at @ is inherited by the estimate at numerous points,
so for visual purposes this choice of kernel may not be ideal. he biweight kernel,

KB(t) = 


( − t) −  � t �  , (.)

is nearly as efficient and has a continuous first derivative, so it is oten preferred for
the smoother appearance of its estimates. (he triweight kernel, KT(x) = ( −
t)�, has a continuous second derivative.) Finally, the standard normal kernel,
KN(t) = ϕ(t), is smoother still and oten preferred for its infinite number of contin-
uous derivatives and its uniquely well-behaved mode structure (Sect. ..).
Choice of the bandwidth h ismore critical and, aswith a histogram, can have a very

strong effect on the resulting estimate. Large h leads to oversmoothing and (asymp-
totic) bias proportional to h f ′′(x), while small h leads to an undersmoothed, highly
multimodal estimate with (again asymptotic) variance proportional to f (x)�nh.Op-
timization shows that the asymptotic mean integrated squared error may be min-
imized by choosing h� = cK[R( f ′′)n]−	 , with cK depending on the kernel and
equaling ., ., and . for the Epanechnikov, biweight, and normal kernels,
respectively. As with the histogram, the presence of a function of f in the optimal
choice of h leads to a requirement of alternative approximations.
One approach is again to assume a normal distribution for f . his leads to the

normal reference rule h = cNK σ̂n−	, for cNK = ., ., and . for the Epanech-
nikov, biweight, and normal kernels. his will be oversmoothed for most nonnormal
densities, so an initial estimate with extreme skewness or multiple strong modes may
argue for a second estimate with smaller h. Figure . demonstrates the effect of h
with three normal kernel estimates for a subset of  points of the minimum tem-
perature data from Fig. .. he normal reference rule suggests that h = . for this
data, but the strong bimodality indicates that a smaller choice, such as the middle
h = . example, is probably more appropriate. Taking h smaller still, as in the right-
most h = . estimate of Fig. ., leads to a clearly undersmoothed estimate. Note
that the individual kernels at the bottom of each plot are scaled correctly relative
to one another, but not to their full estimates. For visibility, each has been rescaled
vertically to  times the height of a single kernel used for this sample.
A variety of more highly computational approaches for data-based bandwidth se-

lection have also been proposed. hese include variations on cross-validation [in-
cluding Scott and Terrell (), Hall and Marron (), and Sain et al. ()] as
well as methods using pilot estimates of R( f ′′) [such as Sheather and Jones ()
and Hall et al. ()].While these can lead to improved choice of h and accordingly
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Figure .. Effect of h on kernel density estimates of a subset of the minimum temperature data

better estimates, the results can be unstable and should not replace the examination
of multiple estimates by the skilled analyst.
One advantage kernel estimates have over simpler density estimates such as his-

tograms is the ease with which they can be compared across different datasets. Kernel
density estimates are continuous and hence are well suited to overplotting with dif-
ferent colors or line types, whichmakes visual comparisons between different groups
simple and effective.
An example is shown in Fig. .. he black curve represents a kernel density es-

timate of the temperature midpoint from the PRISM data for grid cells in Colorado
using a normal kernel and normal reference bandwidth. he grey curve represents
a similarly constructed kernel estimate off the temperaturemidpoint for the grid cells
in the neighboring state of Kansas. he bimodality in the kernel estimate for Col-
orado is attributable to the differences between the eastern plains and the mountain

Figure .. Univariate kernel density estimates of average temperature midpoint based on the PRISM

data. Black line: grid points in Colorado; grey line: Kansas
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regions. he kernel estimate for Kansas has a dominant mode consistent with the
eastern plains of Colorado.

Kernel Variants5.1.4

Minor adjustments allow for estimation of density derivatives as well as the function
itself. he derivative of f̂ is a reasonable estimate of the derivative of f and can be
estimated directly as

f̂ ′(x) = 

nh

n�
i=

K′ : x − xi

h
; . (.)

he variance of this estimate is inherently greater than that of f̂ , and the optimal
choice of h is correspondingly larger.
Returning to estimates of f , a variety of approaches are available for reducing the

bias of a kernel estimate. See Jones and Signorini () for a survey and comparison
of some of the most common higher-order methods. As a rule, most of these will
have fairly minimal effect on the visual impact of the estimate.
he oldest and best-known higher-order methods replace the p.d.f. kernel K with

one involving carefully computed negative regions so as to have second, and possi-
bly higher, moments equal to  (Bartlett ). For example, starting with standard
(second-order) kernel K, let

sm = ∫ tmK(t) dt . (.)

hen the function

K()(t) = 2 s − s t

s − s
3K(t) (.)

will have a  second moment and be a fourth-order kernel. Using K()(t) in place
of K(t) will reduce the bias of the estimate. Unfortunately, such an estimate will fre-
quently include undesirable visual artifacts, including extramodes and negative lobes
in the tails of the density estimate, so is not recommended for visualization purposes.
Bias-reduction methods involving “variable location” approaches (Samiuddin and

El-Sayyad, ;Hall andMinnotte, ) provide better solutions. Instead of replac-
ing the kernel K, these methods use one of our good second-order kernels but center
them on transformed values, γ(xi), rather than on the raw xis themselves. hese
transformations depend upon pilot estimates of f and its derivatives in a way that
will reduce the bias. For example, replacing xi with

γ(xi) = xi + h
s


f̂ ′(xi)
f̂ (xi) (.)

provides fourth-order bias and improved estimation near local extrema, but the use
of the standard kernel guarantees positivity and fewer extraneous bumps than found
with the fourth-order kernel.
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Yet another approach to bias reduction relies on variable bandwidths. By choosing
hi = h(xi) proportional to f̂ −	(xi), Abramson () demonstrated that this is
yet another way to improve the order of the bias; see also Terrell and Scott ()
and Sain and Scott ().his approach also has much to recommend it for density
visualization. By using small bandwidths nearmodeswe sharpen the estimates where
bias is greatest. At the same time, wide kernels for isolated points in the tails of the
density lead to smoother estimates with fewer spurious modes there.
A compromise between the single bandwidth of a standard kernel estimate and

the n bandwidths of a variable bandwidth estimate may be found in the filtered ker-
nel technique of Marchette et al. (). he authors use an initial normal mixture
distribution estimate with a small number of components to select bandwidths pro-
portional to the component standard deviations. Kernels with each bandwidth are
averaged for each xi with weights proportional to their component densities at xi .
In this way, the smoothness of each region may be adjusted individually to empha-
size large, important features, while deemphasizing unimportant features such as the
many minor modes that may oten be observed in the tails of densities.
Figure . shows these variants for the data of Fig. .. For the fourth-order and

variable-location estimates, the bandwidth is h = ., while the variable-bandwidth
and filtered estimates have the same value for the geometric averages of their band-
widths. Each panel also includes the standard kernel estimate in grey for comparison
(as in themiddle panel of Fig. .). All of the variants strengthen and sharpen the large
mode on the right. he fourth-order and variable-location estimates also strengthen
the smaller bumps and modes in the let tail, while the variable-bandwidth and fil-
tered estimates deemphasize the same.

Figure .. Variant kernel density estimates for minimum temperature data
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Multiscale Visualization of Density Estimates5.1.5

he importance of the smoothing parameter in the appearance of density estimates
has led to some additional visualization tools that examine a dataset at a wide variety
of smoothing levels.
Recognizing that the most visually striking and important aspect of a density esti-

mate is oten the number and location of modes,Minnotte and Scott () proposed
plotting those against the bandwidth for a set of kernel estimates using awide range of
smoothing parameters. As the number of modes is roughly monotone decreasing in
the bandwidth (strictly, if the normal kernel is used), the authors called the resulting
plot the “mode tree”. hemode tree is highly effective for examining modal behavior
under varying levels of smoothing for a dataset or density estimation method. Un-
less the modal behavior of the density estimation method is the effect of interest, the
normal kernel is recommended. As Silverman () showed, the number ofmodes is
nonincreasing in h for a normal kernel density estimate. Visually, this means that the
mode tree is well behaved in this case, with mode traces appearing as you continue
down the tree and continuing once they appear. Minnotte and Scott () demon-
strate that this is not the case for estimates derived from nonnormal kernels.
Minnotte and Scott () also demonstrate how additional features may be added

for an “enhanced mode tree,” including locations of antimodes and inflection points,
measures of sizes of modes, and regions of positive and negative second derivatives
(the latter are oten called “bumps”). In this way, a great deal of information about
the behavior of the density estimates may be examined without restriction to a single
bandwidth, or even a small set of them.
Use of the filtered kernel technique of Marchette et al. () leads to the “filtered

mode tree” of Marchette andWegman ().he filtering reduces the visual impor-
tance of minormodes in the tail of the density while inflating the prominence of large
central modes.
Overplotting the bumps (regions of negative second derivative) over different band-

widths formultiple resamples, subsamples, or jittered versions of the data leads to the
“mode forest” of Minnotte et al. (). Again, the effect is a kind of visual inference,
emphasizing large central modes, while deemphasizing those minor ones in the tails
of the density.
Finally, Chaudhuri andMarron () combined the ideas of the mode tree, “scale

space” from computer vision research (which is closely related to smoothing parame-
ter variation), and some simple inference to propose SiZer (for Significant Zero cross-
ings). At each location-by-bandwidth pixel, one of three colors is plotted depending
on the estimated density slope – significantly positive, significantly negative, or not
significantly different from zero.he resulting patterns may be examined for modal-
ity information.
Figure . shows the mode tree, filtered mode tree, subsampled mode forest, and

SiZer plot for the minimum temperature data of Fig. .. For the latter, increasingly
dark grey levels indicate significantly positive slope, nonsignificant slope, and signif-
icantly negative slope, while white identifies regions of insufficient data density for
inference. Note the emphasis on the bimodal structure in each of the four plots, al-
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Figure .. Multiscale visualization methods of minimum temperature data. Darker regions of the

mode forest represent higher-confidence “bumps,” while light, medium, and dark regions on the sizer

plot represent, respectively, significantly positive, nonsignificant, and significantly negative slopes in

“scale space”

though there is suggestion of a more complicated structure as well.he full complex-
ity of the mode behavior may be seen in the basic mode tree, while the filtered mode
tree emphasizes the two key modes as found in its underlying mixture model. he
dark regions of the mode forest perform implicit inference as they indicate bumps
found in many or most of the subsamples of the full data, while the SiZer plot makes
the inference explicit, with alternating light and dark regions strongly suggesting the
presence of underlying modes.

Bivariate Density Estimates 5.2

he basic tool for graphically exploring the bivariate distribution between pairs of
measurements is the well-known scatterplot. A scatterplot is constructed by simply
plotting the pairs of points in the coordinate plane. Generally, some functional rela-
tionship between the variable represented by the y-axis and the variable represented
by the x-axis is not assumed. However, it is precisely the power of the scatterplot to
visualize such relationships that makes it so useful a tool for data analysis.
Friendly and Dennis () present an excellent treatise on the scatterplot and

note that early authors recognized the need to augment the scatterplot to account for
repeated values in the data, such as glyphs and different plot characters to indicate
a multiplicity of points with the same observed value. Cleveland and McGill (),
Scott (), and others have also noted this and many of the modifications and en-
hancements that have been proposed to convey additional information in scatter-
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plots. hese authors have also noted the difficulties that arise due to the overplotting
of characters designed to represent a single observation.
his phenomenon, referred to as “too much ink” by Tute (), has given rise to

the use of more formal density estimators, in particular the histogram and the ker-
nel density estimator, to visualize bivariate distributions and relationships in data.
Bivariate density estimates remain straightforward to calculate but require more so-
phisticated visualization techniques to plot.

Bivariate Histograms5.2.1

Bivariate histograms share many of the strengths and weaknesses of their univariate
cousins. hey remain simple to calculate, with the computational effort being pri-
marily focused on determining the counts of the observations in what are now -D
bins. Bin size and location issues remain important, although there is also the addi-
tional issue of the shape of the bivariate bins. Again, one should examine multiple
examples when possible to discover what are true features and what are artifacts of
the histogram mesh.
For a rectangular mesh, an asymptotic analysis of theMISE, similar to the univari-

ate case, shows that the optimal size of the edges of the bivariate bins is proportional
to n−	 . Assuming uncorrelated and normally distributed data gives rise to the nor-
mal reference rule h�k = .σkn

−	 for k = ,  and where σk is the standard deviation
for the kth variable. See Scott () for details.
Of particular interest in the construction of bivariate histograms is the notion of

an optimal bin shape. hree types of regular bins are possible: rectangular, trian-
gular, and hexagonal. Scott () compared the three shapes and showed that the
hexagonal bins offer a slight improvement in asymptotic MISE when compared to
rectangular bins; triangular bins were substantially worse than the other two. Carr
et al. () also suggest using hexagonal bins, although from a different perspective.
In particular, they show that, when using some sort of glyph representing the fre-
quency for each bin, a rectangular mesh resulted in a type of visual artifact from the
vertical and horizontal alignment; the hexagonal bin structure has a much improved
visual appeal.
Displaying bivariate histograms can be accomplished in a number of ways. A tra-

ditional bivariate histogram with a rectangular mesh can be displayed using a type of
-D bar chart. Oten structure in the histograms of this type can be obscured by the
viewing angle. Rotating the display and viewing the histogram at different viewing
angles can reveal this hidden structure. In a non-interactive setting, such operations
are of course unavailable. An alternative for displaying bivariate histograms is the
use of the so-called image plot in which color is used to represent the frequency or
density of points in each bin.
An example demonstrating the need and benefit of bivariate histograms is shown

in Fig. .. In the let frame, a scatterplot is shown using the average winter midpoint
temperature and the log-transformed total precipitation for the Colorado PRISM
data. he scatterplot in Fig. . clearly demonstrates the phenomenon of “too much
ink” and little of the structure in the data can be discerned from the plot. In the right
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Figure .. he let frame shows a scatterplot of the average winter midpoint temperature and the

logarithm of the total precipitation for Colorado PRISM data. he right frame displays an image plot for

a bivariate histogram with the same data

frame, an image plot is used to display a bivariate histogram of the data. he bin-
widths for the histogram were determined based loosely on the normal based rule
discussed earlier. A greyscale is used to display the density of points in each bin with
darker shades indicating a higher density. Far more of the structure in the data ap-
pears, as it is clear that there are at least two modes in the data, including one sharp
mode represented by the higher temperatures and lower precipitation of the eastern
plains and amuchmore broadmode representing the lower temperatures and higher
precipitation in the mountains.

Figure .. A bivariate histogram of the Colorado PRISM data using a hexagonal mesh. Shading is as

in the right panel of Fig. .
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As mentioned earlier, hexagonal binning was introduced as way of improving the
visual appeal of bivariate histograms that are displayed using some sort of glyph to
represent the frequency in each bin. An alternative is to use greyscale or color coding
of the bins to represent frequency. An example using the PRISM data is shown in
Fig. .. he number of hexagon bins was chosen to be consistent with the number
of bins in the rectangular mesh of the histogram in Fig. .. he hexagons appear to
further clarify the multimodal structure in the data.

Bivariate Kernel Density Estimators5.2.2

Bivariate kernel estimates are more common than bivariate histograms. Basic com-
putation is a simple extension of the univariatemethod. Choice of the kernel function
is a little more complicated but may usually be satisfied with a bivariate kernel gen-
erated from one of the standard univariate kernels.
Bandwidth selection also becomes more troublesome, as a � bandwidth matrix

is now required. Product kernels (diagonal bandwidth matrix) that allow for different
degrees of smoothing in each dimension are appropriate for most datasets, and oten
transformations of the original data are used to make the data more amenable to
amore simple form of the kernel. Wand and Jones () give an excellent discussion
of the issues with parameterizing the bandwidth matrix for bivariate kernel density
estimators. he exact form of the bivariate kernel estimator follows from the more
general multivariate presentation at the beginning of Sect. ..
Scott () demonstrates that the optimal smoothing parameter for the product

kernel estimator is proportional to n−	 . Further, for uncorrelated and normally dis-
tributed data, the asymptotic MISE bandwidth is given as h�k = (�)	σkn

−	 for
k = ,  and σk the standard deviation for the kth variable.
Displaying bivariate density estimates can be accomplished easily using contour

plots or via -D perspective or wireframe plots. An example is shown in Fig. .,
again using the Colorado PRISM data. he let frame shows a contour plot where
each contour represents the points of equal height of the density. he sharp mode
corresponding to the eastern plains is clearly visible, while there appears to be even
further evidence of multimodal structure.
he right plot in Fig. . shows a perspective or wireframe plot of the estimated

density. Note that the density has been rotated in the figure in an attempt to better
display the structure in the data. Clearly additional modes are seen, suggesting more
structure in the data than simply the rough division of the state into the eastern plains
and mountain regions. Of course, densities of this kind (multimodal with differing
scales) pose a special challenge to density estimators with fixed meshes or band-
widths. Variable bandwidth methods for kernel estimators have been proposed for
bivariate and higher-dimensional data; see Terrell and Scott () and Sain ().
Whether to view such plots using -D perspective plots or -D contour plots is

oten a matter of personal taste. One view is that the perspective plot is more useful
for obtaining an overview of the structure, while a contour plot is more useful for
obtaining precise information such as the location of a mode.
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Figure .. Contour (let frame) and perspective (right frame) plots of a bivariate kernel density

estimate using the Colorado PRISM data. he perspective plot has been rotated for better visibility of

the density structure

An interesting special case of the use of kernel methods and other visualization
techniques for bivariate densities arises from the analysis of spatial point patterns.
For example, maps of the locations of disease or some other event of interest are pro-
ducedwith the hope of identifying potential clusters in the data.Oten, some assump-
tion of uniform spatial randomness is adopted and there are various tests that can be
performed to examine this hypothesis. Visualization using kernel density estimates,
for example, offers a graphical alternative, in particular, when the number of events
is large enough to make a simple map of the locations ineffective (“too much ink”).
An example is shown in Fig. . in which a bivariate kernel density estimate of the

distribution of the locations of sites in Louisiana reporting to the US Environmental
Protection Agency’s Toxic Release Inventory (TRI). he TRI is a publicly accessible
database that contains information on toxic releases reported by certain manufactur-
ing and industrial sites as well as certain federal facilities.
his density estimate was constructed using the spherically symmetric kernel with

a bandwidth that is related to the assumption that the immediate health and other
impacts of these TRI sites extend four miles symmetrically around the site. Overlaid
on the parish (county) map of Louisiana is a greyscale image plot of the density. Sev-
eral clusters are clearly seen, in clear violation of any assumption of uniform spatial
randomness. In particular, the concentration of sites stands out along the so-called
Industrial Corridor, which is loosely defined as the stretch of the Mississippi River
between Baton Rouge (located at � ′ N latitude, � ′ W longitude) and New
Orleans (at � ′ N, � ′W).
Comparing bivariate density estimates, even using kernel estimates as in Fig. .,

requires some care. Extending the example of Fig. . comparingColorado andKansas
PRISM data, Fig. . shows contour plots of bivariate kernel density estimates of
average temperature midpoint and logarithm of the total precipitation. he density
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Figure .. Kernel density estimate of the Toxic Release Inventory (TRI) sites in the US state of

Louisiana. Dark regions: areas of high density. hick black line: path of the Mississippi River

estimate from Colorado is displayed using the black contours while the density es-
timate for Kansas is displayed using the grey contours. To keep the plot from be-
coming overly complicated, a small number of specifically chosen contours is used.
In particular, three contours are computed for each density and these contours con-
tain roughly , , and % of the data. Multimodality is clearly present in both
estimates, representing different regions of the two states. he much more compact
density of the Kansas data is strongly representative of its much greater geographic
homogeneity relative to Colorado.

Higher-dimensional Density Estimates5.3

hree- and -D kernel density estimates are quite feasible theoretically. In the mul-
tivariate setting, x � R

d , the kernel, K(t), is a multivariate density function oten
chosen to be a product kernel, defined by

K(t) = dC
j=

K(t j) . (.)
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Figure .. Bivariate kernel density estimates of regional climate model output of average temperature

and the logarithm of precipitation over a grid of locations in the western USA. Black contours represent

climate in the state of Colorado while the grey contours represent climate in the (more geographically

homogenous) state of Kansas

he univariate bandwidth, h, is replaced by an invertible d � d matrix, H, whose
properties are explored in Scott () and Wand and Jones (). hen the scaled
univariate kernel, Kh(t), is generalized to be

KH(t) = �H�K(H−t) . (.)

By a multivariate change of variables, KH(t) integrates to  if K(t) does.
For multivariate data, �x , . . . , xn�, the multivariate kernel estimator is given by

f̂ (x) = 

n

n�
i=

KH(x − xi) . (.)

he simplest product kernel is the standard multivariate normal

K(t) = (π)−d	 exp:− 

tT t; , (.)

which leads to the kernel estimate

f̂ (x) = 

n

n�
i=

(π)d	 �H� exp J− (x − xi)TH−TH−(x − xi)K . (.)

While the calculations and theory of multivariate density estimation are straightfor-
ward, the challenge of identifying and understanding the structure of multivariate
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data may be quite difficult. he first step is examining the univariate densities of all
the individual variables f̂ (x), followed by understanding how pairs of variables co-
vary by the examination of all bivariate density plots, f̂ (x , y).
Just as the univariate estimates can only hint at the actual bivariate structure in

data, so too bivariate estimates can only hint at the trivariate structure, and so on.
hree- and -D kernel density estimates are quite feasible theoretically but should be
approached with caution for several reasons. he choices of kernel and bandwidth
become more complicated, although a product kernel and diagonal bandwidth ma-
trix will oten be reasonable. Data becomes thinner at higher dimensions, so larger
sample sizes are required to get reasonable results. Most importantly, plotting of the
full estimate would require four and five dimensions, respectively, as a perspective
plot requires one more dimension than the number of variables.
Clearly, onemust set aside any thought of examining the entire function, f̂ (x , y, z)

or f̂ (x , y, z, t). However, note that a bivariate contour plot only requires two dimen-
sions. Likewise, a -D density estimate may still be examined as a -D contour plot.
A single contour slice is a level set of the density, for example,

Sα = L(x , y, z) � f̂ (x , y, z) = α f̂maxM , (.)

where f̂max is the largest value of the density and α ranges from  to . For normal
data, the contour is an ellipse (or sphere).When α = , S is the mode. As α decreases,
the size of the ellipse increases.
Of course, a contour plot of a bivariate density is not complete if only one contour

level is displayed. Likewise, a trivariate density requires examination of at least three
to five levels, depending upon the complexity of the estimated density. his task will
require some way to see “through” the individual contours: either transparency, or
some method of removing part or all of outer contours so that inner ones may be
viewed. Some care should be taken here to carefully distinguish different levels, and
possibly upper and lower regions on each side of the contours as well, as otherwise
opposite features such as modes and holes may be visually indistinguishable.
When dealing with four ormore variables, one’s options aremore limited.he best

choice appears to be to examine the conditional -D estimates as above, for a series of
selected “slices” in the fourth variable. For example, a series of values t < t < . . . < tk
are selected and contour shells of the -D arrays

f̂ (x , y, z, tℓ) ℓ = , , . . . , k (.)

are displayed. If hardware permits, kmay be taken as quite large and the sequence of
view may be animated. he animation is effective because the density contours vary
smoothly, which the human brain can easily decode.his approach is similar to some
of the ideas found in trellis coplots (Cleveland, ; Becker, et al., ).
To illustrate these ideas, the full PRISM dataset for the continental United States is

employed.here are   grid points, each representing about  square miles. he
variables used are elevation, precipitation, andmaximum temperature for themonths
December–February averaged over the period –. As the variables are quite
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Figure .. Univariate and bivariate density estimates (ASH) of the elevation of the US mainland,

precipitation, and maximum temperature; see text for data description and transformations

skewed, the first two variables were reexpressed as log(x + ) and log(y), as
elevation ranged from – to m, and precipitation from  to mm.
Univariate averaged shited histograms (as described in Sect. ..) of these three

variables are displayed in the first three panels of Fig. .. For the densities displayed
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in Fig. ., the ASH weights were sampled from the quadweight kernel, K(t) =

 ( − t)+. Specifically,

wm( j) = m ċ K( j�m)&m
i=−m K(i�m) j = −m, . . . , , . . . ,m . (.)

Each variablewas prebinned into  intervals.heASH smoothing parameterswere
picked by eye to smooth out most of the noisy structure. All of these estimates are
multimodal. Regions of high elevation are somewhat unique climatically.
Next, the bivariate ASH density estimates were constructed in the remaining pan-

els of Fig. .. he data were prebinned into  �  intervals. A product version
of the ASH using the quadweight kernel was selected. Again, the structure is more
complex than a single Gaussian andmore complex than amixture of a fewGaussians.
Finally, all three variables were examined simultaneously in one ASH (Fig. .).

he data were prebinned into a mesh of size  �  �  and the quadweights again
employed. he shell displayed corresponds to α = %. he structure is quite fasci-
nating. Of course, given the huge dataset, one has high confidence that the features
clearly visible are not due to noise alone.
Without the availability of color in the figure, adding other contour levels is ill ad-

vised for such complex contours. Instead, a sequence of slices of the trivariate ASH
may be displayed (Fig. .). he climate is less complex near sea level and high al-
titudes. It would be interesting to link features in these frames with geographical in-
formation. Such research has been shown to be fruitful (Whittaker and Scott, ).
Without color, attempts to show -D and -D densities are best postponed. How-

ever, it should be clear from these examples the potential power that such displays
may bring. hese figures bring both an overview and yet great detail. Given the in-
creasing number of massive datasets available for analysis, these tools can prove
highly effective in the hands of a trained analyst.

Figure .. Trivariate density estimate (ASH) of elevation (x), precipitation (y), and maximum

temperature (z)
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Figure .. Bivariate slices of temperature (y) vs. precipitation (x) of the trivariate density estimate

(ASH) at a sequence of levels of the elevation (z)
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III.6Structured Sets of Graphs
Richard M. Heiberger, Burt Holland

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

6.2 Cartesian Products and the Trellis Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Trellis Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

Implementation of Trellis Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

6.3 ScatterplotMatrices: splom and xysplom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Example – Life Expectancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Display of Scatterplot Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Example – A Scatterplot Matrix with Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Coordinating Sets of Related Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Summary Plot with Legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

Example – an xysplom with Labeled Correlation Coeicients . . . . . . . . . . . . . . . . . . . . 426

Ladder of Powers Plot – Wool Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

6.4 Regression Diagnostic Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Case Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Example – Kidney Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

6.5 Analysis of Covariance Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Example – Hot Dog Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Cartesian Product of Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

6.6 Interaction Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Two-factor Rhizobium Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Extended Two-way Interaction Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Three-factor Vulcanized Rubber Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Design Issues for the Two-way Interaction Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Two-way Interaction Plots with Simple Efects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437



6.7 Boxplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Assessing Three-way Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Sequences of Boxplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
Microplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Example – Catalyst Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
Example – Muscle Data, continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

6.8 Graphical Display of Incidence and Relative Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

6.10 File Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444



Structured Sets of Graphs 417

We present many examples of structured sets of graphs that convey and support
statistical analyses. Structured sets of graphs can be drawn with any modern sta-
tistical sotware system with graphics capabilities. We use S-Plus and R, two di-
alects of the S language that offer substantial capabilities for producing graphs cus-
tomized to the particular needs and visions of the analyst. We emphasize two ba-
sic paradigms for constructing structured graphs: Cartesian products and the Trellis
paradigm. Our sotware for all examples in this article is available from Heiberger
and Holland ().

Introduction 6.1

S-Plus and R offer users substantial capabilities to customize graphs to their par-
ticular needs and visions when they are accessed using command language rather
than their graphical user interfaces (GUIs). Production sotware, that is, sotware
already developed by someone else, needs to be standardized, packaged, and restric-
tive, allowing the user less control. Analysts occasionally require a graph unlike any
readily available elsewhere. We recommend that serious data analysts invest time in
becoming proficient in writing code rather than using GUIs. Users of a GUI are lim-
ited to the current capabilities of the GUI. While the design of GUIs will continually
improve, their capabilities will always remain far behind what skilled programmers
can produce. Even less-skilled analysts can take advantage of cutting-edge graphics
by accessing libraries of graphing functions such as those accompanying our text or
available at Statlib and elsewhere on the Internet.
Our graphical displays are designed for elementary to intermediate statistical anal-

yses, but the graphs themselves are relatively sophisticated constructions. Our exam-
ples extend the concept of a structured presentation of plots of different sets of vari-
ables, or of different parametric transformations of the same set of variables. Several
of the examples extend the interpretation of the model formula, that is, the semantics
of the formula, to allow easier exposition of standard statistical techniques.
Our examples are taken from several sources. hese include classical and recent

examples from the statistical literature, standard texts in statistics, the authors’ text-
book Heiberger and Holland () (referred to in the sequel as HH), and projects
on which the authors have worked as consulting statisticians.

Cartesian Products
and the Trellis Paradigm 6.2

A feature common to many of the displays is the Cartesian product principle behind
their construction.
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he Cartesian product of two sets A and B is the set consisting of all possible or-
dered pairs (a, b), where a is a member of set A and b is a member of set B. Many of
our innovative graphs are formed as a rectangular set of panels, or subgraphs, where
each panel is based on one pair fromaCartesian product.he sets defining the Carte-
sian product differ for each graph type. For example, a set can be a collection of vari-
ables, functions of a single variable, levels of a single factor, functions of a fittedmodel,
different models, etc.
When constructing a graph that can be envisioned as aCartesian product, it is nec-

essary that the code writer be aware of the Cartesian product relationship. he code
for such a graph includes a command that explicitly states the Cartesian product.

Trellis Paradigm6.2.1

Manyof the graphs in this article are constructed using the trellis paradigmpioneered
by S-Plus. he trellis system of graphics is based on the paradigm of repeating the
same graphical specifications for each element in a Cartesian product of levels of one
or more factors.
he majority of the methods supplied in the S-Plus trellis library are based

on a typical formula having the structure

y ~ x | a * b (.)

where

y is either continuous or a factor

x is continuous

a is a factor

b is a factor

and each panel is a plot of y ~ x for the subset of the data defined by the Cartesian
product of the levels of a and b.

Implementation of Trellis Graphics6.2.2

heconcept of trellis plots can be implemented in any graphics system. In the S family
of languages (S-Plus and R), selection of the set of panels, assignment of individual
observations to one panel in the set, and coordinated scaling across all panels is au-
tomated in response to a formula specification at the user level. In other languages
that are capable of displaying multiple panels on the same physical page, the user (at
this writing) is responsible for those tasks.
he term “trellis” comes fromgardening, where it describes an open structure used

as a support for vines. In graphics, a trellis provides a framework in which related
graphs can be placed.
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ScatterplotMatrices:splomandxysplom 6.3

A scatterplot matrix (splom) is a trellis display in which the panels are defined by
a Cartesian product of variables. In the standard scatterplot matrix constructed by
splom, the same set of variables defines both the rows and columns of the matrix.
More generally, what we term an xysplom uses different sets of variables defining
the rows and columns of the matrix. We strongly recommend the use of sploms and
xysploms, sometimes conditioned on values of relevant categorical variables, as ini-
tial steps in analyzing a set of data. Examples are given in Sects. ..–...
An xysplom, produced with our function xysplom (Heiberger and Holland,

), is used to produce a rectangular subset, oten an off-diagonal block, of a scat-
terplot matrix. It involves a Cartesian product of the form [variables] � [variables],
where the two sets of variables contain no common elements. A large splom may
be legibly presented as a succession of smaller sploms (diagonal blocks of the large
splom) and xysploms (off-diagonal blocks of the large splom).
An example where xysploms are useful in their own right is when examining a set

of potential response variables against members of a set of potential explanatory vari-
ables.
We use an extension

u + v ~ w + x + y + z | a * b (.)

of the syntax of the standard model formula to define the variables of the xysplom
function. he rows of the xysplom are defined by the crossing of the set of vari-
ables on the let-hand side of the formula with the set of variables on the right-hand
side of the formula. he expanded xysplom generated with Eq. (.) will contain, for
each combination of the elements in a and b, an xysplom having two rows and four
columns.

Example – Life Expectancy 6.3.1

For each of the  largest countries in the world (according to  population fig-
ures), data are given for a country’s life expectancy at birth categorized by gender,
number of people per television set, and number of people per physician. his is
a subset of the full data set contained in a study cited by Rossman () that sought
a short list of variables that could accurately predict life expectancy:

life.exp: Life expectancy at birth
ppl.per.tv: Number of people per television set
ppl.per.phys: Number of people per physician

Figure . is a scatterplot matrix for a final linear model for these data. he variables
ppl.per.tv and ppl.per.phys were log-transformed to correct for positive
skewness in the original data.his figure demonstrates that the response life.exp
is moderately negatively correlated with both explanatory variables, and the two ex-
planatory variables are positively associated.
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Display of Scatterplot Matrix6.3.2

Figure . has several noteworthy characteristics. he panels are symmetric about
the main diagonal running from SW to NE, which, as explained below, is a more
appealing choice than NW to SE. he panels are square, which makes sense because
both dimensions contain the same variables. We display both y 9 x and x 9 y since
we don’t know in advance which is more helpful or appropriate. he panels on the
main diagonal are used for labeling and tick marks.
Figure . contains an alternate splom orientation that we do not recommend. In

the alternate orientation, with the downhill diagonal and rectangular panels, each
variable is depicted on two different scales, making comparisons of each panel with
its transpose more difficult than with an uphill diagonal and square panels.
Figure . compares the axes of symmetry of figures resembling Figs. . and ..

Figure .a has six axes of symmetry.We focus on panel , which appears in positions
reflected about the main NW–SE axis. he individual points within panels  and ′

are reflected about the dashed SW–NE line, as indicated by the position of the arrow.
he other four axes, which reflect respectively panel , panels  and , panel , and
panel , are indicated with dotted lines. Figure .b has only one axis of symmetry.
he arrow for panel  is reflected by the same SW–NE axis that reflects panels 
and ′.

Figure .. log(televisions), log(physicians), and life expectancy (File: hh/grap/code/grap.f.s)
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Figure .. Alternate orientation with rectangular panels for splom.We do not recommend this

orientation. he downhill diagonal is harder to read (Fig. .). he rectangular panels make it hard to

compare each panel with its transpose. he location of comparable panels (life.exp ~

ppl.per.tv and ppl.per.tv ~ life.exp, for example) reflect on a common NW–SE axis; the

content of the comparable panels reflects on a unique SW–NE axis (File: hh/grap/code/grap.f.s)

Figure .. Axes of symmetry for splom. he let panel, with multiple axes of symmetry, is very difficult

to read because the sets of panels with the same variable are reflected on the common NW–SE axis and

the variables within each pair of panels are reflected on their individual SW–NE axes (File:

hh/grap/code/grap.f.s)
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Example – A Scatterplot Matrix with Conditioning6.3.3

he goal of a chiropractic research project (Harrison et al., ) was to model pain
indices constructed from patient pain questionnaires as functions of skeletal mea-
surements summarizing patient posture:
SBA: sacral base angle
API: angle of pelvic incidence
PTPIA: posterior tangent pelvic incidence angle
Sex: female, male
Group: pain category: normal, chronic, acute

Associations between these two classes of variables could suggest chiropractic skele-
tal adjustments to address pain. We illustrate with a subset of the data set that in-
cludes three continuous skeletal measurements for both sexes and three pain cate-
gories from a sample of  subjects. Figure . was prepared as an initial look at
these data, not as a presentation of an interim or final analysis.
Figure . exemplifies what is meant by a structured set of graphs. It systemati-

cally unifies  interrelated graphs defined by the Cartesian product of several sets.
he figure consists of a � arrangement of scatterplot matrices (sploms). he two
columns are defined by sex of the patient and the three rows by pain category. Within
each of the sploms, the nine panels are defined by the Cartesian product of the set of
three continuous variables (SBA, API, PTPIA) crossed with itself. he upper triangle
of each splom contains the mirror image of the set of plots in the lower triangle.
Evidently these skeletal measurements do not differ by sex but do differ according

to pain category. he measurements are more tightly clustered for subjects classified
as pain-free (normal) than for those having acute or chronic pain. In addition,
we see that measurements API and SBA are more highly correlated for pain subjects
than those without pain. To ease the reader’s task in seeing both the tightness and the
correlation, we collect in Fig. . all the SBA ~ API panels from Fig. . and also
show the marginal distributions for the Sex, Group, and Total.

Coordinating Sets of Related Graphs6.3.4

he graphical issues that needed attention in Fig. . are
Positioning: the panels containing marginal displays need to be clearly delineated

as distinct from the panels containing data from just a single set of levels of the
factors. We do this by placing extra space between the set of panels for the indi-
vidual factor values and the panels containing marginal displays.

Scaling: all panels need to be on exactly the same scale to enhance the reader’s ability
to compare the panels visually. We use the automatic scaling feature of trellis
plots to scale simultaneously both the individual panels and the marginal panels.

Labeling: we indicate the marginal panels by use of the strip labels. Each panel label
is constructed from the levels of the two factors defining it. he marginal pan-
els contain a level name from just one factor. he Total panel is named without
reference to the factor level names.
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Figure .. Skeletal measurements by sex and pain category (File: hh/csc/code/lumb.s)
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Figure .. he SBA ~ API panel from Fig. . is expanded and shown with marginal plots for each of

the two grouping variables: Sex and Group. he Sexmargin at the bottom of the figure shows not

much difference between male and female. he Groupmargin on the right-hand side of the figure

shows that both variables, API and SBA, have a much narrower range in the pain-free normal group

than in either of the two pain groups. here is a suggestion of an interaction in the

female.chronic panel, where we see a larger range for SBA for values of API near  and

a correspondingly lower correlation than in the male.chronic panel. In this figure, the colors and

symbols are implicitly defined by the labels of the panels. he colors and symbols are explicitly defined

in the key in Fig. . in which we expand the lower right Total panel of Fig. . (File:

hh/csc/code/lumb-i.s)



Structured Sets of Graphs 425

Figure .. he Total panel (lower right) of SBA ~ API panel from Fig. . is expanded and the key

defining the symbols and colors is displayed. Now that we have seen the detail of Fig. ., and we are

able to see most of the features in this single panel (File: hh/csc/code/lumb.s)

Color and shape of plotting characters: we used three contrasting colors for the
three-level factor. We also used three distinct plotting characters for the three-
level factor. his is both redundant – reemphasizing the difference between lev-
els – and defensive – protecting the interpretability of the graph from black-and-
white copying by a reader. We used lighter and darker shades of the same color
to distinguish the two-level factorSex.he different darknesses will usually sur-
vive photocopying into black and white.
he ColorBrewer Web site Brewer () gives a discussion on the principles of
color choice and gives a series of palettes for distinguishing nominal sets of items
or sequences of items.

Summary Plot with Legend 6.3.5

Figure . is an expansion of the grand total panel of Fig. .with a legend contrasting
the combinations of pain group and sex. he legend is needed in Fig. . because it
does not have the implicit definitions of the individual panels. We chose to label the
legend with level names constructed as the Cartesian product of the names of the
levels of the two defining factors.
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Example – an xysplom
with Labeled Correlation Coeicients6.3.6

Figure . is taken from a study Harrison et al. () of scoliosis, abnormal lat-
eral curvature of the spine. An initial stage of the study required associating each of
two response variables ( DispL and DispR, measures of translation displacement)
with its own set of four potential explanatory variables. All explanatory variables are
angles between lines drawn through projected centers of mass on AP (front–back)
radiographs of thoracic and lumbar vertebrae. Variable names including the letter “L”
are measurements on the let side of the subject’s body and the names including the
letter “R” are measurements on the right side of the body.he figure shows moderate
correlations between most of the pairs of variables.

Figure .. An xysplom of two response variables, each with four associated explanatory variables.

Pairwise correlations are shown in the strip labels. he separate y-scales for each response variable

were forced to show a common number of data units per inch of graph. Each pair of x-scales, for

Let and Right measurements of similar quantities, has a common scale. All four panels on the let,

those containing an x-variable name that includes the string “Cobb,” have the same scale (File:

h/splm/code/scolio.s)
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he mechanics of scale control in Fig. . differ for S-Plus and R. In S-Plus, we
needed to draw eight graphs and give each one its own xlim and ylim arguments.
In R, the xlim and ylim arguments can take a list and therefore all eight panels on
the top can be drawn with a single call to the HH function xysplom.
he xysplom has an option to display pairwise correlations in the strip labels.

We use that capability in Fig. ..

Ladder of Powers Plot – Wool Data 6.3.7

A power transformation oten succeeds in changing from a skewed distribution to
one more closely resembling a symmetric unimodal distribution. Such transforma-
tions are basic items in analysts’ toolkits because many standard statistical analyses
require variables to be approximately normally distributed.
he family of power transformations Tp(x), oten called Box–Cox transformations

Box and Cox (), is given by

Tp(x) =
NOOOOOOPOOOOOOQ

x p (p � ),
ln(x) (p = ),
−x p (p < ).

(.)

he ladder of powers is the sequential set of power transformationswith the particular
choice of powers p = −,− 

 , ,

 , , .

In a study of the “plasticity of wool,” Ripa and Speakman () reprinted in Tukey
(), interest lies in relating diam, the coefficient of variation of the diameter of
a wool fiber, to the amount of time in minutes the fiber is stretched under a pre-
scribed load. Figure . displays an xysplom of the set of ladder of powers transfor-
mations of diam against the ladder of powers transformations of time. Suppose
the goal is to model some transformation of a variable y as a linear function of some
transformation of x.his is best accomplished if we can find a transformation of each
variable such that the two transformed variables are closely linearly related. We ex-
amine this plot for the pair of transformations that best renders a linear relationship.
Clearly the best transformation for time is the square root. Careful examination
of the figure suggests that leaving diam untransformed is slightly better than us-
ing a square root transformation for diam. At this stage of the analysis, we would
ordinarily ask the client which of these two transformations is more readily inter-
pretable.
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Figure .. Ladder of powers plot for wool data: relating diam to time. Data source: Ripa and

Speakman (), reprinted in Tukey () (File: h/splm/code/wool.s)
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Regression Diagnostic Plots 6.4

Ater developing an initial reasonably fitting linear regression model, an analyst may
wish to assess whether any of the observations unusually impact on the quality of the
fit.

Case Statistics 6.4.1

A strategy for doing so is to examine various case statistics that have a value for each
of the n cases in the data set. Belsley et al. () presents detailed discussions of
case statistics including definitions, formulas, interpretation, and suggested thresh-
olds for flagging a case as unusual. If a case statistic has a value that is unusual, based
on thresholds developed in the literature, the analyst should scrutinize the case. One
action the analyst might take is to delete the case.his is justified if the analyst deter-
mines the case is not a member of the same population as the other cases in the data
set. But deletion is just one possibility. Another is to determine that the flagged case
is unusual in ways apart from those available in its information in the present data
set, and this may suggest a need for additional predictors in the model.
We focus on five distinct case statistics, each having a different function and inter-

pretation. (One of these, DFBETAS, is a vector with a distinct value for each regres-
sion coefficient including the intercept coefficient.) For small data sets the analyst
may choose to display each statistic for all cases. For larger data sets we suggest that
the analyst display only those values of the case statistics that exceed a threshold, or
flag, indicating that the case is unusual in some way.
A regression diagnostic plot displays all commonly used case statistics on a sin-

gle page. Included are thresholds for flagging cases as unusual along with identifi-
cation of such cases. Heretofore, presentations of regression diagnostics have been
presented on multiple pages of tabular output with one row per observation. It is
very difficult to read such tables and examine them for cases that exceed accepted
thresholds.

Example – Kidney Data 6.4.2

Creatine clearance is an important but difficult to measure indicator of kidney func-
tion. Shih andWeisberg (), also presented inNeter et al. (), discuss the mod-
eling of clearance as a function of the more readily measured variables serum
clearance concentration, age, and weight. he datafile is (hh/datasets/
kidney.dat).
At an intermediate stage of analysis of these data, the researchers posed the linear

regression model

clearance ~ concent + age + weight + concent * age

Figure . is a regression diagnostic plot for this model. It flags five cases as being
unusual. Case  has a high leverage value implying an unusual set of predictors.he
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Figure .. Regression diagnostics plot for Kidney data (File: hh/csc/code/kidney.s)

DFBETAS flags indicate that cases , , and  appreciably impact one or more re-
gression coefficient estimates.hedffitsflags suggest that cases , , and  have
substantial effects on model predictions. In addition, deleted std dev hints
that cases  and  impact the overall goodness of fit. We draw the splom in Fig. .
to show these points identified. We see that four of the five flagged points are extreme
on at least one variable. Point  has low clearance, high concent, and high
age. Point  has low weight. Points  and  have low age. Point  is harder to
interpret from just this graph as it has high weight, but not the highest weight.
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Figure .. Points identified by regression diagnostics in Fig. . (File: hh/csc/code/kidney.s)

Analysis of Covariance Plots 6.5

Analysis of covariance (ANCOVA) plots are defined by the Cartesian product of dis-
play format. In Fig. ., an example with one factor and one covariate, we show sep-
arate panels for each level of the factor on the let side and superposed panels on
the right side. he display extends naturally to ANCOVA with two factors and one
covariate.
. heancova function constructs both the ANOVA table and the ANCOVA plot

from a single specification of a model formula.
. Depending on the level of overlap of the x- and y-ranges and the collinearity of

the groups, it may be more advantageous to look at the set of separate panels or
at the single superposed panel. We display both.
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. We have options in the ancova function to show any one of
a) Horizontal slopes (ANOVA ignoring the covariate),
b) Common slope (ordinary ANCOVA),
c) Common intercept (regression ignoring the factor),
d) Distinct lines (interaction of factor and covariate).

Example – Hot Dog Data6.5.1

Hot dogs based on poultry are said to be healthier than ones made from either meat
(beef and pork) or all beef. A basis for this claimmay be the lower-calorie (fat) content
of poultry hot dogs. Is this advantage of poultry hot dogs offset by a higher sodium
content than meat hot dogs?
Researchers for Consumer Reports analyzed three types of hot dog: beef, poultry,

and meat (mostly pork and beef, but up to % poultry meat). he data available
in file (hh/datasets/hotdog.dat) come from Consumers Union () and were later
used by Moore and McCabe ():

Type: type of hot dog (beef, meat, or poultry)
Calories: calories per hot dog
Sodium: milligrams of sodium per hot dog

We used these data to model Sodium as a function of the categorical variable Type
and the continuous variable Calories.
he model displayed in Fig. . has common slope and possibly differing inter-

cepts. Displays comparable to Fig. . can be constructed for the other three mod-
els. he common slope model is the correct final model, a conclusion that required
support from the ANOVA table for the interaction model. In context, for given fat
(calorie) content, poultry hot dogs contain significantly more sodium than beef
or meat hot dogs, but the three types have insignificantly different increases in
sodium as calories increase.

Figure .. he let set of panels show one level each. he right panel, labeled “superpose,” shows all

three groups. Sometimes it is easier to interpret the individual panels, other times the superposed

panel. We therefore normally print both. he HH Heiberger and Holland () ancova function

automatically constructs all panels from a single call (Files: hh/regbb/code/hotdog.s,

hh/csc/code/hotdog.csc.s)
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Cartesian Product of Model Parameters 6.5.2

Figure . displays all four models as a Cartesian product of model parameters. he
models in the columns of Fig. . are distinguished by the absence or presence of
a parameter for Type – forcing a common intercept in the let column and allowing
different intercepts by Type in the right column. he three rows are distinguished
by how the covariate Calories is handled: separate slopes by Type in the top row,
constant slope for all Types in the middle row, or identically zero slope (horizontal
line) in the bottom row.
Figure . is structured as a set of small multiples, a term introduced by Tute

() to indicate repetition of the same graphical design structure. “Small multiples
are economical: once viewers understand the design of one slice, they have imme-
diate access to the data in all other slices. hus, as the eye moves from one slice to
the next, the constancy of the design allows the viewer to focus on changes in the
data rather than on changes in graphical design (Tute, , p. ).” Figure . may
be interpreted as a four-way Cartesian product: slope (α vs. αi), intercept (β = ,
β, β j), individual panels vs. superpose, hot dog type (beef, meat, poultry) with an
ordinary two-way scatterplot with a fitted line inside each element of the four-way
product.

Figure .. Sets of ANCOVA plots as a Cartesian product of models with the intercept having two

levels (α and α i ) and slope having three levels (, β, and β j). he middle plot on the right is identical to

the plot in Fig. . (Files: hh/regbb/code/hotdog.s, hh/csc/code/hotdog.csc.s)
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Interaction Plots6.6

Two factors A and B are said to interact if the changes in a response variable Y as
factor A goes from one level to another differ depending on the level of the second
factor B.henotation in theANOVAsetting is: “(μ i j−μi ′ j)differs from (μi j′−μi ′ j′).”
he standard display of an interaction uses separate lines for each level of one

factor, the trace factor, and by convention connects the points for each level of the
second factor, the x-factor. Connecting the levels of the trace factor is an interesting
convention because the levels are usually – as in this example – on a nominal scale
and the implied legitimacy of interpolation is not meaningful. Parallel trace lines
indicate lack of interaction. Nonparallel trace lines indicate interaction. he p-value
in the ANOVA table is used to determine how far from parallel the lines must be to
reject the null hypothesis of no interaction. If interaction is determined to be present,
then the main effects are usually not interpretable and we must use simple effects
(Sect. ..) instead.

Two-factor Rhizobium Example6.6.1

Erdman () discusses experiments to determine if antibiosis occurs between Rhi-
zobiummeliloti and Rhizobium trifolii. Rhizobium is a bacteria, growing on the roots
of clover and alfalfa, that fixes nitrogen from the atmosphere into a chemical form
plants can use. he research question for Erdman was whether there was an interac-
tion between the two types of bacteria, one specialized for alfalfa plants and the other
for clover plants. If there were an interaction, it would indicate that clover bacteria
mixed with alfalfa bacteria changed the nitrogen-fixing response of alfalfa to alfalfa
bacteria or of clover to clover bacteria. he biology of the experiment says that inter-
action indicates antibiosis or antagonism of the two types of rhizobium. hat is, the
goal was to test whether the two types of rhizobium killed each other off. If they did,
then there would be less functioning bacteria in the root nodules and consequently
nitrogen fixation would be slower.
A portion of Erdman’s study involves a two-way factorial layout with factors

strain at six levels of rhizobium cultures and comb, a factor with two distinct bac-
teria as the two levels. he univariate response is a function of the nitrogen content
per milligram of plants grown under these  conditions. Erdman was specifically
interested in whether two factors interact, as this would have implications for best
choice of strain. he standard interaction plot for these data is in Fig. ..

Extended Two-way Interaction Plot6.6.2

Figure . is a trellis plot that illustrates all themain effects and two-way interactions
for amultifactormodel. Boxplots for themain effects are shown along themain (SW–
NE) diagonal of the matrix. Two standard interaction plots, with interchanged roles
for the trace and x-factors, are shown along the off-diagonals. In our experience it is
not redundant to show the interchanged roles because usually one of the interaction
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Figure .. intxplot(Npg ~ strain, groups=comb)

Standard interaction plot of rhizobium data. At most levels of strain, the clover line is similar to or

slightly lower than the combination (clover + alfalfa) line. At strain = , the clover line is much higher

than the combination line (Files: h/intx/code/rhizobium-clover.s,

hh/csc/code/rhizobium-clover-CSC.s)

Figure .. Extended interaction plot for rhizobium data. he upper-let panel is identical to Fig. .

(File: h/intx/code/rhizobium-clover.s)

plots is more readily interpretable than the other. Constructing this plot involves the
Cartesian product [factors]� [factors]. Rows are labeled by the trace factor.he color
scheme is constant in each row. Columns are labeled by the x-factor. he x-axis tick
marks are constant in each column.
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A conclusion from Fig. . is: as factor comb goes from clover to clover+
alfalfa, the response npg (nitrogen per gram) decreases significantly only for
level 5 of strain.

Three-factor Vulcanized Rubber Example6.6.3

An example of a two-way interaction plot involving three factors appears in Fig. ..
his is a  �  �  factorial experiment designed to compare the wear resistance of
vulcanized rubber. It was desired to maximize wear resistance, along with minimiz-
ing the costs of three factors: filler at five quality levels, pretreatment (three
methods), and raw (four qualities). he data come from Davies (). As there is
only one observation from each treatment combination, it is assumed that the three-
factor interaction is negligible and therefore available as the model residual.
Figure . corresponds to the model with all three main effects and all three two-

factor interactions. he most striking conclusion from Fig. . is that for filler
level , the change in response to changing levels of factor raw is different fromwhat
occurs at the other four levels of filler.

Figure .. HH Figure ., p. . Main effects and two-way interactions for wear resistance of

vulcanized rubber (File: h/intx/code/vulcan.intx.s)
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Design Issues for the Two-way Interaction Plot 6.6.4

he two-way interaction plot, displayed in Fig. ., shows all the main effects and
two-way interactions for designs with two or more factors. he model in S nota-
tion is wear ~ (filler + pretreat + raw)^2. We construct the figure
by analogy with the splom (scatterplot matrix). he rows and columns of the two-
way interaction plot are defined by the Cartesian product of the factors.
. Each main diagonal (SW–NE) panel shows a boxplot for the marginal effect of

a factor.
. Each off-diagonal panel is a standard interaction plot of the factors defining its

position in the array. Each point in the panel is the mean of the response variable
conditional on the values of the two factors. Each line in the panel connects the
cell means for a constant level of the trace factor. Each vertically aligned set of
points in the panel shows the cell means for a constant value of the x-factor.

. Panels in mirror-image positions interchange the trace- and x-factors. his du-
plication is helpful rather than redundant because one of the orientations is fre-
quently much easier to interpret than the other.

. he rows are labeled with a key that shows the line type and color for the trace
factor by which the row is defined.

. Each box in the boxplot panels has the same color, and optionally the same line
type, as the corresponding traces in its row.

. he columns are labeled by the x-factor.

Two-way Interaction Plots with Simple Efects 6.6.5

Figure . showed interaction between thestrain andcomb factors. Consequently
the marginal main effects, showing the average effect of one factor over all levels of
the other, were not relevant. We redraw the two-way interaction plot, this time with
simple effects in the main diagonal, in Fig. .. Simple effects of one factor, strain
for example, are conditional on a level of the other factor, in this case comb. Simple
effects are usually the correct set of means to look at in the presence of interaction. In
the let panels of Fig. .we split each box in themain diagonal, and offset thematch-
ing points in the traces in the off-diagonal, to show the nesting of the combinations
within each strain. he extreme outliers in the strain=5 are seen to occur entirely
in comb="clover". In the right panels we split each box to show the nesting of
the strains within the combinations. he outliers in comb="clover" are seen to
be due primarily to strain=5.
he  boxes in the lower-let and upper-right panels of Fig. . are identical, each

showing the distribution for one of the  strain–comb combinations. he order in
which the boxes appear, and the colors assigned to them, differs to reflect the different
nestings. he individual boxes are not labeled. Instead, the outer factor is labeled
and “rug fringes” for the inner factor are displayed. he reader can use the legend to
identify specific boxes.
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Figure .. Revision of Fig. . to display simple effects (Files: hh/csc/code/rhizobium-cloverb.s,

hh/csc/code/rhizobium-clover.s)

Figure . has several noteworthy features.
. Color coding by rows. he top row of Fig. . continues the color coding of the

top row of Fig. .. Each level of comb has its own color. he split of the upper
right-hand panel into individual boxes emphasizes the pattern within each level
of comb.
he bottom row of Fig. . continues the color coding of the bottom row of
Fig. .. he visible change in the Npg value for similarly colored boxes in the
let panel (comb within each strain) agrees with the direction of the slope of
the similarly colored trace lines in the right panel.

. x-axis labels. he let and right panels both have an x-axis that itemizes the same
levels of the interaction. hey differ in the sequence in which those levels are
presented.

. x-axis spacing.his version of the graph emphasizes the nesting of the combina-
tions within strains (let-hand panels) by spacing the within-combination boxes
slightly closer than the between-combination boxes. he let-hand panels also
use color coding by strain. he nesting of strains within combinations (right-
hand panels) is shown purely by color coding by combination.

. Reading by columns. Each boxplot pair in the let-hand panel expands on the
difference in traces of means for the corresponding strain. Each trace in the
right-hand panel illustrates the difference in mean for the corresponding pair
of boxplots for the corresponding strain.
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Boxplots 6.7

Assessing Three-way Interaction 6.7.1

Cochran and Cox () report on an experiment to assess the effect of electrical
stimulation to prevent the atrophy ofmuscle tissue in rats.his experiment contained
a response variablewt.d (weight of treatedmuscle), a covariatewt.n (weight of un-
treated muscle), and three factors, current, n.treat, and minutes. here are
two replications of the entire experiment. It is desired to model wt.d as a function
of the other variables. he datafile is (hh/datasets/muscle.dat).
Figure . is designed to assess whether there is a significant three-way interac-

tion. he three-way interaction is not significant in this example. If there were a sig-
nificant three-way interaction, the patterns in boxplots in adjacent rows and columns
would not be the same. For example, we note a hint of a difference in the y.adj ~
minutes behavior across panels. It has a negative slope in the galvanic ~ 3
panel and a positive slope in the faradic ~ 3 panel, but a positive slope in the
galvanic ~ 6 panel and a negative slope in the faradic ~ 6 panel. However,
an ANOVA table for a full model containing the three-factor interaction indicates

Figure .. hree-way interactions of all effects. One of the (! = ) possible orderings (Files:

hh/dsgn/code/cc.s, hh/csc/code/cc-csc.s)
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that these differences in slope are not significant. hat is, the three-factor interaction
is not statistically significant. he boxplots in Fig. . are all based on samples of
size . Such boxplots are a well-defined but uncustomary way to display such a sam-
ple.

Sequences of Boxplots6.7.2

A recent comparative clinical trial at GlaxoSmithKline (Amit et al., ) examined
the result of monitoring ASAT in two trt groups A and B ater , , , , , , and
 weeks. ASAT and other clinical biochemistry laboratory blood assays were mon-
itored to give an early signal of potential adverse events in liver function in response
to the treatments. he sample size for treatment A was about  patients and for
treatment B about . ASAT (aspartate aminotransferase), an enzyme associated
with liver parenchymal cells, is raised in acute liver damage. he display in Fig. .

Figure .. Comparative distributions of responses of two treatment groups at unequally spaced

points in time. Boxplots are color coded to distinguish between the two treatment groups. he covariate

time is correctly scaled on the horizontal axis. Since the data are positively skewed with extreme

outliers and with missing values, we choose to truncate observations at asat= in order to display

full details on the bulk of the data. he sample sizes and numbers of missing and outlying observations

are noted on the graph (File: h/intx/code/lt.asat.s)
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was designed specifically tomonitor this data situation.hehorizontal axis is propor-
tional to the time scale, the treatments are distinguished by color, the sample sizes are
identified at each time point, a reference line locates the center of the normal range,
outliers are noted, and extreme outliers are identified.

Microplots 6.7.3

Boxplots capture comparative information better than numbers. hey don’t have to
take much space, therefore they can fit into tables of numbers and satisfy both the
regulations for displaying numbers and the legibility of displaying graphs. We call
the plotsmicroplotswhen they are deliberately sized to fit into a regulation-mandated
table of numbers without interfering with the overall layout. When small plots are
placed into a table of numbers, they can carry the same or more information per
cm as the numbers themselves. he two examples here have different objectives and
therefore are arranged in different patterns.

Example – Catalyst Data 6.7.4

With the catalyst data from Montgomery () we are interested in comparing the
concentrations of one component of a liquid mixture in the presence of each of four
catalysts. We investigate whether the catalysts provide for equal mean concentrations
and then, since this does not appear to be true, we study the extent of differences
among the mean concentrations.
hemicroplot of small parallel boxplots in Fig. . takes up little more page space

than the table of summary statistics. We placed y=concentration on the vertical axis,
the axis that we have been trained to think of as the appropriate location for a re-
sponse variable. Under each boxwe placed the table of relevant statistics: mean, num-
ber of replications, and standard deviation. he F-test shows a significant difference
between the catalyst means. We can see it visually from the microplot or tabularly
from the numbers.

Figure .. ANOVA table, boxplots, and means for each catalyst (File: hh/oway/code/catalystm.s)
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Figure .. Muscle data: distribution statistics and boxplots for adjusted weights (Files:

hh/dsgn/code/jsm.cc.s, hh/dsgn/code/jsm.cc.s)

Example – Muscle Data, continued6.7.5

heMuscle data was introduced in Sect. ... In Fig. . we display microplots that
compare the distributions of responses for each level of the factor current. he
microplots in Fig. . are horizontally oriented. hese consume even less vertical
page space than the vertically oriented boxplots in Fig. ..he advantage of reduced
page space with a horizontal orientation must be weighed against a preference for the
vertical response scale for vertically oriented boxplots.
In this setting, we are able to align the numbers with a similar interpretation. hus,

for example, all the means are in the same column. Vertical alignment of comparable
numbers oten makes it easier for the reader to understand them.

Graphical Display of Incidence
and Relative Risk6.8

In a clinical trial of any new pharmaceutical product, any adverse events (negative
side effects of the treatment) must be reported by the company sponsoring the trial to
the US Food and Drug Administration. hese data in file (h/datasets/aedotplot.dat)
from Amit et al. () is based on a clinical trial at GlaxoSmithKline.
Figure . compares the incidence rate of multiple adverse events in a clinical

trial. It is intended as a graphical summary of adverse events in the trial, highlighting
the key differences between two treatments. It is a panel plot with two associated
dotplots. he let-hand dotplot gives the comparative incidence of selected adverse
events under each of the two treatments. he right-hand dotplot gives estimates and
isolated % confidence intervals for the associated relative risks.
We place a vertical reference line at relative risk= to facilitate the interpretation

that an event having a confidence interval including  does not distinguish the effects
of treatments A and B. Events having confidence intervals that do not cross  suggest
a significant difference between treatments A and B.
he adverse events are ordered by relative risk, so that those with the largest in-

creases in risk for the experimental treatment are prominent at the top of the display.
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Figure .. he let-hand panel shows the percentage of subjects in each treatment arm who

experienced an adverse event. he right-hand panel shows the relative risk and asymptotic %

confidence intervals (Files: h/stdt/code/aerelrisk.s, hh/jsm/code/aerelrsk.jsm.s)

his could be reversed, to put the largest increases at the bottom if preferred, or the
order could be defined by the actual risk in one of the treatment arms rather than the
relative risk.
Together, the two panels display four variables for each type of adverse event: the

incidences of A and B in the let-hand panel, and the relative risk and its confidence
interval in the right-hand panel. he two panels are linked, sharing the same row
names on the y-axis identifying the types of adverse events experienced.
he two treatments are differentiated by color, and by symbol in case the display

is viewed in black and white.
he relative risks are displayed on a log scale, as the asymptotic confidence in-

tervals are symmetrical on this scale. A vertical reference line is drawn to indicate
equality of risks, to facilitate appreciation of the size of each relative risk with refer-
ence to its confidence interval. he x-axis labeling may need adjustment to ensure
legibility: in this example, the . tick label was suppressed to avoid overwriting the
. tick label.
Although this example displays the relative risk in the right-hand panel, any rele-

vant measure of treatment effect for proportions can be used. For example, in dose-
ranging studies, the odds ratio from a logistic regression model with dose as a co-
variate may be substituted for the relative risk.
he size of the displayed confidence interval could be varied.here is clearly amul-

tiplicity issue here, if there is interest in assessing the statistical significance of differ-
ences of the relative risk for so many types of events. However, the main aim of this
display is to highlight potential signals by providing an estimate of treatment effect
and the precision about that estimate. he criterion for inclusion of specific adverse
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events in the display needs to be selected with care. In this example, the criterion used
was to show only those events that had at least % incidence in treatment B.
his type of panel display is useful for randomized trials with two or more treat-

ment arms. When a study has more than two treatment arms, consider separate sets
of graphs for each pairwise comparison of interest.

Summary6.9

Wehave illustrated many ways inwhich sets of graphs are coordinated in a structured
manner to increase the amount of information that they carry jointly. he principle
of construction used in all the examples is the use of multiple panels placed in a rect-
angular structure defined by the crossing of sets of labels. While a set is oten the set
of levels of a factor, it may also be a set of different variables, of different functions
of the same variable, of different functions of the data, or of different models applied
to the data. We showed examples with several applications of scatterplot matrices,
with a series of displays of case statistics used as diagnostics in regression analysis,
with interactions of several factors in analysis of variance setting, with boxplots used
in conjunction with tabular displays of the same information, and with a graphical
display of incidence and relative risk for adverse effects. In all cases, the use of struc-
tured sets of graphs enhances the ease of presenting and receiving the information
revealed by the analysis.

File Name Conventions6.10

All examples in this article were constructed with code from the referenced files in
the HH online files Heiberger and Holland ().
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Introduction7.1

Regression modeling oten requires many subjective decisions, such as choice of
transformation for each variable and the type and number of terms to include in
the model. he transformations may be as simple as powers and cross-products or
as sophisticated as indicator functions and splines. Sometimes, the transformations
are chosen to satisfy certain subjective criteria such as approximate normality of the
marginal distributions of the predictor variables. Further, model building is almost
always an iterative process, with the fit of the model evaluated each time terms are
added or deleted.
In statistical applications, a regression model is generally considered acceptable if

it satisfies two criteria. he first is that the distribution of the residuals agrees with
that specified by themodel. In the case of least-squares regression, this usually means
normality and variance homogeneity of the residuals.hewhole subject of regression
diagnostics is concerned with this problem (Belsley et al., ). his criterion can
be hard to achieve, however, in complex datasets without the fitted model becoming
unwieldy. he second criterion, which is preferred almost exclusively in the machine
learning literature, is that the model has low mean prediction squared error or, more
generally, deviance.
If model selection is completely sotware based, the prediction deviance of an al-

gorithm can be estimated by V -fold cross-validation as follows:
. Randomly divide the dataset into V roughly equal parts.
. Leaving out one part in turn, apply the algorithm to the observations in the re-

maining V −  parts to obtain a model.
. Estimate the mean prediction deviance of each model by applying the let-out

data to it.
. Average the V estimates to get a cross-validation estimate for the model con-

structed from all the data.

he value of V may be as small as  for very large datasets and as large as the sample
size for small datasets. But cross-validation is impractical if the model is selected not
by a computer algorithm but by a person making subjective decisions at each stage.
In this case, penalty-based methods such as AIC (Akaike, ) are oten employed.
hese methods select the model that minimizes a sum of the residual deviance plus
a penalty term times a measure of model complexity. Although the rationale makes
sense, there is no, and probably never will be, consensus on the right value of the
penalty term for all datasets.
A separate, but no less important, problem is how to build a regression model that

can be interpreted correctly and unambiguously. In practice, the majority of con-
sumers of regression models oten are more interested in model interpretation than
in optimal prediction accuracy. hey want to know which predictor variables affect
the response and how they do it. Sometimes, they also want a rank ordering of the
predictors according to the strength of their effects, although this question is mean-
ingless without amore precise formulation. Nonetheless, it is a sad fact that the mod-
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els produced by most regression techniques, including the most basic ones, are oten
difficult or impossible to interpret. Besides, even when a model is mathematically
interpretable, the conclusions can be far from unambiguous.
In the rest of this article, we use four examples to highlight some common difficul-

ties: (i) effects of collinearity on modeling Boston housing prices (Sect. .), (ii) in-
clusion of a categorical predictor variable in modeling New Zealand horse mussels
(Sect. .), (iii) outlier detection amid widespread confounding in US automobile
crash tests (Sect. .), and (iv) Poisson regression modeling of Swedish car insurance
rates (Sect. .).We propose a divide-and-conquer strategy to solve these problems. It
is based onpartitioning the dataset into naturally interpretable subsets such that a rel-
atively simple and visualizable regression model can be fitted to each subset. A criti-
cal requirement is that the partitions be free of selection bias. Otherwise, inferences
drawn from the partitions may be incorrect. Another requirement is that the solution
be capable of determining the number and type of partitions by itself. In Sect. . we
present an implementation derived from the GUIDE regression tree algorithm (Loh,
). At the time of this writing, GUIDE is the only algorithm that has the above
properties as well as other desirable features.

Boston Housing Data –
Efects of Collinearity 7.2

he well-known Boston housing dataset was collected by Harrison and Rubinfeld
() to study the effect of air pollution on real estate price in the greater Boston
area in the s. Belsley et al. () drew attention to the data when they used it to
illustrate regression diagnostic techniques. he data consist of  observations on
 variables, with each observation pertaining to one census tract. Table . gives the
names and definitions of the variables. We use the version of the data that incorpo-
rates the minor corrections found by Gilley and Pace ().
Harrison and Rubinfeld () fitted the linear model

log(MEDV) = β + βCRIM + βZN + βINDUS+ βCHAS + βNOX
 + βRM



+ βAGE + β log(DIS) + β log(RAD) + βTAX + βPT + βB

+ β log(STAT)
whose least-squares estimates, t-statistics, andmarginal correlation between each re-
gressor and log(MEDV) are given in Table .. Note the liberal use of the square and
log transformations. Although many of the signs of the coefficient estimates are rea-
sonable and expected, those of log(DIS) and log(RAD) are somewhat surprising be-
cause their signs contradict those of their respective marginal correlations with the
response variable. For example, the regression coefficient of log(DIS) is negative but
the plot in Fig. . shows a positive slope.
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Table .. Variables in Boston housing data

Variable definition Variable definition

ID Census tract number TOWN Township ( values)

MEDV Median value in $ AGE % built before 

CRIM Per capita crime rate DIS Distance to employ. centers

ZN % zoned for lots �  sq. t. RAD Accessibility to highways

INDUS % nonretail business TAX Property tax rate/$K

CHAS  on Charles River,  else PT Pupil/teacher ratio

NOX Nitrogen oxide conc. (p.p.) B (% black −)/
RM Average number of rooms LSTAT % lower-status population

Table .. Least-squares estimates of coefficients and t-statistics for regression model for log(MEDV).
he marginal correlation between the response variable and each predictor is denoted by ρ

Regressor β t ρ Regressor β t ρ

Constant . . AGE . � − . −.
CRIM −. � − −. −. log(DIS) −. � − − . .

ZN . � − . . log(RAD) . � − . −.
INDUS . � − . −. TAX −. � − − . −.
CHAS . � − . . PT −. � − − . −.
NOX

 −. � − −. −. B . � − . .

RM
 . � − . . log(LSTAT) −. � − −. −.

Figure .. Plot of log(MEDV) vs. log(DIS) for Boston data
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To resolve the contradiction, recall that the regression coefficient of log(DIS) quan-
tifies the linear effect of the variable ater the linear effects of the other variables are
accounted for. On the other hand, the correlation of log(DIS)with the response vari-
able ignores the effects of the other variables. Since it is important to take the other
variables into consideration, the regression coefficient may be a better measure of the
effect of log(DIS). But this conclusion requires that the linear model assumption be
correct. Nonetheless, it is hard to explain the negative linear effect of log(DIS) when
we are faced with Fig. ..
he problem of contradictory signs vanishes when there is only one regressor vari-

able. Although it can occur with two regressor variables, the difficulty is diminished
because the fitted model can be visualized through a contour plot. For datasets that
contain more than two predictor variables, we propose a divide-and-conquer strat-
egy. Just as a prospective buyer inspects a house one room at a time, we propose to
partition the dataset into pieces such that a visualizable model involving one or two
predictors suffices for each piece. One difficulty is that, unlike a house, there are no
predefined “rooms” or “walls” in a dataset. Arbitrarily partitioning a dataset makes as
much sense as arbitrarily slicing a house into several pieces. We need a method that
gives interpretable partitions of the dataset. Further, the number and kind of parti-
tions should be dictated by the complexity of the dataset as well as the type of models
to be fitted. For example, if a dataset is adequately described by a nonconstant simple
linear regression involving one predictor variable and we fit a piecewise linear model
to it, then no partitioning is necessary. On the other hand, if we fit a piecewise con-
stant model to the same dataset, the number of partitions should increase with the
sample size.
he GUIDE regression tree algorithm (Loh, ) provides a ready solution to

these problems. GUIDE can recursively partition a dataset and fit a constant, best
polynomial, or multiple linear model to the observations in each partition. Like the
earlier CART algorithm (Breiman et al., ), which fits piecewise constant models
only, GUIDE first constructs a nested sequence of tree-structured models and then
uses cross-validation to select the smallest one whose estimated mean prediction de-
viance lies within a short range of the minimum estimate. But unlike CART, GUIDE
employs lack-of-fit tests of the residuals to choose a variable to partition at each stage.
As a result, it does not have the selection bias of CART and other algorithms that rely
solely on greedy optimization.
To demonstrate a novel application of GUIDE, we use it to study the linear ef-

fect of log(DIS) ater controlling for the effects of the other variables, without mak-
ing the linear model assumption. We do this by constructing a GUIDE regression
tree in which log(DIS) is the sole linear predictor in each partition or node of the
tree. he effects of the other predictor variables, which need not be transformed, can
be observed through the splits at the intermediate nodes. Figure . shows the tree,
which splits the data into  nodes. he regression coefficients are between −. and
. in all but four leaf nodes. hese nodes are colored red (for slope less than −.)
and blue (for slope greater than .). We choose the cutoff values of @. because
the coefficient of log(DIS) in Table . is .. he tree shows that the linear effect of
log(DIS) is neither always positive nor always negative – it depends on the values of
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Figure .. GUIDE model for log(MEDV) using log(DIS) as linear predictor in each node. At each
branch, a case goes to the let child node if and only if the given condition is satisfied. he sample mean

of log(MEDV) is printed beneath each leaf node. A blue leaf node indicates a slope coefficient greater

than .. Correspondingly, a red leaf node is associated with a slope coefficient less than −.
the other variables. his explains the contradiction between the sign of the multiple
linear regression coefficient of log(DIS) and that of its marginal correlation. Clearly,
a multiple linear regression coefficient is, at best, an average of several conditional
simple linear regression coefficients.
Figure . explains the situation graphically by showing the data and the  re-

gression lines and their associated data points using blue triangles and red circles for
observations associated with slopes greater than . and less than −., respectively,
and green crosses for the others. he plot shows that, ater we allow for the effects of
the other variables, log(DIS) generally has little effect on median house price, except
in four groups of census tracts (triangles and circles) that are located relatively close to
employment centers (log(DIS) < ). According to Fig. ., the groups denoted by blue
triangles are quite similar. hey contain a large majority of the lower-priced tracts
and have high values of LSTAT and CRIM. he two groups composed of red circles,
on the other hand, are quite different from each other. One group contains tracts in
Beacon Hill and Back Bay, two high-priced Boston neighborhoods. he other group
contains tracts with DIS lying within a narrow range and with mostly below-average
MEDV values. Clearly, the regression coefficient of log(DIS) in Table . cannot pos-
sibly reveal such details. Unfortunately, this problem is by no means rare. Friedman
and Wall (), for example, found a similar problem that involves different vari-
ables in a subset of these data.
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Figure .. Data points and regression lines in the  leaf nodes of the Boston data tree. he blue and

red colors correspond to those in Fig. .

Extension to GUIDE 7.3

he basic GUIDE procedure for fitting piecewise constant and piecewise multiple
linearmodels is described in Loh ().Wepresent here an extension to fit piecewise
simple linear models. he same ideas apply to Poisson regression and to piecewise
linear two-predictor models, where the two predictors are chosen at each node via
stepwise regression, subject to the standard F-to-enter and F-to-remove threshold
values of . (Miller, ). Our extension comprises four algorithms, starting with
Algorithm .

Algorithm 1: Tree construction hese steps are applied recursively to each node of
the tree, starting with the root node that holds the whole dataset.
. Let t denote the current node. Fit a simple linear regression to each predictor

variable in the data in t. Choose the predictor yielding the smallest residualmean
squared error and record its model R.

. Stop if R � . or if the number of observations is less than n, where n is
a small user-specified constant. Otherwise, go to the next step.

. For each observation associated with a positive residual, define the class variable
Z = ; else define Z = .

. Use Algorithm  to find a variable X′ to split t into let and right subnodes tL
and tR .
a) If X′ is ordered, search for a split of the form X′ � x. For every x such that

tL and tR contain at least n observations each, find S, the smallest total sum
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of squared residuals obtainable by fitting a simple linear model to the data in
tL and tR separately. Select the smallest value of x that minimizes S.

b) If X′ is categorical, search for a split of the form X′ � C, where C is a subset
of the values taken by X′. For every C such that tL and tR have at least n
observations each, calculate the sample variances of Z in tL and tR . Select the
set C for which the weighted sum of the variances is minimum, with weights
proportional to sample sizes in tL and tR .

. Apply step  to tL and tR separately.

Algorithm 2: Split variable selection
. Use Algorithms  and  to find the smallest curvature and interaction p-values

p(c) and p(i) and their associated variables X(c) and �X(i) , X(i) �.
. If p(c) � p(i), define X′ = X(c) to be the variable to split t.
. Otherwise, if p(c) � p(i), then:

a) If either X(i) or X(i) is categorical, define X′ = X(i) if it has the smaller
curvature p-value; otherwise, define X′ = X(i) .

b) Otherwise, if X(i) and X(i) are both ordered variables, search over all splits
of t along X(i) . For each split into subnodes tL and tR , fit a simple linear
model on X(i) to the data in tL and tR separately and record the total sum of
squared residuals. Let S denote the smallest total sum of squared residuals
over all possible splits of t on X(i) . Repeat the process with X(i) and obtain
the corresponding smallest total sum of squared residuals S. If S � S , de-
fine X′ = X(i) ; otherwise, define X′ = X(i) .

Algorithm 3: Curvature tests
. For each predictor variable X:

a) Construct a �m cross-classification table. he rows of the table are formed
by the values of Z. If X is a categorical variable, its values define the columns,
i.e.,m is the number of distinct values of X. If X is quantitative, its values are
grouped into four intervals at the sample quartiles and the groups constitute
the columns, i.e., m = .

b) Compute the significance probability of the chi-squared test of association
between the rows and columns of the table.

. Let p(c) denote the smallest significance probability and let X(c) denote the as-
sociated X variable.

Algorithm 4: Interaction tests
. For each pair of variables Xi and X j , carry out the following interaction test:

a) If Xi and X j are both ordered variables, divide the (Xi , X j)-space into four
quadrants by splitting the range of each variable into two halves at the sample
median; construct a � contingency table using the Z values as rows and the
quadrants as columns. Ater dropping any columns with zero column totals,
compute the chi-squared statistic and its p-value.
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b) If Xi and X j are both categorical variables, use their value-pairs to divide the
sample space. For example, if Xi and X j take ci and c j values, respectively,
the chi-squared statistic and p-value are computed froma tablewith two rows
and number of columns equal to ci c j less the number of columns with zero
totals.

c) If Xi is ordered and X j is categorical, divide the Xi-space into two at the
sample median and the X j-space into as many sets as the number of cate-
gories in its range – if X j has c categories, this splits the (Xi , X j)-space into
c subsets. Construct a �c contingency table with the signs of the residuals
as rows and the c subsets as columns. Compute the chi-squared statistic and
its p-value, ater dropping any columns with zero totals.

. Let p(i) denote the smallest p-value and let X(i) and X(i) denote the pair of
variables associated with p(i).

AterAlgorithm  terminates, we prune the treewith themethod described inBreiman
et al. (, Sect. .) using V-fold cross-validation. Let E be the smallest cross-
validation estimate of prediction mean squared error and let α be a positive number.
We select the smallest subtree whose cross-validation estimate of mean squared er-
ror is within α times the standard error of E. To prevent large prediction errors
caused by extrapolation, we also truncate all predicted values so that they lie within
the range of the data values in their respective nodes. he examples here employ the
default values of V =  and α = .; we call this the half-SE rule.
Our split-selection approach is different from that of CART, which constructs

piecewise constant models only and which searches for the best variable to split and
the best split point simultaneously at each node. his requires the evaluation of all
possible splits on every predictor variable. hus, if there are K ordered predictor vari-
ables each taking M distinct values at a node, K(M−) splits have to be evaluated. To
extend the CART approach to piecewise linear regression, two linear modelsmust be
fitted for each candidate split. his means that K(M− ) regression models must be
computed before a split is found. he corresponding number of regression models
for K categorical predictors each having M distinct values is K(M− − ). GUIDE,
in contrast, only fits regression models to variables associated with the most signifi-
cant curvature or interaction test.hus the computational savings can be substantial.
More important than computation, however, is that CART’s variable selection is in-
herently biased toward choosing variables that permit more splits. For example, if
two ordered variables are both independent of the response variable, the one with
more unique values has a higher chance of being selected by CART. GUIDE does not
have such bias because it uses p-values for variable selection.

Mussels – Categorical Predictors and SIR 7.4

In this section, we use GUIDE to reanalyze a dataset, previously studied by Cook
(), to show that GUIDE can deal with categorical predictor variables as natu-
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rally and easily as continuous variables. he data are from the Division of Water Sci-
ence, DSIR, New Zealand (Camden, ).hey contain measurements on  horse
mussels taken from five sites in the Marlborough Sounds, New Zealand, in Decem-
ber . Besides site, each mussel’s length, width, depth (all in millimeters), gender
(male, female, or indeterminate), viscera mass, muscle mass, and shell mass (all in
grams) were recorded, as well as the type of peacrab (five categories) found living in
its shell.
Cook (, p. ) used Muscle as the response variable and Length, Depth, and

Shell as predictors to illustrate his approach to graphical regression. (Note: Cookused
the symbols L,W , and S to denote length, depth and shell, respectively.) With the aid
of sliced inverse regression (Li, ) and power transformations, he found that the
mean of Muscle could be modeled by the -D subspace defined by the variable

SIR1 = .Length+ .Depth. + .Shell. . (.)

Figure . shows the banana-shaped plot of Muscle versus SIR.
he variable Site is not used in Eq. (.) because, unlike GUIDE, sliced inverse

regression does not easily handle categorical predictor variables. Figure . shows the
result of fitting aGUIDEpiecewise best simple linearmodel to the data.he tree splits
first on Site. If Site is neither  nor , the tree splits further on Depth. he best simple
linear predictor is Shell at two of the leaf nodes and Width at the third. Figure .
shows the data and the fitted lines in the leaf nodes of the tree. he plots look quite
linear.
On the right side of Fig. . is the piecewise best two-variable GUIDE model. It

splits the data into two pieces, using the same top-level split as the piecewise best

Figure .. Plot of Muscle vs. SIR (slightly jittered to reduce overplotting)
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Figure .. Piecewise best simple linear (let) and best two-variable linear (right) least-squares GUIDE

models for mussels data. At each intermediate node, a case goes to the let child node if and only if the

condition is satisfied. Beneath each leaf node are the sample mean of Muscle and the selected linear

predictors

Figure .. Data and fitted lines for the piecewise best simple linear GUIDE model on the let side of

Fig. .
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simple linear model. Shell andWidth are selected as the best pair of linear predictors
in both leaf nodes. Figure . shows shaded contour plots of the fitted functions and
data points. Clearly, the mussels from Sites  and  tend to have greater muscle mass
than those from Sites , , and .
Since Site is an important predictor in the GUIDE models, we redraw the SIR

plot using different symbols to indicate site information in panel a of Fig. .. he
banana-shaped plot is seen to be an artifact caused by combining the sites; the data

Figure .. Shaded contour plots of fitted functions and data points for the piecewise best two-variable

linear model on the right side of Fig. .

Figure .. Muscle vs. SIR by site and by the nodes of the tree in Fig. .a
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points within each site are quite linear. Panel b again employs different symbols to
indicate leaf node membership according to the piecewise best simple linear model
in Fig. ..We see that nodemembership divides the data into three clusters, with the
first cluster belonging to Sites  and  and the second and third clusters to Sites , ,
and , depending on whether or not Depth � .. he first cluster (indicated by cir-
cles) clearly exhibits themost pronounced curvature.his suggests that the nonlinear
relationship between Muscle and SIR is mainly due to the observations from Sites 
and . On the other hand, we saw in Fig. .a that at these two sites, Muscle varies
roughly linearly with Shell. hus it is likely that the curvature in Fig. . is at least
partly due to the power transformation of Shell in the definition of SIR in Eq. (.).

Crash Tests – Outlier Detection
Under Confounding 7.5

he data in this example are obtained from  vehicle crash tests performed by
theNational Highway Transportation Safety Administration (NHTSA) between 
and  (http://www-nrd.nhtsa.dot.gov).he response variable is the square root of
the head injury criterion (hic) measured on a crash dummy. Values of

R
hic range

from  to , with  being the approximate level beyond which a person is expected
to suffer severe head injury. Twenty-five predictor variables, defined in Table ., pro-
vide information on the vehicles, dummies, and crash tests. Angular variables are
measured clockwise, with −, , and  degrees corresponding to the driver’s let,
front, and right sides, respectively. About one quarter of the vehicle models are tested
more than once, with the most oten tested being the  Chevy Citation, which was
tested  times.

Table .. Variables for NHTSA data

Name Description Name Description

hic Head injury criterion make Car manufacturer ( values)

year Car model year mkmodel Car model ( values)

body Car body type ( values) transm Transmission type ( values)

engine Engine type ( values) engdsp Engine displacement (liters)

vehtwt Vehicle total weight (kg) colmec Collapse mechanism ( values)

vehwid Vehicle width (mm) modind Car modification indicator ( values)

vehspd Vehicle speed (km/h) crbang Crabbed angle (degrees)

tksurf Track surface ( values) pdof Principal direction of force (degrees)

tkcond Track condition ( values) impang Impact angle (degrees)

occtyp Occupant type ( values) dumsiz Dummy size ( values)

seposn Seat position ( values) barrig Barrier rigidity (rigid/deformable)

barshp Barrier shape ( values) belts Seat belt type (none/pt/pt)

airbag Airbag present (yes/no) knee Knee restraint present (yes/no)



460 Wei-Yin Loh

Our goal is to identify the vehicle models for which the hic values are unusually
high, ater allowing for the effects of the predictor variables. Since almost all the tests
involve two or more crash dummies, we will give two separate analyses, one for the
driver and another for the front passenger dummies. Ater removing tests with in-
complete values, we obtain  and  complete tests for driver and front passen-
ger, respectively. he tests for driver dummies involve  different vehicle models.
Figure . shows a histogram of the

R
hic values for the driver data (the histogram

for front passenger is similar). here are  vehicle models with
R
hic values greater

than .hey are listed in Table ., arranged bymodel year, with the total number of
times tested and (in parentheses) the

R
hic values that exceed . For example, the

 Nissan Maxima was tested eight times, of which five gave
R
hic values greater

than .
To identify the outliers ater removing the effects of the predictor variables, we

need to regress the response values on the predictors. he regression model must be
sufficiently flexible to accommodate the large number and mix of predictor variables
and to allow for nonlinearity and interactions among them. It must also be suitable
for graphical display, as the outliers will be visually identified.hese requirements are
well satisfied by a piecewise simple linear GUIDE model, which is shown in Fig. ..
he tree has three leaf nodes, partitioning the data according to vehspd. Beneath
each leaf node is printed the sample mean response for the node and the selected
signed linear predictor.We see that model year is the most important linear predictor

Figure .. Histogram of


hic for driver dummy data. Shaded areas correspond to



hic � 
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Table .. Vehicles with


hic (in parentheses) greater than  registered on driver dummies. he

column labeled # gives the total number of each model tested. For example, five out of eight 

Nissan Maxima’s tested had


hic � 

# Model # Model

  Dodge Colt ()   Renault Fuego ()

  Honda Civic ()   Ford Tempo ()

  Mazda B Pickup ()   Chevy Sportvan ()

  Peugeot  ()   Ford Clubwagon MPV ()

  Volkswagen Rabbit ()   Honda Accord ()

  Chevy Citation ()   Nissan Altima ()

  Honda Civic ()   Nissan Maxima (, , , , )

  Honda Prelude ()   Saab  ()

  Mazda GLC ()   Subaru Legacy (, )

  Chrysler Lebaron ()   Saturn L (, , )

  Renault Fuego ()   Ford Explorer ()

Figure .. Piecewise-simple linear GUIDE model for driver data. At each intermediate node, a case

goes to the let child node if and only if the condition is satisfied. Beneath each leaf node are the sample

mean of


hic and the selected signed linear predictor

in two of the three leaf nodes, and impang in the third. In the latter (Node ), injury
tends to be more severe if the impact occurs on the driver side (impang = −).
A very interesting feature of the tree is that the sample mean response is lowest in

Node , which has the highest values of vehspd (�.). At first glance, this does
not make sense because injury severity should be positively correlated with vehicle
speed. It turns out that the design of the experiment causes some variables to be
confounded. his is obvious from the upper row of plots in Fig. ., which show the
data and regression lines in the three leaf nodes of the tree, using different symbols to
indicate whether a vehicle is crashed into a rigid or a deformable barrier. We see that
the proportion of tests involving deformable barriers is much greater at high speeds
(Node ) than at low speeds. his would explain the lower injury values among the
high-speed tests.
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Figure .. Data and fitted regression functions in the leaf nodes of the tree model in Fig. ., using

different symbols for barrig (top) and airbag (bottom) values

Another variable confounded with vehspd is airbag. his can be seen in the
second row of plots in the same figure, where different symbols are used to indicate
whether a vehicle is equipped with an airbag or not. We see that almost all vehicles
manufactured from  onwards have airbags and that their presence is associated
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with lower hic values. Since there is a fair number of such vehicles in Node , this
could also account for the low sample mean response.
Finally, a third confounding variable is evident in Fig. ., which shows barplots

of the proportions of barrier shape type (barshp) within each leaf node of the tree.
Node , whose bars are colored green, stands out in that barrier shapes EOB, GRL,
IAT, MBR, and SGN practically never appear in the other two nodes. For some rea-
son, the testers seem to prefer these barrier shapes for high-speed crashes. hus bar-
rier shape is yet another possible explanation for the low mean response value in the
node.
Despite these difficulties, it is clear from the plots that three vehicle models stand

out as outliers:  Honda Accord,  Nissan Altima, and  Subaru Legacy.
All are foreign imports.he  Subaru Legacy appears as an outlier in two separate
tests, one at moderate speed and one at high speed.
Figure . shows the corresponding tree model for the front passenger data. Now

airbag and barrier rigidity appear as split variables ater the top-level split onvehspd.
he plots of the data in the leaf nodes are presented in Fig. .. Everything seems to
make sense: injury is less severe when a vehicle is equipped with airbags and when
it is crashed into a deformable barrier, and also if impact occurs on the driver side
(Node ). It is interesting to note that in Node , where vehspd � . and the
vehicles are equipped with airbags, rigid barriers are used for the higher speeds and
deformable barriers for the lower speeds. his may exaggerate the effect of vehspd
in this node. he outliers for these data turn out to be all domestic models: 

Figure .. Proportions of different barrier shapes within the three leaf nodes of the tree model in

Fig. .. he lengths of the bars sum to one for each color
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Figure .. Piecewise-simple linear GUIDE model for front passenger data. At each intermediate node,

a case goes to the let child node if and only if the condition is satisfied. Beneath each leaf node are the

sample mean of


hic and the selected signed linear predictor

Figure .. Data and fitted regression functions in the leaf nodes of the tree model in Fig. ., with

different symbols for barrig type
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Chevy Blazer,  Chevy Citation,  Ford Ram ,  Ford Contour, and 
Dodge Intrepid.
he good news from both analyses is that no obvious outliers are found among

vehicles newer than the  model year.

Car Insurance Rates – Poisson Regression 7.6

he data are from Statlib. A subset of them is given in Andrews and Herzberg (,
pp. –). he original data consist of information on more than two million
third-party automobile insurance policies in Sweden for the  year. For each pol-
icy the annualmileage, bonus class (on a seven-point scale), geographical zone (seven
categories), and make of car (nine categories) were recorded. Annual mileage is dis-
cretized into five categories: () less than ,km/year, ()  –  km/year,
()  –  km/year, ()  –  km/year, and () more than
  km/year (Hallin and Ingenbleek, ).hese four explanatory variables yield
a  �  �  �  table with  possible cells. For each cell, the following quantities
were obtained:
. Total insured time in years,
. Total number of claims,
. Total monetary value of the claims.

Twenty-three cells are empty.
We will model claim rate here. According to Andrews and Herzberg (, p. ),

a Swedish Analysis of Risk group decided that amultiplicative model (i.e., an additive
Poisson loglinear model) for claim rate is fairly good, and that any better model is
too complicated to administer. To challenge this conclusion, we will use GUIDE to
fit a piecewise-additive Poisson loglinear model for number of claims, using the log
of number of claims as offset variable. Bonus class and mileage class are treated as
continuous, and zone and make as categorical variables.

Figure .. GUIDE multiple linear Poisson regression tree for car insurance data. At each intermediate

node, a case goes to the let child node if and only if the condition is satisfied. he number in italics

beneath each leaf node is the sample claim rate
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Figure . shows the GUIDE tree, which has four leaf nodes and an estimated
prediction deviance (based on tenfold cross-validation) about % lower than that
of a single additive loglinear model. From the sample average claim rates printed
beneath the leaf nodes, we see that bonus classes  and  tend to yield rates two to
three times as large as the other bonus classes.
he estimated regression coefficients in the leaf nodes are given in Table ., where

the coefficients of the dummy variables corresponding to the first levels of each cat-
egorical variable are set to zero. As may be expected, Mileage has a positive slope
coefficient in all three nodes where it is not constant. he slope for Bonus is, how-
ever, negative wherever it is not constant. hus the higher the Bonus class, the lower
the Claim rate tends to be.
ForMake, the coefficient for level  has a larger negative value than the coefficients

for the other Make levels, uniformly across all the nodes. Hence this level of Make
is likely to reduce claim rate the most. In contrast, the coefficient for level  of Make
is positive in all nodes and is larger than the coefficients for all other levels in three
nodes – it is second largest in the remaining node. his level of Make is thus most
likely to increase claim rate. he situation is quite similar for Zone: since all its co-
efficients are negative except for level , which is set to zero, that level is most likely
to increase claim rate, across all four nodes. he Zone level most likely to decrease
claim rate is , which has the largest negative coefficient in three of the nodes and the
second largest negative coefficient in the fourth node. Figure . presents the results
more vividly by showing barplots of the coefficients for Make and Zone by node.he
relative sizes of the coefficients are fairly consistent between nodes.

Table .. Regression estimates for GUIDE model using set-to-zero constraints for the first levels of

Make and Zone

Node  Node  Node  Node 

Constant −. −. −. −.
Mileage Aliased . . .

Bonus −. −. −. aliased

Make= −. −. . .

Make= −. −. −. −.
Make= −. −. −. −.
Make= . . . .

Make= −. −. −. −.
Make= −. −. −. .

Make= −. −. . −.
Make= −. −. −. .

Zone= −. −. −. −.
Zone= −. −. −. −.
Zone= −. −. −. −.
Zone= −. −. −. −.
Zone= −. −. −. −.
Zone= −. −. −. −.
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Figure .. Estimated regression coefficients for Make (above) and Zone (below)

Because rate of change of log claim rate with respect to Bonus and Mileage class
depends on the levels of Make and Zone, the best way to visualize the effects is to
draw a contour plot of the fitted model for each combination ofMake and Zone.his
is done in Fig. . for four level combinations, those corresponding to the best and
worst levels of Make and Zone. We see that claim rate is highest when Mileage class
is , Bonus class is , Make is , and Zone is . he lowest claim rates occur for Make
level  and Zone level , more or less independent of Mileage and Bonus class.
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Figure .. Estimated claim rates for selected values of Make and Zone

Conclusion7.7

Wehave given four examples to illustrate the uses of GUIDE for building visualizable
regressionmodels.We contend that amodel is best understood if it can be visualized.
But in order to make effective use of current visualization techniques, namely, scatter
and contour plots, we will oten need to fit models to partitions of a dataset. Other-
wise, we simply cannot display a model involving more than two predictor variables
in a single -D graph. he data partitions, of course, should be chosen to build as
parsimonious a model as possible. he GUIDE algorithm does this by finding par-
titions that break up curvature and interaction effects. As a result, it avoids splitting
a partition on a predictor variable whose effect is already linear. Model parsimony as
a whole is ensured by pruning, which prevents the number of partitions from being
unnecessarily large.
Ater pruning is finished, we can be quite confident that most of the important

effects of the predictor variables are confined within the one or two selected linear
predictors. hus it is safe to plot the data and fitted function in each partition and
to draw conclusions from them. As our examples showed, such plots usually can tell
us much more about the data than a collection of regression coefficients. An obvious
advantage of -D plots is that they require no special training for interpretation. In
particular, the goodness of fit of the model in each partition can be simply judged by
eye instead of through a numerical quantity such as AIC.
he GUIDE computer program is available for Linux, Macintosh, and Windows

computers from www.stat.wisc.edu/%Eloh/.
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Regression is commonly used to describe and analyze the relation between explana-
tory input variables X and one or multiple responses Y . In many applications such
relations are too complicated tomodel with a parametric regression function. Classi-
cal nonparametric regression (see e.g., Fan and Gijbels, ; Wand and Jones, ;
Loader, ; Simonoff, ) and varying coefficient models (see e.g., Hastie and
Tibshirani, ; Fan and Zhang, ; Carroll et al., ; Cai et al., ), allow for
a more flexible form. In this article we describe an approach that allows us to effi-
ciently handle discontinuities and spatial inhomogeneities of the regression function
in such models.

Nonparametric Regression8.1

Let us assume that we have a random sample Z , . . . , Zn of the form Zi = (Xi ,Yi).
Every Xi is a vector of explanatory variables which determines the distribution of an
observed responseYi . Let the Xi ’s be valued in the finite dimensional Euclidean spaceX = R

d and the Yi ’s belong to Y � R
q . he explanatory variables Xi may quantify

some experimental conditions, coordinates within an image, or a time.he response
Yi in these cases identifies the observed outcome of the experiment: the gray value
or color at the given location and the value of a time series, respectively.
We assume that the distribution of each Yi is determined by a finite dimensional

parameter θ = θ(Xi) whichmay depend on the value Xi of the explanatory variable.

Examples8.1.1

We use the following examples to illustrate the situation.

1 Example 1: homoscedastic nonparametric regression model his model is specified
by the regression equation Yi = θ(Xi) + εi with a regression function θ and additive
i.i.d. Gaussian errors εi 9 N(, σ). We will use this model to illustrate the main
properties of our algorithms in a univariate (d = ) setting. he model also serves as
a reasonable approximation to many imaging problems. Here the explanatory vari-
ables Xi define a two-dimensional (d = ) or three-dimensional (d = ) grid with
observed gray values Yi at each grid point.

2 Example 2: inhomogeneous binary response model Here Yi is a Bernoulli random
variable with parameter θ(Xi); that is, P (Yi =  � Xi) = θ(Xi) and P (Yi =  � Xi) =
 − θ(Xi). his model occurs in classification. It is also adequate for binary images.

3 Example 3: inhomogeneous Poisson model Every Yi follows a Poisson distribution
with parameter θ = θ(Xi), i.e., Yi attains nonnegative integer values and
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P(Yi = k � Xi) = θk(Xi)e−θ(X i)�k!. Such a situation frequently occurs in low-
intensity imaging, e.g., confocal microscopy and positron emission tomography. It
also serves as an approximation of the density model, obtained by a binning proce-
dure.

4Example 4: color images In color images, Yi denotes a vector of values in a three-
dimensional color space at pixel coordinates Xi . A fourth componentmay code trans-
parency information. he observed vectors Yi can oten bemodeled as a multivariate
Gaussian, i.e.,Yi 9 N(θ(Xi), Σ)with some unknown covariance Σ thatmay depend
on θ. Additionally we will usually observe some spatial correlation.

Local Modeling 8.1.2

We now formally introduce our model. Let P = (Pθ , θ � Θ) be a family of probabil-
ity measures on Y where Θ is a subset of the real line R

. We assume that this family
is dominated by a measure P and denote p(y, θ) = dPθ �dP(y). We suppose that
each Yi is, conditionally on Xi = x, distributed with density p(ċ, θ(x)). he density
is parameterized by some unknown function θ(x) on X which we aim to estimate.
A global parametric structure simply means that the parameter θ does not depend on
the location; that is, the distribution of every “observation” Yi coincides with Pθ for
some θ � Θ and all i. his assumption reduces the original problem to the classical
parametric situation and the well-developed parametric theory is applied here to es-
timate the underlying parameter θ. In particular, the maximum likelihood estimate
θ̃ = θ̃(Y , . . . ,Yn) of θ, which is defined by the maximization of the log-likelihood

L(θ) = n�
i=
log p(Yi , θ) (.)

is root-n consistent and asymptotically efficient under rather general conditions.
Such a global parametric assumption is typically too restrictive. he classical non-

parametric approach is based on the idea of localization: for every point x, the para-
metric assumption is only fulfilled locally in a vicinity of x. We therefore use a local
model concentrated in some neighborhood of the point x.
hemost general way to describe a local model is based on weights. Let, for a fixed

x, a nonnegative weight wi = wi(x) �  be assigned to the observations Yi at Xi , i =
, . . . , n.When estimating the local parameter θ(x), every observationYi is usedwith
the weight wi(x). his leads to the local (weighted) maximum likelihood estimate

θ̃(x) = arg sup
θ
Θ

n�
i=

wi(x) log p(Yi , θ) . (.)

Note that this definition is a special case of a more general local linear (polynomial)
likelihood model when the underlying function θ is modelled linearly (polynomi-
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ally) in x; see e.g., Fan et al. (). However, our approach focuses on the choice of
localizing weights in a data-driven way rather than on the method of local approxi-
mation of the function θ.
A commonway to choose the weightswi(x) is to define them in the formwi(x) =

Kloc(l i) with l i = �ρ(x , Xi)�h� where h is a bandwidth, ρ(x , Xi) is the Euclidean
distance between x and the design point Xi , and Kloc is a location kernel. his ap-
proach is intrinsically based on the assumption that the function θ is smooth. It leads
to a local approximation of θ(x) within a ball with some small radius h centered on
the point x, see e.g., Tibshirani and Hastie (); Hastie and Tibshirani (); Fan
et al. (); Carroll et al. (); Cai et al. ().
An alternative approach is termed localization by a window. his simply restricts

the model to a subset (window) U = U(x) of the design space which depends on
x; that is, wi(x) = (Xi � U(x)). Observations Yi with Xi outside the region U(x)
are not used to estimate the value θ(x). his kind of localization arises, for example,
in the regression tree approach, in change point estimation (see e.g., Müller, ;
Spokoiny, ), and in image denoising (see Qiu, ; Polzehl and Spokoiny, ),
among many other situations.
In our procedure we do not assume any special structure for the weights wi(x);

that is, any configuration of weights is allowed. he weights are computed in an it-
erative way from the data. In what follows we identify the set W(x) = �w(x), . . . ,
wn(x)� and the local model in x described by these weights and use the notation

L(W(x), θ) = n�
i=

wi(x) log p(Yi , θ) .
hen θ̃(x) = arg supθ L(W(x), θ). For simplicity we will assume the case where
θ(x) describes the conditional expectation E(Y �x) and the local estimate is obtained
explicitly as

θ̃(x) = �
i

wi(x)Yi��
i

wi(x) . (.)

he quality of the estimation heavily depends on the localizing scheme we se-
lected.We illustrate this issue by considering kernel weightswi(x) = Kloc(�ρ(x , Xi)�
h�)where the kernel Kloc is supported on [, ]. hen the positive weightswi(x) are
concentrated within the ball of radius h at the point x. A small bandwidth h leads to
a very strong localization. In particular, if the bandwidth h is smaller than the dis-
tance from x to the nearest neighbor, then the resulting estimate coincides with the
observation at x. Increasing the bandwidth amplifies the noise reduction that can be
achieved. However, the choice of a large bandwidth may lead to estimation bias if
the local parametric assumption of a homogeneous structure is not fulfilled in the
selected neighborhood.
he classical approach to solving this problem is based on a model selection idea.

One assumes a given set of bandwidth candidates �hk�, and one of them is selected in
a data-driven way to provide the optimal quality of estimation. he global bandwidth
selection problem assumes the same kernel structure of localizing schemeswi(x) for
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all points x, and only one bandwidth h has to be specified. In the localmodel selection
approach, the bandwidth h may vary with the point x. See Fan et al. () for more
details.
We employ a related butmore general approach.We consider a family of localizing

models, one per design point Xi , and denote them asWi = W(Xi) = �wi , . . . ,win�.
EveryWi is built in an iterative data-driven way, and its supportmay vary from point
to point. he method used to construct such localizing schemes is discussed in the
next section.

Structural Adaptation 8.2

Let us assume that for each design point Xi the regression function θ can be well
approximated by a constant within a local vicinity U(Xi) containing Xi . his serves
as our structural assumption.
Our estimation problem can now be viewed as consisting of two parts. In order

to efficiently estimate the function θ in a design point Xi we need to describe a local
model, i.e., to assign weightsW(Xi) = �wi  , . . . ,win�. If we knew the neighborhood
U(Xi) via an oracle we would define the local weights as wi j = w j(Xi) = IX j
U(X i)
and use these weights to estimate θ(Xi). However, since θ and therefore U(Xi) are
unknown, the assignments will have to depend on the information on θ that we can
extract from the observed data. If we have good estimates θ̂ j = θ̂(X j) of θ(X j), we
can use this information to infer the set U(Xi) by testing the hypothesis

H � θ(X j) = θ(Xi). (.)

A weight wi j can be assigned based on the value of a test statistic Ti j , assigning zero
weights if θ̂ j and θ̂ i are significantly different. his provides us with a set of weights
W(Xi) = �wi  , . . . ,win� that determines a local model in Xi .
Given the local model we can then estimate our function θ at each design point

Xi by (.).
We utilize both steps in an iterative procedure.We start with a very local model at

each point Xi given by weights

w()i j = Kloc(l()i j ) with l
()
i j = �Xi − X j ��h(). (.)

he initial bandwidth h() is chosen very small. Kloc is a kernel function supported
on [−, ]; i.e., weights vanish outside a ball U()i of radius h() centered on Xi . We
then iterate two steps: estimation and local model refinement. In the kth iteration
new weights are generated as

w(k)i j = Kloc(l(k)i j )Kstat(s(k)i j ) with (.)

l
(k)
i j = �Xi − X j ��h(k) and s

(k)
i j = T(k)i j �λ. (.)
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he kernel function Kstat is monotonically nonincreasing over the interval [,U).
he bandwidth h is increased by a constant factor with each iteration k. he test
statistic for (.)

T(k)i j = N(k)i K(θ̂(k−)i , θ̂(k−)j ) (.)

with Ni = & j wi j is used to specify the penalty s
(k)
i j . his term effectively measures

the statistical difference between the current estimates in Xi and X j . In (.) the
term K(θ , θ′) denotes the Kullback–Leibler distance of the probability measures Pθ

and Pθ ′ .
Additionally, we can introduce a kind of memory into the procedure, which en-

sures that the quality of estimation will not be lost with the iterations. his basically
means that we compare a new estimate θ̃(k)i = θ̃(k)(Xi) with the previous estimate
θ̂(k−)i in order to define a memory parameter ηi = Kmem(m(k)i ) using a kernel func-
tion Kmem and

m
(k)
i = τ− �

j

Kloc(l(k)i j )K(θ̃(k)i , θ̂(k−)i ) . (.)

his leads to an estimate

θ̂(k)i = ηi θ̃
(k)
i + ( − ηi)θ̂(k−)i . (.)

Adaptive Weights Smoothing8.2.1

We now formally describe the resulting algorithm.
Initialization: Set the initial bandwidth h(), k =  and compute, for every i, the

statistics

N(k)i = �
j

w(k)i j , and S(k)i = �
j

w(k)i j Yj (.)

and the estimates

θ̂(k)i = S(k)i �N(k)i (.)

using w()i j = Kloc(l()i j ). Set k =  and h() = c()h .

Adaptation: For every pair i, j, compute the penalties

l
(k)
i j = �Xi − X j ��h(k) , (.)

s
(k)
i j = λ−T(k)i j = λ−N(k−)i K(θ̂(k−)i , θ̂(k−)j ) . (.)

Now compute the weights w(k)i j as

w(k)i j = Kloc>l(k)i j ?Kstat>s(k)i j ?
and specify the local model byW(k)

i = �w(k)i  , . . . ,w(k)in �.
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Local estimation: Now compute new local MLE estimates θ̃(k)i of θ(Xi) as
θ̃(k)i = S(k)i �Ñ(k)i with Ñ(k)i = �

j

w(k)i j , S(k)i = �
j

w(k)i j Yj .

Adaptive control: Compute the memory parameter as ηi = Kmem(m(k)i ). Define
θ̂(k)i = ηi θ̃

(k)
i + ( − ηi)θ̂(k−)i and

N(k)i = ηi Ñ
(k)
i + ( − ηi)N(k−)i

Stopping: Stop if h(k) 	 hmax, otherwise set h(k) = chh
(k−), increase k by , and

continue with the adaptation step.

Choice of Parameters: Propagation Condition 8.2.2

he proposed procedure involves several parameters. he most important one is the
scale parameter λ in the statistical penalty si j . he special case λ = U simply leads
to a kernel estimate with bandwidth hmax. We propose to choose λ as the smallest
value satisfying a propagation condition. his condition requires that, if the local
assumption is valid globally (i.e., θ(x) 
 θ does not depend on x), then with high
probability the final estimate for hmax = U coincides at every point with the global
estimate. More formally we request that, in this case, for each iteration k,

E�θ̂(k)(X) − θ̌(k)(X)� < αE�θ̌(k)(X) − θ� (.)

for a specified constant α � . Here
θ̌(k)(Xi) = �

j

Kloc(l(k)i j )Yj��
j

Kloc(l(k)i j ) (.)

denotes the nonadaptive kernel estimate employing the bandwidth h(k) from step
k. he value λ provided by this condition does not depend on the unknown model
parameter θ and can therefore be approximately found by simulation. his allows
us to select default values for λ depending on the specified family of the probability
distribution P = (Pθ , θ � Θ). Default values for λ in the examples below are selected
for a value of α = ..
he second parameter of interest is the maximal bandwidth hmax, which controls

both the numerical complexity of the algorithm and the smoothness within homo-
geneous regions.
he scale parameter τ in the memory penalty mi can also be chosen to meet the

propagation condition (.). he special case τ = U turns off the adaptive control
step.
Additionally we specify a number of parameters and kernel functions that have

less influence on the resulting estimates. As a default, the kernel functions are cho-
sen as Kloc(x) = Kmem(x) = ( − x)+ and Kstat(x) = e−x Ix< . If the design is on
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a grid (e.g., for images), the initial bandwidth h() is chosen as the distance between
neighboring pixels.he bandwidth is increased ater each iteration by a default factor
ch = .	d .

An Illustrative Univariate Example8.3

We use a simple example to illustrate the behavior of the algorithm. he data in the
upper let of Fig. . follow a univariate regression model

Yi = θ(Xi) + εi . (.)

he unknown parameter (i.e., the regression function θ) is piecewise constant, the
errors εi are i.i.d. N(, ), and the observed Xi = i form a univariate grid. In this
situation the statistical penalty takes the form

s
(k)
i j = N(k−)i

σλ
(θ̂(k−)i − θ̂(k−)j ) (.)

where σ =  denotes the variance of the errors. A robust estimate of the variance is
obtained from the data using the interquartile range (IQR) as

σ̂ = (IQR(�Yi+ − Yi�i=, . . .,n−�)�.) (.)

and this is used as a plug-in for σ . he propagation condition (.) suggests a value
of λ = .. We employ a value of τ = U, disabling the adaptive control step.
We have four regions, differing in size and contrast, where the function θ is con-

stant. he regression function is displayed as a black line in the upper right of Fig. ..
he lower part of Fig. . illustrates the evolution of the weights wi j as the number

of iterations increases. he horizontal and vertical axes correspond to indices i and
j, respectively. he upper row provides Kloc(l(k)i j ) for iterations k =  (h = ), k = 
(h = ), k =  (h = ) and k =  (h = ).he central row shows the corresponding
values Kstat(s(k)i j ). he grayscale ranges from black for  to white for . he weights

w(k)i j (lower row) used in the algorithm are the products of both terms.
he let column corresponds to the initialization step. Here the location penalty ef-

fectively restricts the localmodel in Xi to the point Xi itself. If computed, the stochas-
tic penalty would contain some weak information about the structure of the regres-
sion function. When we reach step k = , the location penalty allows for positive
weights for up to  observations, and therefore less variable estimates. At this stage
the test (.) shows a significant difference between estimates at points within the
third homogeneous interval and estimates at locations outside this interval. his is
reflected in the statistical penalty and therefore the weights. In step k =  the second
interval is also clearly identified. he last column, referring to the rd iteration and
a final bandwidth of h = , shows the final situation, where the statistical penalty
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Figure .. Adaptive weights smoothing for a simple univariate regression problem: data (upper let),

regression function, and estimates θ̂(k) for k =  (h = ), k =  (h = ) and k =  (h = ) (upper
right). he lower part displays the contributions from the location penalty (top row) and the stochastic

penalty (middle row) to the weights (bottom row) w i j in iteration steps k = , ,  and  (columns).

A linear grayscale is provided at the bottom
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reflects all of the information about the structure and determines the weights. he
influence of the location penalty has almost vanished.
What we observe during the iteration process is the unrestricted propagation of

weights within homogeneous regions. Two regions with different values of the pa-
rameter are separated as values of the statistical penalty s i j increase with decreasing
variance of the estimates θ̂ i and θ̂ j and a large enough contrast �θ(Xi) − θ(X j)� .he
iteration k at which this occurs depends on the sizes of the homogeneous regions, i.e.,
the potential variance reduction, and the contrast.
he upper right plot in Fig. . additionally displays the intermediate estimates

θ̂(k), k = , ,  corresponding to the weighting schemes illustrated.

Examples and Applications8.4

We now provide a series of examples for adaptive weights smoothing in various se-
tups.

Application 1: Adaptive Edge-Preserving Smoothing
in 3-D8.4.1

he algorithm described in Sect. .. is essentially dimension-free. It can easily be
applied to reconstruct -D and -D images. We illustrate this using a -DMR image
of a head.he upper let image in Fig. . shows the th slice of the noisy data cube,
consisting of �  �  voxels. he image is modeled as

Yi = θ(Xi) + εi , (.)

where Xi are coordinates on the -D grid and the errors εi are again assumed to
be i.i.d. Gaussian with unknown variance σ . he parameter of interest θ(Xi) de-
scribes a tissue-dependent underlying gray value at voxel Xi .here is special interest
in using these images to identify tissue borders. Denoising, preferably using an edge-
preserving or edge-enhancing filter, is a prerequisite step here.
We apply theAWSalgorithm fromSect. .. using amaximal bandwidth hmax = .

he error variance is estimated from the data. he default value of λ provided by
condition (.) for smoothing in -D with Gaussian errors is λ = .. he upper
right image provides the resulting reconstruction. Note that in the smoothed im-
age the noise is removed while the detailed structure corresponding to tissue bor-
ders is preserved. Some deterioration of the image is caused by the structural as-
sumption of a local constant model. his leads to some flattening where θ(Xi) is
smooth.
In the bottom row of Fig. ., we provide the absolute values obtained ater apply-

ing a Laplacian filter to the original noisy image and to the reconstruction obtained
by AWS, respectively. We observe an enhancement of the tissue borders.
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Figure .. -D Magnetic resonance imaging (MRI): Slice  from a -D MR image (upper let) and its

-D reconstruction by AWS (upper right). he bottom row shows the result of applying an edge

detection filter to both images

Examples: Binary and Poisson Data 8.4.2

For non–Gaussian data, the stochastic penalty si j takes a different form in (.).
he definition is based on the Kullback–Leibler distance K between the probability
measures Pθ̂ i

and Pθ̂ j
. For binary data this leads to

s(k)i j = N(k−)i

λ
2θ̂(k−)i log

θ̂(k−)i

θ̂(k−)j

+ ( − θ̂(k−)i ) log  − θ̂(k−)i

 − θ̂(k−)j

3 (.)

while for Poisson data we get

s(k)i j = N(k−)i

λ
2θ̂(k−)i log

θ̂(k−)i

θ̂(k−)j

− θ̂(k−)i + θ̂(k−)j 3 . (.)

In both cases a special problem occurs. If the estimates θ̂ i or θ̂ j attain a value at the
boundary of the parameter space, i.e.,  or  for binary data or  in the case of Poisson
data, then the Kullback–Leibler distance between the probability measures Pθ̂ i

and
Pθ̂ j

will equal U. Such a situation can be avoided by modifying the algorithm. One
solution is to initialize the estimates with the value obtained by the global estimate
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Figure .. Binary images: artificial image containing four circles with different gray values (let),

binary image generated by Bernoulli experiments with pointwise probabilities proportional to the gray

values in the let image (center) and reconstructed image of pointwise probabilities (right)

and to replace the estimate θ̂(k−)j in (., .) by θ̂(k−)i j = (− .�N(k−)i )θ̂(k−)j +
.�N(k−)i θ̂(k−)i for all subsequent iteration steps.
We use a simple artificial example to demonstrate the performance of the pro-

cedure. We start with the image displayed on the let of Fig. .. he image of size
�  is composed of four regions with distinct gray values. he central image is
generated by pixelwise Bernoulli experiments with probabilities of ., ., . and
., respectively, for the four regions. he image on the right of Fig. . provides the
reconstruction obtained by AWS using a maximal bandwidth hmax = . he value
of λ selected by our propagation condition is λ = ..
he noisy image on the let of Fig. . is constructed using the same image struc-

ture. Now each gray value is a Poisson count of intensity ., .,  and ., depending
on the location of the pixel within the image. he right image again provides the re-
construction. A maximal bandwidth hmax =  and the value λ = . provided by
the propagation condition (.) for -D Poisson images are used.

Figure .. Poisson images: image generated by Poisson experiments with pointwise intensities

proportional to the gray values in the let image of Fig. . (let) and reconstructed image of pointwise

intensities (right)
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Note that the underlying structure is completely recovered and therefore near-
optimal estimates of the probabilities and intensities are obtained for both our binary
and our Poisson image.

Example: Denoising of Digital Color Images 8.4.3

In digital color images, the information in each pixel consists of a vector of three
values. Each value is an intensity in one channel of a three-dimensional color space,
usually the RGB space. Additionally, each pixel may carry some transparency in-
formation. Ideally the image is recorded in RAW format (minimally processed data
from the image sensor of a digital camera, see Wikipedia RAW ()). and then
transformed to TIFF to avoid artifacts caused by lossy image compression and dis-
cretization to a low number of color values.
If the image was recorded under bad light conditions, using a high sensor sensitiv-

ity, such images can carry substantial noise. his noise is usually spatially correlated
(i.e., colored). We also observe a correlation between the noise components in the
three RGB channels. RGB is an additive color model in which red, green and blue
light are combined in various ways to reproduce other colors; see Wikipedia RGB
() or Gonzales and Woods ().
An appropriate model for describing such a situation is given by

Yih , iv = θ(Xi) + εih , iv , (.)

where the components of Xi = (ih , iv) are the horizontal and vertical image coordi-
nates. Yih , iv , θ(Xi) and εih , iv take values in R . he errors follow a distribution with
Eεih , iv = , Var εih , iv = Σ and Eεcih , iv ε

c
ih+, iv = Eεcih , iv ε

c
ih , iv+ = ρ for each color channel

c. he covariance matrix Σ may vary with the value of θ ih , iv .
he algorithm from Sect. .. can be applied in this situation with a statistical

penalty

s(k)i j = N(k−)i

λ
>θ̂(k−)i − θ̂(k−)j ?�Σ−>θ̂(k−)i − θ̂(k−)j ? . (.)

he model can oten be simplified by transforming the image to a suitable color
space. We observe that a transformation to the YUV space decorrelates the noise be-
tween channels, so that a diagonal form of Σ seems appropriate under such a trans-
formation. he YUV model defines a color space in terms of one luminance and
two chrominance components, see Wikipedia YUV () or Gonzales and Woods
(). In this case, error variance can be estimated separately in the three color chan-
nels, accounting for the spatial correlation.
Figures . and . provide an example. he upper let image was obtained by

deteriorating a digital image showing the Concert Hall at the Gendarmenmarkt in
Berlin. he image resolution is  �  pixels.
he original image was transformed from RGB into YUV space. In YUV space,

the values in the three channels are scaled to fall into the range (, ), (−., .)
and (−., .), respectively. In each YUV channel colored noise with ρ = . and
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Figure .. Color images: image of the Concert Hall at Gendarmenmarkt in Berlin, Germany. he

image has been deteriorated by colored noise in all color channels (upper let). Shown are MAE-optimal

reconstructions by AWS (upper right) and nonadaptive kernel smoothing (lower let). he lower right

image illustrates for each pixel X i the sum of weights N i = � j w i j that arises for the final estimate.

Luminance images, see online version for colors

Figure .. Color images: detail from the images in Fig. ., noisy original (let), AWS reconstruction

(center) and kernel smoothing (right). See online version for colors
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Table .. MAE and MSE in RGB space for the images in Fig. . and Fig. .

Noisy image AWS reconstruction Kernel smoothing local quadratic PS

MAE 3.62 � 10−2 1.91 � 10−2 2.25 � 10−2 1.70 � 10−2
MSE 2.06 � 10−3 8.34 � 10−4 1.12 � 10−3 6.03 � 10−4

standard deviations of σ = ., . and ., respectively, was added.he resulting
noisy image, inRGB space, is shown in the upper let of Fig. ..heupper right image
shows the reconstruction obtained using our procedure, using a maximal bandwidth
hmax = . It is assumed that the spatial correlation ρ = . is known. he error
variance is estimated from the image, taking the spatial correlation into account. he
statistical penalty selected by the propagation condition (.) for color images with
spatially independent noise is λ = .. his parameter is corrected for the effect of
spatial correlation at each iteration.
Each pixel Xi in the lower right image contains the value Ni ; that is, the sum of

the weights defining the local model in Xi , for the last iteration. We can clearly see
how the algorithm adapts to the structure in the image, effectively using a large local
vicinity of Xi if the pixel belongs to a large homogeneous region and very small local
models if the pixel Xi belongs to a very detailed structure.
Finally, we also provide the results from the corresponding nonadaptive kernel

smoother (i.e., with λ = U and a bandwidth of h = .) for comparison at the lower
let of Fig. .. he bandwidth was chosen to provide the minimal mean absolute
error. Table . provides the mean absolute error (MAE) and the mean squared error
(MSE) for the three images in Fig. ..
Figure . provides a detail, with a resolution of  �  pixels, from the noisy

original (let), the AWS reconstruction (center) and the image obtained by nonadap-
tive kernel smoothing. he AWS reconstruction produces a much-enhanced image
at the cost of flattening some smooth areas due to its local constant approximation.
On the other hand, the nonadaptive kernel smoother suffers from a bad compromise
between variance reduction and introduction of blurring, or bias, near edges.

Example: Local Polynomial
Propagation–Separation (PS) Approach 8.4.4

Models (.) and (.) assume that the gray or color value is locally constant. his
assumption is essentially used in the form of the stochastic penalty si j . he effect can
be viewed as a regularization in the sense that in the limit for hmax � U, the recon-
structed image is forced to a locally constant gray value or color structure even if the
true image is locally smooth.his is clearly apparent in the detailed reconstruction in
the center of Fig. ., where the sculpture looks particularly cartoon-like. Such effects
can be avoided if a local polynomial structural assumption is employed. Due to the
increased flexibility of such models, this comes at the price of a decreased sensitivity
to discontinuities.
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hepropagation–separation approach fromPolzehl and Spokoiny () assumes
that within a homogeneous region containing Xi = (ih , iv), i.e., for X j � U(Xi), the
gray value or color Yjh , jv can be modeled as

Yjh , jv = θ(Xi)�Ψ( jh − ih , jv − iv) + ε jh , jv , (.)

where the components of Ψ(δh , δv) contain values of basis functions
ψm ,m(δh , δv) = (δh)m(δv)m (.)

for integers m ,m 	 ,m +m � p and some polynomial order p. For a given local
modelW(Xi), estimates of θ(Xi) are obtained by local least squares as

θ̃(Xi) = B−i �
j

wi jΨ( jh − ih , jv − iv)Yjh , jv , (.)

with

Bi = �
j

wi jΨ( jh − ih , jv − iv)Ψ( jh − ih , jv − iv)� . (.)

heparameters θ(Xi) are definedwith respect to a systemof basis functions centered
on Xi . Parameter estimates θ̂(X j, i) in the local model W(X j) with respect to basis
functions centered at Xi can be obtained by a linear transformation from θ̂(X j), see
Polzehl and Spokoiny (). At iteration k, a statistical penalty can now be defined
as

s(k)i j = 

λσ
>θ̂(k−)(Xi) − θ̂(k−)(X j, i?�Bi>θ̂(k−)(Xi) − θ̂(k−)(X j, i)? . (.)

In a similar way, a memory penalty is introduced as

m(k)i j = 

τσ
>θ̃(k)(Xi) − θ̂(k−)(Xi)?�B̃(k)i >θ̃(k)(Xi) − θ̂(k−(Xi)? (.)

where B̃i is constructed like Bi , employing location weights K l(l(k)i j ). he main pa-
rameters λ and τ are again chosen by a propagation condition requiring the free prop-
agation of weights in the specified local polynomial model. A detailed description
and discussion of the resulting algorithm and corresponding theoretical results can
be found in Polzehl and Spokoiny ().
We use an artificial example to illustrate the behavior of the resulting algorithm.

he let image in Fig. . contains gray values

f (x , y) = .7 + sign(x − y)Lsin(ϕ)�r
.� + sin(πr�)�r<.�M8
with x = i�. − , y = j�. − , r = Z

x + y and ϕ = arcsin(x�r) in lo-
cations i, j = , . . . , . he image is piecewise smooth with sharp discontinuities
along diagonals and a discontinuity of varying strength around a circle. he noisy
image on the right of Fig. . contains additive white noise with standard deviation
σ = ..
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Figure .. Artificial locally smooth image, original (let) and noisy version (right)

he upper row of Fig. . provides results obtained by (nonadaptive) kernel, local
linear and local quadratic smoothing (from let to right), employing mean absolute
error (MAE) optimal bandwidths.he second row gives the reconstructions obtained
by the correspondingAWSandpropagation–separation approaches, againwithMAE
optimal maximal bandwidths hmax. he mean absolute error and mean squared er-
ror (MAE) for all six reconstructions together with the employed values of h or hmax
are shown in Table .. Adaptive control was not used (τ = U) for the adaptive pro-
cedures. he local constant AWS reconstruction, although clearly an improvement
on all nonadaptive methods, exhibits clear artifacts resulting from the inappropriate
structural assumption used. Also, the quality of this result heavily depends on the
chosen value of hmax. Both local linear and local quadratic PS allow for more flexi-
bility when describing smooth changes of gray values. his enables us to use much
largermaximal bandwidths, and therefore to obtainmore variance reductionwithout
compromising the separation of weights at the edges. he best results are obtained
by the local quadratic propagation–separation algorithm. he bottom row of Fig. .
again illustrates the sum of weights in each pixel generated in the final step of the
adaptive procedure.
Wenow revisit the example fromFig. ..he reconstruction in Fig. . is obtained

by applying the local quadratic propagation–separation algorithm with parameters
adjusted for the spatial correlation present in the noisy image. he maximal band-
width used is hmax = . he statistical penalty selected by the propagation condi-
tion for color images with spatially independent noise is λ = . his parameter is
again corrected for the effect of spatial correlation at each iteration. Both the MAE

Table .. MAE optimal value of h, MAE and MSE for the images in Fig. .

local constant local linear local quadratic

nonadapt. AWS (p = ) nonadapt. PS (p = ) nonadapt. PS (p = )
h, hmax 5.5 6 5.5 15 10 25

MAE �102 3.27 3.02 3.30 2.10 3.44 1.88

MSE �103 3.52 2.17 3.52 1.64 3.52 1.64
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Figure .. Reconstructions of the noisy image from Fig. .. Upper row: nonadaptive smoothing;

central row: structurally adaptive reconstructions; bottom row: pointwise sum of weights used in the

structurally adaptive reconstructions. Let column: local constant smoothing, e.g., kernel smoothing and

AWS; central column: local linear models; right column: local quadratic models. All reconstructions use

MAE optimal values for the bandwidth or maximal bandwidth, respectively

and the MSE for the reconstruction are significantly smaller than those obtained for
local constant AWS, see Table ..
he detailed view offered by Fig. . allows for amore precise judgment of the im-

age quality for one of the most structured regions in the image. We provide the same
segment of size �  pixels of the original image, its noisy version, and both the
local constant and local quadratic reconstructions. he local constant reconstruction
generally provides more contrast, at the cost of introducing artifacts into the smooth
regions, such as the sculpture. Local quadratic PS gives a better result with respect to
optical impression, MAE and MSE.
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Figure .. Local quadratic reconstruction of the noisy image from Fig. .. See online version for

colors

Concluding Remarks 8.5

In this chapter we have presented a novel adaptive smoothing procedure that has
some remarkable properties and a potentially wide range of applications. We have
illustrated, using a variety of examples, that the approach is essentially dimension-
free; it works in -D, -D and even -D situations. It automatically recovers regions of
homogeneity with respect to a local constant or local polynomial model. As a conse-
quence, borders between homogeneous regions are preserved and even enhanced. If
the specified local model allows for a good approximation of the unknown function
θ, this also permits a significant reduction in variance without introduction of bias.
In areas where the function θ is smooth, the procedure based on a local constant

model is, for large hmax, likely to produce a local constant approximation. Neverthe-
less, such a bias introduced at a certain iteration k will be balanced by the variability
of the estimates at this iteration. he effect can also be avoided by choosing an ap-
propriate value of hmax.
In Polzehl and Spokoiny (), theoretical results are obtained for the case whereP is a one-parameter exponential family.his includes results on the propagation, or

free extension, of weights within interior sets of homogeneous regions and rates of es-
timation in regions where the parameter function θ is smooth. Conditions are given
for the separation of two homogeneous regions depending on their sizes and con-
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Figure .. Upper row: detail of the original image and the same detail from the noisy version. Bottom

row: local constant and local quadratic reconstructions. See online version for colors

trast. It was also shown that, up to a constant, the procedure retains the best quality
of estimation reached within the iteration process at any point. Related results for
the local polynomial propagation–separation approach can be found in Polzehl and
Spokoiny ().
In the formpresented here, the procedure is, for dimension d � , entirely isotropic.

It can be significantly improved by introducing anisotropy adaptively (i.e., depend-
ing on the information about θ obtained in the iterative process) in the definition of
the location penalty.
A reference implementation for the adaptive weights procedure described in

Sect. .. is available as a package (aws) from the R-Project for Statistical Computing
(RDevelopment Core Team, ) at http://www.r-project.org/. Image processing is
implemented in R-package adimpro, see Polzehl and Tabelow ().
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Introduction9.1

Graphical displays are oten constructed to place principal focus on the individual
observations in a dataset, and this is particularly helpful in identifying both the typ-
ical positions of datapoints and unusual or influential cases. However, in many in-
vestigations, principal interest lies in identifying the nature of underlying trends and
relationships between variables, and so it is oten helpful to enhance graphical dis-
plays in wayswhich give deeper insight into these features.his can be very beneficial
both for small datasets, where variation can obscure underlying patterns, and large
datasets, where the volume of data is so large that effective representation inevitably
involves suitable summaries.
hese issues are particularly prominent in a regression setting, where it is the na-

ture of the relationships between explanatory variables and the mean value of a re-
sponse which is the focus of attention. Nonparametric smoothing techniques are ex-
tremely useful in this context as they provide an estimate of the underlying relation-
ship without placing restrictions on the shape of the regression function, apart from
an assumption of smoothness.
his is illustrated in Fig. ., where the let-hand panel displays a scatterplot of

data collected by the Scottish Environment Protection Agency on the level of dis-
solved oxygen close to the start of the Clyde estuary. Data from a substantial section
of the River Clyde are analysed in detail by McMullan et al. (), who give the
background details. Water samples have been taken at irregular intervals over a long
period.he top let-hand panel plots the data against time in years.he large amount
of variation in the plot against year makes it difficult to identify whether any under-
lying trend is present. he top right-hand panel adds a smooth curve to the plot,
estimating the mean value of the response as a function of year. Some indication of
improvement in DO emerges, with the additional suggestion that this improvement
is largely restricted to the earlier years. he smooth curve therefore provides a signif-
icant enhancement of the display by drawing attention to features of some potential
importance which are not immediately obvious from a plot of the raw data. However,
these features required further investigation to separate real evidence of change from
the effects of sampling variation.
In exploring the effect of an individual variable, it is also necessary to consider

the simultaneous effects of others. he lower let-hand panel shows the data plotted
against day of the year. Water samples are not taken every day but, when the samples
are plotted by day of the year across the entire time period, a very clear relationship
is evident. his seasonal effect is a periodic one and so this should be reflected in
an appropriate estimate. he smooth curve added to the lower right panel has this
periodic property. It also suggests that a simple trigonometric shape may well be ad-
equate to describe the seasonal effect. Once a suitablemodel for this variable has been
constructed, it will be advisable to reexamine the relationship between DO and year,
adjusted for the seasonal effect.
he aim of this chapter is to discuss the potential benefits of enhancing graphical

displays in this manner, and to illustrate the insights which this can bring to a vari-
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Figure .. he let-hand panels shows data on dissolved oxygen (DO) in the Clyde estuary, plotted

against year and day within the year. he right-hand panels add smooth curves as estimates of the

underlying regression functions

ety of types of regression data. From this perspective, graphics are oriented towards
the exploration of appropriate models for data, as well as towards the display of the
observed data themselves. In Sect. ., simple methods of constructing smooth es-
timates are described and illustrated. he ideas are developed in the context of re-
sponse data on a continuous measurement scale, but the more general applicability
of the concept is indicated by an extension to binary response data. he graphical
methods employed are also extended beyond simple displays of the underlying re-
gression estimate to include indications of variability and of the suitability of simple
parametric models. hese concepts are extended further in Sect. ., where displays
of nonparametric regression surfaces relating a response variable to two explanatory
variables are discussed.he addition of information on variability and the suitability
of parametric models are revisited in this setting. Situations involving several covari-
ates are discussed in Sect. ., where additive models are used to provide descriptions
of each separate regression component. Some final discussion is given in Sect. ..
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Smoothing in One Dimension9.2

here are many ways in which a nonparametric regression curve can be constructed.
hese include orthogonal basis functions, awide variety of approaches based in splines
and,more recently,methods based onwavelets.While there are important differences
between these approaches from a technical perspective, the particular choice of tech-
nique for the construction of a nonparametric regression curve is less important in
a graphical setting. he principal issue is how an estimate can be used to best effect,
rather than the details of its construction.
For convenience, this chapter will make use of local linear methods of nonpara-

metric regression. hese have the advantages of being simple to explain and easy
to implement, as well as having theoretical properties which are amenable to rela-
tively straightforward analysis. A further advantage lies in the link with the chap-
ter on smoothing by Loader () in an earlier Computational Statistics Handbook,
where many of the technical details can be found. he basic ideas of the method are
described below, but the emphasis thereater is on the use of the technique to enhance
graphical displays.
With regression data of the form �(xi , yi) � i = , . . . , n�, where y denotes a re-

sponse variable and x a covariate, a general prescription of a model is provided by

yi = m(xi) + εi ,

wherem denotes a regression function and the εi denote independent errors. A para-
metric form form can easily be fitted by themethod of least squares. Anonparametric
estimate ofm can be constructed simply by fitting a parametric model locally. For ex-
ample, an estimate ofm at the covariate value x arises fromminimising the weighted
least squares

n�
i=
�yi − α − β(xi − x)�w(xi − x; h) (.)

over α and β. he estimate m̂(x) is the fitted value of the regression at x, namely α̂.
By choosing the weight function w(xi − x; h) to be decreasing in �xi − x�, the linear
regression is fitted locally as substantial weight is placed only on those observations
near x. Unless otherwise noted, this chapter will adopt a weight function w, which is
a normal density centred on  with standard deviation h. he parameter h controls
the width of the weight function and therefore the extent of its local influence. his
in turn dictates the degree of smoothness of the estimate. For this reason, h is usually
referred to as the smoothing parameter or bandwidth.
Computationally, the solution of the weighted least squares (.) is straightfor-

ward, leading to an estimate of the form m̂(x) = v�y, where the vector v is a simple
function of x, the covariate values xi and the weights w(xi − x; h). Specifically, the
ith element of v is

vi = 

n

�s(x; h) − s(x; h)(xi − x)�w(xi − x; h)
s(x; h)s(x; h) − s(x; h) ,
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where sr(x; h) = �&(xi−x)rw(xi−x; h)��n.he estimate can therefore be computed
at a set of covariate values through the expression Sy, where S denotes a smoothing
matrix whose rows contain the vectors v required to construct the estimate at the
points of interest.
his representation emphasises the important fact that the estimation process is

linear in the response data y. It also suggests useful analogies with standard linear
modelling techniques. In particular, the degrees of freedom associated with a linear
model can be identified as the trace of the projection matrix P which creates the
fitted values as ŷ = Py. It is therefore convenient to define the approximate degrees
of freedom associated with a nonparametric estimate as ν = tr�S�, where S is the
smoothing matrix which creates the fitted values at the observed covariate values�xi ; i = , . . . , n�. As the smoothing parameter h is increased, the influence of the
weight function extends across a greater range of the covariate axis and the flexibility
of the estimate is reduced.his corresponds to a reduction in the approximate degrees
of freedom associated with the estimate.
he approximate degrees of freedom therefore provide a helpful alternative scale

on which degree of smoothness can be expressed. he estimate for year shown in
Fig. . was produced with a smoothing parameter corresponding to four degrees of
freedom, namely h = .. his allows a moderate degree of flexibility in the curve
beyond the two degrees of freedom associated with a simple linear shape.
he choice of smoothing parameter h, or equivalently of the approximate degrees

of freedom ν, is therefore of some importance. From a graphical and exploratory per-
spective it is helpful to plot the estimates over a wide range of smoothing parameters,
to view the effects of applying different degrees of local fitting. his is particularly ef-
fective in the form of an interactive animation. However, it is also worth considering
ways of automatically identifying suitable choices of smoothing parameter.
Some very effectivemethods of doing this have been developed for particular types

of regression problem, but other proposals have the advantage of very wide applica-
bility. One of the most popular of these has been cross-validation, where h is chosen
to minimise

n�
i=
�y−i − m̂i(xi)� .

he subscript on m̂−i indicates that the estimate is constructed from the dataset with
the ith observation omitted, and so the criterion being minimised represents the pre-
diction error of the estimate. here is some evidence that this approach produces
substantial variation in its selected smoothing parameters. his chapter will there-
fore use an alternative criterion, proposed by Hurvich et al. (), based on Akaike’s
information criterion (AIC). his chooses h to minimise

log(RSS�n) +  + (ν + )(n − ν − ) , (.)

where RSS denotes the residual sum-of-squares&n
i=�yi − m̂(xi)� and, as described

above, ν = tr�S�. In general, thismethod offers a very useful and usually very effective
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means of selecting an appropriate degree of smoothness. However, any method of
automatic selection must be used carefully.
In the initial plots of the DO data in Fig. . it was noted that the day effect is a peri-

odic one. his can easily be accommodated in the construction of a smooth estimate
by employing a periodic weight function. Since a linear model is not appropriate for
periodic data, a locally weighted mean offers a simple solution. A smooth estimate is
then available as the value of α which minimises the weighted least squares

n�
i=
�yi − α� exp\ 

h
cos(π(xi − x)�)^ .

his uses an unscaled von Mises density as a weight function, with a period of 
days to allow for leap years. In order to allow the estimate to express shapes beyond
a standard trigonometric pattern, the approximate degrees of freedomwere set to the
slightly higher value of  in constructing the estimate of the seasonal effect in Fig. ..
Nonparametric curve estimates are very useful as a means of highlighting the

potential shapes of underlying regression relationships. However, like any estimate
based on limited information, they are subject to the effects of variability. Indeed, the
flexibility which is the very motivation for a nonparametric approach will also in-
crease the sensitivity of the estimate to sampling variation in the data. It is therefore
important not only to examine curve estimates but also to examine their associated
variability.
he linear representation of the estimate as m̂(x) = v� y, where v is a known vec-

tor as discussed above, means that its variance is readily available as var�m̂(x)� =(&n
i= v


i ) σ , where σ is the common variance of the errors εi . he calculation of

standard errors then requires an estimate of σ . Pursuing the analogy with the linear
models mentioned above leads to proposals such as σ̂ = RSS�d f , where d f is an ap-
propriate value for the degrees of freedom for error. Other approaches are based on
local differencing. A particularly effective proposal of Gasser et al. () is based on
the deviations of each observation from the linear interpolation between its neigh-
bours, as ε̃i = yi − ai yi− − ( − ai)yi+, where ai = (xi+ − xi)�(xi+ − xi−), under
the assumption that the data have been ordered by increasing x value. his leads to
the estimate

σ̂ = 

n − 
n−�
i=

ε̃i
 + ai + ( − ai) .

he standard error of m̂(x) is then available asZ(&n
i= v


i ) σ̂.

he let-hand plot of Fig. . shows the estimate of the seasonal effect in the Clyde
data, with curves indicating a distance of two standard errors from the estimated re-
gression function. Some care has to be exercised in the interpretation of this band.
he smoothing inherent in the construction of a nonparametric regression curve in-
evitably leads to bias, as discussed by Loader (). he band cannot therefore be
given a strict interpretation in terms of confidence. However, it does give a good in-
dication of the degree of variability in the estimate and so it is usually referred to as
a variability band.
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Figure .. he let-hand panel shows a smooth curve as an estimate of the underlying regression

function for the seasonal effect in the Clyde data, with variability bands to indicate the precision of

estimation. he dotted line denotes a smoothed version of a shited and scaled cosine model. he

right-hand panel shows an estimate of the year effect ater adjustment for the seasonal effect.

A reference band has been added to indicate where a smooth curve is likely to lie if the underlying

relationship is linear

A natural model for the seasonal effect is a shited and scaled cosine curve, of the
form

yi = α + β cos_π (xi − θ)


` + εi ,

where the smaller effect across years, if present at all, is ignored at the moment. Mc-
Mullan et al. () describe this approach. A simple expansion of the cosine term
allows this model to be written in simple linear form, which can then be fitted to be
observed data very easily.
However, some thought is required in comparing a parametric form with a non-

parametric estimate. As noted above, bias is an inevitable consequence of nonpara-
metric smoothing. We should therefore compare our nonparametric estimate with
whatwe expect to seewhen anonparametric estimate is constructed fromdata gener-
ated by the cosine model.his can easily be done by considering E�m̂(x)�, where the
expectation is calculated under the cosine model. he simple fact that
E�Sy� = SE�y� suggests that we should compare the nonparametric estimate Sy
with a smoothed version of the vector of fitted values ŷ from the cosine model,
namely S ŷ.his curve has been added to the let hand plot of Fig. . and it agrees very
closely with the nonparametric estimate. he cosine model can therefore be adopted
as a good description of the seasonal effect.
Since the seasonal effect in the Clyde data is so strong, it is advisable to reexam-

ine the year effect ater adjustment for this. Nonparametric models involving more
than one covariate will be discussed later in the chapter. For the moment, a simple
expedient is to plot the residuals from the cosine model against year, as shown in the
right hand panel of Fig. ..he reduction in variation over the marginal plot of DO
against year is immediately apparent.
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It is now also natural to consider whether a simple linear modelmight be adequate
to describe the underlying relationship, with the curvature exhibited by the nonpara-
metric estimate attributable to sampling variation. Variability bands provide one way
of approaching this. However, a more direct way of assessing the evidence is through
a reference band, which indicates where a nonparametric estimate is likely to lie if
the underlying regression is indeed linear. Since bias in the nonparametric estimate
depends on the curvature of the underlying regression function, it follows that a non-
parametric estimate, fitted by the local linear method, is unbiased in the special case
of data from a linear model. If the fitted linear model at the covariate value x is repre-
sented as&n

i= li yi , then it is straightforward to see that the variance of the difference
between the linear and nonparametric models is simply&n

i=(vi − li)σ . On substi-
tuting an estimate of σ , a reference band extending for a distance of two standard
errors above and below the fitted linear model can then easily be constructed.
his is illustrated in the right-hand panel of Fig. ., where the evidence against

a simple linear model is confirmed in this graphical manner.his addition to the plot
has therefore identified an important feature which is not easily spotted from plots
of the raw data.
A formal, global test can also be carried out, as described by Bowman and Azzalini

(), but the discussion here will be restricted to graphical aspects. It should also
be noted that the calculations for the reference band have been adjusted to account
for the correlations in the residuals from the fitted cosine model. However, this effect
is a very small one.
he idea of local fitting of a relevant parametric model is a very powerful one

which can be extended to a wide variety of settings and types of data. For example,
nonparametric versions of generalised linear models can be constructed simply by
adding suitable weights to the relevant log-likelihood function. Under an assumption
of independent observations, the log-likelihood for a generalised linear model can be
represented as &n

i= l(α, β). A local likelihood for nonparametric estimation at the
covariate value x can then be constructed as

n�
i=

l(α, β)w(xi − x; h)
and the fitted value of themodel at x extracted to provide the nonparametric estimate
m̂(x).
An example is provided by the data displayed in the top let-hand panel of Fig. .,

which indicate whether the dissolved oxygen in water samples, taken from two well-
separated monitoring points on the river, was below () or above () a threshold of
mg/l, which is the level required for healthy resident andmigratory fish populations.
In order to standardise for the year and seasonal effects which were noted in the ear-
lier analysis, the measurements considered here are restricted to the years from 
onwards and to the summer months of May and June. he level of dissolved oxygen
is likely to be related to temperature, which has therefore been used as a covariate. It
is particularly difficult to assess the nature of any underlying relationship when the
response variable is binary, even when some random variation has been added to the
response values to allow the density of points to be identified more clearly.
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Figure .. he top let-hand panel shows data on the occurrence of very low (< %) levels of dissolved
oxygen in the River Clyde, related to the temperature of the water. he top right-hand panel shows

a smooth nonparametric regression curve to display the pattern of change in the probability of very low

dissolved oxygen as a function of temperature. he bottom let-hand panel displays standard error

bands to indicate the variability in the nonparametric estimate. he bottom right-hand panel shows

nonparametric regression curves simulated from the fitted logistic model, together with the

nonparametric curve from the observed data

A natural model in this setting is a simple logistic regression where the proba-
bility p(x) of observing a measurement below the threshold is assumed to be de-
scribed by exp(α + βx)�( + exp(α + βx)), where α and β are unknown parame-
ters. he log-likelihood contribution for an observation (xi , yi) can be written as
yi log�p(xi)� + ( − yi) log�− p(xi)�. Maximising the weighted log-likelihood, as
described above, and using a smoothing parameter h = , produces the nonparamet-
ric estimate shown in the top right-hand panel of Fig. ..he technical details of this
process are described by Fan et al. ().
he generally increasing nature of the relationship between low measurements

and temperature is apparent. However, the downturn in the estimate of the probabil-
ity for the highest temperature is a surprise. Again, it is helpful to add information on
variability to the plot. he bottom let hand panel of Fig. . shows variability bands
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for the estimate, constructed by carrying the weights through the usual process of
deriving standard errors in generalised linear models. hese indicate a high degree
of variability at high temperatures.
he suitability of a linear logistic model can be assessed more directly by con-

structing a reference band. A simple way of doing this here is to simulate data from
the fitted linear logistic model and construct a nonparametric estimate from each
set of simulated data. he results from repeating this  times are displayed in the
bottom right-hand panel of Fig. .. he appearance of some other estimates with
curvature similar to that exhibited in the original estimate offers reassurance that the
data are indeed consistent with the linear logistic model and prevents an inappropri-
ate interpretation of a feature in the nonparametric estimate which can reasonably
be attributed to sampling variation.

Smoothing in Two Dimensions9.3

he implementation of smoothing techniques with two covariates is a particularly
important application because of the wide variety of types of data where it is help-
ful to explore the combined effects of two variables. Spatial data provide an im-
mediate example, where the local characteristics of particular regions lead to mea-
surement patterns which are oten not well described by simple parametric shapes.
As in the univariate case, a variety of different approaches to the construction of
a smooth estimate of an underlying regression function is available. In particular,
the extension of the local linear approach is very straightforward. From a set of data�(xi , xi , yi) � i = , . . . , n�, where y denotes a response variable and x, x are
covariates, an estimate of m at the covariate value x arises from minimising the
weighted least squares

n�
i=
�yi − α − β(xi − x) − β(xi − x)�w(xi − x; h)w(xi − x; h)

over α, β and β. he estimate m̂(x) is the fitted value of the regression at x, namely
α̂. More complex forms of weighting are possible and Härdle et al. () give a more
general formulation. However, the product form shown above is particularly attrac-
tive in the simplicity of its construction.
From the form of this weighted sum-of-squares, it is immediately obvious that

the estimator m̂(x) again has a linear form v�y, for a vector of known constants v.
he concept of approximate degrees of freedom then transfers immediately, along
with automatic methods of smoothing parameter selection such as the AIC method
described in (.). Estimation of the underlying error variance needs more specific
thought, although the same principles of local differencing apply, as described by
Munk et al. (). For the particular case of two covariates, a method based on
a very small degree of local smoothing is also available, as described by Bock et al.
(), and this is used in the illustrations of this chapter.
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Figure .. A nonparametric estimate of a regression surface relating the mean level of a catch score to

latitude and longitude, using data from the Great Barrier Reef

Figure . displays a smooth estimate of a regression surface derived from data
on a catch score, representing the abundance of marine life on the sea bed at vari-
ous sampling points in a region near the Great Barrier Reef, as a function of latitude
and longitude. Poiner et al. () describe the background to these data and Bow-
man and Azzalini () illustrate the application of smoothing techniques on var-
ious subsets. Here, the data for two successive years are examined to investigate the
relationship between the catch score and the covariates latitude and longitude.
Several types of graphical display are available for the resulting estimate. Figure .

uses both colour shading and contour levels to indicate the height of the estimated
regression surface.he simultaneous use of both is helpful in enhancing the interpre-
tation in a form familiar to users of geographical maps. However, three-dimensional
projections are also easy to construct with many sotware packages and the ability to
render surfaces to a high degree of visual quality is now commonly available. he dis-
play is further enhanced by animated rotation, providing a very realistic perception
of a real three-dimensional object. Figure . displays this kind of representation in
static form.
Figures . and . were produced with the smoothing parameters (h , h) =(., .) selected by AIC and equivalent to  degrees of freedom. his choice

was based on a single underlying parameter h, which was then scaled by the sample
standard deviations, s , s , of the covariates to provide a pair of smoothing parame-
ters, (hs , hs). A common smoothing parameter for each dimension or unrestricted
choices of h and h could also be allowed.
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Figure .. A smooth surface representing an estimate of the regression function of catch score on

latitude and longitude simultaneously

A clear drop in mean catch score as longitude increases is indicated. However,
more detailed insight is available from the estimated surface, with clear indication of
a nonlinear pattern with increasing longitude. In fact, due to the orientation of the
coast in this region, longitude broadly corresponds to distance offshore, leading to
a natural biological interpretation, with relatively constant levels of marine life abun-
dance near the coast followed by rapid decline in deeper water. he smooth surface
therefore provides a significant enhancement of the display by drawing attention to
features of some potential importance which are not immediately obvious from plots
of the raw data.
It is natural to revisit in the setting of two covariates the discussion of the benefits

of adding further information, particularly on variability and reference models, to
displays of nonparametric estimates. he graphical issues are now rather different,
given the very different ways in which the estimate itself must be represented. One
possibility is to mix the different types of representation (colour, contours, three-
dimensional surfaces) with an estimate represented in one way and information on
variability in another. For example, the colour and contour displays in Fig. . might
be used for these two different purposes, although this particular combination can
be rather difficult to interpret.
One attractive option is to combine surface and colour information and Fig. .

illustrates this by painting the estimated regression surface to indicate the variations
in standard error in different locations. Discrete levels of colour have been used for
simplicity, with a separate colour associated with each individual polygonal surface



Smoothing Techniques for Visualisation 505

Figure .. An estimate of the regression function of catch score on latitude and longitude, with colour

coding to add information on the relative size of the standard error of estimation across the surface

panel.his highlights the areas where precision in the estimate is low. It is no surprise
to find these at the edges of the surface, where information is less plentiful. However,
it is particularly helpful to be able to identify the relatively high standard errors at
low latitude.
his idea extends to the assessment of reference models, such as a linear trend

across latitude and longitude.his is shown in the right-hand panel of Fig. ., where
the surface panels are painted according to the size of the standardised difference(m̂ − p̂)�s.e.(m̂ − p̂), to assess graphically the plausibility of a linear model p̂ in two
covariates. he red panels indicate a difference of more than , and the blue panels of
less than −, standard errors (s.e.).his gives an immediate graphical indication that
the curvature in the surface is not consistent with a linear shape.
Surfaces are three-dimensional objects and sotware to display such objects in high

quality is now widely available. he OpenGL system is a good example of this, and
access to these powerful facilities is now possible from statistical computing envi-
ronments such as R, through the rgl package described by Adler (). he let
hand plot of Fig. . gives one example of this, showing a regression surface for the
Reef data with additional wire mesh surfaces to define a reference region for a lin-
ear model. he protrusion of the estimated surface through this reference region in-
dicates the substantial lack-of-fit of the linear model. his higher quality of three-
dimensional representation, together with the ability to rotate the angle of view in-
teractively, provides a very attractive and useful display.
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Figure .. Estimates of the regression function of catch score on latitude and longitude he let-hand

panel displays a reference band for linearity while the right-hand panel uses colour coding to indicate

the size of the difference between the estimate and a linear regression function, in units of standard

error

he two plots of Fig. . give an example of a further extension of this type of dis-
play to the comparison of two different surfaces, referring in this case to two different
years of sampling. he surface panels are now painted by the values of the standard-
ised distance (m̂−m̂)�s.e.(m̂−m̂), and so the added colour assesses the evidence
for differences between the two underlying surfaces m and m. he very small re-
gions where the estimates are more than two standard errors apart indicate that there
are only relatively small differences between the catch score patterns in the two years.

Figure .. [his figure also appears in the color insert.] Estimates of regression functions of catch

score on latitude and longitude for two different years of data collection. Colour coding has been used

to indicate the standard differences between the two surfaces
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A more detailed description of the construction of displays of this type, together
with techniques for more global assessment of the evidence for differences between
surfaces and methods for incorporating correlated data, are provided in Bowman
().

Additive Models 9.4

In order to be useful statistical tools, regression models need to be able to incorpo-
rate arbitrary numbers of covariates. In principle, the local fitting approach described
above could be extended to any number of covariates. However, in practice, the per-
formance of such simultaneous estimation deteriorates rapidly as the dimensionality
of the problem increases. A more parsimonious and powerful approach is offered
by additive models, developed by Friedman and Stuetzle (), Hastie and Tibshi-
rani () and many other authors. hese allow each covariate to contribute to the
model in a nonparametric manner but assume that the effects of these are additive,
so that a model for data �(xi , . . . , xpi , yi); i = , . . . , n� is given by

yi = α + m(xi) + . . . +mp(xpi) + εi .

his extends the usual linear regressionmodel by allowing the effects of the covariates
to be nonparametric in shape. To ensure that the model is identifiable, the constraint
that each component functionm j averages to zero across the observed covariate val-
ues can be adopted.
Additive models can be fitted to observed data through the backfitting algorithm,

where the vectors of estimates m̂ j = (m̂ j(x j), . . . , m̂ j(x jn))� are updated from iter-
ation r to r +  as

m̂(r+)j = S j
��y − α̂ −�

k< j
m̂(r+)k −�

k� j
m̂(r)k

�� . (.)

his applies a smoothing operation, expressed in the smoothing matrix S j for the jth
covariate, to the partial residuals constructed by subtracting the current estimates of
all the other model components from the data vector y. he estimate of the intercept
term α can be held fixed at the sample mean ȳ throughout. he identifiability con-
straint on each component function can be incorporated by adjusting the vectors m̂ j

to have mean zero ater each iteration.
he backfitting algorithm described above is not the only way in which an additive

model can be fitted to observed data. In particular, Mammen et al. () proposed
a smooth backfitting algorithm which has a number of attractive properties. Nielsen
and Sperlich () give a clear exposition of this approach, with practical proposals
for bandwidth selection.
Hastie and Tibshirani () discuss how the standard errors of the estimates can

also be constructed. Computationally, the end result of the iterative scheme (.) can
be expressed in matrix form as ŷ = Py = (P + &p

j= Pj)y, where P is filled with



508 AdrianW. Bowman

the values �n to estimate α, and the remaining matrices construct the component
estimates as m̂ j = Pj y. he standard errors of m̂ j at each observed covariate value
are then available as the square roots of the diagonal entries of PjP�j σ̂

 , where the
estimate of error variance σ̂ can be constructed as RSS�d f and d f denotes the de-
grees of freedom for error. Hastie and Tibshirani give the details on how that can be
constructed, again by analogy with its characterisation in linear models.
he let-hand panels of Fig. . show the results of fitting an additive model in lati-

tude and longitude to the Reef data.he top two panels show the estimated functions
for each covariate, together with the partial residuals, while the bottom panel shows
the resulting surface. he additive nature of the surface is apparent as slices across
latitude always show the same shape of longitude effect and vice versa. (Notice that
colour has been used here simply to emphasise the heights of the surface at different
locations.)
he level of smoothing was determined by setting the number of approximate de-

grees of freedom to four for each covariate. An alternative approach, advocated by
Wood (), applies cross-validation as an automatic method of smoothing param-
eter selection at each iteration of the estimation process defined by (.). he effects
of this strategy on the Reef data are displayed in the right-hand panels of Fig. ..he
estimate of the longitude effect is very similar but a very large smoothing parameter
has been selected for latitude, leading to a linear estimate. Based on the earlier es-
timate for the latitude effect, using four degrees of freedom, a linear model for this
term is a reasonable strategy to adopt. his leads to a semiparametric model, where
one component is linear and the other is nonparametric. his hybrid approach takes
advantage of the strength of parametric estimation where model components of this
type are justified.
For a further example of additive models, the Clyde data are revisited. When wa-

ter samples are collected, a variety of measurements are made on these.his includes
temperature and salinity and it is interesting to explore the extent to which the DO
level in the samples can be explained by these physical parameters. Clearly, tempera-
ture has a strong relationship with the day of the year. In fact, salinity also has a strong
relationship with this variable, as it measures the extent to which freshwater from the
river and salt water from the sea mix together, and this has a strong seasonal compo-
nent related to the volume of river flow. It is therefore inappropriate to use all three of
these variables in amodel for DO. As Hastie and Tibshirani () observe, the effect
of concurvity, where explanatory variables have strong curved relationships, creates
difficulties analogous to those associatedwith collinearity in a linearmodel.he three
explanatory variables to be considered are therefore year, temperature and salinity,
with the latter variable on a log(salinity + ) scale to reduce substantial skewness.
he top two panels of Fig. . show nonparametric curve estimates based on re-

gressions of DO on temperature and salinity separately. he lower three panels of the
figure show the effects of fitting an additive model which expresses the DO values as
a sumof year, temperature and salinity components simultaneously. One striking fea-
ture expressed in the partial residuals is the substantial reduction in the variability of
the data compared to that displayed in the marginal scatterplots, as each component
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Figure .. he let-hand panels show the components and fitted surface of an additive model for the

Reef data, using four degrees of freedom for each covariate. he right-hand panels show the results for

an additive model when cross-validation is used to select the degree of smoothing at each step of the

backfitting algorithm
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Figure .. he top two panels show plots of dissolved oxygen against temperature and log salinity

with the Clyde data. he middle two panels show the fitted functions for temperature and log salinity,

and the lower panel for year, from an additive model
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focuses only on the variation that is not explained by the others. Some interesting
features are displayed in the curve estimates, with DO declining in a linear manner
as temperature increases while DO is elevated at low salinity but constant elsewhere.
Reassuringly, the trend across years remains very similar to the patterns displayed in
earlier analysis, when adjustment involved only the day of the year. his collection
of graphs therefore provides a very powerful summary of the data across all the co-
variates involved and brings considerable insight into the factors which influence the
observed values of DO.

Discussion 9.5

he material of this chapter has aimed to introduce the concepts and aims of non-
parametric regression as a means of adding significant value to graphical displays of
data. Technical details have been limited only to those required to give a general ex-
planation of the methods. However, a great deal of technical work has been carried
out on this topic, which is well represented in the statistical research literature. here
are several books in this area and these provide good starting points for further in-
formation. Hastie and Tibshirani () give a good general overview of smoothing
techniques as well as a detailed treatment of additive models. Green and Silverman
() give a very readable and integrated view of the penalty function approach to
smoothing models. Fan and Gijbels () gives considerable theoretical insight into
the local linear approach to smoothing, while Simonoff () is particularly strong
in providing extensive references to the literature on nonparametric regression and
is therefore a very good starting point for further reading.
Bowman and Azzalini () give a treatment which aligns most closely with the

style of exposition in this chapter and focuses particular attention on smoothing
over one and two covariates and on graphical methods. Schimek () provides
an collection of contributions from a wide variety of authors on different aspects
of the topic. Härdle et al. () give a further general overview of nonparametric
modelling, while Ruppert et al. () give an authoritative treatment of semipara-
metric regression in particular. Wood () provides an excellent introduction to,
and overview of, additive models, focussing in particular on the penalized regression
splines framework andwith a great deal of helpful practical discussion. An alternative
wavelet view of modelling is provided by Percival and Walden () in the context
of time series analysis. On specifically graphical issues, Cleveland ()makes excel-
lent use of smoothing techniques in the general context of visualising data. Material
provided by Loader () on local regression techniques and Horowitz () on
semiparametric models in an earlier Handbook of Computational Statistics are also
highly relevant to the material of this chapter.
he role of smoothing techniques in visualisation has been indicated by specific

regression examples in this chapter. However, the principles behind this approach al-
low it to be applied to a very wide range of data structures and application areas. For
example, Cole and Green () discuss the estimation of quantile curves, while Kim
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and Truong () describe how nonparametric regression can accommodate cen-
sored data. Diblasi and Bowman () use smoothing to explore the shape of an em-
pirical variogram constructed from spatial data, examining in particular the evidence
for the presence of spatial correlation. Simonoff () discusses the smoothing of or-
dered categorical data, while Härdle et al. () describe single index models which
aim to condense the information in several potential explanatory variables into an
index which can then be related to the response variable, possibly in a nonparamet-
ric manner. Cook and Weisberg () address the general issue of identifying and
exploring the structure of regression data, with particular emphasis on the very help-
ful roles of smoothing and graphics in doing so. hese references indicate the very
wide variety of ways in which smoothing techniques can be used to great effect to
highlight the patterns in a wide variety of data types, with appropriate visualization
forming a central part of the process.
Sotware to implement smoothing techniques is widely available and many stan-

dard statistical packages offer facilities for nonparametric regression in some form.
he examples and illustrations in this chapter have all been implemented in the R
statistical computing environment (R Development Core Team, ) which offers
a very extensive set of tools for nonparametric modelling of all types. he one- and
two-covariate models of this chapter were fitted with the sm (Bowman and Azzalini,
) package associated with the monograph of Bowman and Azzalini (). he
mgcv (Wood, ) and gam (Hastie, ) packages provide tools for generalised
additive models which can deal with a much wider distributional family beyond the
simple illustrations of this chapter.
he website associated with this handbook provides R sotware which will allow

the reader to reproduce the examples of the chapter and, by doing so, offers encour-
agement for the reader to investigate the potential benefits of nonparametric regres-
sion modelling as a tool in the exploration of other regression datasets.

Acknowledgement. he assistance of Dr. Brian Miller of the Scottish Environment Protec-
tion Agency in gaining access to, and advising on, the data from the River Clyde is gratefully
acknowledged.
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Figure II... Mouvement des voyageurs et des marchandises dans les principales stations de chemins de

fer en . Scale: mm =   passengers or tons of freight. Source: Album, , Plate  (author’s

collection)



Figure II... Mosaic plots for milestones items, classified by Subject, Aspect and Epoch. Cells with

greater (less) frequency than expected under independence are coloured blue (red), with intensity

proportional to the deviation from independence



Figure II... Top panel: original data ( data points) arranged along a nonlinear surface (Swiss

Roll).Middle panel: -D MDS representation based on a complete weighted graph. Bottom panel: -D

MDS representation based on  nearest-neighbor graph



Figure II... PCA layout of digits dataset (top panel) and the -D graph layout (bottom panel)



Figure II... Mobile of bank employee data



Figure II... A trellis display incorporating five variables of the cars data set



Figure II... Exchange rate data using the original ordering of dimensions and then ordered by the

first data record. Significant features in the ordered version, such as the sudden rise in value of one of

the lower currencies during the third year and the progressive alignment of several of the inner

currencies, are difficult to detect in the original ordering



Figure II... Sectioned scatterplot (let) showing root splits and splits in its children of a classification

tree (right)

Figure II... Spineplot of leaves brushed by response categories with superimposed tree model. he

associated tree is sketched on top for easier identification of individual leaves



Figure II... Sectioned scatterplot of a forest of  trees



Figure III... LM plots of the  Census of Agriculture, showing soybean yield (in bushels per acre),

acreage (in millions of acres), and production (in millions of bushels) by state. he data are sorted by

yield and show the  US states where soybeans were planted. he “US Average” represents the median,

i.e., the value that splits the data in half such that half of the states have values below the median and

the other half of the states have values above the median. For example, Tennessee is the state with the

median yield. his figure has been republished from http://www.nass.usda.gov/research/gmsoyyap.htm

without any modifications (and ideally should contain much less white space in the lower part)



Figure III... LM plots, based on data from the NCI Web page, showing summary values for the years

 to  and for the years  to  in the let data panel, rates and % confidence intervals in

the middle data panel, and boxplots for each of the counties of each state in the right data panel



Figure III... Estimates of regression functions of catch score on latitude and longitude for two

different years of data collection. Colour coding has been used to indicate the standard differences

between the two surfaces



Figure III... Mosaic plot for Table .



Figure III... Qualitative color palettes for the HSV (let) and HCL (right) spaces. he HSV colors

are (H , , ) and the HCL colors (H , , ) for the same hues H. Note that in a monochrome
version of this paper, all pies in the right wheel will be shaded with the same gray, i.e., they will appear

virtually identical

Figure III... Diverging color palettes for the HSV space (upper part) and the HCL space (lower

part), ranging from blue to a neutral color to red. he triples indicate the settings for the three

dimensions: (hue, saturation, value) in the upper part, and (hue, chroma, luminance) in the lower part.

In a monochrome version of the paper, the right- and let-hand sides of the HCL color palette will

appear to be identical, unlike the HSV color palette



Figure III... (Weighted) mosaic plot and dendrogram of the Mammals data clustered via complete

linkage



Figure III... Two price ranges for Gold. he Sterling vs. Dmark plots for them show no regularity

Figure III... he zebra partitions and colors the parts differently. A variable, here the SP axis, is

divided into equal (four in this case) intervals. his quickly reveals interrelationships. In particular,

note those for the highest SP range and review the next figure. . .



Figure III... Let: unsorted data matrix (log ratio gene expression) map with two proximity matrix

(Pearson correlation for arrays and Euclidean distance for genes) maps for Dataset . Right: application

of elliptical seriations to the three matrix maps on the let panel

Figure III... Four color spectra applied to the same correlation matrix map for fity psychosis

disorder variables (Chen, )



Figure III... Data matrix map (log ratio gene expression) with two proximity matrix maps

(Pearson correlation for both genes and arrays) for Dataset  permuted by two average linkage trees

(for genes (rows) and arrays (columns))



Figure III... A representation of association rules



Figure IV... Parallel coordinate plot of financial ratios with skew distributions. Seven outliers have

been selected

Figure IV... Parallel coordinate plot of the financial ratios with skewed distributions. he seven

outliers selected in Fig. . have been removed. he plot’s (red) border is a sign that not all data are

displayed



Figure IV... he luminance and saturation dimensions of the HLS colour space. We will keep

luminance and saturation constant and encode PD information with the hue

Figure IV... he hue dimension of the HLS colour space



Figure IV... Relationships among functional objects: the let panel shows a -D scatterplot of opening

bid (x), day of the auction (y) and price (z). he right panel shows a smoother version of the price

surface, obtained using a Nadaraya–Watson smoother. In that plot, the x-axis is the opening bid and

the y-axis is the day of the auction



Figure IV... Rug plot displaying the price evolution (y-axis) of  online auctions over calendar

time (x-axis) during a three-month period. he colored lines show the price path of each auction, with

color indicating auction length (yellow, three days; blue, five days; green, seven days; red, ten days). he

dot at the end of each line indicates the final price of the auction. he black line represents the average

of the daily closing price, and the gray band is the interquartile range



Figure IV... hree-dimensional visualization of the density evolution of a risk process with respect

to the risk process value Rt (let axis) and time t (right axis). he parameters of the risk process are the

same as in Fig. .. From the Ruin Probabilities Toolbox

Figure IV... A Poisson-driven risk process (discontinuous thin lines) and its Brownian motion

approximation (continuous thin lines). he quantile lines enable an easy and fast comparison of the

processes. he thick solid lines represent the sample ., . . . , .-quantile lines based on  

trajectories of the risk process, whereas the thick dashed lines correspond to their approximation

counterparts. he parameters of the risk process are the same as in Fig. .. From the Ruin

Probabilities Toolbox
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Introduction10.1

Due to the rapid development of information technology in recent years, it is com-
mon to encounter enormous amounts of data collected fromdiverse sources.his has
led to a great demand for innovative analytic tools that can handle the kinds of com-
plex data sets that cannot be tackled using traditional statistical methods. Modern
data visualization techniques face a similar situation and must also provide adequate
solutions.
High dimensionality is always an obstacle to the success of data visualization. As

well as this problem, explorations of the information and structures hidden in com-
plicated data can be very challenging. Parametric models, on the one hand, are of-
ten inadequate for complicated data; on the other hand, traditional nonparametric
methods can be far too complex to implement in a stable and affordable way due to
the “curse of dimensionality.” hus, the development of new nonparametric methods
for analyzing massive data sets is a highly demanding but important task. Follow-
ing the recent successes in many fields of machine learning, kernel methods (e.g.,
Vapnik, ) can certainly provide us with powerful tools for such analyses. Ker-
nel machines facilitate the flexible and versatile nonlinear analysis of data in a very
high-dimensional (oten with infinite dimensions) reproducing kernel Hilbert space
(RKHS). he rich mathematical theory as well as topological and geometric struc-
tures associated with reproducing kernel Hilbert spaces enable probabilistic inter-
pretation and statistical inference. hey also provide a convenient environment that
is suitable for massive computation.
In many classical approaches, statistical procedures are carried out directly on

sample data in Euclidean space R
p . In kernel methods, data are first mapped to

a high-dimensional Hilbert space via a certain kernel or its spectrum, and classi-
cal statistical procedures are then applied to these kernel-transformed data. Kernel
transformations provide us with a new way of specifying a “distance” or “similarity”
metric between different elements.
Ater preparing the raw data in kernel form, standard statistical and/or mathe-

matical sotware can be used to explore nonlinear data structures. For instance, we
can perform nonlinear dimension reduction by kernel principal component analysis
(KPCA), which can be used to construct high-quality classifiers as well as to provide
new angles of view in data visualization. hat is, we are able to view the more compli-
cated (highly nonlinear) structures ofmassive data sets without the need to overcome
the computational difficulties of building complex models. Many multivariate meth-
ods can also be extended to cover highly nonlinear cases through a kernel machine
framework.
In this article, by combining the classical methods of multivariate analysis – such

as PCA, canonical correlation analysis (CCA) and cluster analysis – with kernel ma-
chines, we introduce their kernelized counterparts, which enable more versatile and
flexible data visualization.
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Kernel Machines in the Framework
of an RKHS 10.2

he goal of this section is twofold. First, it serves as an introduction to some ba-
sic RKHS theory that is relevant to kernel machines. Secondly, it provides a unified
framework for kernelizing some classical linear methods, such as PCA, CCA, sup-
port vector clustering (SVC), etc., to allow for nonlinear structure exploration. For
further details, we refer the reader to Aronszajn () for the theory of reproduc-
ing kernels and reproducing kernel Hilbert spaces and Berlinet and homas-Agnan
() for their usage in probability, statistics andmachine learning. Listed below are
some definitions and basic properties.

Let X ⊂ R
p be the sample space of the data, which serves here as an index set.

A real symmetric function κ � X �X b R is said to be positive definite if, for any
positive integer m, any sequence of numbers �a , a , . . . , am � R�, and points�x , x , . . . , xm � X�, we have&m

i , j= aia jκ(xi , x j) 	 .
AnRKHS is aHilbert space of real valued functions onX that satisfy the property
that all evaluation functionals are bounded linear functionals. Note that an RKHS
is aHilbert space of pointwise-defined functions, where theH-normconvergence
implies pointwise convergence.
For every positive definite kernel κ on X � X there is a corresponding unique
RKHS, denoted byHκ , of real valued functions onX . Conversely, for everyRKHSH there is a unique positive definite kernel κ such that � f (ċ), κ(x , ċ)
H = f (x),∀ f � H, ∀x � X , which is known as the reproducing property. We say that this
RKHS admits the kernel κ. A positive definite kernel is also termed a “reproduc-
ing kernel.”
A reproducing kernel κ that satisfies the condition ∫X�X κ(x ,u)dxdu < U has
a countable discrete spectrum given by

κ(x ,u) = �
q

λqϕq(x)ϕq(u), or κ �= �
q

λqϕq c ϕq for short . (.)

hemain idea behind kernel machines is to firstmap the data into an Euclidean spaceX ⊂ R
p into an infinite-dimensional Hilbert space. Next, a particular classical statis-

tical procedure, such as PCA, is carried out in this featureHilbert space. Such a hybrid
model of a classical statistical procedure and a kernel machine is nonparametric in
nature, but when fitting the data it uses the underlying parametric procedure (for ex-
ample, the PCA finds some of the main linear components). he extra effort involved
is the preparation of the kernel data before they are fed into some classical proce-
dures. Below we will introduce two different but isomorphic maps that are used to
embed the underlying Euclidean sample space into a feature Hilbert space. Consider
the transformation

Φ � x b (Rλϕ(x),Rλϕ(x), . . . ,Rλqϕq(x), . . . )′ . (.)
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Let Z �= Φ(X), with is termed the feature space. he inner product in Z is given by

Φ(x) ċΦ(u) = �
q

λqϕq(x)ϕq(u) = κ(x ,u) . (.)

he kernel trick (.) of turning inner products in Z into kernel values allows us
to carry out many linear methods in the spectrum-based feature space Z without
needing to know the spectrum Φ itself explicitly. herefore, it makes it possible to
construct nonlinear (from theEuclidean space viewpoint) variants of linearmethods.
Consider another transformation,

γ � X b Hκ given by γ(x) �= κ(x , ċ) , (.)

which brings a point in X to an element inHκ . he original sample space X is thus
embedded into a new sample spaceHκ . hemap is called an Aronszajn map in Hein
and Bousquet (). We connect these two maps (.) and (.) via J � Φ(X) b
γ(X), given by J (Φ(x)) = κ(x , ċ). Note that J is a one-to-one linear transforma-
tion satisfying

fΦ(x)fZ = κ(x , x) = fκ(x , ċ)fHκ
= fγ(x)fHκ

.

hus, Φ(X) and γ(X) are isometrically isomorphic, and these two feature represen-
tations (.) and (.) are equivalent in this sense. Since they are equivalent, math-
ematically there is no distinction between them. However, from a data visualization
perspective, there is a difference. As the feature map (.) is not explicitly known,
there is no way of visualizing the feature data in Z . In this article, for data visualiza-
tion purposes, data or extracted data features are placed in the framework ofHκ . We
will use the feature map (.) for the later KPCA and kernel canonical correlation
analysis (KCCA). Since the data cluster will be visualized in the original sample spaceX for the SVC, we will use the spectrum-based feature map (.) for ease.
Given data �x , . . . , xn�, let us write, for short, the corresponding new data in the

feature spaceHκ as

γ(x j) �= γ j(� Hκ) . (.)

As can be seen later, via these new data representations (.) and (.), statisti-
cal procedures can be solved in this kernel feature space Hκ in a parallel way us-
ing existing algorithms of classical procedures such as PCA and CCA. his is the
key idea behind kernelization. he kernelization approach can be regarded, from
the original sample space viewpoint, as a nonparametric method, since it adopts
a model via kernel mixtures. It still has the computational advantage of keeping the
process analogous to a parametric method, as its implementation only involves solv-
ing a parametric-like problem in Hκ . he resulting kernel algorithms can be inter-
preted as running the original parametric (oten linear) algorithms on kernel feature
space Hκ . For the KPCA and KCCA in this article, we use existing PCA and CCA
codes on kernel data. One may choose to use codes fromMATLAB, R, Splus or SAS.
he extra programming effort involved is the preparation of data in an appropriate
kernel form.
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Let us discuss another computational issue. Given a particular training data set
of size n, and by applying the kernel trick in (.), we can generate an n � n kernel
data matrix according to a chosen kernel independent of the statistical algorithms to
be used. We then apply the classical algorithm we are interested in, which depends
only on the dot product, to the kernel matrix directly. Now the issue is that the gen-
eration of the full kernel matrix will become a stumbling block when the data size is
huge due to the high computational cost (including CPU time and memory space).
Moreover, the time complexity of the algorithm may depend on the size of this full
kernel matrix. For example, the complexity of SVM isO(n). To overcome these dif-
ficulties, Lee and Mangasarian (a) proposed the “reduced kernel” idea. Instead
of using the full square kernel matrix K, they randomly chose only a small portion
of columns from K to form a thin rectangular kernel matrix, called a reduced ker-
nel. he use of partial columns corresponds to the use of partial kernel bases inHκ ,
while all data points are used for model fitting when the full rows are retained. he
idea of a reduced kernel is applied to the smooth support vector machine (Lee and
Mangasarian, a,b), and according to their numerical experiments, the reduced
kernel method can dramatically reduce the computational load and memory usage
without sacrificing much of the prediction accuracy.he heuristic is that the reduced
kernel method regularizes the model complexity by reducing the number of kernel
bases without sacrificing the number of data points that are used in model-fitting.
his idea has also been successfully applied to smooth є-insensitive support vector
regression (Lee et al., ), which is a penalized є-insensitive least squares fit that
results in an adaptive ridge-type support vector regression estimator. For a theoreti-
cal study of the reduced kernel method, we refer the reader to Lee and Huang ().
A comparison study of the empirical behavior of the eigenvalues and eigenvectors of
the full kernel versus the reduced kernel can also be found therein. Also note that
the feature representation (.) conveniently allows the related optimization prob-
lems to be solved in its primal form as opposed to the dual form. Primal optimization
has several advantages which are especially prominent for large-scale problems. Pri-
mal optimization directly optimizes the objective function, the solution can oten be
obtained in only a couple of gradient steps, and it can easily accommodate the re-
duced kernel approach or another low-rank approximation approach for large-scale
problems.While kernel machine packages are available and conveniently included in
many sotware packages, such as R, Matlab, etc., this reduced kernel method allows
us to utilize kernel machines with reduced computational effort, especially for large
data sets. In this article, the reduced kernel is adopted in conjunction with the algo-
rithms for KPCA and KCCA. Some reference papers and Matlab code are available
at http://dmlab.csie.ntust.edu.tw/downloads.

Kernel Principal Component Analysis 10.3

When dealing with high-dimensional data, methods of projection pursuit play a key
role. Among various approaches, PCA is probably themost basic and commonly used
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for dimension reduction. As unsupervised method, it looks for an r-dimensional lin-
ear subspace with r < p that carries asmuch information (in terms of data variability)
as possible. It sequentially finds new coordinate axes that provide the “best” ways to
view the data, and along which the data exhibit the most variance.he set of all of the
new coordinate axes, the so-called principal components, forms the basis set for the
r-dimensional subspace. It is oten the case that a small number of principal compo-
nents are sufficient to account formost of the relevant data structure and information.
hese are sometimes called the factors or latent variables of the data. In classical PCA,
we try to find the leading eigenvectors by solving an eigenvalue problem in the orig-
inal sample space. We refer the reader to Mardia et al. () and Alpaydin ()
for further details. Due to its nature, PCA can only find linear structures in the data.
But what if we are interested in both linear and nonlinear features? Inspired by the
success of kernel machines, Schölkopf et al. () and Schölkopf et al. () raised
the idea of kernel principal component analysis. In their papers, they apply the idea
of PCA to the feature data in Z via the feature map (.). heir method allows the
analysis of higher-order correlations between input variables. In practice, the trans-
formation does not need to be specified explicitly, and the whole operation can be
done by computing the dot products in (.). In this chapter, our formulation of
KPCA is constructed in terms of its equivalent variant in the framework of RKHSHκ given by (.).
Actually, given any algorithm that can be expressed solely in terms of dot products

(i.e., without explicit usage of the variables Φ(x) themselves), the kernel method
enables us to create nonlinear versions of thr given algorithm; see Aizerman et al.
() and Boser et al. () for example. his general fact is well known to the
machine learning community, and is gradually gaining popularity in the statistical
community too. Here we give some examples of the application of this method to
the domain of unsupervised learning, in order to obtain a nonlinear form of PCA.
Some data sets from UCI Machine Learning Benchmark data archives are used for
illustration.

Computation of KPCA10.3.1

Before getting into KPCA, we briefly review the computational procedure of classi-
cal PCA. Let X � R

p be a random vector with covariance matrix Σ �= Cov(X). To
find the first principal component, we must find a unit vector w � R

p such that the
variance of the projection of X along w is maximized, i.e.,

max
w

w′Σw subject to fwf =  . (.)

his can be rewritten as a Lagrangian problem:

max
α ,w

w′Σw − α(w′w − ) , (.)

where α is the Lagrange multiplier. Taking derivatives with respect to α and w and
setting them to zero, we then solve for α and w. he solutions are denoted α and w,
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and they must satisfy Σw = αw, and w
′w = . herefore,w is obtained by finding

the eigenvector associated with the leading eigenvalue α. For the second principal
component, we look for a unit vectorw which is orthogonal tow andmaximizes the
variance of the projection of X along w. hat is, in terms of a Lagrangian problem,
we solve for α, w and β in the following optimization formula:

max
α ,β ,w

w′Σw − α(w′w − ) − β(w′w) . (.)

Using a similar procedure, we are able to find the leading principal components se-
quentially.
Assume for simplicity that the data �x , . . . , xn� are already centered on their

mean, and so the sample covariance matrix is given by Σn = &n
j= x jx′j�n. By ap-

plying the above sequential procedure to the sample covariance Σn , we can obtain
the empirical principal components.
For KPCA using the feature representation (.), the data mapped in the feature

spaceHκ are �γ , . . . , γn�. he sample covariance (which is also known as a covari-
ance operator inHκ) is given by

Cn �= 

n

n�
j=
(γ j − γ̄) c (γ j − γ̄) , (.)

where f c g is a linear operator defined by ( f c g)(h) �= �g , h
Hκ f for f , g , h � Hκ .
Applying similar arguments to before, we aim to find the leading eigencomponents
of Cn . hat is, we solve for h in the following optimization problem:

max
h
Hκ

�h,Cnh
Hκ subject to fhfHκ =  . (.)

It can be shown that the solution to this is of the form h = &n
j= β jγ j � Hκ , where β j’s

are scalars. As

�h,Cnh
Hκ = n�
i , j=

βiβ j�γi ,Cnγ j
Hκ = β′K2In − n
′
n

n
3Kβ�n ,

and fhfHκ
= β′Kβ, where K = 7κ(xi , x j)8 denotes the n � n kernel data matrix, the

optimization problem can be reformulated as

max
β
Rn

β′K2In − n
′
n

n
3Kβ�n subject to β′Kβ =  . (.)

he Lagrangian of the above optimization problem is

max
α
R,β
Rn

β′K2In − n
′
n

n
3Kβ�n − α(β′Kβ − ) ,

where α is the Lagrange multiplier. Taking derivatives with respect to the β’s and
setting them to zero, we get

K2In − n
′
n

n
3Kβ�n = αKβ , or 2In − n

′
n

n
3Kβ = nαβ . (.)
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his leads to the eigenvalues–eigenvectors problem for gIn − n 
′
n

n hK. Denoting its
largest eigenvalue by α (note that the multiplicative factor n is absorbed into the
eigenvalue) and its associated eigenvector by β, then the corresponding first kernel
principal component is given by h = &n

j= β jγ j in the feature space Hκ . We can
then sequentially find the second, third, etc., principal components. From (.), we
have that βk , k = , , . . . , are orthogonal to n and so the normalization β′kKβk =  is
equivalent to β′k gIn − n

′
n

n hKβk = .hus, βk is normalized according to αk β
′
kβk = .

For an x � R
p and its feature image γ(x) � Hκ , the projection of γ(x) along the

kth eigencomponent of Cn is given by

�γ(x), hk
Hκ = �γ(x) , n�
j=

βk jγ j
Hκ = n�
j=

βk jκ(x j , x) , (.)

where βk is the kth eigenvector of gIn − n 
′
n

n hK. herefore, the projection of γ(x)
onto the dimension reduction linear subspace spanned by the leading r eigencom-
ponents of Cn is given by

��
n�
j=

β jκ(x j , x), . . . , n�
j=

βr jκ(x j , x)�� � R
r .

Let us demonstrate the idea behind KPCA using a few examples. here are three
data sets in this demonstration, the synthesized “two moon” data set, the “Pima dia-
betes” data set, and the “image segmentation” data set.

5 Example 5 First, we compare PCA and KPCA using the synthesized “two moons”
data set shown in Fig. .. he original data set is located in a -D space in (a). We
can see that the two classes of data are not well-separated along any one-dimensional
component. herefore, upon applying PCA, we are not going to see good separation
along the first principal coordinate axis. In the histogram (b), the horizontal axis is
the first principal coordinate from the PCA and the vertical axis is the frequency. As
we can see, there is a great deal of overlap between two classes. A kernelized pro-
jection can provide a solution to this problem. In the histogram (b), the horizontal
axis is the first principal coordinate given by KPCA (with the polynomial kernel of
degree ) and the vertical axis is the frequency. Note that the KPCA with polyno-
mial kernel also does not give good separation. However, in the histogram (b), the
results obtained from KPCA using a radial basis function (RBF, also known as the
“Gaussian kernel”) with σ =  are shown, and they exhibit a good separation. If ei-
ther PCA or KPCA is to be used as a preprocessing step before a classification task,
clearly KPCA using the radial basis function with σ =  is the best choice. he ROC
curves for these approaches are shown in (c), with the area under the curve (AUC)
reported as APCA = ., AKPCA(Poly) = . and AKPCA(RBF) = .. KPCA with
RBF (σ = ) is clearly better at distinguishing between two groups than classical PCA
and the KPCA using the polynomial kernel.
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Figure .. PCA and KPCA applied to a synthetic “two moons” data set: (a) original data, (b) PCA

results, (b) results from KPCA with the polynomial kernel of degree , (b) results from KPCA with

the Gaussian kernel, σ = . In each of these histograms (b–b), the horizontal axis is the principal
coordinate from either the PCA or KPCA and the vertical axis is the frequency. Plot (c) shows the ROC

curves for these three procedures, with area under curve reported asAPCA = .,AKPCA(Poly) = .
and AKPCA(RBF) = .



548 Yuan-chin Ivan Chang et al.

6 Example 6 In this example we use the “Pima diabetes” data set from the UCI Ma-
chine Learning data archives. he reduced kernel method is adopted by randomly
sampling % of the column vectors from the full kernel matrix. For reduced kernel
PCA, we assume K̃ is the underlying reduced kernel data matrix of size n�m, where
n is the data size andm is the reduced set size (i.e., column set size). KPCA using the
reduced kernel is a singular value decomposition problem that involves extracting
the leading right and let singular vectors β̃ and β:

2In − n
′
n

n
3 K̃β̃ = αβ , normalized to αβ̃′β̃ =  and αβ′β =  . (.)

In this data set, there are nine variables, including number of times pregnant, plasma
glucose concentration (glucose tolerance test), diastolic blood pressure (mmHg), tri-
ceps skin fold thickness (mm), two-hour serum insulin (mu U/ml), body mass index
(weight in kg/(height in m)), diabetes pedigree function, age (years), and the class
variable (test for diabetes), which can be positive or negative. For demonstration pur-
poses, we use the first eight variables as input measurements and the last variable as

Figure .. Results from PCA based on original input variables

Figure .. Results from KPCA with the polynomial kernel of degree  and scale 
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Figure .. Results from KPCA with Gaussian kernels



550 Yuan-chin Ivan Chang et al.

the class variable. PCA and KPCA using both the polynomial kernel and the Gaus-
sian kernel are carried out on all of the input measurements. In Figs. .–., the
circles and dots denote positive and negative samples, respectively. Figure . shows
the data scatter projected onto the subspace spanned by the first three principal com-
ponents produced by the classical PCA. Similarly, Fig. . shows plots of data scat-
ter projected onto the subspace spanned by the first three principal components ob-
tained by KPCAusing a polynomial kernel of degree  and scale parameter . Figures
.a–c are pictures of projections onto the principal component space produced by
Gaussian kernels with σ = �, � and �, respectively. If we compare Fig. .
(obtained using PCA) with the other plots, it is clear that KPCA provides some extra
information about the data that cannot be obtained through classical PCA.

7 Example 7 In the third series (Fig. .), we apply PCAKPCA to the “image segmen-
tation” data set (also from the UCI Machine Learning data archives), which consists
of  data points (each with  attributes) that are classified into seven classes. KPCA
with the RBF gives better class separation than PCA, as can be seen in (a) & (b).
When all seven classes are plotted in one graph, it is hard to determine the effect of

Figure .. Results from applying PCA and KPCA to the “image segmentation” data set. A limited

number of outliers have been omitted in the figures
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KPCA.herefore, we have also provided figures retaining only “brickface” and “path.”
hese clearly show that separation is produced by KPCA but not by the PCA.

1Remark 1 he selection of the kernel and its window width is still an issue in gen-
eral kernel methodology. here are some works that provide guidance on kernel se-
lection for classification and supervised learning problems, but there is still a lack of
guidelines in clustering and unsupervised learning problems. In this work, wemerely
aimed to show that nonlinear information about data can be obtained by applying
kernel methods with only minor effort required. he kernel method can help to dig
out nonlinear information about the data, which would be difficult or impossible to
obtain by applying classical linear PCA in the original input space.

Kernel Canonical Correlation Analysis 10.4

Researchers have long been interested in describing and classifying relations between
two sets of variables. Hotelling () introduced canonical correlation analysis to
describe the linear relation between two sets of variables that have a joint distribu-
tion. his defines a new coordinate system for each of the sets such that the new pair
of coordinate systems are the best at maximizing correlations. he new systems of
coordinates are simply linear systems of the original ones. hus, classical CCA can
only be used to describe linear relations. Using such linear relations, classical CCA
can only find linear dimension reduction subspace and linear discriminant subspace.
However, motivated by the active development and the popular and successful usage
of various kernel machines, a hybrid approach combining classical CCA with a ker-
nel machine (Akaho, ; Bach and Jordan, ), named kernel canonical correla-
tion analysis, has emerged in recent years. KCCA has also been studied recently by
Hardoon et al. () among others.
Suppose a random vector X with p components has a probability distribution P

on X ⊂ R
p . We partition X into

X = ���� 
X()X ()

!"""# ,
with p and p components, respectively. he corresponding partition of X is de-
noted byXiX . We are interested in finding relations between X() and X(). Clas-
sical CCA is concerned with linear relations. It describes linear relations by reducing
the correlation structure between these two sets of variables to the simplest possible
form by means of linear transformations of X() and X(). It finds pairs (αi , βi) �
R

p+p in the following way. he first pair maximizes the correlation between α′X
()
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and β′X
() subject to the unit variance constraints V(α′X()) = V(β′X()) = , and

the kth pair (αk , βk), which is uncorrelated with the first k −  pairs, maximizes the
correlation between α′kX

() and β′kX
(), and is again subject to the unit variance con-

straints. he sequence of correlations between α′iX
() and β′iX

() describes only the
linear relations between X() and X().here are cases where linear correlations may
not be adequate for describing the “associations” between X() and X(). A natural
alternative, therefore, is to look for nonlinear relations. Kernel methods can provide
a convenient approach to nonlinear generalization. Let κ(ċ, ċ) and κ(ċ, ċ) be two pos-
itive definite kernels defined on X � X and X � X , respectively. Let X denote the
data matrix given by

X =
������� 
x$
xn

!""""""#n�p

.

Each data point (as a row vector) x j = (x()j , x()j ) in the data matrix is transformed
into a kernel representation:

x j b γ j = (γ()j , γ()j ) , (.)

where

γ(i)j = (κi(x(i)j , x(i) ), . . . , κi(x(i)j , x(i)n )) , j = , . . . , n, and i = ,  .
Or, in matrix notation, the kernel data matrix is given by

K = [KK] =
������� 
γ() γ()$ $
γ()n γ()n

!""""""#n�n

, (.)

whereKi = [κi(x(i)j , x(i)j′ )]nj, j′=, i = , , are the full kernelmatrices for data �x(i)j �n
j= .

he representation of x j by γ j = (γ()j , γ()j ) � R
n can be regarded as an alternative

way of recording data measurements with high inputs.
he KCCA procedure consists of two major steps:

(a) Transform the data points into a kernel representation, as in (.) or (.), in
matrix notation.

(b) Apply the classical CCA procedure to the kernel data matrix K. Note that some
kind of regularization is needed here to solve the associated spectral problem of
extracting leading canonical variates and correlation coefficients. Here we use the
reduced kernel concept stated in theRKHS section and inExample .Only partial
columns are computed to form reduced kernel matrices, denoted by K̃ and K̃.
he classical CCA procedure is applied to the reduced kernel matrix [K̃ K̃].

As KCCA is simply the application of classical CCA to kernel data, existing code
from standard statistical packages can be utilized. In the example below we use the
MATLAB m-file “canoncorr” to implement classical CCA on kernel data.
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8Example 8 We use the data set “pen-based recognition of hand-written digits” from
the UCIMachine Learning data archives for a visual demonstration of nonlinear dis-
criminant using KCCA.We use the  training instances for explanatory purposes.
For each instance, there are  input measurements (i.e., x j is -dimensional) and
a corresponding group label y j from �, , , . . . , �. A Gaussian kernel with a win-
dow width (RS , . . . ,RS) is used to prepare the kernel data, where Si ’s are the
coordinate-wise sample covariances. A reduced kernel of size  equally stratified
over ten digit groups is used and serves as the K̃ in step (b) of the KCCA procedure.
We use y j , the group labels, as ourK (no kernel transformation involved). Precisely,

K =
������� 
Y ′$
Y ′n

!""""""#n�

, Y ′j = (, . . . , , , . . . ) ,
where Yj is a dummy variable for group membership. If y j = i, i = , , . . . , , then Yj

has the entry  at the (i+)th position and  elsewhere.Nowwewant to search for re-
lations between the inputmeasurements and their associated group labels using CCA
and KCCA. he training data are used to find the leading CCA- and KCCA-derived
variates. Next,  test samples from each digit group are drawn randomly from the
test set . Scatter plots of test data projected along the leading CCA-derived variates

Figure .. Scatter plots of pen digits over CCA-derived variates

 he test set has  instances in total, with around  instances on average for each digit.
For the sake of plot clarity and to avoid excess ink, we use only  test points per digit.
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Figure .. Scatter plots of pen digits over KCCA-derived variates

(Fig. .) and the leading KCCA-derived variates (Fig. .) are given below. Differ-
ent groups are labeled with different digits. It is clear that the CCA-derived variates
are not informative regarding group labels, while the KCCA-derived variates are.

Kernel Cluster Analysis10.5

Cluster analysis is categorized as an unsupervised learning method, which tries to
find the group structure in an unlabeled data set. A cluster is a collection of data
points which are “similar” to points in the same cluster, according to certain crite-
ria, and are “dissimilar” to points belonging to other clusters.he simplest clustering
method is probably the k-means algorithm (which can be used in a hybrid approach
with a kernel machine, or as a standalone method). Given a predetermined num-
ber of clusters k, the k-means algorithm will proceed to group data points into k
clusters by () placing k initial centroids in the space, () assigning each data point
to the cluster of its closest centroid, () updating the centroid positions and repeat
the steps () and () until some stopping criterion is reached (see MacQueen, ).
Despite its simplicity, the k-means algorithm does have some disadvantages. First,
a predetermined k is necessary for the algorithm input, and different k’s can lead
to dramatically different results. Secondly, suboptimal results can occur for certain
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initial choices of centroid seeds. hirdly, the algorithm may not be appropriate for
some data distributions where the metric is not uniformly defined, i.e., the idea of
“distance” has different meanings in different regions or for data belonging to differ-
ent labels.
Here we address these issues by introducing a different clustering approach,

namely support vector clustering, which allows hierarchical clusters with versatile
clustering boundaries. Below we briefly describe the idea behind SVC, as described
by Ben-Hur et al. (). SVC was inspired by support vector machines and ker-
nel methods. In SVC, data points are mapped from the data space X to a high-
dimensional feature space Z by a nonlinear transformation (.). his nonlinear
transformation is defined implicitly by a Gaussian kernel with �Φ(x), Φ(u)
Z =
κ(x ,u). he key idea behind SVC is to find the smallest sphere in the feature space
which encloses the data images �Φ(x), . . . , Φ(xn)�. hat is, we aim to solve the
minimization problem

min
a
Z ,R

R , subject to fΦ(x j) − afZ � R ,∀ j , (.)

where R is the radius of an enclosing sphere in Z . he Lagrangian is introduced to
solve the above optimization problem. Let

L �= R − n�
j=
(R − jΦ(x j) − aj)β j , (.)

where β j 	  are the Lagrange multipliers. By differentiating L with respect to the
primal variables R and a respectively and setting the derivatives equal to zero, we
have

n�
j

β j =  and a = n�
j

β jΦ(x j) . (.)

Moreover, the correspondingKarush–Kuhn–Tucker complementarity conditions are

(R − jΦ(x j) − aj)β j = ,∀ j . (.)

Combining (.) and (.), we can eliminate the primal variables R and a and get
the following dual problem:

max
β

W(β) �= n�
j=

β jfΦ(x j) − Φ̄fZ (.)

s.t. Φ̄ �= �
j

β jΦ(x j), �
j

β j =  and β j 	  .
hat is, the SVC algorithm aims to find a weighting scheme β so that the weighted
data spreadW(β) is as wide as possible.
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As R is the radius of the enclosing sphere, corresponding pre-images of the en-
closing sphere consist of points C �= �x � fΦ(x) − Φ̄fZ = R�. For x � C we have

fΦ(x) − Φ̄fZ = κ(x , x) −  n�
j=

β jκ(x j , x) + n�
j, j′=

β jβ j′κ(x j , x j′) = R .

Or equivalently

C �= �x � n�
j=

β jκ(x j , x) = ρ� , (.)

where ρ = (κ(, ) + &n
j, j′= β jβ j′κ(x j , x j′) − R)�. When the enclosing sphere is

mapped back to the data space X , it forms a set of probability contours. hese con-
tours are used as cluster boundaries, and data points inside each contour are assigned
to the same cluster.he SVC forms contours via kernel mixture (.), with the mix-
ing coefficients β j being solved from (.). Note that Φ̄ is a weighted centroid in the
feature space and &n

j= β jfΦ(x j) − Φ̄fZ can be regarded as a weighted measure of
data dispersion in the feature space. In other words, the SVC algorithm finds mixing
coefficients to make the data dispersion as large as possible in the feature space Z ,
while it draws the kernel mixture contours in the original data spaceX to form clus-
ters.he set C defines the cluster boundaries. Data points lying on the boundaries are
called support vectors. Note that the nonlinear transformation Φ is implicitly defined
by a Gaussian kernel, κ(x j , x j′) = e−q�x j−x j′� , q � . (he normalizing constant for
κ is not relevant to cluster analysis and is dropped for simplicity.) A larger value of q
corresponds to a smaller window width and leads to more clusters in the analysis.
Unlike the k-means algorithm, where the number of clusters kmust be prescribed

by the user, the windowwidth in SVC can vary continuously, resulting in hierarchical
clusters. he number of clusters depends on the window width of the Gaussian ker-
nel. Decreasing the width leads to more clusters. Also, in contrast with the k-means
procedure, no initial centroids are required as the algorithm input. herefore, a de-
terministic result, independent from initial conditions, can be expected. SVC also
has the ability to deal with outliers by employing slack variables. It allows some data
points to remain outside the enclosing sphere in the feature space. his is same as
the “sot margin” idea in support vector machines. With the introduction of slack
variables, the optimization problem becomes

min
a,R ,ξ

R + C
n�
j=

ξ j , subject to fΦ(x j) − afZ � R + ξ j , ξ j 	  , ∀ j . (.)

It is straightforward to derive the corresponding dual problem:

max
β

W(β) �= n�
j=

β jfΦ(x j) − Φ̄fZ (.)

s.t.Φ̄ �= �
j

β jΦ(x j) , �
i

β j =  and  � β j � C .
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As �Φ(x j), Φ(x j′)
Z = κ(x j , x j′), the dual problem can be rewritten as a simple
quadratic programming problem:

max
β

W(β) �= −�
j
�
j′

β jβ j′κ(x j , x j′) (.)

s.t.�
j

β j =  and  � β j � C . (.)

Solutions for β’s are not unique, unless the kernel matrix K = [κ(x j , x j′)] is of full
rank. In an optimal solution to problem (.), if  < β j < C, then ξ j =  and
the corresponding data point x j and its image Φ(x j) lie, respectively, on the cluster
boundaries and the surface of the sphere inZ . Such a point is called a support vector
(SV). he image of a point x j with ξ j �  lies outside the sphere. his implies that
the corresponding β j = C. Such an x j is called a bounded support vector (BSV). Data
points can be classified into three types: SVs lie on the cluster boundaries, BSVs are
outside the boundaries, and the other points lie inside clusters. Since  � β j � C and&n

j= β j = , there is no BSV when C 	 . Moreover, �(nC) is an upper bound on the
fraction of BSVs.
In three-dimensional space, we can easily visualize the clusters once the bound-

aries are drawn. However, in a data space with more dimensions, it is hard to picture
and determine which data points are inside a specific cluster.hus, we need an algo-
rithm for cluster assignment. Ben-Hur et al. () introduced the adjacency matrix
for cluster assignment. Let R(y) �= fΦ(y) − Φ̄fZ be the feature distance of Φ(y)
to the data centroid Φ̄. Denote the adjacency matrix by A = [A j j′ ], where A j j′ = 
indicates that the pair ( j, j′) is in the same cluster and A j j′ =  otherwise. We need
only the upper triangular part of the Amatrix. For j < j′

A j j′ =
NOOOPOOOQ
 � if R(y) � R,∀y on the line segment connecting x j and x j′ ,

 � otherwise .

his definition is based on a geometric observation by Ben-Hur et al. For a given pair
of data points, say x j and x j′ , belonging to different clusters, any path that connects
themmust exit from the enclosing sphere.herefore, such a path contains a segment
of points y such that R(y) � R. Checking all points on a line segment is impossible.
In practice, Ben-Hur et al., suggest that – uniformly distributed points should
be used to check whether R(y) � R or not. Once the adjacency matrix A is formed,
the clusters can be defined as the connected components of the graph induced by
A. his procedure will leave the BSVs as outliers. One can either assign them to the
nearest clusters or leave them alone. We will illustrate an example to show how the
SVC works and the effect of the window width of the Gaussian kernel.

9Example 9 We synthesize  points in R space, among which  points are in the
upper hemisphere of the ball with radius . andwith its center at the origin.heother
 points are generated from three areas of the XY plane and then mapped into the
lower hemisphere of the ball. We vary the parameter q from  to  and the number
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Figure ..  points in a three-dimensional space

of resulting clusters changes from one to four. When q = , all  points are in one
cluster, and when q = ., we have four clusters, which is consistent with the way data
is generated. he results are depicted in Fig. .. Cluster membership is represented
by different symbols; the circles, diamonds, squares and triangles indicate support
vectors.
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Introduction11.1

Data visualization can greatly enhance our understanding of multivariate data struc-
tures, and so it is no surprise that cluster analysis and data visualization oten go
hand in hand, and that textbooks like Gordon () or Everitt et al. () are full of
figures. In particular, hierarchical cluster analysis is almost always accompanied by
a dendrogram. Results frompartitioning cluster analysis can be visualized by project-
ing the data into two-dimensional space or using parallel coordinates. Cluster mem-
bership is usually represented by different colors and glyphs, or by dividing clusters
into several panels of a trellis display (Becker et al., ). In addition, silhouette plots
(Rousseeuw, ) provide a popular tool for diagnosing the quality of a partition.
Some of the popularity of self-organizing feature maps (Kohonen, ) with prac-
titioners in various fields can be explained by the fact that the results can be “easily”
visualized.
In this chapter we provide an overview of visualization techniques for cluster anal-

ysis results. Using two real-world data sets, we explain the most important types of
graphs that can be used in combination with hierarchical, partitioning and model-
based cluster analysis. Many plots like dendrograms, convex cluster hulls or silhou-
ettes are specific to clustering, but we also demonstrate how graphical techniques
introduced in other chapters of this handbook can be used as building blocks for
cluster visualization.

The Data Sets11.1.1

Two data sets are used throughout this chapter. he “dentitio” data set is used for
hierarchical clustering (e.g., Hartigan, ). his data set gives the counts for eight
kind of teeth – top-jaw and bottom-jaw counts for incisors, canines, premolars and
molars – in  different species of animals. A subset of the raw data is listed in
Table ..
he second data set, which is used for partitioning and model-based clustering in

Sects. . and ., is related to the German parliamentary elections of September ,
. A subset of the rawdata is given inTable ..hedata consist of the proportions
of the “second votes” obtained by the five parties that got elected to the Bundestag
(the first chamber of the German parliament) for each of the  electoral districts.
he “second votes” are actually more important than the “first votes” because they
control the number of seats each party has in parliament. Note that the proportions
do not sum to  because parties that did not get elected into parliament have been
omitted from the table.
Before election day, the German government comprised a coalition of Social

Democrats (SPD) and the Green Party (GRUENE); their main opposition consisted
of the conservative party (Christian Democrats, CDU/CSU) and the Liberal Party
(FDP). he latter two intended to form a coalition ater the election if they gained
a joint majority, so the two major “sides” during the campaign were SPD+GRUENE
versus CDU/CSU+FDP. In addition, a new “party of the let” (LINKE) canvassed for
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Table .. he first ten observations from the dentitio data: top-jaw and bottom-jaw counts of incisors,

canines, premolars and molars

t.inc b.inc t.can b.can t.pre b.pre t.mol b.mol

Opossum        

Hairy tail mole        

Common mole        

Star nose mole        

Brown bat        

Silver hair bat        

Pygmy bat        

House bat        

Red bat        

Hoary bat        

. . .

Table .. he first ten observations from the German election data: proportions of votes for the five

largest parties in each electoral district

SPD CDU/CSU GRUENE FDP LINKE

Flensburg–Schleswig . . . . .

Nordfriesland– . . . . .

Dithmarschen Nord

Steinburg– . . . . .

Dithmarschen Süd

Rendsburg–Eckernförde . . . . .

Kiel . . . . .

Plön–Neumünster . . . . .

Pinneberg . . . . .

Segeberg–Stormarn Nord . . . . .

Ostholstein . . . . .

Herzogtum Lauenburg– . . . . .

Stormarn Süd

. . .

the first time; this new party contained the descendents of the Communist Party of
the former East Germany and some let-wing separatists from the SPD in the former
West Germany.
A projection of the data onto the first two principal components is shown in

Fig. .. he point cloud in the lower let corner of Fig. . mainly correspond to
districts in eastern Germany, where support for LINKE was strong, while the upper
diagonal cloud mainly to districts in western Germany and contrasts the support for
the two major parties: SPD (up) versus CDU/CSU (down). he final outcome of the
election was CDU/CSU ( seats in parliament); SPD (); FDP (); LINKE ();
GRUENE ().
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Figure .. Projection of the German election data onto the first two principal components. he arrows

give the projected directions of unit vectors corresponding to the five original variables

Software11.1.2

All of the figures presented in this chapter have been created with R (RDevelopment
Core Team, ; Murrell, ) using the extension packages cluster, color-
space, ellipse, flexclust, flexmix, fpc, gplots, grid, kohonen,
lattice,mvtnorm, and vcd. All of those are available from the comprehensive R
archive network at http://cran.R-project.org.he references associatedwith the pack-
ages are usually given in the text when actually used.he two data sets are contained
in package flexclust, while the R code used to generate all figures is available
from the author’s homepage.

Hierarchical Cluster Analysis11.2

Hierarchical cluster methods are probably the “most intuitive” approach to grouping
data, because they approach the problem in a similar way to how a human would



Visualizing Cluster Analysis and FiniteMixtureModels 565

approach the task of dividing a set of N objects into K groups. Trivially, for K = 
the only possible solution is one big cluster consisting of the complete data set XN .
Similarly, for K = N we have N clusters containing only one point each, i.e., each
point is its own cluster.

Divisive hierarchical clustering methods start with the complete data set XN and
(usually) split it into two groups. Each of these groups is then recursively divided into
two subgroups, and so on until each point forms a cluster of its own. Agglomerative
hierarchical clustering works the other way round, and thus starts with N single-
ton clusters. A hierarchy of clusters is created by repeatedly joining the two “closest”
clusters until the complete data set forms one cluster.
In both cases we need to be able to measure the distances d(x, y) between d-

dimensional data points x and y, and between groups of points. he two most com-
mon distance measures are the Euclidean distance

d(x , y) =
-../ d�

i=
(xi − yi) , (.)

and the Manhattan distance

d(x , y) = d�
i=

�xi − yi � . (.)

Distances between groups of points are used to join (or link) clusters, and so these are
oten referred to as linkage methods. Assume that we have two sets A and B of points.
he three simplest linkagemethods formeasuring the distance l(A, B) between these
two sets are:
Single linkage: the distance between the two closest points of the clusters

l(A, B) = min
a
A,b
B

d(a, b) (.)

Complete linkage: the distance between the two points of the clusters that are far-
thest apart

l(A, B) = max
a
A,b
B

d(a, b) (.)

Average linkage: the mean distance between the points in the two clusters

l(A, B) = �A��B� �a
A �b
B d(a, b) (.)

Numerous other linkage methods have been invented, and many of them can be rep-
resented via the unifying framework given by Lance and Williams ().

Dendrograms 11.2.1

he results from hierarchical clustering are typically presented as a dendrogram, i.e.,
a tree where the root represents the one-cluster solution (complete data set) and the
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leaves of the tree are the single data points.he heights of the branches correspond to
the distances between the clusters.here is no “correct” combination of distance and
linkage method. Clustering in general, and especially hierarchical clustering, should
be seen as exploratory data analysis, and different combinations may reveal different
features of the data set.

Figure .. Hierarchical clustering of the dentitio data using Manhattan distance and the average

linkage method
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Figure . shows a dendrogram for the dentitio data created using an agglomer-
ative algorithm utilizing Manhattan distance and the average linkage method. Man-
hattan distance was chosen because it has a direct interpretation for these data: it
equals the difference between the teeth-group counts for two given species.
First we look for animals separated by the minimal distance. Obviously the mini-

mum possible difference is zero, i.e., animals with identical teeth configurations like
the two bats shown in the last two rows of Table .. Animals separated by zero dis-
tance are depicted by vertical lines immediately to the let of their names, as shown
for mink, weasel, ferret, badger and skunk at the top of the graph. Ater all of the an-
imals separated by zero distance have been found and connected, those groups that
are the next smallest average distance apart are joined. In our case, the next smallest
distance possible is a difference of one tooth, as seen for the pygmy bat and the house
bat (also shown in Table .).
Note that the actual layout of a dendrogram is not unique, because at each branch-

ing point the top and bottom branches could be exchanged. For example, the ar-
madillo, which represents an outlier here because it has eight molars and no other
types of teeth, could have equally well been placed at the top of the graph. N − 
branching points are needed to connect all N data points, so the total number of den-
drograms that could be drawn for exactly the same clustering is N−. his is much
smaller than all possible permutations (N!), but is still quite a large number. here-
fore, many sotware packages that perform hierarchical clustering allow the user to
rearrange the observations, either manually or by specifying an ordering function.

Heatmaps 11.2.2

Of course, we can cluster the variables as well as the observations. For example, we
might be interested inwhether the animals differmore in terms of type or top/bottom
jaw. At the top of Fig. . is a dendrogram for the variables sorted as they appear
in the data set, i.e., with the top and bottom of each type next to each other. he
original sorting of the data is compatible with hierarchical clustering of the variables
(as depicted by the dendrogram), because there are no crossing lines in the tree.his
leads to the (rather obvious) conclusion that the variables for the same type of teeth
on the top and bottom jaws are very similar.
Figure . is a so-called cluster heatmap. he main part is an image plot of the

original data, where each cell in the matrix corresponds to a value in the original data
set. Columns and rows are permuted to conform with the hierarchical clustering of
variables and observations; the corresponding dendrograms are placed to the let and
on top of the matrix, respectively.
Many important features of this data set can be easily picked out using the heatmap

representation. he strongest patterns are the four “vertical stripes” for each of the
four types of teeth, because many animals have the same (or very similar) counts on
the top and bottom jaws. We can also see that the number of canines in general is
rather low, while the other three tooth types show “blocks” of animals with either
high or low counts. For example, the predators in the upper rows have larger in-
cisor and premolar counts, while the rodents in the bottom rows have more molars.
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Figure .. Heatmap of the dentitio data using Manhattan distance and the average linkage method for

both columns and rows

herefore, hierarchical clustering can be a valuable tool for rearranging variables and
observations in a data set in order to highlight interesting patterns.

Partitioning Cluster Analysis11.3

Partitioning cluster analysis is a complexity reduction technique. It projects data
from a multidimensional (and most oten metric) space to a single nominal vari-
able, the cluster membership. he goal is to either find homogeneous subgroups in
the data, which are ideally as different as possible from each other, or to impose ar-
tificial grouping on the data. In any case, we want to increase our understanding of
the data using a “divide and conquer” approach that partitions a large and potentially
complex data set into segments that are easier to understand or handle.
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he most popular group of partitioning cluster algorithms are probably the cen-
troid-based algorithms, like K-means (MacQueen, ; Hartigan and Wong, )
or partitioning aroundmedoids (PAM,Kaufman andRousseeuw, ). Assume that
we are given a data set XN = �x , . . . , xN� and a set of centroids CK = �c , . . . , cK�.
Let d(x, y) again denote the distance between two points x and y, let

c(x) = argmin
c
CK

d(x, c) (.)

denote the centroid closest to x, and let

Ak = �xn �c(xn) = ck� (.)

be the set of all points where ck is the closest centroid. For simplicity of notation we
remove all empty clusters such that �Ak � � , ∀k = , . . . ,K. Most cluster algorithms
will try to find a set of centroids CK for fixed K such that the average distance

D(XN ,CK) = 

N

N�
n=

d(xn , c(xn)) �min
CK

, (.)

of each point to the closest centroid is minimized. However, for the following visu-
alization techniques it is not important whether such an optimum has actually been
reached, and the choice of the centroid-based cluster algorithm is also not important.

Convex Cluster Hulls 11.3.1

Once a suitable set of centroids has been found, it is usually of interest to explore
how the centroids partition the input space, either in terms of the original data set
or in order to enable predictions for new data. For visualization, one usually projects
the data into two dimensions, using principal component analysis for example. Pison
et al. () use spanning ellipses to visually mark the area each cluster occupies in
a PCA plot.
When clustering nonGaussian data and/or using distances other than the Eu-

clidean distance, ellipses can be a misleading representation of cluster regions, be-
cause clusters may have arbitrary convex shapes, where the term convex relates to
the distance measure used. If clusters are projected into two-dimensional space, then
bagplots (Rousseeuw et al., ) can be used as a nonparametric alternative to el-
lipses.
For data partitioned using a centroid-based cluster algorithm, another natural

choice is to use the distance d(x, c(x)) of each point from its respective cluster cen-
troid to define the inner and outer cluster areas. Let

mk =median�d(xn , ck)�xn � Ak� (.)

be the median distance of all points in cluster k to ck . We defines the inner area of
a cluster by the convex hull of all data points where d(xn , ck) � mk ; this corresponds
to the box in a boxplot. he outer area of a cluster is defined as the convex hull of
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Figure .. Convex hulls of the five clusters

all data points that are no more than .mk away from ck ; this corresponds to the
whiskers in a boxplot. Points outside this area are considered to be outliers.
Figure . shows the convex hull for a five-cluster PAM solution (Kaufman and

Rousseeuw, ;Mächler et al., ) for the German election data using Euclidean
distance. here seems to be no natural number of clusters in the data set in terms of
within-cluster variance or cluster indices (Milligan and Cooper, ); the two visi-
ble groups in the PCA projection do not explain all aspects of the data. Five clusters
were chosen because this solution yields good results for interpretation. In addition,
model-based clustering selects five clusters based on BIC (see Sect. .), so choosing
the same number of clusters for PAM makes the results (and their structural differ-
ences) easier to compare.
Although the full five-dimensional data set has been clustered, the partition agrees

well with the PCA projection, and there is not much overlap between the projected
clusters. Cluster three captures the eastern states, while clusters two, one, four and
five divide up the western states, moving from the large number of votes for the SPD
(cluster two) to the large number of votes for CDU/CSU (cluster five).

The Voronoi Partition11.3.2

If interested in both assigning the available data points to clusters and partitioning
the whole input space, we can compute the so-called Voronoi partitionwhich assigns
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Figure .. Projection of the clusters into the plane spanned by SPD and CDU/CSU, and the

corresponding Voronoi partition

each point to the closest centroid. For visualization, we can use a two-dimensional
slice through space, with the simplest case being planes spanned by two of the origi-
nal variables. Figure . shows the clusters projected into the plane spanned by SPD
and CDU/CSU, and the corresponding Voronoi partition. he plots are similar to the
PCA plot in Fig. .; the main differences are that the eastern states are less strongly
separated from the west, and that the plot is approximately mirrored at the main
diagonal: cluster five is now in the upper let corner instead of the lower right (the
same idea applies for the remaining three western clusters). Note that the Voronoi
partition is only valid for points in the SPD–CDU/CSU plane, so the original data
points may belong to a different region in this plot compared to their original cluster
membership.

Neighborhood Graphs 11.3.3

Leisch () introduces a neighborhood graph of the centroids, where each centroid
forms anode, and twonodes are connected by an edge if there is at least one data point
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for which those two are the closest and second-closest nodes; see also Martinetz and
Schulten (). Let

c̃(x) = arg min
c
CK��c(x)�

d(x , c) (.)

denote the second-closest centroid to x, and let

A i j = Lxn �c(xn) = ci , c̃(xn) = c jM (.)

be the set of all points where ci is the closest centroid and c j is the second-closest.
Now the shadow value s(x) for each observation x is defined as

s(x) = d(x, c(x))
d(x , c(x)) + d(x, c̃(x)) (.)

If s(x) is close to , then the point is close to its cluster centroid; if s(x) is close to , it is
almost equidistant from the two centroids. hus, a cluster that is well separated from
all other clusters should have many points with small s values. he average shadow
value of all points where cluster i is closest and j is second-closest can be used as
a simple measure of cluster proximity:

si j =
NOOOPOOOQ
�A i �−&x
�A i j � s(x), A i j � l
, A i j = l (.)

If si j � , then at least one data point in segment i has c j as its second-closest centroid,
and segments i and j have a common border. If si j is close to , then most points in
segment i are almost equidistant from ci and c j and the clusters are not separated very
well. Finally, if si j is close to �A i j ���A i �, then those points that are “between” segments
i and j are almost equidistant from the two centroids. A denominator of �A i � rather
than �A i j � is used so that a small set A i j consisting of only badly clustered points with
large shadow values does not induce large cluster similarity. he graph with nodes ck
and edge weights si j is a directed graph; to simplify matters we use the corresponding
adirected graph with average values of si j and s ji as edge weights in this chapter.
Figures ., ., and . all contain the same graph using different projections,

all of which show the linear structure of the four western clusters. he projection in
Fig. . may give the misleading impression that clusters three and five overlap; the
missing connection between the two nodes of the graph indicates correctly that this
is an artefact of this particular projection.

Cluster Silhouettes11.3.4

For high-dimensional data it can be hard (or even impossible) to check from any two-
dimensional projection of the datawhether clusters of points arewell separated. From
Fig. . we know that cluster three is separated from the others, but the remaining
four clustersmay either split into a wide continuum of electoral districts, or they may
be separated from each other in a direction orthogonal to the projection.
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One popular approach to partition diagnostics involves cluster silhouettes and
plots of them (Rousseeuw, ).he basic idea is to compare the distance from each
point to the points in its own cluster to the distance to points in the second-closest
cluster: the silhouette value of x

sil(x) = b(x) − a(x)
max(a(x), b(x)) (.)

is defined as the scaled difference between the average dissimilarity a(x) of x to all
points in its own cluster and the smallest average dissimilarity b(x) to the points of
the second-best cluster. Points with a large positive silhouette value are far from the
second-best cluster, and clusters where many points have large silhouette values are

Figure .. Silhouette plot for the five-cluster PAM partition of the German election data
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well-separated from the other clusters. Silhouette values that are close to zero indicate
points that are almost equidistant between two clusters, and points with negative
silhouette values may considered to be in the “wrong” cluster.
Figure . shows a silhouette plot for our five clusters. Not surprisingly, cluster

three has the largest average silhouette value of ., but cluster five is close with
., which is not obvious from Fig. .. In fact, the only cluster which is not well-
separated from the others is cluster one, with an average silhouette of . and several
points with negative values.

Cluster Location and Dispersion11.3.5

he silhouette plot indicates that the clusters are actually more separated from each
other than the projection onto the first two principal components in Fig. . sug-
gests. Hence, we need more information on the actual location and dispersion of the
clusters. We could now start to look at projections onto other principal components
than the first two, scatterplot matrices of the original variables, etc. Two alternative
approaches are to plot all dimensions at once or to use asymmetric projections that
maximize cluster separation.
he simplest solution that uses all variables is to visualize only the cluster centroids

and to ignore how the data points scatter around the centroids. Figure . shows
the cluster centroids as bars in a barplot and plots the population centroid (here the
mean value) as dots for comparison. his is appropriate for this kind of data because

Figure .. Barplot of the five-cluster medoids in comparison to the overall population mean. he

numbers in the title strips of the panels give the absolute and relative number of points in each cluster
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a large bar means a large number of votes. An alternative would be to use differences
between cluster centroids and population centroids instead of absolute values; see
also Fig. .. For example, cluster one has only slightly above-average results for
all parties, but the LINKE result in cluster three displays a large difference from the
total LINKE mean. Note that one cannot easily test whether the mean of a cluster
is significantly different from the mean value of another cluster (or the population
mean), because the clusters are not independent of each other and were constructed
to be as different as possible from each other. If cluster dispersion is also of interest,
we could replace the bars in Fig. . by boxplots of the points in each cluster.
Parallel coordinate plots (see Chapt. III., Inselberg) show all variables of a high-

dimensional data set in one figure. Clustermembership can bemarked using different
line types and colors for the clusters. his will work for data sets with relatively few
observations and/or well-separated clusters with small within-cluster variation. Fig-
ure . shows a trellis display (Becker et al., ) of parallel coordinate plots where
each panel corresponds to one cluster. his approach works well for a large number
of data points and clusters, because clusters are not plotted over each other. If all clus-
ters are plotted on the same plot, lines drawn later by the sotware partially mask lines
drawn earlier.

Figure .. Parallel coordinate plot of the five clusters
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Figure .. Asymmetric projection seeking to horizontally separate cluster two from the rest

One aspect of the data that can be easily seen from Fig. . is the negative correla-
tion between SPD and CDU/CSU. In clusters two, four and five, one of these is larger
than the other, while in cluster one and (much more pronounced) cluster three, the
negative correlation is reflected in the X-shape of the lines between the two variables.
We also see that for GRUENE there are three outliers with high numbers of votes in
cluster three; these correspond to electoral districts in Berlin.
Another way to assess the differences between the clusters is to actively look for

projections that maximize cluster separation, for example using the collection of
methods in Hennig (). Figure . shows a projection using the “asymmetric
neighborhood-based coordinates” method that horizontally separates cluster two
from the others.

Using Background Variables11.3.6

An important task in many clustering applications is to check whether background
variables have different distributions in the clusters. By background variableswemean
all variables in the data set that have not been used for clustering. If a variable has not
been used for clustering, the usual statistical inference for differences between groups
of observations can be used.he partition itself can be seen as a nominal variable, so
all visualization techniques that can be used to plot a set of variables versus a single
nominal variable are applicable.
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Figure .. he  federal states of Germany

Herewe provide only one simple example to demonstrate the basic principle. Each
electoral district belongs to one of the  German federal states; see Fig. . for
a map. Table . shows a cross-tabulation of state and cluster membership in a bal-
loon plot (Warnes, ). he state information has not been used in the clustering
process, so we can treat the table as a usual contingency table of two nominal vari-
ables. Figure . shows a mosaicplot (Hartigan and Kleiner, ; Friendly, ;
Meyer et al., ) for the table, see III. (Meyer et al.) and III. (Hoffmann) for
more discussion of mosaicplots. Cells with unusually high or low counts (under the
null hypothesis of independence of columns and rows) are shaded.hemost striking
pattern in the contingency table is that Saarland (located in the southwest of Ger-
many, at the French border) voted in a similar way to the eastern states. his is most
likely due to the fact that Oscar Lafontaine, one of the two leaders of LINKE, is a for-
mer prime minister of Saarland. Another pattern that can be easily spotted from the
mosaicplot is that Nordrhein–Westfalen is not only the largest state, but it also has
districts that exhibit very diverse voting behavior and thus spreads over all four west-
ern clusters.

Self-Organizing Maps 11.3.7

Self-organizing maps (SOMs, Kohonen, ) impose a (typically two-dimensional
rectangular) grid on cluster centroids. he grid is specified before the data are clus-
tered, and centroids that are neighbors on the grid are forced to stay “close” to each
other during the complete procedure.his has the advantage that the resulting neigh-
borhood graph can always be easily projected onto two dimensions by simply using
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Table .. Cross-tabulation of German federal states and cluster membership of electoral districts.

Columns and rows are sorted by decreasing percentage of votes for CDU/CSU; the area of each gray

circle is proportional to the corresponding table entry. he height of each bar in the top and let

margins is proportional to the marginal count for the column or row of the table, respectively
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Figure .. [his figure also appears in the color insert.] Mosaic plot for Table .

the location on the grid as coordinates in -D. For details on the algorithm, see the
reference above.
Figure . shows the cluster centroids and the connecting grid projected onto

the first two principal components of the election data. he cluster centroids are also
shown as pie charts in Fig. .. he area of each pie segment corresponds to the
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Figure ..  �  rectangular SOM grid projected onto the first two principal components of the

German election data

relative size of each party in the corresponding segment ater rescaling each party
separately. Eastern Germany is represented by clusters nine, ten, thirteen and four-
teen, while the large black pie segements indicate the strong performance of LINKE
in this part of the country.

Model-Based Clustering11.4

Model-based clustering fits a set of K (usually identical) probabilistic models to the
data set. Ater parameter estimation, each of the K models is interpreted as a cluster,
and the likelihood that a data point is observed given one of themodels again induces
a partition in the input space. Consider a finite mixture model with K components
of the following form

h(y�x,w) = K�
k=

πk f (y�x, θk) , (.)

πk 	 , K�
k=

πk =  , (.)
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Figure .. Centroids of the SOM. he size of each pie segment corresponds to a cluster centroid ater

rescaling each variable separately. he parties have large segments in clusters where they performed

above average

where y is a (possibly multivariate) dependent variable with a conditional density h,
x is a vector of independent variables, πk is the prior probability of component k, and
θk is the component-specific parameter vector for the density function f .
If f is a normal density with component-specific mean μk = β′kx and variance σk

(covariance matrix Σk for multivariate y), we have θk = (β′k , σk)′ and Eq. . de-
scribes a mixture of standard linear regression models, also called latent class regres-
sion. A special case is x 
 , which gives a mixture of Gaussians without a regression
part, and this is also called model-based clustering. If f is a member of the expo-
nential family, we get a mixture of generalized linear models (Wedel and DeSarbo,
).
For the German election data, we use five-dimensional Gaussians asmixture com-

ponents such that the parameters θk are the mean μk and covariance matrix Σk of
each component. Using the Bayesian information criterion (BIC) to select the num-
ber of components K (Fraley and Ratery, ) results in K =  segments with
prior probabilities πk � �., ., ., ., .�. he largest component (num-
ber three) has a mean vector μ of

SPD CDU/CSU GRUENE FDP LINKE

. . . . .
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he covariance matrix Σ

SPD CDU/CSU GRUENE FDP LINKE

SPD . −. � − −. � − −. .

CDU/CSU −. . � − . � − . −.
GRUENE −. . � − . � − . −.
FDP −. . � − . � − . −.
LINKE . −. � − −. � − −. .

is proportional to the correlation matrix

SPD CDU/CSU GRUENE FDP LINKE

SPD . −. −. −. .

CDU/CSU −. . . . −.
GRUENE −. . . . −.
FDP −. . . . −.
LINKE . −. −. −. .

Numerical results for the remaining four components are omitted for brevity and
simplicity. To visualize the results, we again use a principal component projection of
the data into two dimensions. Principal component analysis returns a linear projec-
tion. LetA be the corresponding projectionmatrix. A linear transformation of amul-
tivariate Gaussian distribution is another multivariate Gaussian, with parameters

μ̃k = Aμk (.)

Σ̃k = AΣkAT (.)

Figure . shows the five cluster components projected onto the first two prin-
cipal components. he inner solid ellipse for each cluster gives the % confidence
region of the corresponding Gaussian distribution, the dashed outer ellipse the %
confidence region. At first sight, the main difference between this segmentation and
the PAM result from Sect. . is that the eastern states have been split into two clus-
ters (instead of one), and the western states into three (instead of four). here also
seems to be huge overlap within these two groups of clusters, which may make one
wonder why the BIC favors a five-cluster solution over a -cluster solution (east vs.
west). Obviously a more thorough investigation of the result is necessary.
Fitting a mixture model to the data does not directly partition the data into dis-

joint groups, but it does provide probability values that indicate how likely it is that
a given point belongs to a segment – the so-called posterior probability that obser-
vation (x , y) belongs to class j:

P( j�x , y) = π j f j(y�x , θ j)&k πk fk(y�x , θk) . (.)

Histograms or rootograms of the posterior class probabilities can be used to visually
assess the cluster structure (Tantrum et al., ). Rootograms are very similar to
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Figure .. A five-cluster finite mixture model for the German election data projected on the first two

principal components

histograms; the only difference between them is that the bar height corresponds to
the square root of the counts rather than the counts themselves, so low counts become
more visible and the emphasis on peaks is reduced.
Usually many of the observations in each component have posteriors close to zero,

resulting in a high count for the corresponding bin in the rootogram, which obscures
the information in the other bins. To avoid this problem, all probabilities with a pos-
terior below a particular threshold are ignored (we use −). A peak at probability
 indicates that a mixture component is well separated from the other components,
while no peak at  and/or a significantmass in themiddle of the unit interval indicates
overlap with other components.
Figure . shows that in our example the components are well separated, so the

apparent overlap in Fig. . is probably an artefact of the projection. In addition, we
highlight the posteriors of cluster three in the rootograms, which visualizes overlap
with other clusters without using any projection. he largest overlap is with clusters
one and two, but there is also some overlap (one district each) with four and five. Of
course, one would now proceed to highlight posteriors corresponding to the remain-
ing four clusters.
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Figure .. Rootograms of the posterior cluster probabilities. Cluster three is highlighted by selecting

those cases with posteriors that are larger than .

Projecting the five components onto two combinations of the original variables,
as done in Fig. ., provides more detail. In these plots, the original data have been
omitted to drawmore attention to the fitted model. Both plots have a similar pattern,
which is more heavily emphasized in the upper panel (FDP vs. CDU/CSU). hese
two parties were potential coalition partners before the election and have a positive
correlation in four of the five clusters. he only cluster with a negative correlation is
cluster number three (mainly Bavaria and Baden–Württemberg), the stronghold of
CDU/CSU. In this cluster, every vote for another party seems to be at the expense of
CDU/CSU, such that they have a negative correlation with all other parties, including
the FDP.
he same is true for the SPD in cluster three, the only cluster where they have

a strong negative correlation with their potential coalition partner, GRUENE. From
the two plots we also see one of themain differences between the two eastern clusters:
in cluster four CDU/CSU and FDP have a strong positive correlation, while in clus-
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Figure ..Marginal confidence ellipses for the variables FDP vs. CDU/CSU (top) and GRUENE vs.

SPD (bottom)
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ter five the correlation is much weaker. SPD and GRUENE are weakly correlated in
both clusters; the difference here is mainly the variance: GRUENE has amuch higher
variance in cluster four than in cluster five.
While all of these patterns can of course also be inferred from numerical printouts

of the component parameters, they are made much more obvious by using graphical
techniques. Complete scatterplotmatrices of all pairwise combinations can be used to
find interesting variable combinations. Figures . and . could be augmented by
a neighborhood graph similar to those used in Sect. .. A natural choice to measure
the proximity of the mixture components is the Kullback-Leibler-divergence of the
component distributions, see Leisch () for details.

Summary11.5

he natural visualization method for hierarchical clustering is the cluster dendro-
gram, because it directly reflects the construction principle of the underlying algo-
rithm. Similarly, the visualization of SOMS is tightly bundled with the algorithm, and
feature maps on three-dimensional grids are a de facto standard.
Two larger groups of plots are available for partitioning and model-based clus-

tering: the first group are diagnostic plots like silhouettes and posterior rootograms,
which try to visualize the quality of the clustering. he second group of plots sim-
ply treats cluster membership as a categorical variable, and uses standard techniques
like glyphs, colors or trellis displays to highlight cluster membership in visualizations
of the orginal data (or projections thereof). Virtually all of the methods of plotting
a group of variables against a single categorical variable proposed in this handbook
can be used for this purpose.he examples shown in this chapter are popular choices,
but are primarily intended as a starting point and source of inspiration.
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Introduction12.1

Categorical data analysis is typically based on two- or higher dimensional contin-
gency tables, cross-tabulating the co-occurrences of levels of nominal and/or ordinal
data. In order to explain these, statisticians typically look for (conditional) indepen-
dence structures using common methods such as independence tests and log-linear
models. One idea behind the use of visualization techniques is to use the human
visual system to detect structures in the data that may not be obvious from solely nu-
meric output (e.g., test statistics). Whether the task is purely exploratory or model-
based, techniques such as mosaic, sieve, and association plots offer good support for
visualization. Mosaic and sieve plots in particular have been extended over the last
two decades, and implementations exist in many statistical environments.
All three graphical methods visualize aspects of (possibly high-dimensional) con-

tingency tables. A mosaicplot (Hartigan and Kleiner, ) is basically an area-pro-
portional visualization of (typically observed) frequencies, consisting of tiles (cor-
responding to the cells) created by vertically and horizontally splitting a rectangle
recursively. hus, the area of each tile is proportional to the corresponding cell entry
given the dimensions of previous splits. Sieve plots (Riedwyl and Schüpbach, )
are similar to mosaicplots, but the area of each tile is proportional to the expected
cell entry, and each tile is filled with a number of rectangles corresponding to the
observed value. An association plot (Cohen, ) visualizes the standardized devi-
ations of observed frequencies from those expected under a certain independence
hypothesis. Each cell is represented by a rectangle that has a (signed) height that is
proportional to the residual and width that is proportional to the square root of the
expected counts, so that the area of the box is proportional to the difference in ob-
served and expected frequencies.
Over the years, extensions to these techniques have mainly focused on the follow-

ing aspects:
Varying the shapes of mosaicplots (as well as bar plots) to yield, e.g., double-
decker plots (Hofmann, ) or spine plots (Riedwyl and Schüpbach, ).
Using residual-based shadings to visualize log-linear models (Friendly ,
) and the significance of statistical tests (Meyer et al., ).
Using pairs plots and trellis-like layouts for marginal, conditional and partial
views (Friendly, ).
Adding direct user interaction, allowing quick exploration and modification of
the visualized models (Unwin et al., ; heus, ).
Providing a modular and flexible implementation to easily allow user extensions
(Meyer et al., ).

Current implementations of mosaic displays can be found for, e.g., SAS, (SAS Insti-
tute Inc., ),ViSta (Young, ),MANET (Unwin et al., ),Mondrian (heus,
), R, (RDevelopment Core Team, ), and S-PLUS (Insightful Inc., ). Im-
plementations of association and sieve plots can only be found in R and SAS (in the
latter, these plots are available for two-way tables only). Table . gives an overview of
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Table .. Comparison of current sotware environments

SAS S-PLUS R ViSta MANET Mondrian

Basic functionality � � � � � �
Shape � � �
Residual-based shadings � � � (�) (�)
Conditional views � � � �
Interaction � � �
Extensible design �

the functionality available in these systems. he figures in this chapter have all been
produced using the R system, using the extension packages vcd (Meyer et al., )
and scatterplotd (Ligges andMächler, ) (Fig. . only), all freely available from
the Comprehensive R Archive Network (http://CRAN.R-project.org/). he R code
used for the figures is available from http://statmath.wu-wien.ac.at/projects/vcd/.
his chapter will provide an overview of the state of the art for mosaic and associ-

ation plots, from both exploratory visualization and model-based analysis perspec-
tives. Exploratory techniques will include specialized displays for the bivariate case,
as well as pairs plot-like displays for high-dimensional tables. As for the model-based
tools, particular emphasis will be given to methods suitable for the visualization of
conditional independence tests (including permutation tests), as well as for the visu-
alization of particular GLMs (such as log-linear models). In Sect. ., we start with
the simple bivariate case. Sect. . explains how the use of color in residual-based
shadings can support data exploration, and even promotes the methods to diagnos-
tic and model-based tools by visualizing test statistics and residuals of independence
models. In Sect. ., we show how the basically bivariate methods straightforwardly
extend to the multivariate case by using “flat” representations of the multiway ta-
bles. In this section, we also introduce specialized displays for conditional indepen-
dence structures.he techniques are illustrated using three- and four-way tables. Sec-
tion . concludes the chapter.

Two-Way Tables 12.2

hroughout this section, our exampleswill be based on the hospital data (Wing, )
given in Table ..
he table relates the length of stay (in years) of  long-term schizophrenic pa-

tients in two London mental hospitals with the frequency of visits (from relatives or
friends). he length of stay (LOS) has been categorized into – years, – years,
and more than  years. here are also three categories for the visit frequency: regu-
lar (including patients who were allowed to go home), less than monthly, and never.
Wing () concludes from this data that the longer the patients stayed in hospital,
the less frequently they are visited, which can be seen from the column-standardized
table (see Table .).
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Table .. he hospital data

Length of stay (in years)

Visit frequency – – + Σ

Regular 43 16 3 62

Less than monthly 6 11 10 27

Never 9 18 16 43

Σ 58 45 29 132

Table .. he hospital data, corrected for the column margin

Length of stay (in years)

Visit frequency 2–9 10–19 20+

Regular 0.74 0.36 0.10

Less than monthly 0.10 0.24 0.35

Never 0.16 0.40 0.55

Σ 1.00 1.00 1.00

Table .. he hospital data, corrected for the row margin

Length of stay (in years)

Visit frequency – – + Σ

Regular 0.69 0.26 0.05 1.00

Less than monthly 0.22 0.41 0.37 1.00

Never 0.21 0.42 0.37 1.00

In addition, Haberman () notes that this pattern is not significantly different
in the “less than monthly” and “never” strata. From the row-standardized table (see
Table .), it seems indeed that LOS is homogeneous with respect to these two visit
frequency strata.
Although far from optimal, contingency tables are frequently visualized using

grouped bar plots (see Fig. .) or even by means of -D bar charts (see Fig. .).
It seems hard to detect the aforementioned pattern in these, especially in the -D
plot, where the perspective view tends to distort the true proportions of the bars.
In the following, we will introduce three graphical methods that are better suited to
contingency tables.

Mosaic Displays12.2.1

Mosaic displays were introduced by Hartigan and Kleiner (, ) and extended
by, among others, Friendly (, , ). hey visualize the observed values
of a contingency table by area-proportional tiles, arranged in a rectangular mosaic.
he tiles are obtained by recursively partitioning and splitting a rectangle. In the fol-
lowing, we describe the main concepts of mosaicplots; Chapter III- in this book
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Figure .. Bar plot for the hospital data

Figure .. -D-bar chart for the hospital data

provides more detailed information on this topic. Consider our example of the hos-
pital data from above. Step  consists of splitting a square according to the marginals
of one of the variables. To be consistent with the textual representation, we choose
LOS with vertical splits (see Fig. .). he result is similar to a bar plot, but in this
case the width rather than the height is adapted to visualize the counts for each level.
Such a plot is also called a spine plot (Hummel, ). From this plot, we see that
the number of patients decreases with the length of stay. Step  involves performing
further splitting in the other direction (resulting in horizontal splits) for the second
variable. his means that each vertical bar is split according to the marginals of the
second variable, given the first variable (see Fig. .).he resulting plot visualizes the
contingency table such that each cell has a size proportional to the corresponding ta-
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Figure .. Construction of a mosaicplot for a two-way table: step 

Figure .. Construction of a mosaicplot for a two-way table: step 
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Figure .. Mosaic plot for the hospital data, using “visit frequency” as first splitting variable

ble entry. We can still see the marginal distribution of LOS and additionally the visit
frequency given the category of LOS. If the two variables were independent, the grid
would be regular. Clearly, compared to a length of stay of – years, more patients
get regular visits for stays from – years, and conversely, fewer patients get regular
visits for stays of for more than  years. For patients that get no visits, the pattern is
reversed.
Since mosaicplots are asymmetric by construction, the choice of the variable or-

dermatters, as the first splitting variable dominates the plot. In our example, if we use
“visit frequency” as the first splitting variable, the impression obtained is very differ-
ent compared to that of the previous mosaic (see Fig. .). In this alternative display
(see Fig. .), we see the marginal distribution of “visit frequency” in the rows: about
half of the patients get visited regularly. his group is dominated by patients staying
– years. It seems apparent that the distribution of LOS is similar for monthly and
never visited patients, so these two categories actually represent one homogeneous
group (patients visited only casually). Since the first splitting variable dominates the
plot, it should be chosen to be the explanatory variable.

Sieve Plots 12.2.2

Whenwe try to explain data, we assume the validity of a certain model for the gener-
ating process. In the case of two-way contingency tables, the two most common and
well-known hypotheses (Agresti, ) are
. independence of the two variables,
. homogeneity of one variable among the strata defined by the second.
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Table .. he hospital data – expected values

Length of stay (in years)

Visit frequency – – + Σ

Regular 27.24 21.14 13.62 62

Less than monthly 11.86 9.20 5.93 27

Never 18.89 14.66 9.45 43

Σ 58.00 45.00 29.00 132

It is easy to compute the expected table under either of these hypotheses. To fix no-
tations, in the following we consider a two-way contingency table with I rows and J
columns, cell frequencies �ni j� for i = , . . . , I and j = , . . . , J, and row and column
sums ni+ = & j ni j and n+ j = &i ni j , respectively. For convenience, the number of
observations is denoted n = n++. Given an underlying distribution with theoreti-
cal cell probabilities πi j , the null hypothesis of independence of the two categorical
variables can be formulated as

H � πi j = πi+π+ j . (.)

Now, the expected cell frequencies in this model are simply n̂i j = ni+n+ j�n. he
expected table for our sample data is given in Table .. It could again be visual-
ized using a mosaicplot, this time applied to the table of expected frequencies. If we
cross-tabulate each tile to fill it with a number of squares equal to the correspond-
ing number of observed frequencies, we get a sieve plot (see Fig. .). his implicitly
compares expected and observed values, since the density of the grid will increase
with the deviation of the observed from the expected values. his allows the detec-
tion of general association patterns (for nominal variables) and of linear association
(for ordinal variables), the latter producing tiles of either very high or very low den-
sity along one of the diagonals. For our data, the density of the rectangles is marked
along the secondary diagonal, indicating a negative association of the two variables.
his provides evidence that visit frequency decreases with the length of stay for these
patients.

Association Plots12.2.3

In the last section, we described how to compare observed and expected values of
a contingency table using sieve plots. We can do this more straightforwardly by using
a plot that directly visualizes the residuals. he most widely used residuals are the
Pearson residuals

ri j = ni j − n̂i jZ
n̂i j

. (.)

which are standardized raw residuals. In an association plot (Cohen, ), each cell
is represented by a rectangle that has a (signed) height that is proportional to the
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Figure .. Sieve plot for the hospital data

Figure .. Association plot for the hospital data

corresponding Pearson residual ri j and a width that is proportional to the square
root of the expected counts

Z
n̂i j . hus, the area is proportional to the raw residuals

ni j− n̂i j .he sign is visualized by its position relative to the baseline (upward tiles for
positive, and downward tiles for negative residuals). Figure . shows the association
plot for the hospital data. Consistent with the corresponding mosaic and sieve plots,



598 DavidMeyer, AchimZeileis, Kurt Hornik

we clearly see that too many (too few) patients that stay from two to nine (more than
) years get visited regularly than would be expected under the null hypothesis of
independence, and that this pattern is reversed for patients visited less than monthly
or that are never visited.

Summary12.2.4

Mosaic plots are a tool for visualizing the observed frequencies of a contingency table
based on recursive conditional splits. If one variable is explanatory, it should be used
first for splitting; the display then shows the conditional distribution of the depen-
dent variable given the explanatory one. Sieve plots basically visualize the table of
expected frequencies, and in addition the deviations from the observed frequencies
by the density of the grid added to each tile. hey complement mosaicplots by de-
tecting dependency patterns for ordinal variables. An alternative way of enhancing
mosaicplots to display deviations from expected frequencies is to use residual-based
shadings (see the next section), which are typically more intelligible than sieve plots,
in particular for nominal variables. Association plots directly visualize Pearson and
raw residuals, i.e., standardized and nonstandardized deviations of observed from
expected frequencies, respectively. hese plots should be used if the diagnostics of
independence models are of primary interest.

Using Colors for Residual-Based Shadings12.3

As introduced in the previous section for association plots, the investigation of resid-
uals from a posited independence model is of major interest when analyzing contin-
gency tables. In the following, we will demonstrate how the use of colors can greatly
facilitate the detection of interesting patterns. We start with some general remarks
on colors and color palettes.

A Note on Colors and Color Palettes12.3.1

he plots introduced in the previous section are basically composed of tiles whose
areas represent characteristics derived from the contingency tables – observed and
expected frequencies in the case of mosaic and sieve plots, or residuals as visualized
by association plots. When using color for these tiles, it is imperative to choose the
right color palettes, derived from suitable color spaces. Apart from aesthetic consid-
erations, wrongly chosen colors might seriously affect the analysis. For example,

Using high-chroma colors for large areas tends to produce ater-image effects
which can be distracting (Ihaka, ).

 heprinted version of the article is monochrome, but the electronic version uses colors.he
colored versions of the plots are available from the Web page http://statmath.wu-wien.ac.
at/projects/vcd/.
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Lighter colors tend to make areas look larger than darker colors, so using colors
with unequal luminance values makes it difficult to compare area sizes (Cleveland
and McGill, ).
Color palettes derived from nonuniform color spaces may contain unbalanced
colors with respect to their colorfulness or brightness. When tiles are shaded us-
ing such a palette, some of them might appear to be more important than others
in an uncontrolled way.

Due to the three-dimensional nature of human color perception (Mollon, ), it
has been common to specify colors using the three primaries red, green, and blue
(RGB colors), especially for computer devices.he appearance of the on-screen color
is affected by the characteristics of the device used. For example, the intensity I of
a primary on a particular device follows the rule I = Lγ , where L is the value for
the primary color and γ is device-dependent (but typically close to .). herefore,
a first caveat is that if colors are to appear identical on different devices, their gamma
characteristics must be taken into account.
Choosing colors and color palettes in RGB space can be a bit inconvenient and

hence sotware implementations are oten based on hue–saturation–value (HSV) col-
ors (or the comparable hue–luminance–saturation color scheme). Both spaces are
rather similar transformations of the RGB space (Brewer, ; Poynton, ) and
are very common implementations of colors in many computer packages (Moretti
and Lyons, ). Each color in HSV space is represented by three dimensions (H,
S, V ): the hue H (the dominant wavelength in the spectrum, in [, ]), the satura-
tion S (the “colorfulness” or “pureness,” in [, ]), and the valueV (the “brightness,”
the amount of gray, in [, ]). hese intuitive dimensions make HSV colors easier
to specify than RGB colors. However, HSV colors have several disadvantages. Most
importantly, HSV colors are not perceptually uniform because the three HSVdimen-
sions map only poorly to the three perceptual dimensions of the human visual sys-
tem (Brewer, ; Ihaka, ). One important issue here is that HSV dimensions
are confounded, e.g., saturation is not uniform across different hues. As an exam-
ple, see Fig. . (let), which shows a qualitative color palette (colors (H, , )
for varying hues H) in the HSV space: although saturation and value are fixed, the
fully saturated blue is perceived to be much darker than the fully saturated red or
green, making it difficult to judge the size of shaded areas. Furthermore, the flashy
fully saturated HSV colors are hard to look at for a long time. For similar reasons,
it is equally difficult to derive acceptable diverging palettes from the HSV space, i.e.,
bipolar scales containing colors ranging between two very distinct colors. he up-
per part of Fig. . shows a diverging palette in the HSV space with colors ranging
from a saturated red (, , ) to a neutral white (H, , ) to a saturated blue(, , ). Although the palette should be balanced with respect to colorfulness
and brightness, the red colors are perceived to be more intense and flashy than the
corresponding blue colors.

 In many implementations, all three dimensions are scaled to the unit interval instead of the
coordinates used here.
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Figure .. [his figure also appears in the color insert.] Qualitative color palettes for the HSV (let)

and HCL (right) spaces. he HSV colors are (H , , ) and the HCL colors (H , , ) for the same
hues H. Note that in a monochrome version of this paper, all pies in the right wheel will be shaded with

the same gray, i.e., they will appear virtually identical

Figure .. [his figure also appears in the color insert.] Diverging color palettes for the HSV space

(upper part) and the HCL space (lower part), ranging from blue to a neutral color to red. he triples

indicate the settings for the three dimensions: (hue, saturation, value) in the upper part, and (hue,

chroma, luminance) in the lower part. In a monochrome version of the paper, the right- and let-hand

sides of the HCL color palette will appear to be identical, unlike the HSV color palette

he use of colors that are more “in harmony” goes back to Munsell (), who
introduced a notation for balanced colors. Based on those, tools producing better
palettes for specific tasks have been developed (Harrower and Brewer, ). Other
perceptually based color spaces, especially suited for computer displays, are the
CIELAB and CIELUV spaces (Commission Internationale de l’Éclairage, ) from
which qualitative palettes for statistical graphics have been derived (Ihaka, ).
A transformation of the CIELUV space leads to the HCL (hue–chroma–luminance)
space. hese colors are again specified by triplets (H,C, L): chroma C loosely corre-
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sponds to colorfulness and luminance L to brightness, but in contrast to HSV colors,
chroma is an absolute measure that is valid for all hues, and luminance can be var-
ied independent of the other two dimensions. Qualitative color palettes can easily
be obtained by holding chroma and luminance constant, and using varying hues.
HCL colors with fixed luminance are always balanced towards the same gray and
thus do not have the problem of varying saturation like HSV colors (see Fig. .,
right). Similarly, diverging HCL color palettes can be derived (Zeileis et al., ) by
interpolating again between a neutral color such as (H, , ) and two colors with
full chroma such as blue (, , ) and red (, , ). he resulting palette is
shown in the lower part of Fig. .. In contrast to the HSV counterpart, matching
colors (light red/blue and dark red/blue) are balanced to the same gray, and thus
receive the same perceptual “weight.” Note that chroma and luminance are varied
simultaneously, i.e., the full chroma colors are also darker than the neutral color.
Of course, it would also be possible to choose a darker neutral color (or lighter full
chroma colors); however, by varying both chroma and luminance better contrasts
can be achieved.

Highlighting and Color-Based Shadings 12.3.2

hemosaicplots introduced in Sect. . are composed of empty tiles. It seems intu-
itive to use filled tiles to highlight information of interest. Consider again the hospital
example: in Fig. ., we mark tiles for patients never or seldom visited in order to
visualize their proportions in the LOS strata. For optical clarity, we set the spacing

Figure .. Spine plot with highlighting for the hospital data
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between the visit frequency tiles to . Clearly, the proportion of these patients in-
creases with LOS. In fact, such a “stacked” plot can also be interpreted as a spine plot
with highlighting (Hummel, ), which is particularly useful when analyzing rela-
tionships among categorical data with a binary dependent variable. More variations
on this theme, such as doubledecker plots, are treated in Chapter III-.
Using colors, even more complementary information can be visualized, either by

adding additional information, or by redundantly coding information already visu-
alized by the “raw” plot to support our perceptual system. First, we consider the sieve
plots. he density of the grid in the raw version implicitly gives us an idea of the sizes
of the residuals, but since the plot does not include the density corresponding to zero
residuals (the null model) for comparison, we cannot easily assess whether there are
more or fewer counts in a cell than expected under the null hypothesis. Using color,
we can add the sign information; for example, we can use blue for positive, red for
negative, and gray for zero residuals.
he simplest mosaicplots are monochrome displays. Friendly () introduced

a residual-based shading of the tiles to additionally visualize the residuals froma given
independencemodel fitted to the table.he idea is to use a color coding for themosaic
tiles that visualizes the sign and absolute size of each residual ri j. Cells correspond-
ing to small residuals (�ri j � < ) have no color. Cells with medium-sized residuals
( � �ri j � < ) are shaded light blue and light red for positive and negative residuals,
respectively. Cells with large residuals (�ri j � 	 ) are shaded with fully saturated blue
and red, respectively. he heuristic for choosing the cut-offs  and  is that the Pear-
son residuals are asymptotically standard normal, which implies that the highlighted
cells are those with residuals that are individually significant at approximately the

Figure .. Mosaic display with Friendly-like color coding of the residuals
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Figure .. Association plot with Friendly-like color coding of the residuals

α = . and α = . levels. However, the main purpose of this shading is not to
visualize the significance but the pattern of deviation from independence (Friendly,
). In addition to the shading of the rectangles themselves, the Friendly shading
also encompasses a choice of line type and line color for the rectangle borders with
similar ideas to those described above.
In Fig. ., we again show the mosaic for the hospital data, this time using

a Friendly-like color shading (with HCL instead of HSV colors, and no line type
coding). Clearly, the asymmetry for regular and never visited patients as well as the
pattern inversion for lengths of stay of – and more than  years are emphasized
using the color shading.
For association plots, residual-based shadings are redundant since all relevant in-

formation is already contained in the plot by construction. Nevertheless, the use of
one of the shadings discussed above will support the analysis process and is therefore
recommended. For example, applying the Friendly shading in Fig. . on the one
hand facilitates discrimination between positive and negative residuals, and on the
other hand, more importantly, makes it easier to compare tile sizes.hus, the shading
supports the detection of the pattern.

Visualizing Test Statistics 12.3.3

Figures . and . include the (same) p value for the χ test of independence,
which is frequently used to assess the significance of the hypothesis of independence
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(or homogeneity for stratified data) in two-way tables.he test statistic is just the sum
of the squared Pearson residuals

X = �
i , j

ri j , (.)

which is known to have a limiting χ distribution with (I − )(J − ) degrees of free-
dom under the null hypothesis. An important reason for using the unconditional
limiting distribution for the X statistic from (.) was the closed form result for the
distribution. With the recent improvements in computing power, conditional infer-
ence (or permutation tests) – carried out either by simulation or by computation of
the (asymptotic) permutation distribution – have been receiving increasing attention
(Ernst, ; Pesarin, ; Strasser and Weber, ).
he use of a permutation test is a particularly intuitive way of testing the inde-

pendence hypothesis from (.), due to the permutation invariance (given row and
column sums) of this problem. Consequently, all results in this paper are based on
conditional inference performed by simulating the permutation distribution of test
statistics of type λ([ri j]).
Since the HCL space is three-dimensional and we have only used two ‘degrees

of freedom’ so far to code information (hue for the sign and a linear combination
of chroma and luminance for residual size), we can add a third piece of informa-
tion to the plot. For example, we can visualize the significance of some specified test
statistic (e.g., the χ test statistic) using less colorful (“uninteresting”) colors for non-
significant results. hese can again be derived using the same procedure described in
Sect. .. but using a smaller amount of color, i.e., a smaller maximal chroma (e.g.,
 instead of ).
he heuristic for choosing the cut-off points in the Friendly shading may lead to

wrong conclusions: especially in large tables, the test of independence may not be
significant, even though some of the residuals are “large.” On the other hand, the test
might be significant even though the residuals are “small.” In fact, the cut-off points
are really data-dependent. Consider the case of the arthritis data (Koch and Edwards,
), resulting from a double-blind clinical trial investigating a new treatment for
rheumatoid arthritis, stratified by gender (see Table . for the female patients). Fig-
ure . visualizes the results for the female patients, again using a mosaic display.
Clearly, the hypothesis of independence is rejected by the χ test, even at a % level
(p = .), but since all residuals are in the interval [−., .] the tiles re-
main uncolored. One solution to this issue is to use a different test statistic, for exam-

Table .. he arthritis data (female patients)

Improvement

Treatment None Some Marked Σ

Placebo 19 7 6 32

Treatment 6 5 16 27

Σ 25 12 22 59
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Figure .. Mosaic plot for the arthritis data, using the χ test and fixed cut-off points for the shading

ple the maximum of the absolute values of the Pearson residuals (Meyer et al., ),
instead of the sum of squares:

M = max
i , j

�ri j � . (.)

Given a critical value cα for this test statistic, all residuals whose absolute values ex-
ceed cα violate the hypothesis of independence at level α (Mazanec and Strasser,
, Chap. ).hus, the interesting cells that provide evidence for the rejection of the
independence hypothesis can easily be identified. As explained above, the conditional
distribution of this test statistic under the null hypothesis can be obtained by simula-
tion, by sampling tables with the same row and column sums ni+ and n+ j using, e.g.,
the Patefield algorithm (Patefield, ) and computing the maximum statistic for
each of these tables. In Fig. ., we again visualize the arthritis data, this time using
the maximum test statistic and its % and % critical values as cut-off points. Now
the tile shading clearly shows that the treatment is effective: significantly more pa-
tients in the treatment group exhibit marked improvements than would be expected
for independence.

Summary 12.3.4

Uniform colors and color palettes should always be used to visualize areas, and the
HCL color space provides a convenient way to do this. Shadings can be used to add
information to the basic plots and to support the analysis. Tile highlighting can sup-
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Figure .. Mosaic plot for the arthritis data, using the maximum test and data-driven cut-off points

for the residuals

port the analysis of relationships with a single dependent variable. Residual-based
shadings can be used for model diagnostics, e.g., by using diverging color palettes to
code the sign and size of a residual. In addition, the non-significance of test statistics
can be visualized by using less colorful palettes. Using the maximum instead of the
χ (or other) test statistic(s) allows for data-driven cut-offs in the diverging palettes
and precise diagnostic identification of the cells in conflict with the null hypothesis
of independence.

Selected Methods for Multiway Tables12.4

In Sect. . we presented basic displays of two-way tables, based on the visualiza-
tion of information in table cells that are arranged in rectangular form. For multiway
tables, mosaicplots can be used directly by simply adding further splits for each ad-
ditional variable. For sieve and association plots, we apply the basic idea of mosaic-
plots to the table itself, i.e., we simply nest the variables into rows and columns using
recursive conditional splits, given the margins. he result is a “flat” representation
of the multiway table that can be visualized in a way similar to a two-dimensional
table.
In the following, we will first treat specialized displays for exploratory purposes,

followed by model-based methods for conditional independence models.
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Exploratory Visualization Techniques 12.4.1

As an example, consider the well-known UCB admissions data (Bickel et al., ) on
applicants, classified by admission and gender, to graduate school at the University of
California in Berkeley for the six largest departments in .he “flattened” contin-
gency table, which associates departments with columns and admissions – nested by
gender – with rows, is shown as Table .. Aggregated over all departments, the table
gives a false impression of gender bias, i.e., higher admission rates for male students.
A first step in the exploratory analysis of more complex tables is to get a quick

overview of the data. For this, all basic plots can be combined in pairwise displays,
arranged in a matrix similar to scatterplots in a pairs plot. he diagonal cells con-
tain the variable names, optionally with univariate statistics, whereas the off-diagonal
cells feature plots whose variables are implicitly specified by the cells’ positions in the
matrix. In Fig. ., the diagonal cells show bar plots for the distributions of the vari-
ables, and the off-diagonal cells mosaicplots for the corresponding pairs of variables.
he plots suggest that admission differs between male and female students, and be-
tween the departments, and that the proportion of male and female students varies
across the departments. In particular, departments A and B have higher proportions
of male students and lower rejection rates than the other departments.
he next step is to investigate three-way interactions among the variables. In this

example, we have a binary variable of interest (admission) that needs to be “explained”
by the others. A natural way of representing such a three-way table is to use a mo-
saic display, which first involves splitting by the explanatory variables department
and gender and then highlighting the resulting mosaic with respect to the dependent
variable admissions. Here, we use vertical splits for both explanatory variables, re-
sulting in the doubledecker plot in Fig. .. From the widths of the tiles, it is clear
that students apply to the six departments in unequal numbers (with a particularly
small number of females in departments A and B), and from the highlighting we can
also see that the admission rates differ among the departments (roughly speaking,
the admission rate is high for A and B, low for F, and in-between for C to E). he
rates are equal for male and female students, except for department A where more
female than male students are admitted.

Table .. he UCB admissions data, in flat representation

Department

Gender Admission A B C D E F

Male Admitted 512 353 120 138 53 22

Rejected 313 207 205 279 138 351

Female Admitted 89 17 202 131 94 24

Rejected 19 8 391 244 299 317
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Figure .. Pairs plot for the UCB admissions data

Model-Based Displays
for Conditional Independence Models12.4.2

In addition to the exploratory approaches to the visualization of multiway tables out-
lined in the previous section, there are specialized displays that are designed for the
visualization of conditional independence structures.
One approach is to use pairs plots (such as in Fig. .) to search for the model;

we can use the positions of the cells in the pairs matrix to select an independence
model and add corresponding shading to the tiles to visualize the residuals. More
precisely, each cell ai j in such a matrix defines two variables i and j that can be used
to specify the model visualized in that cell. Typical hypotheses are: variables i and j
are marginally independent; variables i and j are conditionally independent, given
all others; variables i and j are jointly independent from all others.
Another approach is to visualize (the deviations from) a particular fitted model

using ideas similar to those described in Sect. .. hus, mosaic displays can be ex-
tended from purely explorative views to model-based views of the data by residual-
based shadings, and association plots can directly visualize deviations from a given
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Figure .. Doubledecker plot for the UCB admissions data

model. he models considered are log-linear models, but residual-based shadings
are also conceivable for other types of models, such as logistic regression. In our ex-
ample, from exploratory analysis, we already suspect that admission and gender are
independent for a given department, except in the case of department A. herefore,
a sensible way of representing the table is to nest admission into department instead
of gender to obtain a stratified view.he corresponding mosaic and association plots
are shown in Figs. . and .. he shading visualizes a model where admission
and gender are conditionally independent, given the department.
Clearly, there is no gender bias in the departments except for department A: here,

significantlymore female students are admitted then expected for independence.Mo-
saic displays are already considered to be an excellent visualization tool for log-linear
models (Friendly, ;heus and Lauer, ; Hofmann, ). Using the flat table
representation, the association plot similarly extends from the simple two-way case
to a structured residual plot applicable to the diagnostics of log-linear models. In
particular, if a mosaic display contains very small or empty cells, the corresponding
association plot could provide an easier way to detect deviation patterns than adding
residual-based shading to the mosaicplot. Yet another approach is to plot a mosaic-
plot of the expected frequencies and to highlight the (relative) residuals in the cells,
using different colors for positive and negative residuals (heus and Lauer, ).
As we have seen, we can use all of the plots to analyze stratified data by first split-

ting based on the conditioning variables. However, this also displays the marginal
distributions of the conditioning variables, which might make it more difficult to in-
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Figure .. Mosaic plot for the UCB admissions data.

Figure .. Association plot for the UCB admissions data.

terpret the dependent variables of interest. Particularly for very unevenly distributed
marginals, the strata can become very distorted, and the tiles, along with their shad-
ings, can become inscrutable. One alternative is to complement the conditioning in
the model with conditioning in the plot; i.e., to use trellis-like layouts to visualize
partial tables as defined by the conditioning variables. All subtables are corrected
for marginals, and thus all corresponding plots in the panels are of the same size. In
addition, trellis layouts help to reduce the complexity of bigger tables. Figure . vi-
sualizes the data by means of a conditional association plot. Each panel corresponds
to a department, and contains an association plot corresponding to the partial (four-
fold) table of admission and gender. Accordingly, the shading visualizes the residuals
from the corresponding conditional independence model (independence of gender
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Figure .. Conditional association plot for the UCB admissions data. For each individual association

plot, rows correspond to gender and columns to admission

and admission, given department), stratified by department. Clearly, the situation in
department A (more women/less men admitted than expected under the null hy-
pothesis) results in the rejection of the hypothesis of conditional independence. In
Fig. ., data-driven cut-offs (derived from the maximum test for conditional in-
dependence) are used, resulting in more colorful shading than the fixed cut-offs in
Figs. . and ..

A Four-Way Example 12.4.3

As a four-way example, we use the punishment data (Andersen, ) from a study of
the Gallup Institute in Denmark in  regarding the attitude of a random sample of
 people towards corporal punishment of children (see Table .).hedata consist
of four variables. Attitude is a binary variable indicating whether a person approves of
moderate punishment of children (“moderate”), or disapproves of any punishment of
children (“no”).Memory indicates whether the person recalls having been punished
as a child. Education indicates the highest level of education (elementary, secondary,
high). Finally, age indicates the age group in years (–, –, +).
In a first step, we create a mosaicplot for an exploratory view of the data: atti-

tude towards punishment is clearly the response variable here and should be used
for the last split via highlighting. Furthermore, we expect age and education to have
an influence on both memory and attitude, so they should be used first for splitting
as stratifying variables. In fact, the question is whether memory has some influence
on attitude, given age and education. We choose to create a three-way mosaicplot of
the hypothesized explanatory variables (first splitting horizontally by age, then ver-
tically by education, and finally horizontally again by memory), and to have attitude,
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Table .. he punishment data

Age – – +

Education Attitude Memory Yes No Yes No Yes No

Elementary No 1 26 3 46 20 109

Moderate 21 93 41 119 143 324

Secondary No 2 23 8 52 4 44

Moderate 5 45 20 84 20 56

High No 2 26 6 24 1 13

Moderate 1 19 4 26 8 17

the response variable, highlighted in the tiles (see Fig. .). We can see that half
of the people are more than  years of age, most of whom of only completed ele-
mentary school (much more than in the other age groups). Furthermore, it can be
seen that the proportion of people who recall being punished increases with age, and
that the approval rate decreases with education (this, however, is better illustrated
in Fig. ., as described below). For the question of whether attitude depends on
memory, the plot quite clearly (and somewhat surprisingly) suggests that a higher
proportion of those that had an elementary school education and that recall being
punished tend to accept moderate punishment of children than those that do not re-
call being punished – those that have experienced punishment seem to support the
use of punishment. For the other education groups, the picture is less clear: some
cells indicate the same association, while others do not.

Figure .. Mosaic plot with highlighting for the punishment data
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In summary, both age and education clearlymatter here. But is there really any sig-
nificant influence of memory on attitude towards punishment apart from this? Or,
rephrased as a hypothesis: arememory and attitude conditionally independent, given
age and education? To focus on this question, we take another model-based view of
the data which avoids the distracting influence of the marginal variables (age and ed-
ucation). We employ partial mosaicplots in a trellis layout (conditioning on age and
education) with residual-based shading and data-driven cut-offs (see Fig. .).his
visualization illustrates much more clearly that the increased approval rate among
people that recall being punished is present mainly in the elementary education col-
umn and, to a lesser degree, in the age + row. Using a permutation test similar to
the one discussed in Sect. .., model statistics reveal that the hypothesis is rejected
at a significance level of  %, but the shading clearly shows that this association is only
significant in two cells (the two older age groups with elementary education), where

Figure .. Conditional mosaicplot for the punishment data. For each mosaicplot, rows correspond

to memory (first split) and columns to attitude (second split)
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fewer of the people that do not recall being punished do not approve of punishment
than expected for (conditional) independence. For the group of people aged between
 and , the lighter shading indicates that the association is only significant at the
% level.
he advantage of the exploratory view is its ability to visualize the joint distribu-

tions of all variables. On the other hand, this visualization may be strongly influenced
by the marginal distribution of education over age (in particular the large proportion
of + people with elementary education), which is not relevant to the conditional
independence problem.hepartialmosaicplot suppresses this effect by complement-
ing the conditioning in the model with conditioning in the visualization.

Summary12.4.4

Mosaic, association, and sieve plots can be used to visualize multiway tables by con-
verting them into flat representations. Mosaic plots are particularly useful for ex-
ploratory analysis, whereas the other two require that a particular model of inde-
pendence be specified from which deviations can be examined. In addition, spe-
cialized plot “flavours” can leverage exploratory analyses (pairs plots, highlighting,
doubledecker plots) or model-based analyses (residual-based shadings, conditional
plots).

Conclusion12.5

his chapter reviews several alternatives for the visualization of multiway contin-
gency tables. For two-way tables, mosaic, sieve, and association plots are suitable for
the visualization of observed and expected values and Pearson residuals, respectively.
hese basic methods can be enhanced by using residual-based shadings, preferably
based on perceptual color palettes such as those derived from HCL space. Residual-
based shadings can be used to visualize the signs and sizes of the residuals, as well as
the significance of test statistics such as χ or themaximum test statistic.he latter has
the advantage that it detects residuals that cause the hypothesis of independence to be
rejected. he methods extend directly to the multiway case by using “flat” represen-
tations of the multiway tables, and specialized displays for conditional independence
such as trellis layouts of partial tables and pairs plots.
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In this chapter we consider mosaicplots, which were introduced by Hartigan and
Kleiner () as away of visualizing contingency tables. Named “mosaicplots” due to
their resemblance to the art form, they consist of groups of rectangles that represent
the cells in a contingency table. Both the sizes and the positions of the rectangles are
relevant to mosaicplot interpretation, making them one of the more advanced plots
around.With a little practice they can become an invaluable tool in the representation
and exploration of multivariate categorical data.
In this chapter we will be discussing ways of constructing and interpreting mo-

saicplots, including their connection to loglinear models (Hofmann, ;heus and
Lauer, ; Friendly, ). In Sect. . we will be discussing ways of constructing
mosaicplots (Hofmann, ). Mosaic plots have the huge advantage of preserving
all of the information in multivariate contingency tables while simultaneously pro-
viding an overview of it. As the mosaicplot follows the hierarchy its corresponding
contingency table exactly, the order of the variables in the table is important. Select-
ing the “right,” or at least “good,” ordering is commonly found to be one of the main
difficulties first-time users experience with mosaicplots. We will discuss the effects
of changes in the order and provide recommendations about how to obtain “good
plots.”
Multivariate categorical modeling is usually done with loglinear models. It can be

shown (Hofmann, ;heus and Lauer, ; Friendly, ) that mosaicplots have
excellent mathematical properties which enable the strengths of interaction effects to
be assessed visually and provide tools for checking residuals and modeling assump-
tions. We will discuss the relationship between mosaicplots and loglinear models in
Sect. ..
Close relatives of the mosaicplot, such as fluctuation diagrams and doubledecker

plots (Hofmann et al., ), have also been found to be very useful in practice. We
are therefore going to have a look at those and other important variants of mosaic-
plots too in Sect. .. All of these variants are essentially simplifications of the default
mosaic construction. While some information is lost in the process, these plots place
additional emphasis on a specific aspect of the data.
Shneiderman () and trellis plots (Becker et al., ) are generalizations of

two different aspects of mosaicplots. While trellis plots and mosaicplots share the
same structure, trellis plots are more flexible since numbers do not necessarily have
to be displayed as rectangles. Treemaps, on the other hand, always use rectangles, but
are able to deal with more general partitions than mosaicplots. hese generalizations
do not come without losses, though. We will compare mosaicplots to these other
displays in Sect. ., and comment on the strengths andweaknesses of each. Sotware
implementations of mosaicplots are becoming more frequent. An implementation in
R (Gentleman and Ihaka, ) was created by Emerson (). Mosaic plots in JMP
(John Sall, ) have some limited interactive features. Fully interactive mosaicplots
(Hofmann, ) are implemented, e.g., in MANET (Unwin, Hawkins, Hofmann
and Siegl, ), Mondrian (heus, ) and KLIMT (Urbanek, ).
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Deinition and Construction 13.1

Mosaic plots were introduced by Hartigan and Kleiner () as a means of visu-
alizing contingency tables. More recent works on them include those of Hartigan
and Kleiner (), Friendly (), Friendly (), Friendly (), and Hofmann
(). As the name suggests, mosaicplots consist of groups of rectangular tiles. Each
tile corresponds to one cell from a contingency table. Its area is proportional to the
size of the cell, and its shape and location are determined during the construction
process.
Table . provides a breakdown of people on board the Titanic according to their

class and gender, as reported in Dawson (). Figure . shows the corresponding
mosaicplot.
Mosaic plots are not restricted to two dimensions; in principle they can be ex-

tended to an arbitrary number of dimensions. In practice, however, space is a limiting
factor.

Construction of a p-dimensional mosaicplot:
Let us assume that we want to construct a mosaicplot for p categorical variables
X , . . . , Xp . Let ci be the number of categories of variable Xi , i = , . . . , p.
. Start with one single rectangle r (of width w and height h), and let i = .
. Cut rectangle ri− into ci pieces: find all observations corresponding to rectan-

gle ri−, and find the breakdown for each variable Xi (i.e., count the number
of observations that fall into each of the categories). Split the width (height) of

Table .. Breakdown of Gender versus Class for those aboard the Titanic (Dawson, )

Class

1st 2nd 3rd Crew Totals

Sex f 145 106 196 23 470

m 180 179 510 862 1731

Totals 325 285 706 885 2201

Figure .. Stepwise construction of a two-dimensional mosaicplot of Gender distribution across

different classes based on the data given in Table .
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rectangle ri− into ci pieces, where the widths (heights) are proportional to the
breakdown, and keep the height (width) of each the same as ri−. Call these new
rectangles r j

i , with j = , . . . , ci .
. Increase i by .
. While i � p, repeat steps  and  for all r j

i− with j = , . . . , ci−.
Obviously, the hierarchical construction of mosaicplots places a lot of emphasis on
the order of the variables in the plot. As is the case for multiway contingency tables,
different variable orders in mosaics emphasize different aspects of the data; in con-
trast with two-way tables, the order inwhich the variables should occur in amultiway
table is not immediately apparent. Tables . and . show two different arrange-
ments for the same variables of the Titanic data. Each table contains the same data
for Class, Gender and Survival. Table . emphasizes the different survival rates of
men and women in all classes, whereas the arrangement in Table . emphasizes
the notion that the lower the passenger class, the lower the survival rate, to for both
women andmen.hese different tables arise because the order of the variables Class
and Gender can be changed.
Figures . and . each show a three-dimensional mosaicplot of Class,Gender

and Survival. Changing the order of the variables emphasizes different aspects of the
data. he survivors are highlighted in both mosaicplots. In Fig. ., differences in
the survival rates of women and men are highlighted for all classes. he mosaicplot
in Fig. . shows the survival rates within the different classes (first, second, third
and crew) for men and women.

Table .. Number of Survivors from the Titanic by class affiliation and Gender. here are large

differences between the survival rates of men and women across all classes

Class: First Second hird Crew

Gender: Female Male Female Male Female Male Female Male

Survived:

yes 141 62 93 25 90 88 20 192

no 4 118 13 154 106 422 3 670

Survival 97 34 88 14 46 17 87 22

Rate (in %)

Table .. Number of Survivors from the Titanic by Gender and class. he survival rates decline as the

passenger class decreases

Gender: Female Male

Class: First Second hird Crew First Second hird Crew

Survived:

yes 141 93 90 20 62 25 88 192

no 4 13 106 3 118 154 422 670

Survival 97 88 46 87 34 14 17 22

Rate (in %)
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Figure .. hree-dimensional mosaicplot of the Titanic data. Survivors are highlighted. Differences

between the survival rates of men and women are emphasized. In all classes, the women had higher

survival rates than the men

Figure .. hree-dimensional mosaicplot of the Titanic data. Survivors are highlighted. Survival rates

for men (right) and women (let) in all of the classes are plotted. he survival rate for women increases

with class. he survival rate for men shows a peculiarity: it is extremely low for men in the second class

Figures . and . were constructed using two successive splits in the horizontal
direction and then a final split in the vertical direction. For the third dimension, we
colored some of the rectangles to show the splits and did not physically split them.
Variations like these are not specifically fixed in the algorithm. he original mosaic-
plot, as defined by Hartigan and Kleiner (), has splits in alternating directions,
whereas doubledecker plots (Hofmann et al., ) only have horizontal splits, ex-
cept for the last dimension, which is split in the vertical direction (and usually shows
highlighting).
To distinguish between mosaicplots that show the same data but refer to struc-

turally different contingency tables, we must consider extra information about the
plot: we will call this additional information the structure or frame (Wilkinson, )
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of a mosaicplot. his structure contains the meta-information of a set of categorical
variables:

the values that each variable can adopt and the order in which these values occur
(i.e., a tuple of the variable’s categories)
the order and direction in which the variables appear in the hierarchy.

hroughout this chapter, we will assume that the default split direction in a mosaic-
plot is horizontal. If a vertical split is intended, wewill use the superscript t behind the
variable name (denoting the “transpose” of the variable).hemosaicplots in Figs. .
and . therefore have structures Class, Gender, Survival t and Gender, Class, Sur-
vival t , respectively. he concept of mosaicplot structure is discussed in more depth
in Hofmann ().
he strictly hierarchical construction of mosaicplots enables us to interpret vari-

ous properties of mosaicplots, as we will discuss in the next section.

InterpretingMosaic Plots13.2

Mosaics are area-based graphics: the area of each tile is proportional to the cell size of
the corresponding contingency table. However, the overall number of observations
is not displayed in amosaicplot; multiplying each cell by ten does not change the plot
because the ratios between the cell counts are illustrated, not the cell counts them-
selves. It is therefore more relevant to discuss percentages or probabilities in relation
to mosaicplots rather than actual cell sizes. Tile sizes should always be interpreted
in relation to the sizes of other tiles. Ater mosaic construction, we will describe the
mathematical properties that we can retrieve from the plot, i.e., what we can reliably
“see from a mosaicplot.”

Probabilities in Mosaic Plots13.2.1

Figure . shows a two-dimensional mosaicplot of the Titanic data. Class is plotted
versus Survival. he first split is in the horizontal direction; the width of a tile is based
on the number of persons in each class. he width is therefore an estimate of the
probability of P( Class = i), with i � �st, nd, rd, Crew�.he number of survivors
in each of these tiles is then found, which determines the height of the final tiles. his
makes the height of the bottom let tile an estimate of the survival probability of the
first class passengers: P( Survival = yes � Class = st ), whereas the upper let tile’s
height gives P( Survival = no � Class = st ). Consequently, the area of a tile gives
the joint probability for Survival and Class, since

P(Survival=yes �Class=st)mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnp
area

=
= P(Survival=yes � Class=st)mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnp

height

ċP(Class=st)mnnnnnnnnnnnnnnnnnnnnnnnnnnnnonnnnnnnnnnnnnnnnnnnnnnnnnnnnp
width
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Figure .. Two-dimensional mosaicplot of Class versus Survival. Each tile’s width corresponds to the

probability of the associated class, while its height is the conditional probability of (Non-)Survival

For high-dimensional mosaicplots, the structure of the plot governs which of the
probabilities correspond to the heights and the widths of the tiles. However, the area
of a particular tile always corresponds to the joint probability of X , . . . , Xp .
Let v(i) be the set of variables among the first i variables that trigger splits in the

vertical direction. Similarly, let h(i) be the set of variables among the first i variables
that split horizontally.
Obviously, l = v() ⊂ v() ⊂ v() ⊂ ċ ċ ċ ⊂ v(p) and v(p) q h(p) = �X , . . . , Xp�.

Let X(i) be the ith variable in a mosaicplot. In the default construction by Hartigan
and Kleiner (), v(i) consists of all variables with even indices that are less than i,
and h(i) contains all of the variables with odd indices:

v(i) = LX(k) �  � k � iM and h(i) = LX(k+) �  � k +  � iM
For a doubledecker plot, the sets v(i) and h(i) can be written as:

v(i) = l for all i = , . . . , p −  and
v(p) = �X(p)�
h(i) = �X(), . . . , X(i)� for all i = , . . . , p −  and
h(p) = h(p − ) .

he width of each tile can then be interpreted as P(h(p) � v(p)) and its height is
P(v(p) � h(p)). Ater the ith split, the width of a tile is P(h(i) � v(i)) and its height
is P(v(i) � h(i)).
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Assuming that the order of the variables in the mosaicplot is X , . . . , Xp , we can
make the above equations a bit more specific: if variable Xi is presented in a horizon-
tal split of the plot, the width of each tile represents

P(h(i) � v(i)) = P(Xi � v(i)) ċ P(h(i − ) � v(i)) ,
i.e., the height is given by the conditional probability of Xi given previous variables
with splits in the vertical direction, while the overall width of the tile is given by
previous splits in the horizontal direction. If we consider what can actually be seen
in amosaicplot, theway to specify the order inwhich variables should be addressed in
a mosaic becomes clear. Since we are working in this highly conditioned framework,
stratum variables should be addressed in amosaicplot first, while the most important
variables should be addressed last.

Visualizing Interaction Efects13.2.2

One way to measure the strength of association between two binary variables X and
Y is to compute the odds ratio: denote the cell probabilities of a  �  table with
variables X and Y by π , π , π and π , such that πi j = P(X = Xi �Y = Yj), where
Xi is the ith category of X and Yj is the j th category of Y .
he odds ratio (cross-product ratio) θ between two binary variables X and Y pro-

vides a measure of the association between them. It is defined as

θ = ππ
ππ

.

Values for the odds ratio range between  and+U; values of θ close to mean a strong
negative association of X and Y , and large positive values indicate a strong positive
association. When θ =  the variables X and Y are assumed to be independent. his
asymmetry in values causes many people toworkwith the logarithm of the odds ratio
instead, which ensures symmetric behavior, i.e., a value of log θ = q is just as strong
an association as log θ = −q, with log θ =  indicating independence.
Figure . shows several examples of mosaicplots of � contingency tables. he

amount of interaction between the variables increases from let to right. Visually, this
is indicated by an increase in the measure d, where d is the difference in conditional
probabilities d = m�(m+m)−m�(m+m). It can be shown (seeHofmann,
) that this difference d is approximately linear in log θ, the logarithm of the odds
ratio for the four cells, or more specifically:

d r −. ċ log θ
heapproximationholds so long as eitherm�m r m�m orm�m r m�m.
Statements about whether or when d indicates a significant interaction between

the variables cannot be drawn directly from a diagram, since only the odds ratio
is visualized, which is independent of the underlying sample size. Comparisons of
odds ratios, however, can be made directly. From the two mosaicplots on the right of
Fig. ., we can see that the odds ratio for the plot on the right is about twice the size
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Figure .. hree  �  mosaicplots; the interaction between the variables increases from let to right

as for the middle mosaicplot, since d on the right hand side is about twice as big as
d in the middle diagram. he advantage of being able to read off the odds ratio from
a mosaicplot is that it can then be used in modeling: for two binary variables X and
Y , the model of independence can be written as

logmi j = μ + λX
i + λY

j ,

wheremi j is the cell count of cell (i, j), μ is the grandmean, λX
i is the effect of the ith

level of variable X, and λY
j is the effect of the jth level of variable Y (with  � i, j,� ).

his model holds if the interaction term λXY
i j is not significantly different from zero.

Using control group constraints, i.e., all “first effects” are set to zero for identifiability,
the interaction term between X and Y is equal to the logarithm of the odds ratio
between the variables:

λXY
 = log θ .

A three-way interaction between variables X ,Y , and Z is present if the (conditional)
two-way interaction between X and Y is different for different levels of Z. he trick
therefore is to compare odds ratios. For three variables X ,Y and Z, the corresponding
(conditional) odds ratio between X and Y for a fixed level k of Z is defined as:

θ i j(k) = mi jkmi+ j+k
mi+ jkmi j+k

.

Figure .. Mosaic plot of binary variables X ,Y , and Z with structure Z , X ,Y ′. By comparing the two

conditional odds ratios θ = ad�(bc) and θ = ad�(b c), conclusions can be made about the
three-way interaction between the variables visually
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Using the same argument as above, we can read off approximate values for the (con-
ditional) logarithms of the odds ratios log θ and log θ . Finding the difference be-
tween these logarithms of odds ratios then leads us to a generalization of odds ratios
to dimension three (Bhapkar and Koch, ):

log θ − log θ = log θ�θ =� log θXYZ .

Using group constraints, the three-way interaction effect between X ,Y and Z is equal
to the logarithm of the odds ratio:

λXYZ
 = log θXYZ .

he absence of a three-way interaction therefore corresponds to θXYZ = , which
in turn corresponds to equal conditional odds ratios θ and θ . High-dimensional
interaction effects can be found visually in a similar fashion. his is explained in
more detail in Hofmann ().
For variables with multiple categories, we will suppose that at least one of the vari-

ables of interest is binary. For a visual assessment of the interaction, we will use the
same approach as before. An example is shown in Fig. ., based on theCollege Plans
data set (Sewell and Shah, ). Highlighted (marked in orange) are pupils whose
parents strongly encourage them to go to college. Highlighted heights show the con-
ditional probability of encouragement given a pupil’s IQ. he percentage of parental
encouragement increases as the IQ increases. he increase in high parental encour-
agement with each successive IQ level (denoted by d , d and d) stays approximately
equal.
For multivariate contingency tables like the example, there are multiple ways of

obtaining odds ratios. A sufficient set of odds ratios, though, is the set of odds ratios
gained by computing the odds ratios of all quadruples of four adjacent cells (see, e.g.,
Agresti, ).

Figure .. Doubledecker plot of parental encouragement vs. IQ. Highlighting reveals an

approximately linear trend of encouragement vs. IQ
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Wewill denote the odds ratio corresponding to the set of cells �mi j,mi+, j,mi , j+ ,
mi+, j+� as θ i j , i.e.,

θ i j = mi jmi+, j+
mi+,mi , j+

for all  � i � I − ,  � j � J −  .
he differences in the highlighted heights, d , d and d , are approximately linear in
the log odds ratio of the corresponding cells:

− ċ di r log θ i = log mi m(i+)
m(i+)mi

for i = , ,  .
he fact that these differences do not change much indicates a linear relationship (on
a log scale) between the percentage of high parental encouragement and the IQ level.
Obviously the two variables X and Y are independent if log θ i j =  for all i and j.

By visualizing low-dimensional relationships between variables, mosaicplots provide
us with a way to find models graphically and to check the fits of existing models.
Earlier approaches by Friendly () and heus and Lauer () established the
link between loglinearmodels andmosaicplots by displaying fitted values of loglinear
models together with their residuals.

Variants 13.3

By default, the sizes, shapes and locations of tiles in a mosaicplot are determined by
the mosaic’s hierarchical construction process. However, it is of course possible to
vary these features, and this is a very useful technique for exploring the data, as each
of them tends to emphasize different aspects of the data. We are going to discuss two
different groups of variations: doubledecker plots are, as mentioned earlier, a variant
of the default structure of a mosaicplot. All other variations discussed here refer to
the layout of the plot.

Doubledecker Plots 13.3.1

Doubledecker plots were introduced in Hofmann et al. () as a way of visualiz-
ing an association rule within the framework of the whole contingency table. Dou-
bledecker plots are a special case of standard mosaicplots. Instead of splitting the bins
alternately in horizontal and vertical directions as in a default mosaicplot, all of the
bins are split horizontally in a doubledecker plot. All of the bins in a doubledecker
plot are the same height and are drawn side by side. Doubledecker plots of p variables
X , . . . , Xp therefore have the structure X , X , . . . , Xp− , X′p , where Xp is usually the
highlighting variable. hus, highlighting the heights in a p-dimensional mosaicplot
illustrates the conditional probabilities P(Xp � X , . . . , Xp−). One thing that distin-
guishes doubledecker plots from standard mosaicplots is that they are easy to label.
his is done by drawing a striped bar below the graphic for each of the variables. he
stripes show different shades of gray, with each shade representing one category of
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Figure .. Doubledecker plot of the Titanic data. Survivors are highlighted. he highest survival rates

appear for the women in the crew and in the first and second classes

the corresponding variable. he stripe width is determined by the width of the tile
in the doubledecker plot. he exact combination that a specific bin represents can be
read from these labels by drawing a (virtual) vertical line from the bin through the
bars below.he shades that this line passes through give the exact combination of the
bin. he first bin of the doubledecker plot in figure . therefore is the combination
of Sex = female � Class = Crew, while the second bin shows all female passengers in
the first class, and so on.

Fluctuation Diagrams13.3.2

In a fluctuation diagram the area of each rectangle represents the number of cases,
but the position of the bottom right corner of a bin is fixed on a grid. his display
emphasizes large bins, while small or empty bins simply vanish.
Fluctuation diagrams are constructed as follows. All of the tiles are laid out on

a rectangular grid, and each tile is initially the same size. he information on the
cell sizes is included by shrinking both the height and the width of each tile equally,
such that the remaining area is proportional to the cell size. If the original display is
quadratic, the height and thewidth of the bin end up being proportional to the square
root of the cell size. his makes comparisons between the widths and the heights of
the bins possible at the same time.
Figure . shows a mosaic of the College Plans data (Sewell and Shah, ). he

intelligence quotient (IQ) of a pupil is plotted versus the socioeconomic status (SES)
of his/her parents. he mosaic has the structure IQ, SES′. All of the pupils who in-
tended to go to college are highlighted. In this representation, we are able to detect
three trends graphically without the need for any calculations. Let us first consider
the highlighted values. he highlighted areas grow from let to right and from top to
bottom. his type of highlighting is required in order to pick out both of the follow-
ing trends simultaneously: first, pupils with high parental SES are more likely to go
to college, and second, the percentage of college-goers also increases with IQ.
As well as these two trends, a connection between the social status of the parents

and the IQ of the pupil is visible – as the social status of the parents increases the IQ
increases, and vice versa.
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Figure .. Two-dimensional mosaicplot in fluctuation mode. Highlighting shows pupils who intend

to go to college. hree trends are recognizable visually

Another area in which fluctuation diagrams are applied in matrix visualization.
Figure . shows an example of a  �  correlation matrix for three years of
monthly temperature averages from a set of locations. Large cells indicate highly cor-
related variables, while small cells correspond to correlation values that are close to
zero. Negative correlations don’t occur in this example, but would be displayed as
their absolute values.he dominant feature in Fig. . is provided by the strong sea-
sonal trends; variables in summer months are highly correlated with each other and
between years, and are close to being independent of variables for winter month tem-
peratures. Spring and fall months are weakly correlated with all temperature
variables.
For a matrix of cases by variable (the standard spreadsheet format), we might be

tempted to use a fluctuation diagram for an initial overview; since mosaicplots take
categorical data as input, and fit each tile according to the number of caseswithin each
combination, we can only visualise whole numbers. Instead of counting the number
of cases within each combination of variables, we now use weights for each case and
sum those. he size of a tile then is given by the total sum of weights for the cases of
each combination. Plots like these are sometimes called permutationmatrices (Bertin,
) or Bertin plots (Falguerolles et al., ).
For case-by-variables matrices, we therefore use column labels and row labels

as two categorical variables and the entries of the matrix give us the weights. For
the Mammals’ Milk data (Hartigan, ), we have a variable “mammal”, consist-
ing of a list of the mammals’ names: HORSE, ORANGUTAN, MONKEY, DONKEY,
HIPPO, CAMEL, BISON, . . . , and a second variable “ingredients”, with categories:
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Figure .. Fluctuation diagram for a correlation matrix. he correlations between monthly average

temperatures at different locations are plotted for three years. Seasonal trends yield the dominant

structure in the picture

Ash, Fat, Lactose, Protein, andWater.We use the percentages of the ingredients of the
milks for each animal as weights in the mosaicplot. Figure . shows two weighted
mosaics given in fluctuation mode for the Mammals Milk data. he cases are listed
in alphabetic order. he let side shows the raw data; we can see that all of the milks
mostly consist of water. DOLPHIN and SEAL show up as outliers, since they have
the lowest percentages of Water, and highest percentages of Fat.
he different ingredients are allocated rather unevenly, so the use of standardized

values here helps to detectmore detailed patterns between each pair ofmammals.he
right side of Fig. . shows standardized values (via X � X�σX) used as weights.
Again, it is obvious that DOLPHIN and SEAL behave similarly, but now we can also
see that DEER and REINDEER also are very similar. Surprisingly, BISON and BUF-
FALO seem to be very different.
he use of clustering techniques like Complete Linkage yields results like those

shown in Fig. .. he rows of the data table are sorted according to the hierarchi-
cal clustering scheme. Now we can check the results from the clustering algorithm
graphically by comparing the rows of the mosaicplot. his enables us to choose the
number of clusters by graphical means, which, of course, is a sot and very subjective
criterion, but one that enables us to respond quickly to different situations. In this
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Figure .. (Weighted) mosaicplots of the Mammals data. Raw data is shown on the let, while the

values on the right are standardized

case, we’d probably decide to split the clusters a bit further, take the HIPPO out of
cluster , split cluster  into CAMEL–LLAMA and BUFFALO–SHEEP, take the ELE-
PHANT out of cluster , and remove the RABBIT from cluster . he most ques-
tionable cluster is the remaining one, cluster , which contains the largest differences
according to the graphic. he new clusters found graphically basically correspond to
a vertical cut in the dendrogram with  clusters (see Fig. .).
Of course, it is a lot easier to compare different rows if they are spatially close to

each other. In the clustering algorithm, on the other hand, the order of observations
in the same cluster is not relevant. Shiting whole clusters makes it possible to com-
pare the distances between them.
he ability to reorder rows and columns quickly is crucial if we want to rapidly

draw conclusions from graphical displays. Similarities between objects become far
more obvious if these objects are close together. herefore, ways of reordering and
sorting rows and columns must be provided by the graphical user interface.
Bertin (, p. ), proposes that the categories of a matrix be ordered “suitably”

to visualise clusters in the data. Falguerolles et al. () formalised Bertin’s idea by
introducing a purity function to measure the “simplicity” of a Bertin plot. Optimal
orderings correspond to a minimum in the purity function. Depending on the data
and the exact definition of the purity function, there are, of course, various ways in
which the categories could be reordered. For row and column scores and a purity
function which counts the number of pairs in “correct” order, reordering according
to the purity function means sorting based on the scores.
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Figure .. [his figure also appears in the color insert.] (Weighted) mosaicplot and dendrogram of

the Mammals data clustered via complete linkage

Others13.3.3

Multiple Bars
A multiple bar display is a variant of the mosaicplot that is very closely related to
the fluctuation diagram. Starting from tiles of the same size, the tiles are shrunk to
represent the cell’s size. However, unlike fluctuation diagrams, the tiles in multiple
bar displays are shrunk in one dimension only. his makes them look like barcharts.
he structure in the mosaicplot determines the exact layout; switching the order of
the variables (except for the last variable) will shit the smaller barcharts around, but
will not change their size or appearance. Switching the last variable will realign single
bars. In Fig. ., the structure underlying the plot is gender, vehicles′, age, i.e., the
barcharts display the number of accident victims by age group.here is one barchart
for each combination of vehicle type and gender. Overall, more men than women are
reported to have accidents. he age distributions vary a lot between vehicle types, but
are fairly similar between the two genders, with the exception of motorcycles. A lot
more men than women are involved in motorcycle accidents.

Same-Bin-Size Displays
As the name suggests, the same-bin-size variant of a mosaicplot contains equally
sized bins. his makes the same-bin-size display a mosaicplot with a special form
of weight variable: W i , the weight of observation i, is chosen to be proportional to
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Figure .. A multiple bars display of the Accident Victims data (Bertin, , p. ). More men than

women are among the victims. he difference is particularly prominent for motorcycle accidents, which

is the largest source of accidents for men. For women, the largest source of accidents is four-wheeled

vehicles, except for girls under the age of ten and women above fity. For both of these age groups, most

of the accidents happen to pedestrians

the inverse of the number of cases in the cell into which observation i falls. Without
any additional information, this plot is therefore a rather boring one. Where are the
advantages of it?
here are two main areas where same-bin-size displays have proven to be very

useful; comparisons of conditional distributions (visualized by highlighting heights),
and searches for data patterns (e.g., the empty-bin pattern in sparse data cubes).
Figure . shows a default mosaicplot that is changed into its same-bin-size vari-

ant. his involves a change of vertical scale. his change in scale makes it much eas-

Figure .. Changing from a default mosaicplot to a same-bin-size variant. he changes means that

the highlighted heights of the upper and lower rows can be compared more easily, since the rows have

identical vertical scales, instead of the different scales that they had in the mosaicplot
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Figure .. Two-dimensional mosaicplot of the Letter Recognition data. Due to the same-bin-size

representation, the pattern for the highlighted cases is clearly visible

ier to compare the highlighted heights of the upper and lower rows; we only need to
compare the positions on identical, although unaligned, scales in the same-bin-size
display.
Figure . contains a mosaicplot of the Letters Recognition data (Frey and Slate,

). Cases with an xbar value of at least  are highlighted. he mosaicplot shows
all of the letters in the alphabet from let to right, classified according to five different
classes of width.he top four rows all show the samepattern for the highlighted cases;
the conditional probabilities are increased for the five letters D,H,M, N and U. B also
shows increased proportions of highlighting in two of the rows.
he second application of the same-bin-size variation does not deal with addi-

tional information, but rather with missing information. If we have a sparse data
cube, we can check for cells devoid of data. he goal now is to provide methods that
provide a quick overview of the empty cells in the data set, and thus to deduce the
empty-bin pattern within a dataset, which can help us to answer questions like:
. How many empty bins are there?
. Where do they occur?
. Is there any recognizable pattern to their occurrence, or do they occur completely

at random?

he order of variables is important, especially when looking for patterns and groups
of combinations. Reordering the variables and collapsing over empty combinations
can help.

Mondrian Displays
By default, mosaicplots are space-filling, since only thin spaces are present between
the tiles. If these spaces are omitted we obtain another variant of a mosaicplot: the
Mondrian display. While Mondrian displays are even more space-efficient than the
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Figure .. Regular (let) and Mondrian (right) mosaicplots of the Titanic data. Class is plotted versus

Age. he empty crew/child cell disappears from the Mondrian display

standard mosaicplot, they are not well equipped to deal with empty combinations.
Figure . shows two mosaicplots of the same aspect of the Titanic data: Class is
plotted against Age.he empty bin (there were, by definition, no children among the
crewmembers) disappears in theMondrian display on the right. Sometimes, though,
particularly in data with many categories, Mondrian displays can be beneficial since
they utilize the tiny extra bit of screen space available (the spaces between the rect-
angles).

RelatedWork and Generalization 13.4

In contrast to the mosaicplot variants discussed earlier, this section is about actual
extensions. While the variants show the same or a reduced amount (in the case of
same-bin-size displays) of information, treemaps and trellis displays have a richer
structure than a mosaicplot; indeed the mosaicplot is a special case of each of these.

Treemaps 13.4.1

Treemaps were introduced by (Johnson and Shneiderman, ) as a method of vi-
sualizing the file structure on a hard disk used by  users, in order to determine
where and how space was used. Finding large files that could be deleted and deter-
mining which users consumed the most disk space were difficult tasks. Treemaps
are designed to display trees, such as directory trees. Associated with each node in
a directory tree is a numeric value that gives the disk space used by the files in the
subtree rooted at the node. Each node is displayed as a rectangle; the size of this rect-
angle is proportional to the disk space it represents. All descendents of the node are
displayed as rectangles inside this rectangle. By default, horizontal and vertical splits
are alternated, just as in standard mosaicplots. Each file appears as a rectangle whose
size is proportional to the file size, enabling users to spot large files at any level in the
hierarchy.
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Figure .. Tree (let) and accompanying treemap (right). In this example all nodes have equal weight.

Only leaves of the tree are visible as tiles; the other nodes determine the structure

Figure .. Tree (let) and accompanying treemap (right). he tree shows a contingency table for the

Titanic data: the structure for the treemap on the right is gender′ , class, survived′

Treemaps and mosaicplots have a lot of features in common: both are area-based
plots; both plots share a strict hierarchical construction; both strongly depend on
the order of the variables. Treemaps have a richer structure than mosaicplots – any
contingency table can be written in the form of a tree, but not vice versa (see Fig. .
for example). When the tree shows a contingency table – all branches have the same
depth and all nodes at a specific level are split along the same variables – a treemap
simplifies to a mosaicplot. Both of the treemaps in Figs. . and . were created
using the TreeViz sotware (Johnson and Shneiderman, ).

Trellis Plots13.4.2

While a treemap represents an extension to the basic structure of amosaicplot, a trel-
lis plot (Becker et al., ) uses the same basic structure but enables more flexible
displays. Trellis displays present the data in panels laid out in rows, columns and
pages. In each panel of the trellis, a subset of the data is plotted using an appropri-
ate display method, such as a barchart, a scatterplot, a dot plot, or a boxplot. Each
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panel shows the relationship between certain variables given the values of other vari-
ables. he concept behind trellis displays is implemented in many data visualization
systems. We are going to use the notation introduced by Deepayan Sarkar in his R
package lattice. he structure of the plot that is produced is mostly controlled by the
argument of the formula. he formula is generally of the form y~x�g s g s . . . ,
indicating that plots of y (on the y axis) versus x (on the x axis) should be pro-
duced, conditional on the variables g, g, . . . . If the conditioning variables are omit-
ted, the trellis display consists of a single panel, showing the relationship between x
and y. For low-dimensional plots, such as barcharts or dot plots, the y variable can
be omitted too. A separate panel is produced for each unique combination of val-
ues of conditioning variables g, g, . . . using the points (x , y) for the subset of the
data (also called the packet) defined by that combination. he order of the panels de-
pends on the order in which the conditioning variables are specified, with g varying
fastest.
Figure . shows an example of a trellis display of three continuous variables –

depth, latitude and longitude – representing the locations of earthquakes in theTonga
Trench.he location of each earthquake is plotted in a scatterplot, and the trellis dis-
play is organized according to earthquake depth.he following lines of Rwill produce
the plot in Fig. ..
> library(lattice)
> data(quakes)
> Depth <- equal.count(quakes$depth,number=8,overlap=.1)
> trellis.par.set(theme=col.whitebg())
> xyplot(lat ~ long | Depth,data=quakes,asp=1.0,pch=20)

Figure .. Scatter plots of locations of earthquakes in a trellis framework. he observations in each

panel are organized according to the depth at which the earthquake happened
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Figure .. Trellis display of the Accident Victims data. he same variables are presented here as

shown in Fig. .

Trellis displays and mosaicplots are very closely related from a conceptual point of
view. he multiple barchart variant of the mosaicplot is essentially a trellis display
of only categorical variables. he close relationship between mosaicplots and trellis
displays is probably most obvious for the example of the accident victim data shown
in Figs. . and ., where Fig. . is produced by the following lines of code:
> library(lattice)
> barchart(Observed~Age|Vehicle*Gender, data=acc)

he formula notation of R also fits with our notation of the plot’s structure: the for-
mula y~x�g s g s ċ ċ ċ s gp corresponds to a mosaicplot with a structure of gp , . . . ,
g, x, y, i.e., the order of the variables is inverted. Trellises are not very strict about
the actual layout of the panels, but a similar approach to the default layout of mosaic-
plots – alternating between rows and columns, i.e., horizontal and vertical splits – is
generally used for trellis displays too.
he big difference between trellis displays and mosaics is, of course, the ability of

trellis displays to flexibly display observations using different display types, whereas
mosaics are restricted to counting the number of observations in each combination
of the conditional variables and then displaying this number as a proportionally sized
rectangle.

Pivot Tables13.4.3

While pivot tables are not primarily a graphical technique, they are still closely re-
lated to mosaicplots and so are discussed here. Pivot tables are included in any Excel
distribution and are therefore widely available, although not widely used. Pivot tables
allow us to summarize categorical variables. Figure . shows Excel’s pivot table as-
sistant: using drag and drop from a list of all variables, variables can be placed in the
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Figure .. Excel’s assistant for setting up a pivot table using drag and drop from a list of variables

rows and columns of a data table. Ater the variables of the frame have been set up,
the data variable is picked and placed in the middle of the data table.
he values of the data variable are summarized according to the combination

of the variables of the frame. Excel provides various options for summarizing (see
Fig. .): counting observations, summarizing their values, picking minima, max-
ima or averages, and so on.

Figure .. Pivot table for the Accident Victims data. Front: dialog window showing the summarizing

options available for in Excel’s pivot tables
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herefore, pivot tables have the same structure as mosaicplots, but allow different
summaries from mosaicplots. A pivot table’s structure carries slightly less informa-
tion than a mosaicplot, as the order of the variables in rows and columns is stored
separately. A structure of the form X , X′ , X , X′ , . . . is stored in two separate lists:
a list of row variables X , X , . . . and a list of column variables X , X , . . . (together
with the order of the variables in each list). his means that a pivot table is unable
to distinguish between the structures X , X′ , X or X , X , X′ or X′ , X , X . On top
of the pure cross-tabulation, pivot tables usually provide marginal information: row
sums and column sums are given, as well as totals by variable and grand totals. his
information is incorporated into a mosaic implicitly because of the structure, but is
not readily available; since mosaics are constructed hierarchically, a low-dimensional
mosaicplot is “included” in a high-dimensional mosaicplot. Onlookers must visually
“remove” the last splits performed and recombine tiles to see the low-dimensional
mosaic – which is only feasible in the standard form of mosaicplot. his corresponds
to reading Fig. . backwards from let to right. he use of different ways of summa-
rizing the observations corresponding to the combinations of conditional variables
may lead to new variants ofmosaicplot. Eachnew summarywill mean a change in the
way that the mosaics must be interpreted, as the tile area does not then correspond
to the probability estimate for the joint distribution of the variables.

Implementations13.5

Implementations of mosaicplots become more and more frequent – almost all sot-
ware packages now have some functionality for creating mosaicplots. Perhaps the
most notable of them is the implementation of mosaicplots in R by John Emerson
(), as well as the fully interactive implementations inManet (Unwin et al., ),
Mondrian (heus, ), and KLIMT (Urbanek, ).
Treemaps were first introduced in the Macintosh sotware TreeViz (Johnson and

Shneiderman, ). hey are now more widely available in a variety of forms; for
example, fully interactive and linked treemaps can be found in the sotware pack-
age KLIMT, the “Map of the Market” (Wattenberg, ) shows a squarified treemap
of stocks available at http://www.smartmoney.com, and the Java sotware TreeMap
(Bederson et al., ) provides a very much improved treemap version of TreeViz.
Implementations of pivot tables are widespread, although only in disguise. he

name “pivot table” seems to be used exclusively in Excel; other names for them in-
clude cross-tabulations and (multivariate) data summaries. here are various func-
tions inR that allow cross-tabulations in specific situations, such as table, xtabs, table,
. . . . A unified framework for cross-tabulations is provided byHadleyWickham in his
recast package (Wickham, ).
Both mosaicplots and their extensions can benefit from each other; by accommo-

dating some of the features of the extensions, mosaics should become more applica-
ble and flexible. he extensions, on the other hand, could possibly make use of the
mosaicplot’s variants.
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A dataset with M items has M subsets, any one of which may be the one we re-
ally want. With a good data display, our own fantastic pattern-recognition abilities
can not only sort through this combinatorial explosion, but they can also extract in-
sights from the visual patterns.hese are the core reasons for data visualization. With
parallel coordinates (abbrev. f-coords), the search for multivariate relations in high-
dimensional datasets is transformed into a -D pattern recognition problem. In this
chapter, the guidelines and strategy for knowledge discovery using parallel coordi-
nates are illustrated on various real datasets, one with  variables from a manufac-
turing process. A geometric classification algorithm based on f-coords is presented
and applied to complex datasets. It has low computational complexity, providing the
classification rule explicitly and visually.heminimal set of variables required to state
the rule are found and ordered by their predictive value. A visual economic model
of a real country is constructed and analyzed to illustrate how multivariate relations
can be modeled using hypersurfaces. he overview at the end provides a basic sum-
mary of f-coords and a prelude of what is on the way: the distillation of relational
information into patterns that eliminate need for polygonal lines altogether.

Introduction14.1

Origins14.1.1

Over half of our sensory neurons are devoted to vision, endowing us with tremen-
dous pattern recognition abilities. he goal of visualization is to couple this talent
to our problem-solving capabilities, in order to obtain insights from images. In or-
der tomake it easier to visualize multivariate/multidimensional problems, numerous
mappings that visually encode multidimensional information in a two-dimensional
plane (see Friendly, ; Tute, , , ), have been invented. Suchmappings
augment our perception, which is limited by our habitation of a three-dimensional
world. Great successes in this field, like Minard’s “Napoleon’s March to Moscow,”
Snow’s “dot map,” and others are, however, ad hoc (i.e., one-of-a-kind) and excep-
tional. Succinct multivariate relations are rarely made apparent by static displays. To
overcome this problem, wemust incorporate the interactivity enabled by the techno-
logical advances of the last half-century. In turn, this raises the issues of how to cre-
ate effective GUIs (graphical user interfaces), queries, exploration strategies, and of
course good information-preserving displays, but we are getting ahead of ourselves.
Legend has it that Archimedes, while constructing a proof, was so absorbed in

a diagramwhen he was killed by a Roman soldier that he pleaded “Do not disturbmy
circles” as he was being struck by a sword. Visualization first flourished in geometry
(which makes Archimedes’ the first recorded death in defense of visualization). he
utilization of diagrams is strongly interwoven within the testing of conjectures and
the construction of proofs. his essence of visualization was eventually abstracted
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and adapted into the more general problem-solving process.We form amental image
of the problem we are trying to solve, and at times we say that we see when we mean
that we understand.
My interest in visualization was also sparked and nourished while learning ge-

ometry. Later, while studying multidimensional geometry I became frustrated by the
absence of visualization. I wondered why geometry was being tackled without using
(the fun and benefits of) pictures? Was there a generic way of creating accurate pic-
tures of multidimensional problems, like Descartes’ epoch-making coordinate sys-
tem?What is “sacred” about orthogonal axes, which quickly “use up” the plane asso-
ciated with them? Ater all, parallelism rather than orthogonality is the fundamental
concept in geometry, and these are not equivalent terms, for orthogonality requires
a prior concept of “angle.” I played with the idea of a multidimensional coordinate
system based on parallel coordinates, in which, in principle, lots of axes could be
placed and viewed. Encouraged in  by Professors S.S. Cairns and D. Bourgin,
both topologists at the University of Illinois where I was studying, I derived the basic
point t line duality followed by the N −  points t N-dimensional line correspon-
dence, realizing in the process that projective rather than Euclidean space is involved.
In , while teaching linear algebra to a large class of unruly engineers, I was

challenged to show spaces with more than three dimensions. I recalled parallel co-
ordinates (abbreviated f-coords), and the question of how multidimensional lines,
planes and other objects “look” was raised. his triggered the systematic develop-
ment of f-coords, and a comprehensive report Inselberg () documented the ini-
tial results. Noted on the first page is the superficial resemblance to nomography,
where the term “parallel coordinates” was used (Brodetsky, ). In nomography,
which declinedwith the advent of computers, there are graphical computational tech-
niques involving “functional scales” (Otto, , p. ), oten placed in parallel, for
problems with usually two or three variables. Until very recently, I was not aware
(I am indebted toM. Friendly for pointing this out in (Friendly, )) of d’Ocagne’s
marvellous monograph (d’Ocagne, ) on parallel coordinates for two dimensions,
where a pointt linedualitywas studied and, togetherwith a point-curvet line-curve
correspondence, was applied to interesting numerical problems. D’Ocagne pursued
computational applications of nomography (d’Ocagne, ) rather than develop-
ing a multidimensional system of parallel coordinates – a systematic body of knowl-
edge consisting of theorems on the representation of multidimensional objects, their
transformations and geometrical construction algorithms (i.e., for intersections, in-
terior points, etc.), which is where we came in.
his is a good time to recoup and trace the development of f-coords. In , it

was first presented at an international conference (Inselberg, ), and prior to that
at seminars like that at the University of Maryland, where I was fortunate to meet
Ben Shneiderman, whose encouragement and visualization wisdom I have benefited
from ever since. A century ater the publication of d’Ocagne’s monograph, Inselberg
() (coincidentally) appeared. his period of research – performed in collabora-
tion with my esteemed colleagues the late B. Dimsdale (a long-time associate of John
von Neumann), A. Hurwitz, who was invaluable in every aspect leading to three US
patents (Collision Avoidance Algorithms for Air-Traffic Control), Rivero and Insel-
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berg (), together with students T. Chomut (Chomut, ) (who implemented
the first f-coords EDA sotware), and the ubiquitous M. Boz (Inselberg et al., ) –
was very fruitful, as indicated by the partial list (Inselberg, , , ; Inselberg
et al., ) (applications to statistics) and Inselberg andDimsdale (). It paved the
way for new contributors and users: R.P. Burton’s group at Brigham Young University
(since ) Cluff et al. (), Cohan andYang (),Hinterberger (first studied data
densities using f-coords, ) Schmid andHinterberger (),Helly (), Fiorini
and Inselberg (), Gennings et al., contributed a sophisticated statistical applica-
tion (Gennings et al., )(response surfaces based on f-coords), Wegman (greatly
promoted EDA applications) (Wegman, ), and Desai andWalters ().he re-
sults obtained byEickemeyer (),Hung and Inselberg () andChatterjee ()
were seminal. Progress continued through Chatterjee et al. (),Ward (), Jones
(), to the most recent work of Yang () and Hauser (), which increased
the versatility of f-coords. At the current time of writing, a query for “parallel coor-
dinates” on Google returned more than , “hits.”

The Case for Visualization14.1.2

Searching a dataset with M items for “interesting” (a term that depends on the ob-
jectives) properties is inherently a difficult task. here are M possible subsets, any
one of which could most closely satisfy the objectives. he visual cues that our eyes
can pick out from a decent data display can enable us to quickly sort through this
combinatoric explosion. How this is done is only part of the story here. Clearly, if
the transformation data � picture loses information, a great deal is lost right at
the start. When exploring a dataset with N variables rather than presenting it (as pie
charts, histograms, etc.), use a good display to:
. preserve information – it should be possible to reconstruct the dataset com-

pletely from the picture,
. have low representational complexity – the computational cost of constructing

the display should be low,
. work for anyN – it should not be limited by the dimensions of the data,
. treat each variable uniformly,
. exhibit invariance under projective transformations – the dataset should be

recognizable ater rotations, translations, scalings and perspective transforma-
tions,

. reveal multivariate relations in the dataset – this is the most important and
controversial single criterion,

. be based on a rigorous mathematical and algorithmic methodology – thus
eliminating ambiguity in the results.

Neither completeness nor uniqueness is claimed for this list, which should invite crit-
icism and changes. Further commentary on each item, illustrated by examples and
comparisons, is listed below in the same order.

 abbreviation of exploratory data analysis
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. henumerical values of eachN-tuple (i.e., each data point) should be recoverable
from the scatterplot matrix (abbr. SM) and the f-coords display. By contrast, this
may not be necessary or desirable for presentation graphics.

. In the pairwise scatterplot matrix, the N variables appear N(N − )� times.
By contrast there are only N axes in f-coords, although there is an additional
preprocessing cost, as pointed out later. For N 	 , the practical barriers due
to the required display space and visual difficulties limit the use of a SM. hese
barriers are less stringent for f-coords.

. Even when the perspective is used effectively, orthogonal coordinates are inher-
ently limited to N =  due to the dimensionality of our existence. With some
“trickery,” the illusion of a few more dimensions can be added. For f-coords,
implementation capabilities rather than conceptual barriers determine the max-
imum feasible N .

. In the “Chernoff faces” display, for example, each variable corresponds to a spe-
cific facial feature and is treated accordingly. he correspondence facial feature� variable is arbitrary. Choosing a different correspondence gives a different dis-
play.he fun is that there is no general way to show that the two different displays
portray the same dataset. Of course, this is also true for general “glyph” displays.

. his is true for SM and for f-coords, although it has not been implemented in
general. Incidentally, this is a wonderful M.Sc. thesis topic!

. he real value of visualization, in my opinion, is not the ability to see “zillions of
objects,” but to recognize relations among them. We know that projections lose
information, which can possibly be recovered using interactivity. Nevertheless,
important clues that can guide the interaction are lost. So I prefer to start with
a display where all of the information is there even though it may be tricky to
uncover. What visual cues are available and how they guide the exploration are
crucial determining factors.

. he value of rigor is self-evident.

hese and additional issues comprising the discovery process are better appreciated
via the exploration of three real datasets. he basic queries are introduced in the first
example from GIS and are subsequently combined, with boolean operators, for use
on financial data. An example with  variables is briefly discussed before mov-
ing on to automatic classification. Visualization and f-coords play key roles in the
algorithm’s conception, internal functions and the visual presentation of the classi-
fication rule. he minimal basis of the variables is found and ordered according to
their predictive value.
he overview at the end provides background on optimizing the use of f-coords

and its applications. his involves:
. learning patterns corresponding to the basic relations and seeking them out for

EDA,
. understanding the design and use of queries,
. the relevance of f-coords to other sophisticated statistical applications like re-

sponse surfaces (Gennings et al., ), and
. applications to regression, as in the example at the end,
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. understanding that the relational information resides in the crossings,
. concentrating the relational information in the data into clear patterns that

eliminate the need for polygonal lines altogether. his last point is illustrated
by the “proximate planes” example, which encourages research into efficient (par-
allel) algorithms for accomplishing this on general datasets. We eliminate the
“clutter” by reducing the display into patterns corresponding, at least approxi-
mately, to the multivariate relations in the data.

Before we dive into the specifics of f-coords, we provide a visualization challenge for
the reader to ponder. For a plane

π � cx + cx + cx = c , (.)

allow the coefficients to each vary within a small interval. his generates a family of
“close” (let’s call them proximate) planes:

Π = �π � cx + cx + cx = c , ci � [c−i , c+i ], i = , , , � . (.)

hese are the planes generated by small rotations and translations of π with respect
to the three coordinate axes. Together they form a “twisted slab” which, even in -D
using orthogonal axes, is difficult to visualize. Conversely, given lots of points in -D,
how can we show (using any general visual method you can think of) that they lie on
a twisted slab, and how can we visualize such a form precisely; for N =  and then for
any N? In the meantime, you can project, pursue, scale, reduce, scintillate, regress,
corollate or tribulate to your heart’s content, but please do not peek at the answer,
which is given at the end of the chapter.

Exploratory Data Analysis with �-coords14.2

Multidimensional Detective14.2.1

Parallel coordinates transform multivariate relations into -D patterns suitable for
exploration and analysis. For this reason they are included in lots of sotware tools.
he queries “Parallel Coordinates + Sotware” onGoogle returned about , “hits”
and “Scatterplot matrix + Sotware” about , at the time of writing. Irrespective
of the apparent relative ratio, the fact that the numbers are comparable astounded
me, having heard the appellations “esoteric,” “unnatural,” “difficult,” “squiggly,” and
others used in association with f-coords.
he exploration (the venerable name “exploratory data analysis,” EDA, is used in-

terchangeably with the currently more fashionable “visual data mining”) paradigm
is that of a detective, starting from the data, searching for clues leading to conjec-
tures, testing, backtracking until voila . . . the “culprit” is discovered. he task is es-
pecially intricate when many variables (i.e., dimensions) are involved, which calls
for the employment of a multidimensional detective (abbrev. MD). As if there were
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any doubts, our display of choice is f-coords, where the data appear in the form of
squiggly blotches, and which (using queries) theMD skilfully dissects in order to find
precious hidden secrets.
At this point, it is worth considering how similar queries are performed using

other exploration methodologies, including the ubiquitous spreadsheets. More im-
portantly, which visual clues prompt the use of such queries. A few basics (see
Sect. . or the more detailed references Inselberg, , ) are recalled here.
In f-coords, due to the pointt line and other dualities, some but not all actions are
best performed in the dual. he queries, which are the “cutting tools,” operate on
the display (i.e., dual). he design of these queries should exploit the methodology’s
strengths and avoid its weaknesses, rather than mimic the action of queries operat-
ing on standard “nondual” displays. Just like a surgeon has many specialized cutting
tools, one of our early sotware versions had lots of specialized queries. However, not
only was it difficult to classify and remember them all, but they still could not han-
dle all of the situations encountered. Ater experimentation, I opted for a few (three)
intuitive queries, called atomic, which can be combined via boolean operations to
form complex intricate cuts. Even for relatively small datasets, the f-coords display
can look uninformative and intimidating. A lack of understanding of the basics of
the underlying geometry and poor query choice can limit the use of f-coords to un-
realistically small datasets.
Summarizing, the requirements for successful exploratory data analysis are:
an informative display that does not lose any of the information about the data,
good query selection,
skilful interaction with the display.

An Easy Case Study: GIS Data 14.2.2

he first admonition is:
do not let the picture intimidate you,

which can easily happen if you take an uninformed look at Fig. ., which is the
dataset that we are going to explore. It consists of over ,measurements with nine
variables; the first two, (X ,Y), specify the location on themap of the portion of Slove-
nia shown in Fig. . (let) where seven types of ground emissions have been mea-
sured by satellite. he ground location, (X ,Y), of one data item is shown in Fig. .
(right), which corresponds to the region shown in the map and remains open dur-
ing the exploration. he query used to select the data item (as shown in Fig. .) is
called Pinch. It is activated by the button P on the toolbar. Using this query, a bunch
of polygonal lines (i.e., data items) can be selected (they are “pinched” between the
axes). Moving the cursor changes the position of the selected arrowhead, which is
the larger of the two shown. In due course various parts of the GUI will be illustrated
(Parallax, proprietary sotware from MDG Ltd., All Rights Reserved, is used with
permission).
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Figure .. (Let) Region of Slovenia where seven types of ground emissions were measured by the

LandSat hematic Mapper, as shown in subsequent figures (thanks to Dr. Ana Tretjak and Dr. Niko

Schlamberger, Statistics Office of Slovenia). (Right) he display is the map’s rectangular region, while

the dot marks the position where the seven-tuple shown in the next figure was measured

Figure .. A query in Parallax showing a single data item: the X ,Y position (as shown on the right of

Fig. .) and the values of the seven-tuple (B, B, B, B, B, B, B) at that point
Aside from starting the exploration without any bias, it is essential that you
understand the objectives.

Here the task is to detect and locate various ground features (i.e., built-up areas, vege-
tation, water, etc.) on the map.here is a prominent lake in the lower-let corner that
has an unusual shape with an upward pointing “finger.” his brings us to the next
admonition: no matter how messy it looks,

carefully scrutinize the data display for clues and patterns.
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Figure .. Finding water regions. he contrast due to density differences around low values of B is

the visual cue that prompts this query

Figure .. (Let) he lake (the result of the query shown in Fig. .) and (right) just its boundary

(the result of the query shown in Fig. .)

Follow up on anything that catches the eye: gaps, regularities, holes, twists, peaks
and valleys, density contrasts (like the one at low values of B through B). Using the
Interval query, activated by the I button, starting at the minimum, we grab the low
range of B (between the arrowheads), stopping at the dense part as shown in Fig.
..he result, shown on the let of Fig. ., is amazing. We have found the water –
the lake is clearly visible, together with two other regions which turn out to be small
streams upon comparing with the map. With our scrutiny rewarded, we recall the
adage that

a good thing may be worth repeating.

Searching for density variations within the lower interval of B, we note that the
lowest part is much denser than the rest. Experimenting a bit, and appreciating the
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Figure .. Query finding the water’s edge

importance of interactivity, we select the sparse portion, Fig. ., which defines the
water’s edge (Fig. ., right), and in fact more. By dropping the lower arrow, we see
the lake filling up starting from the edge (i.e., shallowwater first).herefore, the lower
values of B reveal the water and the lowest “measure” shows the water’s depth; not
bad for a few minutes of playing around.
But all this pertains to a single variable, when we are supposed to be demonstrat-

ing multivariate exploration. his is a valid point, but we did pick B among several
variables. Further, this is a useful “warm-up” for the more involved example that we
encounter next, since it has enabled us to present two of the queries. he astute ob-
server has probably already noticed the regularity, the vertical bands, between the
B, B and B axes. his is where the angle query, activated by the A button, comes
into play. As the name implies, it selects groups of lines within a user-specified angle
range. A data subset which corresponds to regions on themapwith high vegetation is
selected between the B and B axes as shown inFig. . (let); the inter-axis distance
is increased to better illustrate the vertical bands. Clicking the A button and placing
the cursor at the middle of one axis opens an angle with its vertex in the mid-range of
the previous (let) axis. he range of this angle is controlled by the arrowmovements
on the right axis. Actually, this “rule” (i.e., relation between some parameters) for
finding vegetation can be refined by tweaking a couple more parameters. his raises
the topic of rule-finding in general – classification – which is taken up in Sect. ..
he angle and pinch queries are motivated by the ℓ line� point ℓ̄ correspondence

in f-coords illustrated in Fig. .. To clarify the notation, m is the slope of the line
ℓ and b is the intercept (i.e., the line’s intersection with the x axis). As seen from its
x-coordinate, the point ℓ̄ lies between the parallel axes whenm < , to the right of the
X̄ axis for  < m <  and to the let of X̄ for m � . Lines with m =  are mapped to
the direction with slope b�d in the xy-plane. Here d is the inter-axis distance and b is
the constant (intercept) in the equation of ℓ.his shows, that dualities properly reside
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Figure .. Finding regions with vegetation using the angle query (let) between the B and B axes.

Note the arrowheads on the B axis, which specify the range of angles for the selected lines

in the projective plane (the directions are the ideal points) rather than the Euclidean
plane. For sets of points that have a “general” direction with a negative slope (i.e.,
are “negatively correlated”), the lines representing them in f-coords cross each other
in-between the axes, and they can be selected with the pinch query. For positively
correlated sets of points, their corresponding lines cross outside the axes and can be
selected with the angle query. All of this exemplifies the need to understand some
of the basic geometry in order to use the queries effectively and of course to design
them properly. Now that we have introduced the three atomic queries, the next stage
is to show how they can be combined to construct complex queries.
However, prior to this, Fig. . (let) begs the question: “what if the B and B

axes were not adjacent?” hen the pattern and hence their pairwise relation would be
missed. Hence the permutation of the axes used for the exploration is important. In
particular, what is the minimum number of permutations among N-axes containing
the adjacencies for all pairs of axes? It turns outWegman () thatM permutations
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are needed for even N = M, andM+ for odd N = M+. It is fun to see why. Label
the N vertices of a graph with the indices of the variables Xi , i = , . . . ,N , as shown
in Fig. . for N = . An edge joining vertex iwith j signifies that the axes indexed by
i , j are adjacent. he graph on the let is aHamilton path, because it contains all of the
vertices. Such paths have been studied since Euler first did so in the eighteenth cen-
tury, and have modern applications to the “travelling salesman” problem and others

Figure .. (Let) Parallel coordinates induce a point ℓ̄ � ℓ line duality. (Right) he horizontal position

of the point ℓ̄ representing the line ℓ is determined only by the slope of the line m. he vertical line

ℓ � x = a is represented by the point ℓ̄ at the value a on the X̄ axis

Figure .. (Let) First Hamiltonian path on the vertices labeled , . . . ,  corresponding to (axis) index

permutation . (Right) he complete graph as the union of the three distinct Hamiltonian paths

starting successively at the vertices , , 
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(Harary , pp. ; Bollobas , pp. ).he graph corresponds to the axis index
permutation . On the right, the union with the additional two Hamiltonian
paths, starting at vertices  and , forms the complete graph that contains all possible
edges. Hence, the three permutations  , ,  contain all possible
adjacent pairs (try it!). he remaining permutations are obtained from the first by
successively adding  mod  , and this works for all N .
Returning to EDA, the icon with the Rubik’s Cube on Parallax’s toolbar activates

a permutation editor which automatically generates the Hamiltonian permutations
(abbr. HP). Ater scrutinizing the dataset display, the recommended next step is to
run through the O(N�) HP. his is how all nice adjacencies such as the one in
Fig. . are discovered.hen, using the editor, patch your own custom-made permu-
tation containing all of the parts you like into the HP. With this preprocessing cost,
referred to earlier in list item  of the Introduction, the user can set their own best
permutation to work with. Of course, there is nothing to prevent one from including
axes several times in different positions and experimenting with different permuta-
tions during the course of the exploration.

Compound Queries: Financial Data 14.2.3

Next up is the financial dataset in Fig. .. Here the goal is to discover relations that
are useful for investments and trading.he data for the years  (second tick on the
third axes) and  are selected. In  theYen had the greatest volatility among the
three currencies, interests varied in the mid-range, gold had a price gap, while SP
was uniformly low. By comparison, in , the Yen was stable while Sterling was
very volatile, interest and the price of gold were low, and the SP was uniformly
high. Two interval queries are combined with the OR boolean operator (i.e., union)
to obtain this picture. We continue to

“look for the gold” by checking out patterns that catch our attention.

he data for  is isolated in Fig. . and the lower range in the gold price gap is
selected. Gold prices were low until the second week in August, when they jumped
and stayed high. he exploration was carried out in the presence of four financial
experts, who carefully recorded the relation between low Yen, high MTB rates and
low Gold prices By the way, a low rate of exchange for the Yen means that the Yen
has high value relative to the $.
here are two bunches of crossing lines between the sixth and seventh axes in

Fig. ., which together comprise more than % of the dataset. his, and recalling
the previous discussion on the line u point mapping in Fig. ., suggests a strong
negative correlation between Yen and MTB rates. he smaller cluster in Fig. . is
selected. Moving from the top range of any of the two axes, applying the I query and
lowering the range causes the other variable’s range to rise – a nice way of showing
negative correlation interactively.
For the contrarians among us, we also check for positive correlation in Fig. ..

We find that it exists whenGold prices are low tomid-range, as happened for a period
in the s. his is a free investment tip for bucking the main trend, as shown in
Fig. .. It is also a nice opportunity to show the inversion feature activated by the
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Figure .. Financial data,Week-on Monday, Month, Year (first three axes fix the date); Sterling ,

Dmark, Yen rates per $ (th, th, th axes); MTB, YTB interest rates in % (th, th axes); Gold in

$/ounce (th axis), SP index values (th axis)

Figure .. In  gold prices jumped in the second week of August. Note the correlation between

the low Yen, the high MTB rates the and low Gold price range



Parallel Coordinates: Visualization, Exploration and Classiication of High-DimensionalData 657

Figure .. he crossing lines between the th and th axes in Fig. . show strong negative

correlation between the Yen and MTB rates. One cluster is selected with the pinch query and

combined with the high and low ranges on the Yen axis. Data for the years  and  are selected

Figure .. A cluster (with positive correlation) that shows that Yen and MTB rates move together

when Gold prices are low to mid-range
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icon with two cyclical arrows. A variable is selected and the min/max values on that
axes are inverted. Diverging lines (as obtained for positive correlation) now intersect
in Fig. ., making it easier to visually spot the crossing and hence the correlation.
Actually, it is worth working with the A query, experimenting with various angle
ranges and using the inversion to check out or confirm special clusters.

vary one of the variables watching for interesting variations in the other vari-

ables.

Doing this on the Yen axis (see Fig. .), we strike another gold connection. he
(rough) intersection of a bunch of lines joining Yen to the Dmark corresponds, due
to the duality, to their rate of exchange. When the rate of exchange changes, so does
the intersection and the price of gold! In other words, movements in currency ex-
change rates and the price range of gold go together. Are there any indications that
are associated with the high range of gold?he top price range is selected (Fig. .),
and prompted by the results from the previous query, we check out the exchange rate
between Sterling and Dmark (or Yen). he results are stunning: a perfect straight
line. he slope is the rate of exchange, which is constant when Gold tops out. he
relation between Sterling and Dmark is then checked for different price ranges of
Gold (Fig. .), and the only regularity found is the one straight line above. Aside
from the trading guideline it establishes, we could say that this suggests behind-the-
scenes manipulation of the gold market. . .but we won’t. We banish any such thought
and proceed with the boolean complement (Fig. .) of an I (or any other) query.
Not finding anything, we select a narrow but dense range on the Yen (Fig. .) and
notice an interesting relation between Dmark, interest rates and Gold.
here is an exploratory step akin to “multidimensional contouring,” which we

fondly call the zebra; it is activated by the last icon button on the right, with the ap-
propriate skin-color. A variable axis is selected (the SP axis in Fig. .), divided
into a number (user-specified) of intervals (four here), and colored differently. his
shows the connections (influence) of the intervals for the remaining variables, which
are richly structured here, especially for the highest range. So what does it take for the
SP to rise? his is a good question and helps introduce Parallax’s classifier. he
result, shown in Fig. ., confirms the investment community’s experience that low
MTB and Gold predict high SP. A comparison with the results obtained on this
dataset using other visualization tools would be instructive, although unfortunately
they are not available. Still, let us consider how such an analysis would be performed
using a scatterplot matrix. here are ten variables (axes), which require  pairwise
scatterplots each; even with a large monitor screen, these could be no larger than
about . � . cm. Varying one or more variables in tandem and observing the ef-
fects simultaneously over all of the variables in the  squares is possible but quite
a challenging task. By contrast, the effects of varying Dmark, for stable Yen, on the
two interest rates, Gold as well as the remaining variables are easily seen in just one
plot using f-coords: Fig. ..his example illustrates the difficulties associated with
high representational complexity (see Sect. .., item ), which is O(N) for the
scatterplot matrix but O(N) for f-coords, and made even clearer with the next data-
set.
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Figure .. he MTB axis is inverted so that lines between the Yen–MTB and MTB–MTB axes

in Fig. . now cross

Figure .. Variations in the rate of exchange of the currencies correlate with movements in the price

of Gold
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Figure .. High Gold. Note the perfect straight line in the Sterling vs. Dmark plot. he slope is the

rate of exchange between them, which remains constant when Gold prices peak

Figure .. [his figure also appears in the color insert.] Two price ranges for Gold. he Sterling vs.

Dmark plots for them show no regularity
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Figure .. he complement of an I query

Figure .. For the Yen trading in a narrow range, high Dmark goes with low MTB rates, low

Dmark goes with high MTB rates, while mid MTB rates go with high Gold
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Figure .. [his figure also appears in the color insert.] he zebra partitions and colors the parts

differently. A variable, here the SP axis, is divided into equal (four in this case) intervals. his

quickly reveals interrelationships. In particular, note those for the highest SP range and review the

next figure. . .

Figure .. he rule for high SP is that both MTB (the “short-bond” as it is called) and Gold

should be low, in this order of importance
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Hundreds of Variables 14.2.4

One frequently asked question is “howmany variables can be handledwith f-coords?”
he largest dataset that I have effectively worked with had about  variables and
, data entries. Using various techniques developed over the years and the au-
tomatic classifier discussed in the next section, it is possible to handle much larger
datasets. Still, the relevant admonition is:

be sceptical about the quality of datasets with large numbers of variables.

When hundreds or more variables are involved, it is unlikely that there are many
people around who have a good feel for what is happening (as confirmed by my own
experience). A case in point is the dataset shown in Fig. ., consisting of instru-
mentation measurements of a complex process. An immediate observation was that
many of the instruments recorded  throughout the period that the measurements
were taken, something which had not been noticed previously. Another curiosity
was the series of repetitive patterns on the right. It turns that several variables were
measured in more than one location using different names. When the dataset was
cleaned up (removing superfluous information), it was initially reduced to about 
variables, as shown in Fig. ., and eventually to about  that contained the infor-
mation of real interest. By my tracking, the phenomenon of repetitive measurements
is widespread, with at least % of the variables in large datasets being duplicates or
near-duplicates, possibly due to instrumental nonuniformities, as suggested by the
two-variable scatterplot in Fig. .. Here, the repetitive observations were easily
detected due to the fortuitous variable permutation in the display. Since repetitive

Figure .. Manufacturing process measurements:  variables
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Figure .. he manufacturing dataset ater “cleanup,” which let about  variables

measurements occur frequently, it may be worth adding an automated feature to the
sotware that detects and identifies the suspect variables.
his brief exposure is just an indication that large (in terms of dimensions – i.e.,

number of variables) datasets can still be usefully explored in f-coords.
A different example of EDA on a process control dataset is given in Inselberg

(), where compound queries turned out to be very useful. his reminds us to
add, to the list of exploration guidelines, arguably the most important one:

test the assumptions, especially the “I am really sure of”s.

Classiication14.3

Although it is fun to undertake this kind of exploration, the level of skill and patience
required tends to discourage someusers. It is not surprising then that themost persis-
tent requests and admonitions have been for tools which, at least partially, automate
the knowledge discovery process (Inselberg and Avidan, ).
Classification is a basic task in data analysis and pattern recognition, and an algo-

rithm that performs it is named Classifier (Quinlan, ; Fayad et al., ;Mitchell,
).he input is a dataset P and a designated subset S.he output is a characteriza-
tion, a set of conditions or rules, to distinguish elements of S from all other members
of P, the “global” dataset.he outputmay also be that there is insufficient information
to provide the desired distinction.
With parallel coordinates, a dataset P with N variables is transformed into a set

of points in N-dimensional space. In this setting, the designated subset S can be de-
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scribed by a hypersurface which only includes the points of S. In practical situations,
the strict enclosure requirement is dropped and some points of S may be omitted
(“false negatives”), while some points of P − S are allowed (“false positives”) in the
hypersurface. he description of such a hypersurface is equivalent to the rule for
identifying, within some acceptable error, the elements of S. Casting the problem
in a geometrical setting allows us to visualize how to approach the classification al-
gorithm. his entails:
. using an efficient “wrapping” (a convex-hull approximation) algorithm to en-

close the points of S in a hypersurface S containing S, and in general somepoints
of P − S too; so S ⊂ S,

. the points in (P − S) � S are isolated and the wrapping algorithm is applied to
enclose them, and usually also some points of S , producing a new hypersurface
S with S v (S − S),

. the points in S not included in S − S are then marked for input to the wrapping
algorithm, and a new hypersurface S is produced containing these points as well
as some other points in P − (S − S), resulting in S ⊂ (S − S) q S ,

. the process is repeated, alternately producing upper and lower containment
bounds for S; termination occurs when an error criterion (which can be user-
specified) is satisfied or when convergence is not achieved.

It can and does happen that the process does not converge when P does not contain
sufficient information to characterize S. It may also happen that S is so “porous”
(sponge-like) that an inordinate number of iterations are required. On convergence,
say at step n, the description of S is provided as:

S r (S − S) q (S − S) q ċ ċ ċ q (Sn− − Sn) . (.)

his is the terminating expression resulting from the algorithm that we call Nested
Cavities (abbr. NC).
he user can select a subset of the variables available and restrict the rule genera-

tion to these variables. In certain applications, for example as in process control, not
all of the variables can be controlled, and hence it is useful to have a rule that in-
volves only the accessible (i.e., controllable) variables. An important fringe benefit is
the useful ordering that emerges from dimensionality selection, which is completely
dataset-specific. With the algorithm being display-independent, there is no inherent
limitation on the size and number of variables in the dataset. Summarizing for NC,

an approximate convex-hull boundary is obtained for each cavity,
utilizing properties of the representation ofmultidimensional objects in f-coords,
a very low polynomial worst case complexity of O(N �P�) is obtained for vari-
able number N and dataset size �P�; it is worth contrasting this with the oten
unknown, unstated, or very high (even exponential) complexity of other classi-
fiers,
an intriguing prospect, due to the low complexity, is that the rule can be derived
in near real-time, meaning that the classifier could be adapted to changing con-
ditions,
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the minimal subset of variables needed for classification is found,
the rule is given explicitly in terms of conditions on these variables, in terms of
included and excluded intervals, and provides “a picture” that shows complex
distributions with regions where there are data and “holes” with no data, thus
providing insight to domain experts.

During –Michie et al. (), on behalf of the ESPRIT program of the Euro-
pean Union, made extensive studies of several classifiers applied to diverse datasets.
About  different classifiers were applied to about  datasets for comparative trials
in the StatLog project. his was designed to test classification procedures on large-
scale commercially important problems in order to determine the suitability of the
various techniques to industry. he results obtained by NC are compared with those
obtained by other well-known classifiers used in Statlog on two benchmark datasets,
and are shown in the accompanying tables.
. Satellite image dataset. his has over , items; NC’s classification error was

%, k-NN was next with .%, the remaining classifiers gave errors of as much
as %, and one was unable to classify at all. On aVowel recognition dataset with
about , data items, NC was top with .%, next was CART-DB %, while
the rest reached down to %, with many unable to provide a classification rule,
as shown in Table ..

Rank Classifier Error rate %

Train Test

 NC . .

 k-NN . .
 LVQ . .
 DIPOL . .
 RBF . .
 ALLOC . .
 IndCART . .
 CART . .
 Backprop . .
 Baytree . .
 CN . .
 C. . .
 NewID . .
 Cal . .
 Quadisc . .
 AC . .
 SMART . .
 Cascade . .
 Logdisc . .
 Discrim . .
 Kohonen . .
 CASTLE . .
 NaiveBay . .
 ITrule Failed Failed

Table .. Summary of the Statlog
results and comparison with the
Nested Cavities (NC) classifier for
the satellite image data



Parallel Coordinates: Visualization, Exploration and Classiication of High-DimensionalData 667

. Vowel recognition data. he data collection process involves digital sampling
speechwith acoustic signal processing, followed by recognition of the phonemes,
groups of phonemes and words. he goal here is a speaker-independent rule
based on ten variables of eleven vowels that occur in various words spoken (re-
corded and processed) by fiteen British male and female speakers. Deterding
Deterding () collected this dataset of vowels, which can be found in theCMU
benchmark repository in the WWW.here are  entries for training and 
for testing. hree other types of classifiers were also applied to this dataset: neu-
ral networks and k-NN by Robinson and Fallside (), and decision trees by
Shang and Breiman (). For the sake of variety, both versions of our classifier
were used and a somewhat different error test procedure was used. he results
are shown in Table ..

. A neural-pulse dataset. his has interesting and unusual features. here are two
classes of neurons, whose outputs to stimuli are to be distinguished.hey consist
of  different pulses measured in a monkey’s brain (poor thing!). here are 
samples with  variables (the pulses). his dataset was given to me by a very
competent group (that of Prof. Coiffman, CS &Math. Depts. at Yale Univ.), who
had beenworking on it but had been unable to obtain a viable rule with the classi-
fication methods they used. Remarkably, with NC convergence is obtained based
on only nine of the  parameters. he resulting ordering shows a striking sepa-
ration. In Fig. ., the first pair of variables x , x is plotted as originally given
on the let. On the right, the best pair x , x, as chosen by the classifier’s order-
ing, speaks for itself. By the way, to discover this finding manually would require
the construction of a scatterplot matrix with  pairs, and then careful inspec-
tion and comparison of the individual plots.he implementation provides all the
next best sections to complete the rule’s visualization. he dataset consists of two
“pretzel-like” clusters winding closely in -D, one (the complement in this case)
enclosing the other. Note that the classifier can actually describe highly complex
regions that carve the cavity shown. One can understand why the separation of
clusters by hyperplanes or nearest-neighbor techniques can fail badly on such
datasets. he rule has an error of %.

Table .. Summary of classification results for the vowel dataset

Rank Classifier Testing mode Test error rate %

 Nested Cavities (NC) Cross-validation .

 CART-DB Cross-validation .

 Nested Cavities (NC) Train & Test .

 CART Cross-validation .

 k-NN Train & Test .

 RBF Train & Test .

 Multilayer perceptron Train & Test .

 Single-layer perceptron Train & Test .
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Figure .. he monkey neural pulses dataset, showing the separation achieved by the first two of the

nine (out of a total of ) parameters obtained from the dimensionality selection

he rules are explicit, “visualizable” and yield dimensionality selection choosing and
ordering the minimal set of variables needed to state the rule without loss of infor-
mation. here are variations that apply to some situations where the NC classifier
fails, such as the presence of several large “holes” (see Inselberg and Avidan ()).
Further, the fact that the classification rule is the result of several iterations suggests
heuristics for dealing with the pesky problem of over-fitting. he iterations can be
stoppedwhen the corrections in Eq. . become very small, i.e., Si consists of a small
number of points. he number of iterations is user-defined, and the resulting rule
yields an error during the test stage that ismore stable under variations in the number
of points of the test set. In addition, the user can exclude variables from being used
in the description of the rule; those ordered last are the ones that provide the smaller
corrections and hence are more liable to over-correct.

Visual and Computational Models14.4

Finally, we illustrate themethodology’s ability tomodelmultivariate relations in terms
of hypersurfaces – just as we model a relation between two variables by a planar re-
gion. hen, by using the interior point algorithm, as shown for example in Fig. .,
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we can do trade-off analyses, discover sensitivities, understand the impact of con-
straints, and in some cases perform optimization using the model. For this purpose,
we shall use a dataset consisting of the outputs from various economic sectors and
other expenditures of a particular (and real) country. It consists of the monetary val-
ues over several years for the Agricultural, Fishing, and Mining sector outputs, the
Manufacturing and Construction industries, together with Government, miscella-
neous spending and resulting GNP; eight variables altogether. We will not address
the full ramifications of constructing a model from the data. Rather, we intend to
illustrate how f-coords can be used as a modeling tool. Using the least squares tech-
nique, we “fit” a function to this dataset and are not concerned at this stage about
whether the choice is “good” or not. he function obtained bounds a region in R,
and is represented by the upper and lower curves shown in Fig. ..
he picture is in effect a simple visual model of the country’s economy, incorporat-

ing its capabilities, limitations and interrelationships among the sectors, etc. A point
inside the region satisfies all of the constraints simultaneously, and therefore rep-
resents (i.e., the eight-tuple of values) a feasible economic policy for that country.
We can construct such points using the interior point algorithm. his can be done
interactively by sequentially choosing values of the variables, and we see the result
of one such choice in Fig. .. Once the value of the first variable is chosen (in
this case the agricultural output) within its range, the dimensionality of the region
is reduced by one. In fact, the upper and lower curves between the second and third
axes correspond to the resulting seven-dimensional hypersurface, and show the avail-

Figure .. Model of a country’s economy: choosing high agricultural and high fishing output forces

low mining output
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Figure .. Competition for labor between the fishing and mining sectors: compare with previous

figure

able range of the second variable (fishing) given the constraint. In fact, this can be
seen (but is not shown here) for the other variables. hat is, due to the relationship
between the eight variables, a constraint on one of them impacts all of the remain-
ing ones and restricts their ranges. he display allows us to experiment and actu-
ally see the impacts of such decisions downstream. By interactively varying the value
chosen for the first variable, we found that it is not possible to have a policy that
favors agriculture without also favoring fishing, and vice versa. Proceeding further,
a very high value from the available range of fishing is chosen, and this corresponds
to very low values of the mining sector. By contrast, in Fig. . we see that a low
value in fishing yields high values for the mining sector. his inverse correlation was
examined, and it was found that the country in question has a large number of mi-
grating semi-skilled workers. When the fishing industry is doing well, most of them
are attracted to it, leaving few available to work in the mines, and vice versa. A com-
parison between the two figures shows the competition for the same resource be-
tween mining and fishing. It is especially instructive to discover this interactively.
he construction of the interior point proceeds in the same way. In Fig. . (right),
the same construction is shown but for a more complex -dimensional hypersur-
face.
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Parallel Coordinates: Quick Overview 14.5

Lines 14.5.1

An N-dimensional line ℓ can be described by the following N −  linear equations:

ℓ �

NOOOOOOOOOOOOOPOOOOOOOOOOOOOQ

ℓ, � x = mx + b
ℓ, � x = mx + b'
ℓi−, i � xi = mixi− + bi'
ℓN−,N � xN = mNxN− + bN ,

(.)

each with a pair of adjacently indexed variables. In the xi−xi plane, the relation la-
beled ℓi−, i ,N = , . . . ,N is a line; based on the line t point -D correspondence,
this line can be represented by the point

ℓ̄i−, i = ( ( − mi) + (i − ), bi( − mi)) (.)

Here the inter-axis distance is , so i −  is the distance between the y (or X̄) and
X̄i− axes. Actually, any N −  independent equations like

ℓi , j � xi = mi , jx j + bi , j , (.)

can equivalently specify the line ℓ, since Eq. . is the projection of ℓ onto the xix j

-D plane and N −  of these independent projections completely describe ℓ.here is
a beautiful and very important relationship between three such points, as illustrated
in Fig. . (let).

Figure .. (Let) he three points ℓ̄ i , j , ℓ̄ j ,k , ℓ̄ i ,k are collinear for i �= j �= k. (Right) A line interval in

-D
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For a line ℓ in -D, the three points ℓ̄ , ℓ̄ , ℓ̄ are collinear; we denote this line
by L̄, and any two represent ℓ. A polygonal line on all of the N −  points, as given by
Eq. . or their equivalent, represents a point on the line ℓ. Conversely, two points
determine a line ℓ. Starting with the two polygonal lines representing the points, the
N −  intersections of their X̄i− , X̄i portions are the ℓ̄i−, i points for the line ℓ. A line
interval in -D and several of its points is seen in Fig. . (right). By the way, it is
essential to index the points ℓ̄.

Planes and Hyperplanes14.5.2

While a line can be determined from its projections, a plane cannot, even in -D.
A new approach is called for Eickemeyer (). Rather than discerning a p-dimen-
sional object from its points, it is described in terms of its (p−)-dimensional subsets
constructed from the points. Let’s see how this works. In Fig. . (let), polygonal
lines representing a set of coplanar points in -D are shown. Even themost persistent
pattern-seeker will not detect any clues hinting at a relationship between the points,
much less a linear one, based on this picture. Instead, for each pair of polygonal lines,
the line L̄ of the three-point collinearity described above is constructed. he result,
shown on the right, is stunning. All the L̄ lines intersect at a point, which turns out
to be characteristic of coplanarity, although this is not enough information to specify
the plane. Translating the first axis X̄ to the position X̄′ , one unit to the right of the
X̄ axis, and repeating the construction yields the second point shown in Fig. .
(let). For a plane given by

π � cx + cx + cx = c , (.)

the two points, in the order they are constructed, are respectively

π̄ = : c + c
S

,
c
S
; , π̄′ = :c + c + c

S
,
c
S
; , (.)

Figure .. (Let) he polygonal lines on the first three axes represent a set of coplanar points in -D.

(Right) Coplanarity! Lines are formed on the plane using the three-point collinearity intersect at a point
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Figure .. (Let) he two points at which the lines intersect uniquely determine a plane π in -D.

(Right) he coefficients of π � cx + cx + cx = c can be read from the picture produced by four

points that are similarly constructed by consecutive axis translations!

for S = c + c + c .he three subscripts correspond to the three variables that appear
in the equation of the plane, and distinguish them from the points with two sub-
scripts, which represent lines. he second and third axes can also be consecutively
translated, as indicated in Fig. . (let), repeating the construction to generate two
more points denoted by π̄′′ , π̄′′′ . hese points can also be found in another, eas-
ier, way.he gist of all this is shown in Fig. . (right).he distance between succes-
sive points is ci . he equation of the plane π can actually be read from the picture!
In general, a hyperlane in N dimensions is represented uniquely by N −  points,

each with N indices. here is an algorithm that constructs these points recursively,
raising the dimensionality by one at each step, as is done here starting from points
(zero-dimensional) and constructing lines (one-dimensional). By the way, all of the
nice high-dimensional projective dualities, like pointt hyperplane, rotationt trans-
lation, etc., hold. Further, a multidimensional object represented in f-coords can still
be recognized ater it has been acted on by projective transformation (i.e., transla-
tion, rotation, scaling and perspective).he recursive construction and its properties
are at the heart of the f-coords visualization.
Challenge: Visualizing Families of Proximate Planes
Returning to -D, it turns out that for points like those in Fig. . which are “nearly”
coplanar (i.e., have small errors), the construction produces a pattern that is very
similar to that in Fig. . (let). A little experiment is in order. Let us return to the
family of proximate (i.e., close) planes generated by

Π = �π � cx + cx + cx = c , ci � [c−i , c+i ], i = , , , � . (.)

We randomly choose values for ci within the allowed intervals to determine a plane
π � Π, keeping c =  initially, and then we plot the two points π̄ , π̄′ as shown
in Fig. . (let). Closeness is apparent, and more significantly the distribution of
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Figure .. (Let) Pair of point clusters representing close planes. (Right) he hexagonal regions

(interior) contain the points π̄ (let) and π̄′ for the family of planes with c =  and
c � [�, .], c � [�, .], c � [�, ]. For c varying (c � [., .] here), the (exterior) regions
are octagonal with two vertical edges

the points is not chaotic.he outline of two hexagonal patterns can be discerned.he
family of planes are “visualizable,” as are variations in several directions. It is possible
to see, estimate and compare errors.
Let’s not maintain the suspense any longer: in -D the set of pairs of points rep-

resenting the family of proximate planes form two convex hexagons when c =  (an
example is shown in Fig. ., right), and are contained in octagons, each of which
has two vertical edges for varying c. In general, a family of proximate hyperplanes
in N-D is represented by N −  convex N-agons when c =  or (N + )-agons for
varying c (seeMatskewich et al. () and Inselberg () formore recent results).
hese polygonal regions can be constructed with O(N) computational complexity.
Upon choosing a point in one of the polygonal regions, an algorithm matches the re-
mainingN− points from the remaining convex polygons that represent hyperplanes
in the family. Each hyperplane in the family can be identified by its N −  points.
Earlier, we proposed that visualization is not about seeing lots of things, but rather

it is about discovering relations among them. While a display of randomly sam-
pled points from a family of proximate hyperplanes is utterly chaotic (the mess in
Fig. ., right, is from points in just one plane), their proximate coplanarity rela-
tion corresponds to a clear and compact pattern. With f-coords, we can focus and
concentrate the relational information rather than wallowing in the details, leading
to the phrase “without loss of information” when referring to f-coords. his is the
methodology’s real strength, and where I believe the future lies. Here then is the vi-
sualization challenge. How else can we detect and see proximate coplanarity?

Nonlinear Multivariate Relations: Hypersurfaces14.5.3

A relation between two real variables is represented geometrically by a unique region
in -D. Analogously, a relation between N variables corresponds to a hypersurface in
N-D, hence the need to say something about the representation of hypersurfaces inf-coords. A smooth surface in -D (and also N-D) can be described as the envelope
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of all of its tangent planes. his is the basis for the representation shown in Fig. .
(let). Every point on the surface is mapped into the two points representing its tan-
gent plane at the point. his generates two planar regions and N −  such regions
in N-D. hese regions are linked, just like the polygons above, to provide the N − 
points representing each tangent hyperplane and therefore reconstruct the hypersur-
face. Classes of surfaces can be immediately distinguished by their f-coords displays
(see Hung and Inselberg () and Inselberg () for more recent results). For de-
velopable surfaces, the regions consist of boundary curves only (no interior points);
the regions for ruled surfaces have grids consisting of straight lines; while quadric
surfaces have regions with conic boundaries. hese are just some examples.
here is a simpler but inexact surface representation that is quite useful when used

judiciously. he polygonal lines representing points on the boundary are plotted,
and their envelope “represents” the surface; the “ ” are a reminder that this is not
a unique representation. Figure . (let) shows the upper and lower envelopes for
a sphere in -D, which consist of four overlapping hyperbolae; this must be distin-
guished from that in Fig. . (right), which is exact as determined by the sphere’s
tangent planes. By retaining the exact surface description (i.e., its equation) inter-
nally, interior points can be constructed and displayed, as shown for the -D sphere in
Fig. . (let).he same construction is shown on the right, but for a more complex
-dimensional convex hypersurface (“model”).he intermediate curves (upper and
lower) also provide valuable information and preview coming attractions. hey indi-
cate the neighborhood of the point (represented by the polygonal line) and provide
a feel for the local curvature. Note the narrow strips (as compared to the surrounding
ones), which indicate the critical variables where the point is bumping the boundary.
A theorem guarantees that a polygonal line which is in-between all of the intermedi-
ate curves/envelopes represents an interior point of the hypersurface, and all interior
points can be found in this way. If the polygonal line is tangent to any one of the in-
termediate curves then it represents a boundary point, while it represents an exterior
point if it crosses any one of the intermediate curves. he latter enables us to see, in

Figure .. (Let) A smooth surface σ is represented by two planar regions σ̄ , σ̄′ consisting of

pairs of points that represent its tangent planes. (Right) One of the two hyperbolic regions representing

a sphere in -D
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Figure .. (Let) A sphere in -D, showing the construction of an interior point (polygonal line).

(Right) he general interior point (polygonal line) construction algorithm shown for a convex

hypersurface in -D

an application, the first variable for which the construction failed and what is needed
to make corrections. By varying the choice of value over the available range of the
variable interactively, sensitive regions (where small changes produce large changes
downstream) and other properties of the model can easily be elucidated. Once the
construction of a point is complete, it is possible to vary the values of each variable
and see how this effects the remaining variables. his enables us to perform trade-
off analysis, thus providing a powerful tool for decision support, process control and
other applications. As new data are made available, the model can be updated so that
decisions can be based on the most recent information. his algorithm is used in an
earlier example (see Figs. ., .).

Future14.6

Searching for patterns in a f-coords display is what skilful exploration is all about.
If there are multivariate relations in the dataset, the patterns are there, although they
may be covered by the overlapping polygonal lines; but that is not all. Our vision is
not multidimensional. We do not perceive a three-dimensional room from its (zero-
dimensional points), but from the two-dimensional planes that enclose and define it.
he recursive construction algorithm approaches the visualization of p-dimensional
objects from their p−-dimensional components (one dimension less) in exactly the
same way. We advocate the inclusion of this algorithm in our armory of interactive
analysis tools. Any p-dimensional relations that exist are revealed by the pattern of
the representation of the tangent hyperplanes of the corresponding hypersurface.he
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polygonal lines are completely discarded because the relation is concentrated in the
pattern: Linear relations into points, proximate coplanarity into convex polygons,
quadrics into conics and so on. Note further, again with reference to Figs. . and
., that relational information resides at the crossings. Continuing, with the repre-
sentation of relations by patterns with the pictures of a helicoid and Moebius strip in
cartesian and f-coords in Figs. ., .. hese are state of the art results showing

Figure .. A -D helicoid in Cartesian and �-coords. he two intersecting lines (let) specify one of

the helicoid’s tangent planes, as represented by a pair of points, one on each of the curves (right).

A helicoid in N-D is represented by N −  such curves

Figure .. A -D Moebius strip in Cartesian and �-coords. he two intersecting lines (let) specify

one of the strip’s tangent planes, as represented by a pair of points, one on each of the curves (right).

A Moebius strip in N-D is represented by N −  such curves
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what is achievable and how easily it generalizes to N-D. Can one imagine a higher
dimensional helicoid much less a non-orientable surface like the Moebius strip. It
is possible to do such a process on a dataset but at present this is computationally
slow.he challenge is to speed up the algorithm for real-time response and break the
gridlock of multidimensional visualization. here will still be work and fun for the
multidimensional detectives visually separating and classifying the no longer hidden
regions identifying complex multivariate relations. his is our vision for the, hope-
fully near, future.

Acknowledgement. I am indebted to the editors and referees for their careful corrections
and helpful suggestions.
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Introduction15.1

he graphical exploration of quantitative/qualitative data is an initial but essential
step inmodern statistical data analysis. Matrix visualization (Chen, ; Chen et al.,
) is a graphical technique that can simultaneously explore the associations be-
tween thousands of subjects, variables, and their interactions, without needing to
first reduce the dimensions of the data. Matrix visualization involves permuting the
rows and columns of the raw data matrix using suitable seriation (reordering) algo-
rithms, together with the corresponding proximity matrices. he permuted raw data
matrix and two proximity matrices are then displayed as matrix maps via suitable
color spectra, and the subject clusters, variable groups, and interactions embedded
in the dataset can be extracted visually.
Since the introduction of exploratory data analysis (EDA, Tukey, ), boxplots

and scatterplots, aided by interactive functionality, have provided the statistical com-
munity with important graphical tools.hese tools, together with various techniques
for reducing dimensions, are useful for exploring the structure of the data when there
are amoderate number of variables and when the structure is not too complex. How-
ever, with the recent rapid advances in computing, communications technology, and
high-throughput biomedical instruments, the number of variables associated with
the dataset can easily reach tens of thousands, but the need for practical data anal-
ysis remains. Dimension reduction tools oten become less effective when applied
to the visual exploration of information structures embedded in high-dimensional
datasets. On the other hand, matrix visualization, when integrated with computing,
memory, and display technologies, has the potential to enable us to visually explore
the structures that underlie massive and complex datasets.
his chapter on matrix visualization unfolds as follows. We briefly review studies

in this field in the next section. he foundation of matrix visualization, under the
framework of generalized association plots (GAP, Chen, ), is then discussed in
Sect. ., alongwith some related issues.his is followed, in Sect. ., by some gener-
alization. Section  provides a matrix visualization examples involving  variables
(arrays) and  samples (genes). A comparison of matrix visualization with other
popular graphical tools in terms of efficiency versus number of dimensions is then
given in Sect. .. Section . illustrates matrix visualization for binary data, while
Sect. . discusses generalizations and extensions. We conclude this chapter with
some perspectives on matrix visualization in Sect. ..

RelatedWorks15.2

he concept of matrix visualization was introduced by Bertin () as a reorderable
matrix for systematically presenting data structures and relationships. Carmichael
and Sneath () developed taxometric maps for classifying OUTs (operational tax-
onomy units) in numerical phenetics analysis. Hartigan () introduced the direct
clustering of a datamatrix, later known as block clustering (Tibshirani, ). Lenstra
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() and Slagle et al. () related the traveling salesman and shortest spanning
path problems to the clustering of data arrays.he color histogramofWegman ()
was the first color matrix visualization to be reported in the statistical literature. Min-
notte andWest () extended the idea of color histograms to a data image package
that was later used for outlier detection (Marchette and Solka, ).
Some matrix visualization techniques were developed to explore only proximity

matrices: Ling () looked for factors of variables by examining relationships us-
ing a shaded correlation matrix; Murdoch and Chow () used elliptical glyphs to
represent large correlation matrices; Friendly () proposed corrgrams (similar to
the reorderable matrix method) to analyze multivariate structure among the vari-
ables in correlation and covariance matrices. Chen (, , and ) integrated
the visualization of a raw data matrix with two proximity matrices (for variables and
samples) into the framework of generalized association plots (GAP).heCluster and
TreeView packages of Eisen et al. () are probably the most popular matrix visual-
ization packages due to the proliferation of gene expression profiling for microarray
experiments.
he permutation (ordering) of the columns and rows of a data matrix, and prox-

imity matrices for variables and samples, is an essential step in matrix visualization.
Several recent statistical works have touched on the issue of reordering variables and
samples: Chen () proposed the concept of the relativity of a statistical graph;
Friendly and Kwan () discussed the idea of effect-ordering of data displays; Hur-
ley () used scatterplot matrices and parallel coordinates plots as examples to ad-
dress the issue of placing interesting displays in prominent positions. Different terms
(such as the reorderable matrix, the heatmap, the color histogram, the data image
and matrix visualization) have been used in the literature to describe these related
techniques. We use matrix visualization (MV) to refer to them all.

The Basic Principles
of Matrix Visualization 15.3

We use the GAP (Chen, ) approach to illustrate the basic principles of matrix
visualization for continuous data, using the  genes and  microarray exper-
iments collected in the published yeast expression database for visualization and
data mining (Marc et al., ), which is designated henceforth as Dataset . De-
tailed descriptions of data preprocessing are given for the yeast Microarray Global
Viewer (http://transcriptome.ens.fr/ymgv/). For the purposes of illustration, we have
selected  samples and  genes across these samples (“Dataset ”), where rows cor-
respond to genes and columns to microarray experiments (arrays). In various gene
expression profile analyses, the roles played by rows and columns are oten inter-
changeable. his interchangeability is well suited to the GAP approach to matrix vi-
sualization, where samples and variables are treated symmetrically and can be inter-
changed directly.
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Presentation of the Raw Data Matrix15.3.1

he first step in the matrix visualization of continuous data is the production of
a raw data matrix X�, and two corresponding proximity matrices for the rows,
R�, and the columns, C�, which are calculated with user-specified similarity
(or dissimilarity) measures. he three matrices are then projected through suitable
color spectra to construct corresponding matrix maps in which each matrix entry
(raw data or proximity measurement) is represented by a color dot. he let panel in
Fig. . shows the raw data matrix of log-transformed ratios of expressions coded
by a bidirectional green–black–red spectrum for Dataset , with Pearson correlations
for between-array relations coded by a bidirectional blue–white–red spectrum, and
Euclidean distances for between-gene relations coded by a unidirectional rainbow
spectrum.
In the raw data matrix map, a red (green) dot in the i jth position of the map

for X� means that the ith gene at the jth array is relatively up (down)-regulated.
A black dot stands for a relatively nondifferentially expressed gene/array combina-
tion. A red (blue) point in the i jth position of the C�matrix map represents a pos-
itive (negative) correlation between arrays i and j. Darker (lighter) intensities of color
stand for stronger absolute correlation coefficients, while white dots represent no cor-
relations. A blue (red) point in the i jth position of the R� matrix map represents
a relatively small (large) distance between genes i and j, while a yellow dot represents
a median distance.

Data Transformation
Itmay be necessary to apply transformations such as log, standardization (zeromean,
unit variance), or normalization (normal score transformation) to the raw data be-
fore the data map is constructed or proximity matrices calculated in order to get
a meaningful visual representation of the data structure, or comparable visual effects
between displays.he transformation–visualization process may have to be repeated
several times before the embedded information can be fully explored.

Selection of Proximity Measures
Proximity matrices have two major functions: () to serve as the direct visual rep-
resentation of the relationships among variables and between samples; () to serve
as the medium used to reorder the variables and samples for better visualization of
the three matrix maps. he selection of proximity measures in matrix visualization
plays a more important role than it does in numerical or modeling analyses. Pear-
son correlation oten serves as the measure of proximity between variables, while
Euclidean distance is commonly employed for samples (Fig. .). For potential non-
linear relationships, Spearman’s rank correlation and Kendall’s tau coefficient can be
used instead of the Pearson correlation to assess the between-variable relationship,
while some nonlinear feature extraction methods such as the Isomap (Tenenbaum
et al., ) distance can be used to measure nonlinear between-sample distances.
More sophisticated kernel methods can also be applied when users see the need for
them.
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Figure .. [his figure also appears in the color insert.] Let: unsorted data matrix (log ratio gene

expression) map with two proximity matrix (Pearson correlation for arrays and Euclidean distance for

genes) maps for Dataset . Right: application of elliptical seriations to the three matrix maps on the let

panel

Color Spectrum
he selection of an appropriate color spectrum can be critical and is user-dependent
in visualization of and information extraction fromdata and proximitymatrices. he
selection of a suitable color spectrum should focus on the capacity to express numer-
ical nature individually and globally in the matrices. he choices for gene expression
profiles that we mentioned above may well give way to others in different circum-
stances. hus, illustrated in Fig. . is a correlation matrix map of fity psychosis dis-
order variables (Chen, ) coded with four different bidirectional color spectra.
While displays (a) and (b) appear more agreeable to our human perception, displays
(c) and (d) actually provide better resolution for distinguishing different levels of cor-
relation intensities. he relative triplet color codes (red, green, blue) in the RGB cube
for these four color spectra are shown in Fig. ..

Display Conditions
he display conditions are analogous to data transformations for colors. Usually, the
whole color spectrum is used to represent the complete range of values in the data
matrix. he matrix conditions can be switched to row or column conditions to em-
phasize individual variable distributions or subject profiles. For a bidirectional color
spectrum (green–black–red for differential gene expressions, blue–white–red for cor-
relation coefficients), the center matrix condition symmetrizes the color spectrum
around the baseline numeric value (: for log ratio gene expression, zero for the
correlation coefficient). On occasion, we might want to downweight the effects of
extreme values in the dataset, and it is possible to use ranks as a replacement for
numerical values. his is termed the rank matrix condition.
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Figure .. [his figure also appears in the color insert.] Four color spectra applied to the same

correlation matrix map for fity psychosis disorder variables (Chen, )

Resolution of a Statistical Graph
If the data matrix or proximitymatrices contain potential extreme values, the relative
structure of these extreme values compared to the main data cloud will dominate
the overall visual perception of the raw data map and the proximity matrix maps.
his problem can be handled by using rank conditions or by compressing the color
spectrum to a suitable range. We can apply a logarithm or similar transformation to
reduce the outlier effect or to simply remove the outlier.

Seriation of ProximityMatrices
and the Raw Data Matrix15.3.2

Without suitable permutations (orderings) of the variables and samples, matrix visu-
alization is of no practical use for visually extracting information (Fig. ., let panel).
It is necessary to compute meaningful proximity measures for variables and samples,
and to apply suitable permutations to these matrices, before matrix visualization is
used to reveal the information structure of the given dataset. We discuss some con-
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Figure .. Relative (red, green, blue) hues in the RGB cubes for the four color spectra in Fig. .

cepts and criteria for evaluating the performances of different seriation algorithms
in reordering related matrices below.

Relativity of a Statistical Graph
Chen () proposed a concept, the relativity of a statistical graph, for evaluating
general statistical graphic displays. he idea is to place similar (different) objects at
closer (more distant) positions in a statistical graph. In a continuous display, such as
the histogram or a scatterplot, relativity always holds automatically. his is illustrated
by the histogram of the Petal Width variable and the scatterplot of the Petal Width
and Petal Length variables for  Iris flowers shown in Fig. . (Fisher, ). Two
flowers, denoted with the � and w symbols, are placed next to each other on these two
displays automatically, because they share similar petal widths and lengths. Friendly
and Kwan () proposed a similar concept to order information in general visual
displays, which they called the effect-ordered data display. Hurley () also studied
related issues using examples involving scatterplot matrices and parallel coordinates
plots.
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Figure .. Concept of the relativity of a statistical graph for a continuous dataset (the Iris data)

he relativity concept does not usually hold for a matrix visualization or paral-
lel coordinates type of display, since one can easily destroy the property with a ran-
dom permutation. It is common practice to apply various permutation algorithms to
sort the columns and rows of the designated matrix, so that similar (different) sam-
ples/variables are permuted to make them closer (more distant) rows/columns.

Global Criterion: RobinsonMatrix
It is usually desirable to permute a matrix to make it resemble a Robinson matrix
(Robinson, ) as closely as possible, because of the smooth and pleasant visual
effect of permuted matrix maps. A symmetric matrix is called a Robinson matrix if
its elements satisfy ri j � ri k if j < k < i and ri j 	 ri k if i < j < k. If the rows and
columns of a symmetric matrix can be permuted to those of a Robinson matrix, we
call it pre-Robinson. For a numerical comparison, three anti-Robinson loss functions
(Streng, ) are calculated for each permuted matrix, D = �di j�, for the amount of
deviation from a Robinson form with distance-type proximity:

AR(i) = p�
i=

����� �
j<k<i

I(di j < di k) + �
i< j<k

I(di j � di k)!""""# ,
AR(s) = p�

i=

����� �
j<k<i

I(di j < di k) ċ �di j − di k � + �
i< j<k

I(di j � di k) ċ �di j − di k �!""""# ,
AR(w) = p�

i=

����� �
j<k<i

I(di j < di k)� j − k��di j − di k � + �
i< j<k

I(di j � di k)� j − k��di j − di k �!""""# .
AR(i) counts only the number of anti-Robinson events in the permuted matrix;
AR(s) sums the absolute values of the anti-Robinson deviations;AR(w) is aweighted
version of AR(s) penalized by the difference in the column indices of the two entries.
Elliptical Seriation
Chen () introduced a permutation algorithm called rank-two elliptical seriation
that extracts the elliptical structure of the converging sequence of iteratively formed
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correlation matrices using eigenvalue decomposition. Given a p-dimensional prox-
imity matrix D, a sequence of correlation matrices R = (R(), R() ,') is iteratively
formed from it. Here R() is the correlation matrix of the original proximity matrix
D, and R(n) is the correlation matrix of R(n−) for n � . he iteratively formed se-
quence of correlation matrices gradually cumulates the variation information to the
leading eigenvectors. At the iteration with rank two, there are only two eigenvectors
letwith nonzero eigenvalues, and all information is reduced to the ellipse spanned by
the two eigenvectors. Every object has its relative position on this two-dimensional
ellipse, and a unique permutation is obtained. Elliptical seriation usually identifies
very good global permutations, and is useful for identifying global clustering pat-
terns and smooth temporal gene expression profiles (Tien et al., ) by optimizing
the Robinson criterion.

Local Criterion: Minimal Span Loss Function
he minimal span loss function MS = &n−

i= di , i+ for a permuted matrix D = �di j�
focuses on the optimization of local structures. he idea is to find a shortest path
through all data elements, as in the traveling salesman problem. he local seriation
method produces tighter blocks than the global method does around themain diago-
nal of the proximity matrix. In addition, we can combine the anti-Robinson measure
andminimal span loss into ameasure inwhich a band along the diagonal of a proxim-
ity matrix is selected with width w ( < w < n), and the anti-Robinson measurement
is computed within that band.

Tree Seriation
he hierarchical clustering tree with a dendrogram (Eisen et al., ) is the most
popularmethod for two-way sorting the gene-by-arraymatrixmap employed in gene
expression profiling. he ordering of terminal nodes generated by an agglomera-
tive hierarchical clustering tree automatically keeps good local grouping structure,
since the tree dendrogram is constructed through a sequential bottom-up merging
of “most similar” subnodes. On the other hand, a divisive hierarchical clustering tree
usually retains better global patterns through a top-down splitting of “most hetero-
geneous” substructures. Divisive hierarchical clustering trees are rarely used due to
their computational complexity.

Flipping of Intermediate Nodes
One critical issue when applying the leaves of the dendrogram in order to sort the
rows/columns of an expression profilematrix is the flipping of the intermediate nodes.
As illustrated in Fig. . with a schematic dendrogram (Fig. .a), the n− interme-
diate nodes for a dendrogram of n objects can be flipped independently (Fig. .b),
resulting in (n−) different dendrogram layouts (Figure .c, for example) and cor-
responding permutations for the n objects with identical proximity matrices (Pear-
son correlation or Euclidean distance) and the same tree linkage method (single,
complete, average or centroid). he flipping mechanism of intermediate nodes can
be guided by either an external or an internal reference list. For example, the Cluster
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Figure .. Flipping mechanism for intermediate nodes of a dendrogram

sotware developed by Eisen’s lab () guides the tree flips based on the average
expression level. He also suggests that one can use the results of a one-dimensional
self-organizing map (SOM, Kohonen, ) to guide the tree seriation. his makes
the tree seriation as close to the external references as possible. In Alon et al. (), it
is suggested that one should order the leaf nodes according to the similarity between
a node and its parent’s siblings. Bar-Joseph () proposed a fast optimal leaf order-
ing method for hierarchical clustering that maximizes the sum of the similarities of
adjacent leaves in the ordering. hese are two examples of internal references.

Generalization and Flexibility15.4

Summarizing Matrix Visualization15.4.1

Sorted matrix maps are capable of displaying the raw expression patterns and the as-
sociation structures among genes and arrays. One can go one step further and iden-
tify clusters in the permuted matrix maps using the dendrogram branching struc-
ture or other partitioning methods, such as the converging sequence of Pearson’s
correlation matrices (Chen, ) and block searching (Hartigan, ). Once the
partitioned matrix maps are obtained (Fig. ., let panel), a summarizing matrix
visualization which Chen () coined “sufficient matrix visualization” can be con-
structed by representing individual data points and proximitymeasures in each iden-
tified subject–subject, variable–variable and subject–variable block by the summary
statistic (means, medians or standard deviations) for that particular block.
he three maps in Fig. ., right panel, summarize the sufficient information of

the data matrix, and the corresponding proximity matrices for the gene expression
profiles are shown in the let panel. In the sufficient MV of Fig. ., right panel,
users can easily extract the within and between correlation structure for the three
array groups, the relative clustering patterns of the four gene clusters, and the inter-
action behavior of the four gene clusters on the three array groups. here are three
requirements for ensuring the effectiveness of a sufficient MV at extracting the over-
all information structure embedded in the original data matrix and two proximity
matrices: () appropriate permuted variables and samples; () carefully derived par-
titions for variables and samples, and; () representative summary statistics.



Matrix Visualization 691

Figure .. Let: partitioned data and proximity matrix maps for Dataset . Right: sufficient data and

proximity matrix maps

Sediment Display 15.4.2

he sediment display of a row data matrix for rows (columns) is constructed by sort-
ing the column (row) profiles for each row (column) independently according to their
magnitudes. his display expresses the distribution structure for all rows (columns)
simultaneously. hemiddle panel of Fig. . has the sediment display for all  gene
expression profiles, while the right panel has the expression distributions for each
of the  selected arrays. he sediment displays for genes and arrays convey similar
information to that given by a boxplot when the color strips at the quartile positions
are extracted.

Figure .. Sediment displays for genes (middle panel) and arrays (right panel) for the permuted data

matrix (let panel) of Dataset 
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Figure .. Sectional displays for the permuted gene distance map. Only distances smaller than the

threshold, є, are displayed

Sectional Display15.4.3

he purpose of a sectional display is to exhibit only those numerical values that sat-
isfy certain conditions in the data or the associated proximitymaps. For example, one
can choose to ignore the values below some threshold by not displaying the corre-
sponding color dots. For a permuted distancemap, one can emphasizemore coherent
neighboring structure by displaying only the corresponding neighbors dynamically.
Figure . shows a series of such sectional displays (in grey scale) for the distance
matrix for the genes in Fig. ., right panel (and Fig. ., let panel).

Restricted Display15.4.4

Outlying data points or proximitymeasures canmask detailed color resolutions.his
situation can be improved by displaying only rank conditions instead of originalmag-
nitudes, or by compressing the color spectrum to represent only the main body of the
data values, i.e., one displays data values that fall within some range of the data us-
ing the whole color spectrum. Figure ., let panel, shows a restricted display of
Fig. . with an artificial outlier observation added. he relatively large distance of
this outlier from the other observations causes the color spectrum to mask the main

Figure .. Original (let) and restricted (right) displays for the permuted gene distance map in

Fig. . with an outlying gene added
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feature embedded in the distance matrix. he right panel of Fig. . uses the whole
grey spectrum to represent the distance range of – only, which reveals the main
three-group structure. he use of nonlinear color mapping (for the distances), like
the one implemented in MANET (Unwin, ), can also resolve this problem.

An Example 15.5

Construction of anMV Display
Many of the microarrays in Dataset  have lots of missing values due to technical
issues and because different experiments studied different sets of genes in the yeast
genome. Two thousand genes with four hundred arrays that had relatively few miss-
ing values were then selected from the original Dataset , resulting inDataset . Illus-
trated in Fig. . is the MV display of Dataset . Pearson’s correlation coefficient is
used to measure associations between genes and between arrays, a common practice
in gene expression profile analysis. Average linkage clustering trees are then grown
on the two correlation matrices for genes and arrays. he relative positions of the
terminal nodes of the two dendrograms are then used to sort the corresponding cor-
relationmatrix maps and the data matrix map (the gene expression profile).he basic
gene clustering structure and array (experiments) grouping patterns can be identified
using these tree-sorted matrix maps.
he enlarged, permuted data matrix map used for gene expression profiling is dis-

played in Fig. .. Red dots represent a relatively high expression of message RNA
for the gene-experiment combination, green dots indicate relatively low expression,
and black dots designate relatively little differential expression. Missing values are
coded in white, it is clear that many of the arrays (experiments) still contain some
missing observations. Such an MV display presents each gene expression profile as
a horizontal strip of color dots across all arrays (experiments), and the important
visual information is carried by the relative variations in color hues.
Without suitable permutations that sort rows of similar genes so that they are close

together and place identical arrays next to each other, so that the relativity property
holds, an MV display is basically useless. Based on this two-way permuted display,
one looks for horizontal strips of genes that share similar expression profiles, and
vertical strips of arrays that exhibit close experimental results. he blocks of the two
directions illustrate the interaction patterns of gene clusters and experiment groups.
All of the numerical information is displayed in this raw expression profilemap (with
proximity maps for genes and arrays and corresponding dendrograms). Careful and
patient examination of these color maps can lead to valuable insights into the em-
bedded information structure.

Examination of anMV Display
As with other visualization tools, both proper training and experience are required
to extract as much information out of these complex matrix visualization displays as
possible. While examining complex MV displays such as those shown in Figs. .
and ., several general steps should be taken:
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Figure .. [his figure also appears in the color insert.] Data matrix map (log ratio gene

expression) with two proximity matrix maps (Pearson correlation for both genes and arrays) for

Dataset  permuted by two average linkage trees (for genes (rows) and arrays (columns))

. For the column (array) proximity matrix:
a) Search for coherent clusters of arrays along the main diagonal of the corre-

lation (maybe distance in other circumstances) matrix with dark red points.
Two dominant groups of arrays can be identified around the middle and the
lower-right corner of the correlation matrix, with several small but coher-
ent clusters scattered along the main diagonal. Let’s denote these two major
groups of arrays as A and A. he arrays grouped into these clusters must
have similar expression patterns across all  genes (which will be exam-
ined in later steps).



Matrix Visualization 695

Figure .. Enlarged expression profile matrix map of Fig. . (missing observations are coded in

white)
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b) Look for interactions between the array clusters at off-diagonal locations.
Various types of between-cluster correlation patterns with substructure are
also easily pinned down.

c) he arrays represent many different biological assays for various functions of
Saccharomyces cerevisiae yeast, such as cell-cycle control, stress (environmen-
tal changes, relevant drug-affected),metabolic/genetic control, transcription-
al control and DNA binding (http://transcript-ome.ens.fr/ymgv/). Different
biomedical assays activate and suppress expression patterns of certain func-
tional groups of genes. We need to integrate this biological/medical knowl-
edge with the numerical/graphical findings in a and b to validate known
information and more importantly to explore and interpret novel interesting
patterns.

d) Hierarchical clustering trees for arrays and genes also yield a partial visual
exploration of the data and proximity structure, but this is not as compre-
hensive as direct visualization of the two proximity matrix maps, since the
dendrograms only retain some of the information in the proximity matrices
from which they are constructed.

. For the row (gene) proximity matrix:
a) Similar procedures to those described in a and b for arrays (columns) must

be repeated for the gene (row) proximity matrix. Of particular interest is the
dichotomous pattern of these  genes.he up-regulated (red) genes at the
upper half and the down-regulated (green) genes at the bottom half of the A
arrays are responsible for this dichotomous structure. We denote these two
clusters of genes as G and G here. Several small subclusters of genes within
G and G can also be identified along the main diagonal.

b) It is necessary to go one step further and consult various annotation databases
for more detailed interpretations of and explanations for the potential clus-
ters of genes identified this way. Some of the genes have not been annotated
yet. heir potential functions can be roughly determined through the pos-
itively correlated (up-regulated) gene clusters and the negatively correlated
(down-regulated) patterns.

. For the raw data (gene expression profile) matrix:
a) Many major and minor array groups and gene clusters were found in steps 

and . In step , we use the raw data (gene expression profile) matrix map to
search for the interaction patterns of the gene clusters on the array groups.
It is also necessary to use vertical strips of expression profiles to contrast be-
tween array group structure variations and horizontal strips to distinguish
between gene cluster distribution differences. With careful examination, one
can associate certain blocks of expression in the raw data matrix with the for-
mation of each array group and gene cluster and the between-group (cluster)
differentiation.

b) here are about   (9.%) missing observations in this data matrix of
 arrays with  genes. It is clear that the pattern of missing observa-
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tions is not a random one. Different array group and gene cluster combina-
tions have different proportions of missing observations. he visualization
of the missing structure is a great aid to users when they attempt to choose
amore appropriate missing value estimate or imputation mechanism for fur-
ther analyses.

c) Visual exploration provides valuable insights into more advanced studies,
such as the confirmation of existing metabolite pathways (see Sect.  for an
example) and the exploration of novel pathways.

his paragraph has only discussed some general issues associated with examining
an MV display. If we have access to expert knowledge and biologists familiar with
experiments related to Saccharomyces cerevisiae yeast, there are actually many more
interesting patterns that can be explored. In Figs. . and . we demonstrated an
MV can easily handle thousands of samples. An MV display can also handle thou-
sands of variables, since samples and variables are treated symmetrically in the MV
framework.

Comparison with Other Graphical
Techniques 15.6

In this section, we compare the visualization efficiencies of the scatterplot (SP), the
parallel coordinates plot (PCP) (Inselberg, ; Wegman, ), and matrix visual-
ization (MV), based on varying dimensionality of the dataset.

Low-Dimensional Data
For one-dimensional data, scatterplot and the PCPdisplays amount to dotplots, while
a one-dimensional MV yields a colored bar chart. In any event, it is unlikely that any
method of displaying one-dimensional data will prove more popular than the his-
togram. A scatterplot is themost efficient graphical display for two-dimensional data.
While a PCP relies on the n connecting line segments between two vertical dotplots
to represent the association between the two variables, MV displays each sample as
a single row with two colored dots. he efficiency of scatterplots decreases as dimen-
sion increases. For three-dimensional data, a rotational scatterplot is commonly used
to extract geometric structure by viewing a sequence of two-dimensional scatterplots
over a range of angles controlled by the user.he usefulness of PCP andMV displays
of three-dimensional data is a subtle point, and the best permutation of variables is
definitely needed to enforce relativity for both types of displays.

High-Dimensional Data
A scatterplot matrix (SM) is used to simultaneously visualize the information struc-
ture embedded in all C(p, ) pairs of variables for data with more than three di-
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mensions. Grand tours (Asimov, ) are sometimes undertaken in the hope of
extracting high-dimensional data structure by rotating randomly projected three-
dimensional plots. Dimension reduction techniques, such as principal component
analysis, are also useful for displaying structural information fromhigh-dimensional
data in low-dimensional displays. Figure . shows a scatterplot matrix display of
the first  variables (arrays) in Dataset , while Fig. . gives the corresponding
PCP for these data. We note that a PCP of high-dimensional data with a large sample
size can simultaneously display all of the samples, but it is usually necessary to use
some interactive mechanism to select subsets of samples in order to study the relative
structure across all variables, as in Fig. ..Moreover, for these plots, more than one
pixel width is needed to display each variable.
In general, a scatterplot matrix needs C(p, ) � n dots to display a dataset with n

samples measured on p variables, a PCP needs p vertical lines plus (p − ) � n line
segments, and an MV plot requires n� p dots. When p becomes large, larger than 

Figure .. Scatterplot matrix for the first thirty arrays of Dataset 
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Figure .. Parallel coordinates plot for the first thirty arrays of Dataset 

for instance, a scatterplot matrix is basically useless. A PCP display does well for up
to a few hundred variables, but founders for more due to the space required to display
the line segments that connect sample points. A scatterplot matrix also wastes a high
proportion of the display space. An MV display, on the other hand, utilizes every
column pixel to display a variable on a computer screen. PCP has an advantage over
MV on the sample side, but MV plots provide better resolution.

Overall Eiciency
Figure . is a diagram of efficiency against dimensionality for a conventional scat-
terplot (matrix) and dimension-free visualization tools such as the parallel coordi-
nates plot (PCP) andmatrix visualization (MV).While direct visual perception of the
geometric pattern makes scatterplots the most efficient type of display for visualizing
low-dimensional data, MV and PCP are definitely better for visualizing datasets with
fiteen or more variables.

Missing Values
It is very difficult to display missing values in a scatterplot, while it is always possi-
ble to display missing values above or below the regular data range of each variable
in a PCP display. he MANET system by Unwin et al. () can be used to dis-
play missing information interactively. In an MV plot, a missing value can be simply
displayed at the corresponding position (row and column) with a color that can be
easily distinguished from the color spectrum of the numerical values. he missing
values of the gene expression profiles in Figs. . and . are coded in white. With
appropriate permutations for rows and columns, the corresponding variable–sample



700 Han-MingWu, ShengLi Tzeng, Chun-HouhChen

Figure .. Schematic illustration of the relative efficiencies of the scatterplot matrix, the parallel

coordinates plot, and matrix visualization, for varying numbers of dimensions

combinations for themissing structure can be accessed visually.MVusers can benefit
from a simple visual perception of the mechanism associated with the missing obser-
vations (random or not, ignorable or unignorable) before formal statistical modeling
of the missing values is implemented.

Matrix Visualization of Binary Data15.7

While scatterplots, PCP, and MV displays have their own advantages and disadvan-
tages for continuous data structures of various dimensions, anMV display is the only
statistical graph that can meaningfully display binary data sets over all dimensions.
We use the KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolism path-
ways (http://www.genome.jp/kegg/pathway.html) for Saccharomyces cerevisiae yeast
to illustrate how anMVdisplay can be generalized to visually extract all of the impor-
tant information embedded in multivariate binary data. he KEGG website provides
detailed information on the  related genes involved in  metabolism pathways
in Saccharomyces cerevisiae yeast. We simplified the complex information structure
down to a two-way binary data matrix of  genes by  pathways. his binary
data matrix is called Dataset  in our study. A one (zero) encoded at the ith row and
jth column of the matrix means that the ith gene is (not) involved in jth pathway
activities.

Similarity Measure for Binary Data15.7.1

he usual measures used to evaluate associations between samples and variables for
continuous data – Euclidean distance and correlation coefficients – cannot be applied
directly to binary data sets. Two issues are noted here in relation to the selection of
similarity measures for binary data in an MV display.
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Symmetric and Asymmetric Binary Variables
A binary variable is considered symmetric if both of its states are equally valuable;
that is, there is no preference over which outcome should be coded as  or . A binary
variable is asymmetric if the outcomes of the states are not equally important, such as
the positive and negative outcomes of a disease diagnosis. Conventionally, the most
important outcome (the rarer one) is coded , the other . hus, asymmetric binary
variables are oten considered “monary” (as if there is only one state).

Sparseness and Dimensionality
Asymmetric binary variables are usually sparse in nature, and it is difficult to iden-
tify an appropriate association measure that could be used to assess the relationships
among samples and between variables. Dimension reduction techniques also fail in
attempts to summarize high-dimensional data structures in low-dimensional fash-
ions. Listed in Fig. . are some similarity measures commonly applied to binary
data. For sparse data, it is common practice to use the Jaccard coefficient instead of
the simple matching coefficient.

Figure .. Some similarity measures for binary data
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Matrix Visualization
of the KEGGMetabolism Pathway Data15.7.2

he −Jaccard distance coefficient is used to compute the proximitymatrices for both
genes and pathways in Fig. .. Elliptical seriations (Chen, ) are employed to
permute the two −Jaccard distance matrices and the binary pathway data matrix.
One can easily see, from the binary data matrix map and the proximity matrix map
for genes, that there are many genes that are only involved in the activities of a single
pathway. We then exclude those genes from further analysis, since they provide no
association information. his reduces the original  genes by  pathways binary
matrix to a  genes by  pathways matrix (some pathways are also excluded ater
excluding genes). When there are too few horizontal or vertical pixels for an MV

Figure .. Binary data matrix map for the Dataset  (KEGG metabolite pathway database with 

genes (rows) for  pathways (columns)) with two Jaccard proximity matrices for genes and for

pathways sorted by elliptical seriations in both directions
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display, users can either use the scroll bars to visualize a certain region of the display
or to zoom out in order to visualize the overall structure with an averaging effect, as
used in a typical computer graph.
Average linkage clustering trees are then employed to sort the resulting −Jaccard

distance matrices for genes and pathways and the corresponding binary data matrix,
see Fig. ..he association structure between genes and among pathways can now
be comprehended using the three corresponding permuted matrix maps. In the up-
per let corner of the data matrix and the upper-let corners of the proximity maps
for genes and pathways we can identify several groups of genes that are involved in
the activities of only a few pathways, and several small groups of pathways that share

Figure .. Binary data matrix for the reduced Dataset  ( genes (rows) for  pathways (columns))

with two Jaccard proximity matrices for genes and for pathways sorted by average linkage trees in both

directions
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very similar groups of genes. he other genes and pathways have more complicated
interactions between activities. It is of course possible to further exclude pathways
and genes with simpler behavior, and to focus on the details of interactions of the
more active genes and pathways.

OtherModules and Extensions of MV15.8

So far we have introduced the fundamental framework for matrix visualization in
the GAP (Chen, ) approach to the visualization of continuous and binary data
matrices, with corresponding derived proximity matrices. We have also presented
some generalizations, such as the sufficient MV and the sediment, sectional, and re-
stricted displays. In practice, observed data can be highly complex, to the degree that
basic matrix visualization procedures are not rich enough to comprehend the data
structure. In some situations, one may not be able to apply MV directly to the given
data or proximity matrices. his section discusses ongoing projects and future di-
rections that will make matrix visualization a more promising statistical graphical
environment. One important feature of the GAP (Chen, ) approach to matrix
visualization is that it usually contains four basic procedures: () color projection of
the raw data matrix; () computation of two proximity matrices for variables and
sample; () color projection of the two proximity matrices, and; () permutations of
variables and sample. Most extensions of MV are related to the first two procedures.
It is simple to adapt the aforementioned algorithms for the other two steps once the
first two procedures are fixed.

MV for Nominal Data15.8.1

It is much more difficult to perform MV for nominal data than it is for binary data,
since one can use black/white to code / if the binary data is asymmetric, and the Jac-
card and other coefficients for binary data in order to derive the relationships between
variables and between samples. here is no natural way to guide the color-coding
for multivariate nominal data in such a way that the color version of the relativity
of a statistical graph still holds (Chang et al., ). he derivation of meaningful
between-variable and between-sample proximity measures for nominal data is an-
other challenging issue. Chen () and Chang et al. () utilized the Homals (de
Leeuw, ) algorithm and developed a categorical version of matrix visualization
that naturally resolved the two critical problems.

MV for Covariate Adjustment15.8.2

Quite oten, covariate data (such as gender and age) are collected in a study in addi-
tion to the variables of primary interest. When the effects of covariates are an issue,
covariate adjustment must be taken into consideration, much as in a formal statis-
tical modeling process. Wu and Chen () introduced a unified regression model
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approach which partitions the raw data matrix into model and residual matrices,
and ordinary MV can be applied to these two derived matrices. he covariate adjust-
ment process is accomplished through by estimating conditional correlations. For
a discrete covariate, a correlation matrix for variables is decomposed into within-
and between-componentmatrices.When the covariate is continuous, the conditional
correlation is equivalent to the partial correlation under the assumption of joint nor-
mality.

Data with Missing Values 15.8.3

he relativity of a statistical graph (Chen, ) is the main concept used in seriation
algorithms to construct meaningful clustered matrices. his property can be used to
develop a weighted pattern method to impute the missing values. he initial proxim-
ity measurements for rows and columns with missing values can be computed with
pair-wise complete observations, and then imputed values are estimated and updated
iteratively for the subsequent proximity calculations and imputation.

Modeling Proximity Matrices 15.8.4

Many statistical modeling procedures try to visually explore the high-dimensional
pattern embedded in a proximity matrix that records pair-wise similarity or dissim-
ilarity for a set of objects through a low-dimensional projection. Multidimensional
scaling, hierarchical clustering analysis, and factor analysis are three such statistical
techniques. Four types of matrices are usually involved in the modeling processes of
these statistical procedures.he input proximity matrix is transformed into a dispar-
ity matrix prior to fixing the statistical model that summarizes the information in the
output distance matrix. A stress (residual) matrix is calculated to assess the goodness
of fit for the modeling. Such a study aims to create a comprehensive diagnosis envi-
ronment for statistical methods through various types of matrix visualization for the
numerical matrices involved in the modeling process.

Conclusion 15.9

Matrix visualization is the color order-based representation of data matrices. It is
beneficial to employ human vision to explore the structure in a matrix in the pur-
suit of further appropriate mathematical operations and statistical modeling. A good
matrix visualization environment helps us to gain comprehensive insights into the
underlying process. Rather than rely solely on numerical characteristics, it is sug-
gested thatmatrix visualization should be performed as a preliminary step inmodern
exploratory data analysis, and research into and applications of matrix visualization
continue to be of much interest.
Matrix visualization displays provide five levels of information: () raw scores for

every sample/variable combination; () an individual sample score vector across all
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variables and an individual variable vector across all samples; () an association score
for every sample–sample and variable–variable relationship; () a grouping structure
for variables and a clustering effect for samples, and; () an interaction pattern for
sample clusters on variable groups.
With the capacity to display thousands of variables in a single picture, the flexi-

bility to work with all types of data, and the ability to handle various manifestations
of extraordinary data patterns (missing value, covariate adjustment), we believe that
matrix visualization has the potential to become one of the most important graphical
tools applied to exploratory data analysis (EDA) in the future.
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Introduction16.1

Modern Bayesian statistical science commonly proceeds without reference to statis-
tical graphics; both involve computation, but they are rarely considered to be con-
nected. Traditional views about the usage of Bayesian statistics and statistical graph-
ics result in a certain clash of attitudes between the two. Bayesians might do some
exploratory data analysis (EDA) to start with, but once the model or class of models
is specified, the next analytical step is to fit the data; graphs are then typically used to
check convergence of simulations, or they are used as teaching aids or as presentation
tools – but not as part of the data analysis. Exploratory data analysis appears to have
no formal place inBayesian statistics once amodel has actually beenfitted. According
to this extreme view, the only connection between Bayesian inference and graphics
occurs through convergence plots of Markov chain simulations, and histograms and
kernel density plots of the resulting estimates of scalar parameters.
On the other hand, the traditional attitude of statistical graphics users is that “all

models are wrong;” we are supposed to keep as close to the data as possible without
referencing a model, since models incorporate undesirable subjective components
and parametric assumptions into preliminary analysis. In true Tukey tradition, even
if a graphical method can be derived from a probability model (e.g., rootograms from
the Poisson distribution), we still don’t mention the model, because the graph should
stand or fall on its own.
Given these seemingly incompatible attitudes, how can we then integrate the in-

herently model-based Bayesian inference with the (apparently) inherently model-
aversive nature of statistical graphics? Our attitude is a synthesis of ideas adopted
from statistical graphics and Bayesian data analysis. he fundamental idea is that we
consider all statistical graphs to be implicit or explicit comparisons to a reference dis-
tribution; that is, to a model. his idea is introduced in Gelman (); the article
proposes an approach that can be used to unify EDA with formal Bayesian statisti-
cal methods. he connection between EDA and goodness-of-fit testing is discussed
in Gelman (). hese two articles formalize the graphical model-checking ideas
presented in Buja et al. (); Buja and Cook (); Buja et al. (), which have
been informally applied in various contexts for a long time (e.g., Bush andMosteller,
; Ripley, ).

The Role of EDA in Model Comprehension
and Model-Checking16.1.1

Exploratory data analysis, which is aided by the use of graphs, is done to look for
patterns in the data. While the reference distributions in such cases are typically im-
plicit, they are always there in the mind of the modeler. In an early article on EDA
by Tukey (), he focused on the idea that “graphs intended to let us see what
may be happening over and above what we have already described,” which suggests
that these graphs can be built upon existing models. Ater all, to look for the un-
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expected is to look for something that differs from something that we were expect-
ing – the reference model. For example, even simple time series plots are viewed
implicitly as comparisons to zero, a horizontal line, linearity, monotonicity, and so
forth. Viewing two-way scatterplots usually implies a reference to an assumed model
of independence. Before looking at a histogram, we have certain baselines of com-
parison (symmetric distribution, bimodal, skewed) in our minds. In the Bayesian
sense, looking at inferences and deciding whether they “make sense” can be inter-
preted as a comparison of the estimates with our prior knowledge; that is, to a prior
model.
he ideas that EDA gives us can be made more powerful if used in conjunction

with sophisticated models. Even if one believes that graphical methods should be
model-free, it can still be useful to have provisional models that make EDA more
effective. EDA can be thought of as an implicit comparison to a multilevel model; in
addition, EDA can be applied to inferences as well as to raw data.
In Bayesian probability model comprehension and model-checking, the reference

distribution can be formally obtained by computing the predictive distribution of the
observables, which is also called the replication distribution. Draws from the poste-
rior predictive distribution represent our previous knowledge of the (marginal) dis-
tribution of the observables.hemodel fit can be assessed by comparing the observed
values with posterior predictive draws; discrepancies represent departures from the
model. Comparisons are usually best made via graphs, since the models used for
the observables are usually complex. However, depending on the complexity of the
model, highly sophisticated graphical checks oten need to be devised and tailored to
the model. In this article, we review these principles, show examples of how to apply
them to data analysis, and discuss potential extensions.

Comparable Non-Bayesian Approaches 16.1.2

Our Bayesian data visualization tools make use of posterior uncertainty, as summa-
rized by simulated draws of parameters and replicated data. A similar non-Bayesian
analysis might compute point estimates for parameters and then simulate data using
a parametric bootstrap. his reduces to (Bayesian) posterior predictive checking if
the parameter estimates are estimated precisely (if the point estimate has no poste-
rior variance).
A confidence interval (the point estimate plus or minus the standard error) ap-

proximately summarizes the posterior uncertainty about a parameter. In multilevel
models, a common non-Bayesian approach is to compute point estimates for the hy-
perparameters and then simulate the modeled parameters.
he visualization tools described in this article should also work in these non-

Bayesian settings.
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Using Visualization to Understand
and CheckModels16.2

he key to Bayesian inference is its unified treatment of uncertainty and variability;
we would like to use this in data visualization (e.g.,Wilkinson, , Chap. ) as well
as in data analysis in general (Kerman and Gelman, ).

Using Statistical Graphics in Model-Based Data Analysis16.2.1

EDA is the search for unanticipated areas ofmodelmisfit. Confirmatory data analysis
(CDA), on the other hand, quantifies the extent towhich these discrepancies could be
expected to occur by chance. We would like to apply the same principles to the more
complex models that can now be fitted, using methods such as Bayesian inference
and nonparametric statistics. Complex modeling makes EDA more effective in the
sense of being able to capturemore subtle patterns in data. Conversely, when complex
models are used, graphical checks are even more desirable in order to detect areas of
model misfit.
We, like other statisticians, do statistical modeling in an iterative fashion, explor-

ing our modeling options, starting with simple models, and expanding the models
into more complex and realistic models, putting in as much structure as possible,
trying to find deficiencies in our model at each stage, building new models, and iter-
ating this process until we are satisfied. We then use simulation-based model checks
(comparisons of observed data to replications under the model); to find patterns that
represent deviations from the current model. Moreover, we apply the methods and
ideas of EDA to structures other than raw data, such as plots of parameter inferences,
latent data, and completed data (Gelman et al., ); Fig. . illustrates this.
At a theoretical level, we look at the model, identifying different sorts of graphical

displays with different symmetries or invariancies in an explicit or implicit reference
distribution of the test variables. his serves two purposes: to add some theoretical
structure to the graphics and EDA, so that graphical methods can be interpreted in
terms of implicit models, and to give guidelines on how to express model checking
as a graphical procedure most effectively.

Bayesian Exploratory Data Analysis16.2.2

Bayesian inference has the advantage that the reference distribution – the predic-
tive distribution for the data that could have been observed – arises directly from
the posterior simulations (which are typically obtained using iterative simulation).
Consequently, we can draw from this distribution and use these simulations to pro-
duce a graph comparing the predictions to the observed data. Such graphs can be
customized to exploit symmetries in the underlying model to aid interpretation. he
inclusion of imputed missing and latent data can result inmore understandable com-
pleted-data exploratory plots.
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Figure .. Summary of pain relief responses over time for different doses from a clinical trial with

unignorable dropout. In each summary bar, the shadings from bottom to top indicate “no pain relief ”

through intermediate levels up to “complete pain relief.” he graphs in the top row only include the

people that have not dropped out (the widths of the histogram bars are proportional to the number of

subjects remaining at each time point). he graphs in the bottom row include everybody, with imputed

responses for the dropouts. he bottom row of plots – which are based on complete data sets – are

much more directly interpretable than the observed-data plots on the top row

he existence of an explicit underlying model is beneficial in that it suggests ex-
ploratory plots that address the fit of the data to whichever model is being fitted to
them. Placing EDA within the general theory of model-checking potentially enables
graphical methods to become a more acceptable presence in statistical modeling.
Our approach is to use statistical graphics in all stages of data analysis: model-

building, model-fitting, model-checking and model-understanding. In all stages of
data analysis, we need model-checking tools so that we can see the faults and short-
comings in our model. Understanding complex probability models oten requires
complex tools. Simple test statistics and p-values just donot suffice, soweneed graphs
to aid us. More oten than not we need to customize the graphs to the problem; we
are not usually satisfied with a standard graph. However, new and better standard
methods of graphical display need to be developed.
Considering that graphs are equivalent tomodel checks, “exploratory” data analy-

sis is not done only at the beginning of themodeling process; themodel is re-explored
at each stage ater model fitting. he construction of a new, complex model may re-
sult in unforeseen problems during the fitting; in anticipation of these, we explore the
fitted model with standard and customized statistical graphs that are then used to at-
tempt to falsify the model and to find ways to improve it, or to discard it completely
and start all over again. It is also standard for our practice not to perform model-
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averaging or to concentrate on the selection of the predictor in regression problems;
our models usually evolve to more and more complex ones.
he key idea in Bayesian statistics – as opposed to simply “statistical modeling” or

“estimation” – is to work with posterior uncertainty in inferences. At the theoretical
level, this means using random variables; at a more practical level, this implies the
use of simulations that represent draws from the joint posterior distribution. his is
seen most clearly in hierarchical modeling. Figure . shows an example of the visu-
alization of posterior uncertainty in a hierarchical logistic regressionmodel (Gelman
et al., ).

Figure .. Displaying a fitted hierarchical logistic regression model, along with inferential

uncertainty. Eight states are shown from a voting preference model Prob(y i = ) = logit−(α j[i] + X iβ)
that includes all  US states. he solid black line is the median estimate for the probability that

a survey respondent in that state supported George Bush in his presidential campaign in . he gray

lines represent random draws from the posterior distribution of the logistic regression coefficients. he

dots shown are the observed data (zeros and ones), vertically jittered to make them more

distinguishable. his figure demonstrates several principles of Bayesian visualization: () small

multiples: parallel plots display the hierarchical structure of the data and model; () graphs are used to

understand the fitted model; () the fitted model and the data are shown on the same graph;

() posterior uncertainty is displayed graphically. A principle of Bayesian inference is also illustrated:

there were no data for Alaska but we were still able to draw predictions about the voting preference in

this state from the model. General principles of “good graphics” are used: a common scale is used for

all graphs, with bounds at  and ; axes are clearly labeled; jittering is employed (which works for

moderate sample sizes like that used in this example); thin lines and small dots are used. However here,

the small plots should be ordered by some meaningful criterion, such as by decreasing support for

Republicans, rather than alphabetically. he distribution of the linear predictor is skewed because the

most important single predictor by far was the indicator for African-Americans, which has an expected

value of .. he common scaling of the axes means that we do not actually need to label the axes on

each graph; however, we find that repeating the labels is convenient in this case. Labeling only some

graphs (as done for trellis plots) saves space but makes the graph more of a challenge to read, especially

when used as presentation graphics
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Hierarchical Models
and Parameter Naming Conventions 16.2.3

In hierarchical and other structured models, rather than display individual coeffi-
cients, we wish to compare the values within batches of parameters. For example, we
might want to compare group-level means together with their uncertainty intervals.
Posterior intervals are easily derived from the matrix of posterior simulations. Tra-
ditional tools for summarizing models (such as looking at coefficients and analytical
relationships) are too crude to usefully summarize the multiple levels of variation
and uncertainty that arise in such models. hese can be thought of as corresponding
to the “sources of variation” in an ANOVA table.
Hierarchical models feature multiple levels of variation, and hence feature multi-

ple levels of batches of parameters. Hence, the choice of label for the batches is also
important: parameters with similar names can be compared to each other. In this
way, naming can be thought of as a structure analogous to hierarchical modeling.
Instead of using generic θ , . . . , θk for all scalar parameters, we would, for example,
name the individual-level regression coefficients β = (β , . . . , βn), and the group-
level coefficients α = (α , . . . , αJ), and the intercept μ. Figure . shows an example
of why this works: parameters with similar names can be compared to each other.
Rather than plotting posterior histograms or kernel density estimates of the parame-
ters, we usually summarize the parameters (at least in a first look for the inferences)
by plotting their posterior intervals.

Model-Checking 16.2.4

As stated earlier, we view statistical graphics as implicit or explicit model checks.
Conversely, we view model-checking as a comparison of the data with the replicated
data given by the model, which includes both exploratory graphics and confirmatory
calculations such as p-values. Our goal is not the classical one of identifying whether
themodel fits or not – and it is certainlynot the aim to classifymodels into correct and
incorrect, which is the focus of the Neyman–Pearson theory for Type  and Type 
errors. Instead, we seek to understand the ways in which the data depart from the
fitted model. From this perspective, the two key components of exploratory model-
checking are () the graphical display and () the reference distribution to which the
data are compared.
he best display to use depends on the aspects of the model being checked, but

in general, graphs of data or functions of data and estimated models (for example,
residual plots) can be visually compared to corresponding graphs of replicated data
sets. his is the fully model-based version of exploratory data analysis. he goal is to
use graphical tools to explore aspects of the data that are not captured by the fitted
model.
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Example: A Hierarchical Model
of Structure in Social Networks16.3

As an example, we consider the problem of estimating the sizes of social networks
Zheng et al. (). he model uses a negative-binomial model with an overdisper-
sion parameter:

yi k 9 Negative-binomial(mean = aibk , overdispersion = ωk),
where the groups (subpopulations) are indexed by k (k = , . . . ,K) and the respon-
dents are indexed by i (i = , . . . , n). In this study, n =  and K = . Each respon-
dent is asked how many people he or she knows in each of the K subpopulations.
he subpopulations are identified by name (people called Nicole, Michael, Stephanie,
etc.), and by certain characteristics (airline pilots, people with HIV, those in prison,
etc.).
Without going into the details, we remark that ai is an individual-level parameter

that indicates the propensity of the person i to know people in other groups (we call
this a “gregariousness” parameter); it is modeled to be ai = eα i where αi 9 N(μα , σα);
similarly, bk is a group-level prevalency (or group size) parameter modeled as bk =
eβk where βk 9 N(μβ , σ


β). he overdispersion parameter vector ω = (ω , . . . ,ωK)

and the hyperparameters are assigned uninformative (or weakly informative) prior
distributions.
he model is fitted using a combination of Gibbs and Metropolis algorithms, so

our inferences for the modeled parameters (a, b,ω), and the hyperparameters, (μα ,
σα , μβ , σβ), are obtained as simulated draws from their joint posterior distribution.

Model-Informed Exploratory Data Analysis
Figure . displays a small portion of an exploratory data analysis, with histograms
of responses for two of the survey questions, along with simulations of what could
appear under three fitted models. he last of the models is the one that we used; as
the EDA shows, the fit is still not perfect.

A First Look at the Estimates
Wecould summarize the estimated posterior distributions of the scalar parameters as
histograms, but in most cases we find that intervals are a more concise way to display
the inferences; our goal here is not just to view estimates, but also to compare the
parameters within each batch.
We display the parameter estimates with their % and % posterior intervals

as shown in Fig. .. Along with the estimates, the graph summarizes the conver-
gence statistic graphically. Since there are over  quantities in the model, not all of
them can be displayed on one sheet. For smaller models, this graph provides a quick
summary of the results – but of course this is just a starting point.
We are usually satisfied with the convergence of the algorithm if the values of the

R̂ convergence statistic (Gelman et al., ) are below . for all scalar parameters.
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Figure .. Histograms (with a square-root scale) of responses to “How many persons do you know

named Nicole?” and “How many Jaycees do you know?” constructed from the data and from random

simulations obtained for three fitted models: the Erdős–Renyi model (completely random links), our

null model (some people are more gregarious than others, but the propensities of people to form ties to

all groups are the same), and our overdispersed model (variation in gregariousness and variation in

propensities to form ties to different groups). Each model shows more dispersion than the one above,

with the overdispersed model fitting the data reasonably well. he propensities to form ties to Jaycees

show much more variation than the propensities to form ties to Nicoles, and hence the Jaycees counts

are much more overdispersed. (he data also show minor idiosyncrasies, such as small peaks at the

responses , , , and . All values that are greater than  have been truncated at .) We use

square-root scales to make tail patterns clearer

A value of R̂ that is close to . implies good chain mixing; if however R̂ � . for
some of the parameters, we allow the sampler to iterate somemore. By using a scalar
summary rather than looking at trace plots, we are able to quickly assess the mixing
of all of the parameters in the model.

Distribution of Social Network Sizes ai
We now proceed to summarize the estimates of the  parameters ai . A table of
numbers would be useless unless we want to find the numerical posterior estimates
for a certain person in the study; our goal is rather to visualize the posterior distribu-
tion of the ai , so a histogram is a much more appropriate summary. It is interesting
to see how men and women differ in their perceived “gregariousness;” we therefore
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Figure .. A graphical summary (produced automatically by the R package RWinBUGS Sturtz et al.

()) of the estimated scalar parameters in the social networks model. Another alternative is to plot

density estimates or histograms of individual scalar parameters; these can be useful, but are difficult to

apply to vector parameters. In contrast, the right side of our display here permits an immediate

understanding of the inferences for the vectors α, β, ω (another option would be to use parallel

coordinate plots for each vector parameter). his graph is an inefficient way of displaying inferences;

given that convergence has approximately been reached, only the right side of the display is necessary.

However, we include it as an example of a quick inferential summary which, for all its simplicity, is still

far more informative than a table of parameter estimates and standard errors

display the posterior mean estimates of ai as two separate histograms by dividing αi

into men’s and women’s estimates. See Fig. ..
However, a histogram derived from the posterior means of hundreds of parame-

ters is still only a point estimate; we also want to visualize the posterior uncertainty
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Figure .. Estimated distributions of the “gregariousness parameters” α i for women and men. he

lines drawn over the bars are posterior simulation draws that indicate the inferential uncertainty in the

histograms. Our primary goal here is to display inferences for the distribution of gregariousness within

each sex, not to compare averages between sexes (which could be done, for example, using parallel

boxplots). We compare groups using a regression model as in Fig. .

Figure .. Coefficients (and � and � standard error intervals) for the regression of estimated log
gregariousness parameters α i on personal characteristics. Because the regression is done on

a logarithmic scale, the coefficients (with the exception of the constant term) can be interpreted as

proportional differences; thus, with all else held constant, women have social network sizes that are  %

smaller than men, people that are over  years of age have social network sizes that are % lower

than others, and so forth

in the histogram. In the case of one scalar, we always draw the posterior intervals
that account for the uncertainty in estimation; in the case of a vector shown as a his-
togram, we similarly want to display the uncertainty in the histogram estimate. To do
this, we sample (say, twenty) vectors from the matrix of simulations and overlay the
twenty histogram estimates as lines on the average histograms. his gives us a rough
idea of how good an estimate the histogram is. As a rule of thumb, we don’t plot the
“theta-hats” (point estimates), we plot the “thetas” (posterior draws representing the
random variables) themselves.
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Figure .. A graph comparing the estimates from a more complex version of the social networks

model, using individual-level regression predictors: log(a i) � N(X iψ, σ

α). he rows (Nicole, Anthony,

etc.) refer to the groups and the columns refer to the various predictors. Comparisons are efficient

when coefficients are rearranged into a “table of graphs” like this

Extending the Model by Imposing a Regression Structure
We also fit an extended model with an individual-level regression model, log(ai) 9
N(Xiψ, σα). he predictors include the indicators of female, nonwhite, in-
come � $  , income < $  , employment, education (high-school or higher).
Figure . shows an example of how to visually compare regression coefficients

ψi k on explanatory variables (a characteristic of the survey respondent, i) for dif-
ferent groups (k). Whenever our goal is to compare estimates, we initially think of
a graph. Figure . could have been equivalently summarized by the uncertainty
interval endpoints and the posterior median estimate, but it would not have been
an efficient tool to use to visualize the coefficient estimates. When a comparison is
required, draw a graph; for looking up specific numbers, construct a table.

Posterior Predictive Checks16.3.1

A natural way to assess the fit of a Bayesian model is to look at how well the pre-
dictions from the model agree with the observed data (Gelman et al., ). We
do this by comparing the posterior predictive simulations with the data. In our so-
cial networks example, we create a set of predictive simulations by sampling new
data independently from the negative binomial distributions given the parameter
vectors a, b,ω drawn from the posterior simulations already calculated. We draw,
say, L simulations, y()i k , . . . , y

(L)
i k for each i, k. Each set of simulations �y(ℓ)i k �L

ℓ= is
an approximation
of the marginal posterior distribution of yi k , denoted by yrepi k , where “rep”
stands for the “replication distribution;” yrep stands for the n � K replicated obser-
vation matrix.
It is possible to find a numerical summary (that is, a test statistic) for some feature

of the data (such as standard deviation, mean, etc.) and then compare it to the corre-
sponding summary of yrep , but in addition we prefer to draw graphical test statistics,
since a few individual numbers rarely illustrate the complexity of the full dataset. In
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general notation, for some suitable test function T, which may thus be a graph, we
compare T(y) with T(yrep).
Plots of Data Compared with Replicated Data
For the social networks model, we choose to compare the data and the predictions by
plotting the observed versus expected proportions of responses y ik . For each subpop-
ulation k, we compute the proportion of the  respondents for which yi k equals
, , , , , , and finally those with yi k 	 . hese values are then compared to
posterior predictive simulations under the model. Naturally, we plot the uncertainty
intervals of Probk(yi k = m) instead of their point estimates.
he bottom row of Fig. . shows the plots. On the whole, the model fits the

aggregate counts fairly well, but tends to underpredict the proportion of respondents
whoknow exactly one person in a category. In addition, the data and predicted values
for y =  and y =  illustrate that people are more likely to answer with round
numbers.
he three first rows of Fig. . shows the plots for three alternative models (Zheng

et al., ). his plot illustrates one of our main principles: whenever we need to
compare a series of graphs, we plot them side by side on the same page so that vi-
sual comparison is efficient (Bertin, /; Tute, ).here is no advantage to
scattering closely related graphs over several pages.

Figure ..Model-checking graphs: observed vs. expected proportions of responses y ik of

, , , , , , and 
 . Each row of plots compares actual data to the estimate from one of four fitted

models. he bottom row shows our main model, and the top three rows show the models fitted while

censoring the data at , , and , respectively. In each plot, each dot represents a subpopulation, with

proper name categories in gray, other categories in black, and % posterior intervals are indicated by

horizontal lines
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Challenges Associated with the
Graphical Display of Bayesian Inferences16.4

We expect that the quality of statistical analyses would benefit greatly if graphs were
more routinely used as part of the data analysis. Exploratory data analysis would
be more effective if it could be implemented as a part of the sotware for complex
modeling. To some extent this is done with residual plots in regression models, but
for complex models there is the potential for much more progress.
As discussed in detail in Gelman (), we anticipate four challenges: () inte-

grating the automatic generation of replication distributions into the computing en-
vironment; () choosing the replication distribution – this is not an automatic task,
since the task involves selecting which parameters to resample and which to keep
constant; () choosing the test variables; () displaying test variables as graphs. In the
near future, automatic features for simulating replication distributions and perform-
ing standard model checks should become available.

Integrating Graphics and Bayesian Modeling16.4.1

We fit Bayesian models routinely with sotware such as BUGS (BUGS Project, ),
andmove the simulations over to R (RDevelopment Core Team, ) using RWin-
BUGS (Sturtz et al., ). Simulations can also be summarized in R in a more natu-
ral way by converting the simulation matrices into vectors of random variable objects
(Kerman andGelman, ). BUGS has also its limitations; we also fit complex mod-
els in R using Umacs, the “Universal Markov chain sampler,” (Kerman, ).
We are currently investigating how to define an integrated Bayesian computing

environment where modeling, fitting, and automatic generation of replications for
model-checking is possible.his requires further effort to develop standardized graph-
ical displays for Bayesian model-checking and understanding. An integrated com-
puting environment is nevertheless the necessary starting point, since functions that
generate such complex graphical displays should have full access to the models, the
data, and predictions.
he environment must also take into account the fact that we may fit multiple

models with different sets of observations; without a system that can distinguishmul-
tiple models (and the inferences associated with them) it is not possible to perform
comparisons of them.

Summary16.5

Exploratory data analysis and modeling can work well together: in our applied re-
search, graphs are used to comprehend and check models. In the initial phase, we
create plots that show us how the models work, and then plot data and compare it to
the model to see where more work is needed.
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Wegain insight into the shortcomings of themodel by performing graphicalmodel
checks. Graphs are most oten drawn in order to compare data with an implicit ref-
erence distribution (e.g., Poisson model for rootograms, independence-with-mean-
zero for residual plots, or normality for quantile–quantile plots), but we would also
include more general comparisons; for example, a time series plot is implicitly com-
pared to a constant line. In Bayesian data analysis, the reference distribution can be
formally obtained by computing the replication distribution of the observables; the
observed quantities can be plotted against draws from the replication distribution to
compare the fit of the model.
We aim to make graphical displays an integrated and automatic part of data anal-

ysis. Standardized graphical tests must be developed, and these should be routinely
generated by the modeling and model-fitting environment.
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When we have to write programs for statistical data visualization using a general-
purpose programming language, for example, to achieve new functions or exten-
sibility, the Java language is an appropriate choice. he object-oriented character-
istics of Java are suitable for building graphical and interactive programs. Java has
well-prepared standard graphical libraries that reduce our programming tasks and
increase the portability of sotware to different platforms. Furthermore, recently de-
veloped solutions for object-oriented programming – so called “design patterns” –
are useful for building statistical data visualization programs.
his chapter illustrates how to build general-purpose extensible statistical data vi-

sualization sotware in Java by following design patterns. As an example, we use a Java
statistical graphics library named Jasplot (JAva Statistical PLOT).he source code of
Jasplot is available from our web site (http://jasp.ism.ac.jp/Jasplot/).

Introduction17.1

Data visualization or statistical graphics is one of the important topics in statistics
(Wilkinson, ). Statistical graphics are usually drawn by computers these days.
hanks to the development of computer technologies, beautiful and colorful graph-
ics are easily drawn, and interactive and -D graphics are even available on personal
computers (Symanzik, ). Almost all recently developed statistical sotware in-
cludes advanced statistical graphics functions, e.g., R (Murrell, ).
Although statistical sotware products have flexible and well-organized graphics

functions, we sometimes need new functions that have not been implemented and
are also difficult to realize in such sotware. For example, it is difficult to realize com-
plicated interactive operations for graphics using only the traditional R language at
this stage. We note that the iPlot project (Urbanek and heus, ) expands the
capabilities of R to provide interactive statistical graphics using comprehensive Java
programs.
Before computers became available, it was difficult to draw statistical graphics for

data that had many observations and variables. Now, such graphics are easily drawn
by computers. However, we know that the numbers of observations and variables be-
ing recorded have also increased with the development of automatic data collection
systems that use computers in various fields. Traditional statistical graphics some-
times fail to show the characteristics of such data clearly. For example, if we plot all
data on a screen using simple graphics such as a scatterplot or a parallel coordinate
plot (Inselberg, ), it is difficult to distinguish each observation from the others
because of overlapping points. To solve problems like this, several interactive tech-
niques such as focusing, brushing, zooming and linked views have been developed
(Unwin et al., ).hese techniques are useful for viewing particular observations
clearly and for grasping characteristics of the data structure.
It is convenient to use general-purpose object-oriented programming (OOP) lan-

guages such as C++ or Java to program statistical data visualization. OOP is a para-
digm where programs are composed by utilizing various “objects” in which related
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data and procedures are encapsulated. his paradigm originally appeared in a pro-
gramming language intended for simulation: Simula. he Smalltalk system is a pure
OOP environment and shows that OOP is very useful for building window-type
graphical user interfaces (GUI) by providing window frames, pull-downmenus, slid-
ers and buttons. In addition, GUI programming must be event-driven; that is, oper-
ations by users are not sequential, and the program needs to decide on its operations
according to events caused by users; for example, the clicking of amouse button or the
selection of an item from a pull-down menu. Statistical data visualization is thought
to be an advanced formofGUI. In addition to buttons and pull-downmenus, it shows
data points or lines on windows to express data or results from analysis.
Java is appropriate for modern data visualization for several reasons. First, it is an

OOP language. Second, it has well-designed standard graphics libraries, such as Java
D and Swing. hese libraries can work as useful components of statistical graphics
and are incorporated by applying so-called “design patterns.”
Design patterns are suggested solutions to common problems that oten appear in

OOP work (Gamma et al., ). hey are derived from the experiences of profes-
sional programmers using OOP languages. As they aim for generality and reusabil-
ity, they can appear cumbersome for simple programming. However, when design-
ing reusable libraries that include statistical graphs, design patterns provide powerful
guidelines.
In this chapter, we consider how to build a general-purpose statistical graphics li-

brary in Java. We explain the basic ideas associated with a statistical graphics library,
the Java language, and design patterns in the next section. hese ideas are actually
used to build a Java statistical graphics library, Jasplot, in Sect. . Jasplot (JAva Sta-
tistical PLOT) has been developed by adopting design patterns. Sect.  contains our
concluding remarks. In the Appendix, we briefly explain how to install and use the
Jasplot library.

Basics of Statistical Graphics Libraries
and Java Programming 17.2

We recommend the use of Java to write statistical graphics programs. We briefly ex-
plain the reasons for this here. First, we consider the requirements of statistical graph-
ics libraries. hen we state why Java is suited to achieving these requirements. Intro-
ductions to design patterns and UML class diagrams are also given, because they are
used in the next section.

Required Functions for Statistical Graphics Libraries 17.2.1

Statistical graphics libraries must include at least the following functions. We note
that basic statistical calculation functions are preferable for statistical graphics li-
braries. However, we can leave them to the sotware from which the library is used,
and we do not consider them here.
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Data Import and Output Export
As a statistical graphics library handles statistical data, it has to import data fromfiles
of other sotware products. here are many file formats for storing data and many
sotware products with which the library is used. hus, the data structure used in
the library should be general and relatively simple to facilitate communication with
many different formats, such as the Comma Separated Value (CSV) format and the
Microsot Excel format.
Graphics drawn by the library on screen should also be output on paper or web-

pages. Several formats are used these days for this purpose, including the JPEG for-
mat and the Scalable Vector Graphics (SVG) format. he library is expected to sup-
port them.

Drawing Basic Statistical Graphics
One simple two-dimensional plot is a scatterplot. It expresses observations with two
continuous variables as points on a two-dimensional Cartesian coordinate plane. We
sometimes connect observation points using lines or fill a particular region with
a special color. If we include such functions in a scatterplot, all graphics drawn on
a plane are thought to be variations of them, because points, lines and regions are
sufficient components to draw any two-dimensional graphics.
Histograms are traditionally used for single continuous variable data, and boxplots

express different characteristics of them.
Scatterplot matrices and parallel coordinate plots are powerful and basic graphics

used to represent continuous multivariate data. Mosaic plots are available for visual-
izing categorical data (Hofmann, ).
A statistical graphics library should include these basic graphics at the very least.

hey should be easy to use without complicated programming work.

Building New Graphics
We oten need to build new statistical graphics by combining basic graphics. A good
example is a scatterplot matrix, which consists of scatterplots placed in a square ma-
trix. A histogram and a density estimation graphic are oten overlaid together. A sta-
tistical graphics library should aid this composition work efficiently using basic sta-
tistical graphics.

Interactive Operations
Weotenwish to focus and highlight particular observations to see the characteristics
of them while ignoring other observations. We sometimes use a brushing technique
to focus on a group of observations that are neighbors. In addition to brushing, sev-
eral interactive operations have been proposed and implemented by many authors;
see Symanzik (). Such operations are usually executed usingmouse operations in
current computer systems. herefore, mouse operations (or mouse event handling)
should be prepared as basic functions in a graphics library in order to implement
interactive operations easily.
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Linked Views
Interactive operations are especially powerful if we link several statistical graphics at
the same time. It is usual to draw several graphics for one dataset to detect its char-
acteristics. A simple example is again a scatterplot matrix. If we highlight a group of
observations in one scatterplot component, it is useful to highlight the same observa-
tions in other scatterplot components. his is an example of so-called “linked views”
or “linked highlighting” and “linked brushing.” Amodern statistical graphics library
should support programming for linked views.

Advantages of Java
for Programming Statistical Graphics 17.2.2

Object-Oriented Programming Language
Java is an object-oriented programming (OOP) language: almost all things in Java
are written as objects (except primitive types). An object is a set of code and data.
As related code and data are encapsulated in an object, it is available as a component
for other programs. OOP is especially useful for realizing graphical user interfaces
and graphics programming, because components in these programs are easily im-
plemented by intuitive objects. For example, a point on a window is directly realized
by an object that has a location, size and color as data, and procedures for changing
values of these components as code.
Java adopts a class-instance mechanism, where a class is a kind of a type definition

and instances are realizations of classes. Classes have an inheritance mechanism that
is used for so-called “difference” programming. his means that a new class can be
defined by adding information to an existing class.

Platform Independence
Programs written in the Java language run similarly on many platforms. his is
achieved through the Java virtual machine mechanism. Although this approach has
overhead for executing Java programs, recent Java virtualmachines havemechanisms
to reduce it.
his mechanism also permits the provision of standard libraries for accessing fea-

tures of host platforms, such as graphics, threading and networking, in unified ways.

Abundant Standard Libraries
As Java is not dependent on any specific platform, it provides a set of standard class
libraries that contain abundant common reusable functions for various modern op-
erating systems. hey support a wide range of tasks from basic ones such as network
access and file access to advanced tasks such as interactive GUI building. hey are
indispensable for statistical graphics programming.
It is important that standard libraries of Java are all written and controlled by the

original developer. It oten happened that many similar libraries were provided for
one language and users then found it difficult to choose between them. As Java has
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established standard libraries, users can use them without any future compatibility
problems.
Because of its OOP design, it is easy in Java to use other nonstandard libraries

written bymany authors.here are several reliable libraries that are essential for a sta-
tistical graphics library, such as a library for data import and export using the Excel
format (Jakarta POI), and a library for outputting graphics using the SVG format
(Batik SVG Toolkit).

Design Patterns
OOP is an efficient programming paradigm for achieving extensibility and reusability
of programs. Recently, several approaches to writing good object-oriented programs
have been proposed as “design patterns.” Design patterns describe how objects com-
municate without being entangled in each other’s data and code.
Java developers use them extensively, and many standard libraries have been de-

veloped by following them.Whenwe use Java standard libraries, we can see and learn
what design patterns advocate.

Basics of Java Graphics17.2.3

Recent Java graphics programming mainly uses the Java D and Swing libraries. We
note that Java libraries are documented by the Java Application Programming In-
terface (API). API is a list of Java packages, classes, and interfaces with all of their
methods, fields and constructors, and also with information on how to use them.
hefirst API for graphics programming was the AbstractWindowToolkit (AWT).

Java D API provides the Graphics2D class (a subclass of the Graphics class in
AWT), which contains a much richer set of drawing operations.
Swing is a package that provides a set of lightweight and enhanced components

that replace the ones available fromAWT. For example, the JButton class enhances
the Button class in AWT in order to allow not just text but images too on a button.
Java D and Swing are included in Java Foundation Classes (JFC), which is a set of

APIs intended to be a supplement to AWT. he Accessibility API and the Drag and
Drop API are also included in JFC.

An Example of Java Graphics Programming
As an example of using Java D and Swing API, we now list a short program that
draws line segments and points in a window on the screen.
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.Graphics;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Line2D;
import javax.swing.JFrame;

public class GraphicExample extends JFrame {
public static void main(String[] args){

GraphicExample ge = new GraphicExample();
ge.setDefaultCloseOperation(EXIT_ON_CLOSE);
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ge.setTitle("Java2D Graphic Example");
ge.setBounds( 0, 0, 300, 300);
ge.setVisible(true);

}
public void paint(Graphics g){

Graphics2D g2d = (Graphics2D)g;
g2d.clearRect(0, 0, getWidth(), getHeight());
g2d.draw(new Line2D.Double(30, 250, 140, 100));
g2d.draw(new Line2D.Double(140, 100, 240, 50));
g2d.fill(new Ellipse2D.Double(30-3, 250-3, 7, 7));
g2d.fill(new Ellipse2D.Double(140-3, 100-3, 7, 7));
g2d.fill(new Ellipse2D.Double(240-3, 50-3, 7, 7));

}
}

When we draw statistical graphics using Java D, the java.awt.geom package is
useful. It includes the Line2D.Double class in order to specify a line segment by
double x–y coordinates, and the Ellipse2D.Double class to specify an ellipse
by several double values. hese objects are drawn on a java.awt.Container
object by the draw or the fillmethods in the java.awt.Graphics2D class.
We first define a GraphicExample class by extending the JFrame class in

Swing. In the main method, we create an instance of this class and set all required
information, such as a title and the size of the window.
Drawing tasks are defined in the paint method. his method is automatically

invoked when a window is created or the repaint method is required. We draw
two line segments and three points. A point is defined as an ellipse specified by the
location (the x–y coordinates of the upper-let corner of the framing rectangle) and
the size (the width and the height of the framing rectangle). Figure . is the result
of this program.

GoF Design Patterns 17.2.4

It is true that OOP is useful for realizing extensibility and reusability of programs if
we design class structure properly. However, it is not an easy task to design sotware
based on good class structure.

Figure .. Java D graphic example
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Gamma et al. () discusses  “design patterns” as a practical catalog for writing
good programs using basic ideas of OOP such as inheritance, polymorphism, and
encapsulation.
As the book was written by four authors, they are called the “Gang of Four” (GoF),

and their  design patterns are sometimes called the “GoF design patterns.” he
patterns are divided into three categories: creational, structural, and behavioral.
Creational patterns propose the best way to create instances of objects. Using sim-

ply thenewmethod to create an instance is not appropriate inmany cases. Creational
patterns abstract the creation process into a special creator class.
Structural patterns describe how classes and objects can be combined to form

larger structures. Patterns for classes describe how inheritance can be used to pro-
vide more useful program interfaces. Patterns for objects describe how objects can
be composed into larger structures using object composition.
Behavioral patterns are concerned with communication between objects.
Some of these  design patterns are illustrated individually in the next section

with statistical graphics examples.
Roughly speaking, these design patterns donot recommend the use of inheritance.

Instead, they recommend the use of an interface to realize polymorphism, and to use
composition to reuse existing classes. hese are quite different from the historical
OOP approaches. hese ideas are mainly based on several basic principles (Martin,
).

The Open–Closed Principle
his principle states that classes should be open for extension, but closed for modifi-
cation. In other words, it should be possible to extend the functions of a class, but it
should not be possible to modify source code.
If we can extend or change the functions of a class by just adding new source code

without checking old source code, the class is designed correctly according to this
principle.

The Dependency Inversion Principle
hisprinciple insists that high-levelmodules should not depend upon low-levelmod-
ules, and both should depend upon abstractions. It also insists that abstractions should
not depend upon details and details should depend upon abstractions.
In Java, abstractions are realized by interfaces and abstract classes.hus, this prin-

ciple recommends that we write programs by using the methods defined in them.

Liskov Substitution Principle
his principle insists that every method that operates on a superclass should be able
to operate on subclasseswithout knowing them. In otherwords, anymethod that uses
a superclass must not be confused when a subclass is substituted for the superclass.
If this principle is violated, a method that operates on a variable that points to an

object must first check the type of the actual object in order to work correctly.
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Inheritance Versus Composition
When class-based OOP appeared, the inheritance mechanismwas used to reuse code
and to realize dynamic binding and polymorphism. A subclass can use all code in its
superclass just by inheritance. In other words, the code in the superclass is reused by
the subclass easily.
Dynamic binding means that the method implementation that is actually invoked

is decided at runtime. Polymorphism means that one method can handle objects be-
longing to different types in order to respond differently according to the right type-
specific behavior. Polymorphism is implemented at runtime using dynamic binding.
he advantage of dynamic binding and polymorphism is that they make the interface
of a method simple and make the code easier to change.
We can also realize code reuse, polymorphism and dynamic binding by using

composition, which means the use of instance variables that are references to other
objects.
Generally speaking, composition is better than inheritance for realizing reusabil-

ity and polymorphism. In an inheritance relationship, superclasses are oten fragile,
because a change to an interface of superclass can require changes inmany other code
segments that use the superclass or any of its subclasses. hus, inheritance should be
used only when a subclass “is-a” superclass. If we want to reuse code or to realize
polymorphism, and there is no natural is-a relationship between objects, we should
use composition.

MVC Design Pattern 17.2.5

he Model–View–Controller (MVC) design pattern is not included in GoF design
patterns. It is, however, an important design pattern (or framework), especially for
graphics programming. It was originally developed for the GUI of the Smalltalk sys-
tem (Krasner and Pope, ) and has been widely used in many systems, including
Java. he MVC pattern breaks an application into three parts: a model, a view and
a controller.
A model is used to manage information and notify observers when information

changes. It contains only data and functionality that are related by a common pur-
pose. A model is meant to serve as a computational approximation or abstraction
of some real world process or system. It captures not only the state of a process or
system, but how the system works.
A view is responsible for mapping graphics of a model onto a device. A view has

a one-to-one correspondence between a region of a display surface and a model, and
knows how to render the contents of a model to the display surface.When the model
changes, the view automatically redraws the affected part of the image to reflect those
changes.
A controller is the means by which the user interacts with the application. A con-

troller accepts input from the user and instructs the model and view to perform ac-
tions based on that input. In effect, the controller is responsible formapping end-user
action to application response. For example, if the user clicks the mouse button or
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chooses a menu item, the controller is responsible for determining how the applica-
tion should respond.

Class Diagrams in UML17.2.6

We explain class diagrams in Unified Modeling Language (UML), a tool for display-
ing class structure intuitively, for each design pattern described in the next section.
UML is a standard language for specifying, visualizing, constructing, and document-
ing sotware systems, as well as for business modeling and other non-sotware sys-
tems (Hunt, ; Virius, ). UML uses mostly graphical notations to express the
design of sotware projects. UML . defines  diagrams. hey are designed to let
developers and customers view a sotware system from a different perspective and in
varying degrees of abstraction. We use only class diagrams among them to illustrate
design patterns in our Java graphics library.
Class diagrams describe types of objects in a system and their relationships. he

fundamental element of the class diagram is an icon that represents a class.his icon
is simply a rectangle divided into three compartments. he topmost compartment
contains the name of the class. hemiddle compartment contains a list of fields, and
the bottom compartment contains a list of methods. We usually show selected fields
and methods. In many cases, the bottom two compartments are empty.
We can add visibility markers to signify who can access the information contained

within a class. For example, private visibility (marked by -) hides information from
anything outside the class partition, and public visibility (marked by +) allows all
other classes to view the marked information.
If the operations are shown in italics, it indicates that they are purely virtual and

have no implementation there.
he inheritance relationship in a class diagram is depicted by a triangular arrow-

head.his arrowhead points to a superclass icon and the base of the arrowhead comes
from the subclass(es) (see Fig. .).
An interface is depicted by a triangular arrowhead with a broken line segment. We

add «interface» above the name of the interface (see Fig. .). «interface»
is a stereotype in UML. Stereotypes provide a way of extending UML and produce
new kinds of model elements. A stereotype name is written above the class name and
is enclosed in guillemets.

Figure .. Inheritance in a class diagram
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Figure .. Interface in a class diagram

Figure .. Composition and aggregation in class diagrams

InUML, composition indicates that one class B belongs to another class A. Class B
is the “part” class of the “whole” class A. If “whole” class A is destroyed, so is “part”
class B. In a class diagram, class A and class B are connected by a line segment which
ends at the “whole” class A with a filled diamond.
Aggregation is similar to composition, but is a less rigorousway of grouping things.

Let class A aggregate class B. At this time, “part” class B continues to exist even if
“whole” class A is destroyed. In a class diagram, “whole” class A is pointed to by an
empty diamond (see Fig. .).

Design and Implementation
of a Java Graphics Library 17.3

In this section, we illustrate the details of the techniques described above using a sta-
tistical graphics library, Jasplot (JAva Statistical PLOT), which was originally written
for our general-purpose statistical sotware Jasp (JAva-based Statistical Processor)
(Nakano et al., ; Yamamoto et al., ; Nakano et al., ). Jasplot has since
been improved from the original version so that it is now independent of Jasp.

Overview of Jasplot 17.3.1

Jasplot is a Java library for drawing interactive statistical graphs. It is supposed to be
used from programs written by users and to be used from other sotware like Jasp. In
the Appendix, we briefly explain how to use Jasplot from Java programs. At this stage,
Jasplot is integrated into Jasp, which has its own language (Kobayashi et al., ).
All of the functions of Jasplot can easily be used by writing Jasp programs in Jasp.he
Jasp language is an extension of Pnuts, a script language. As script languages (such as
Pnuts, Python and Ruby) are designed to write programs easily, Jasp is the easy way
to utilize Jasplot.
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Jasplot has basic graphics classes such as scatterplots (Fig. .), histograms
(Fig. .) and boxplots (Fig. .). It implements scatterplot matrices (Fig. .) and
parallel coordinate plots (Fig. .) as examples of combining basic classes to build
new graphics. It also implements mosaicplots (Fig. .). hese graphics have func-
tions for focusing, zooming and linked views.
Jasplot was written by adopting the MVC design pattern. Each basic statistical

graphic is written as three main classes that implement the DataModel, Plot-
Model and Plotter interfaces. DataModel realizes the model of the MVC
pattern for a graphic. he view of the MVC pattern consists of PlotModel and
Plotter. he controller of the MVC is realized by the JasplotPanel class, in
which graphics are drawn and mouse events are handled.
Jasplot also uses severalGoFdesign patterns to realize reusability and extensibility.

We illustrate them by building several new graphics such as scatterplot matrices or
parallel coordinate plots.
Jasplot realizes useful interactive operations. Jasplot has three different and ex-

changeable selectors for specifying particular observations. When the numbers of
data and variables are large, interactive operations can become slow. To reduce com-
putational burdens and to increase response speed, Jasplot adopts several mecha-
nisms such as control over repaint timing, multilayers and double buffering.

Figure .. Scatterplot example
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Figure .. Histogram example

All objects in Jasplot are serializable. In other words, they can be converted into
a byte stream and transmitted over a network.
Java supports printing as standard functions, so Jasplot graphics are printable.

Summary of Basic Interfaces and Classes
with an Example 17.3.2

We show the names of basic interfaces and classes of Jasplot. Some of them are ex-
plained in detail later.

Classes for original data
DataModel, RealDataModel, CSVDataModel, ExcelDataModel
Classes for data about graphics
PlotModel, BasicPlotModel, ScatterPlotModel, Histogram-
PlotModel, BoxPlotModel, MultiPlotModel, MosaicPlotModel
Classes for drawing graphics
Plotter, BasicPlotter, ScatterPlotter, HistogramPlotter,
BoxPlotter, MultiPlotter, MosaicPlotter
Classes of panels for drawing
JasplotPanel, JasplotPanelPaletteLayer, JasplotPanel-
DragLayer, JasplotPanelPopupLayer, JasplotPanelPalette-
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Figure .. Boxplot example

LayerUI, JasplotPanelDragLayerUI,JasplotPanelPopup-
LayerUI
Classes for interactive operations

Classes for interpreting mouse events
BrushingState, DragGestureState, DragLayerState,
DraggingState, ManipulatingState, MultiPlot-
ManipulatingState, SelectingState, ToolTipState,
ZoomingState
Classes for selecting observations
Selector, RectangleSelector, PointSelector,
LineSelector
Classes for linked views
PlotModelEvent, PlotModelHandler, PlotModelListener,
DataModelEvent, DataModelHandler, DataModelListener

Classes for tables of data
TableModel,TableDisplayer

We show a simple example program that uses some of these classes. his program
displays a scatterplot for the first two variables of the famous Iris data and produces
Fig. ..
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Figure .. Scatterplot matrix example

import javax.swing.JFrame;
import jp.jasp.jasplot.CSVDataModel;
import jp.jasp.jasplot.DataModel;
import jp.jasp.jasplot.MatrixDataModel;
import jp.jasp.jasplot.JasplotPanel;
import jp.jasp.jasplot.ScatterPlotModel;
import jp.jasp.jasplot.PlotModel;
public class ScatterPlotSample {
public ScatterPlotSample() {

DataModel data =
new CSVDataModel(new MatrixDataModel(),"../data/iris.csv");

PlotModel model = new ScatterPlotModel();
model.setDataModel(data);
JasplotPanel jasplot = new JasplotPanel(model);
JFrame jFrame = new JFrame("Jasplot Scatterplot Sample");
jFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
jFrame.getContentPane().add(jasplot);
jFrame.setSize(500, 500);
jFrame.setVisible(true);

}
public static void main(String[] args) {

ScatterPlotSample sample = new ScatterPlotSample();
}

}
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Figure .. Parallel coordinate plot example

he program is not so different from the Java D example above. We first create
a DataModel object. he real object is CSVDataModel that implements Data-
Model. hen we create a PlotModel object. Note again that the real object is
ScatterPlotModel. We draw this object on the JasplotPanel object. Fi-
nally, we show it in a JFrame object. We can select some observations by a rectangle
selector using mouse operations.

Classes for Original Data17.3.3

Jasplot provides a general model for describing statistical data by DataModel, from
which statistical graphics are drawn. DataModel is designed as an interface to fol-
low the principles of design patterns, and plays a role as a model in the MVC pattern.
DataModel expresses a simple two-dimensional table whose rows and columns
represent observations and variables, respectively. We define basic methods for get-
ting the values of data (as real values and as string values) and the sizes of observations
and variables. Methods for getting the minimum, maximum and median of data val-
ues are declared. We also define a method to get a PlotModelHandler object,
which is used to record selection status for each observation.
RealDataModel implements DataModel and handles data whose values are

all real numbers. he setReal method of this class sets real values from a given
two-dimensional array.



ProgrammingStatistical Data Visualization in the Java Language 741

Figure .. Mosaic plot example

We have classes that implement DataModel and have components of Real-
DataModel to read data from files. CSVDataModel can read data from a file that
stores data in the CSV format. ExcelDataModel can read a Microsot Excel data
format file.hey are almost the same asRealDataModel except for the behavior of
the setRealmethod.he traditional way of realizing them is to use an inheritance
mechanism. However, we use the “Decorator” design pattern to realize these classes
using a composition technique.

he decorator pattern attaches additional responsibilities to an object dynam-
ically. Decorators provide a flexible alternative to subclassing for extending
functionality (Gamma et al., ).

In other words, the decorator pattern provides a class to add new capabilities to an
original class, and passes all the unchanged methods of the underlying class to the
new class.
We realize CSVDataModel by decorating RealDataModel. CSVData-

Modelhas theRealDataModel object in it.setReal of CSVDataModel reads
data from a CSV file and sets them to a two-dimensional real array. hen setReal
of the RealDataModel object is used and data are stored to it. Other methods
of CSVDataModel are all realized by delegation to the RealDataModel object.
his is a typical decorator pattern and a typical use of the composition technique. See
Fig. ..
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Figure .. Classes for original data

We explain the difference between this realization and the traditional inheritance
realization. If we use an inheritance mechanism, all methods of a superclass are au-
tomatically available from subclasses. Instead, this realization requires explicit dele-
gation statements, which are additional work. However, explicit declarations for del-
egation are useful to make the responsibilities of classes that execute methods clear
and to realize the rigid sotware structure.

Classes for Data about Basic Graphics17.3.4

PlotModel is an interface to set or get information for a particular graphic. As each
graphic requires data to be visualized, it declaresmethods for handling aDataModel
object: setDataModel and getDataModel. In order to draw a graphic, detailed
drawing procedures are required; they are then declared in a Plotter interface
separately. PlotModel has methods for handling them: createPlotter and
getPlotter.
PlotModel has several methods for interactive operations, such as getPlot-

ModelHandler, setSelector, and getSelector. PlotModel also has
a method for drawing strings at any location of a graphics: drawString. As
PlotModel does not maintain the size information of graphics, we specify the lo-
cation of strings by the ratio of grphicssize in the drawStringmethod.
BasicPlotModel is an abstract class that implements PlotModel and gives

simple implementations of many of the methods. It also defines several fields to store
important objects such as plotter for Plotter, selector for Selector,
and title for the title of the graphics.
To draw a two-dimensional scatterplot, ScatterPlotModel is defined by ex-

tending BasicPlotModel. It has specific information for drawing a scatterplot
such as connect for indicating whether points are connected or not as a boolean
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Figure .. Classes for basic graphics

value, lineWidth for storing the width of the connected line segments by a dou-
ble value, and connectionGroups for recording the group of connected points
given by an ArrayList class.
Wehave similar classes that extendBasicPlotModel and are specific to partic-

ular statistical graphics: HistogramPlotModel and SingleBoxPlotModel.
See Fig. ..

Classes for Drawing Basic Graphics 17.3.5

Plotter is an interface for plotting and interactive operations. It declares methods
such as draw, drawFrame, drawRulers, and plot.
Classes that implement the Plotter interface draw graphics of the correspond-

ing PlotModel in the Java graphics context. For example, ScatterPlotModel
accompanies ScatterPlotter, and HistogramPlotModel accompanies
HistogramPlotter. hey realize methods for drawing particular graphics. he
objects of these classes are automatically created by createPlottermethods of
the corresponding PlotModel classes. his mechanism is an example of the “Fac-
tory method” design pattern.

Factory method defines an interface for creating an object, but let the sub-
classes decide which class to instance. Factory method lets a class defer in-
stantiation to subclasses (Gamma et al., ).

It is oten not clear what kind of components we will use at the first stage of program-
ming, although we have a general idea of the operations of certain components. We
want to implement the components later. We can achieve this functionality by using
interfaces for these components. As an interface has no function to create an object,
we use a method for creating an object called the factory method. his technique is
useful for creating two or more tightly connected objects.
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In Jasplot, a PlotModel object always works with a Plotter object. How-
ever, detailed implementations are not defined at the first stage. We then declare
a createPlottermethod in PlotModel and use it in the method

public Plotter getPlotter() {
if (plotter == null) { plotter = createPlotter(); }
return plotter;

}
inBasicPlotModel.he concrete implementation of createPlotter is given
in each specific class. For example, in ScatterPlotModel, it is defined as

public Plotter createPlotter() {
return new ScatterPlotter(this);

}

hus, when we use the getPlottermethod of a ScatterPlotModel object,
a ScatterPlotter object is automatically created. he same things happen with
other PlotModel objects and Plotter objects, such as HistogramPlot-
Model and HistogramPlotter. Figure . shows some of these relations.
he combination of PlotModel and Plotter plays the role of the view in the

MVC pattern. Data expressed by a DataModel object can be “viewed” by various
graphics that are conceptually described by PlotModel objects and are drawn by
methods implemented concretely in Plotter objects.

Classes of Panels for Drawing17.3.6

JasplotPanel is a base class for displaying graphics defined by a PlotModel
object. JasplotPanel extends the JLayeredPane class of Swing components.
We can set a PlotModel object by using the setModelmethod of a Jasplot-
Panel object.
JasplotPanel has multilayer functionality, like almost all recent interactive

graphical applications. Multilayering means that the visible graphics display shows
stacks of virtual transparent layers. Each layer draws some graphics or handlesmouse
events. his is a useful technology for realizing interactive dynamic graphics.
JasplotPanel has three layers. he JasplotPanelPaletteLayer dis-

plays points, lines and strings to build the main graphics. JasplotPanelDrag-
Layer implements mouse event handling. JasplotPanelPopupLayer han-
dles pop-up menus. hese classes are accompanied by the user interface classes
JasplotPanelPaletteLayerUI, JasplotPanelDragLayerUI and
JasplotPanelPopupLayerUI, respectively, and they play a controller role in
the MVC patterns as a whole. hese classes are depicted in Fig. ..
It may take considerable time to redraw JasplotPanelPaletteLayer in

order to realize dynamic graphics or animations on a screen when the number of data
points is large. In this case we need to draw slightly different images promptly and
repeatedly. If we draw such images directly to the screen, it probably takes a notable
period of time and we see some flickering.
One technique to eliminate these difficulties is double-buffering. his is a tech-

nique that repeats two steps: create an offscreen image, then draw it to the screen.
Swing uses this technique in many of its components using the setDouble-
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Figure .. Classes of panels for drawing

Bufferedmethod. We can implement them ourselves using thread programming
and the BufferedImage class in AWT. In the JasplotPanelPalette-
LayerUI class, we define PlotImage to create the buffered image using a thread,
and then draw it using the drawImagemethod of the Graphics2D object.

Classes for Interactive Operations 17.3.7

Wecurrentlymainly use amouse to indicate graphics operations to the system.Mouse
events have to be detected, for example, to checkwhether themouse button is pressed
or released. he system should then interpret what the user wishes to achieve with
that mouse operation. As a mouse can be operated in a limited number of ways, and
we wish to use them to send many commands to the system, one mouse operation
will have several meanings depending on the context. For example, when we specify
a rectangular area on a graphics, we may wish to select observations inside the area,
or we may wish to zoom inside the area.
We require different selection methods for different graphics. When selecting ob-

servations in a scatterplot, a rectangular selector may be the most natural. It is desir-
able to draw a rectangular selector on a scatterplot and to select observations inside
the selector, and to be able to drag the selector to change the selected observations
interactively. Clicking a mouse button on the bin of a histogram may be the natural
way to select it. A rectangular selector is also useful to select several neighboring bins
in a histogram.
We also know that linked views or linked highlighting and linked brushing are

important in interactive operations for statistical graphics.
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Classes for CapturingMouse Events
Interactive mouse or key operations can be implemented effectively by event-driven
programming. We call operations such as pressing a mouse button or a key events.
Event-driven programming should constantly check for the occurrence of events and
perform prescribed executions when a particular event happens.
In the JasplotPanelDragLayerUI and JasplotPanelPopupLayer-

UI classes, we define a MouseInputHandler class that implements a Mouse-
InputListener defined in Swing to detect mouse events. When this class creates
its object, the system starts to check for the defined mouse events.

Classes for Interpreting Mouse Events
Wewish to interpret mouse events differently according to context. his is efficiently
realized by applying the “State” design pattern.

State pattern allows an object to alter its behaviorwhen its internal state changes.
he object will appear to change its class (Gamma et al., ).

he State pattern defines a context class to present a single interface to the outside
world. It defines an abstract state base class and represents different states as sub-
classes of it.We then define state-specific behavior in the appropriate state subclasses.
We maintain a private reference to the current state in the context class, and change
the state by changing the current state reference.
In Jasplot, a DragLayerState interface characterizes state classes. It declares

methods to decide the behavior ofmouse events, such asmousePressed,mouse-
Moved,mouseDragged andmouseReleased.hey are implemented by classes
such as BrushingState, DragGestureState, DragLayerState,
DraggingState, etc. One of these classes is set to state field in the Jasplot-
PanelDragLayerUI class and executed by, for example, the callstate.mouse-
Pressed(MouseEvent e). hus, the mousePressed method causes differ-

Figure .. Classes for interpreting mouse events
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ent behavior depending on the object selected by the state field. Figure . and
. partly show these relations.
he SelectingState class can select observations. It draws a selector at the

position specified by a mousePressed event. mouseDragged events can change
the size of the selector. AmouseReleased event selects the observations inside the
selector;more precisely, amouseReleased event generates aPlotModelEvent
object, sets the information of selected observations to it, and sends the object to the
PlotModelHandler object to repaint the graphics.
heBrushingState class inherits theSelectingState class, and has a dif-

ferent implementation for handling a mouseDragged event. In the Brushing-
State class, mouseDragged events cause the same behavior as the mouse-
Released event in the SelectingState class.
he DraggingState class enables the movement of selected observations by

dragging the selector.his operation changes the values of selected observations tem-
porarily. he resetDraggingmethod can recover their original values again.
he ManipulatingState class can reverse the directions of the x and y axes.

When this class is set to the state field in the JasplotPanelDragLayerUI
class, a frame appears around the graphic and this can be used to specify the direc-
tions of the axes.
he MultiPlotManipulatingState class is available for graphics placed

by theMultiPlotModel class that is explained in Sect. .. later. It works like the
ManipulatingState class and can swap the locations of graphics by dragging
an accompanying frame.
he ZoomingState class is used to zoom the region that is specified by the

mousePressed andmouseReleased events.heresetZoomingmethod can
reset the operation to the original size.
In Jasplot, strings drawn on graphics can show tooltips, which are small pop-up

windows to show strings. hey are useful, for example, for showing each variable
name clearly when several variable names overlap and are difficult to identify on
the original graphics. We can see each variable name by placing the mouse cur-
sor on the variable name strings and presenting a tooltip on which the specified
variable name is displayed. his function is realized by the ToolTipState class.
he BasicPlotter class has several methods to draw strings on graphics such
as drawStringCenter and drawStringLeftUpper. When we use them,
the BasicPlotter class records the position of the strings as a pair consisting
of a Rectangle2D object and a String object. he mouseMoved method in
the ToolTipState class can check whether the position of the mouse cursor is
inside that Rectangle2D object or not. If the mouse cursor is inside one of these
Rectangle2D objects, the correspondingString object is displayed by theset-
ToolTipTextmethod in the JasplotPanel object.
Drag & drop operations are also available for strings on graphics using the

DragGestureState class. Strings can be dragged and dropped onto graphics
components defined by the DroppableTextField and DroppableCombo-
Box classes. his function can be used to specify a variable name on a graphic by
performing a drag & drop operation for a variable name on another graphic.
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Classes for Selecting Observations
In order to select observations on graphics, we need to select objects that represent
observations such as points in a scatterplot, rectangular bins in a histogram or line
segments in a parallel coordinate plot.
Adraggable selector is one tool for selecting such objects.Wefirst specify a selector

such as a rectangular box, then select objects inside the selector. We may wish to
move the selector by mouse dragging and to change selected objects dynamically.
Such a selector is realized by the RectangleSelector class in Jasplot. It may be
preferable to specify the shape of selector region freely by a mouse cursor, but this is
not yet realized in Jasplot.
We wish to select one bin of a histogram by pointing at it with the mouse cursor

and clicking a mouse button. his is realized by the PointSelector class. his
class can also select objects that are located inside a rectangular area specified by
pressing amouse button, dragging the mouse cursor and releasing the mouse button.
he rectangle area disappears ater we release the mouse button.
To select line segments, for example in a parallel coordinate plot, we can use the

LineSelector class, which is a vertical line segment that selects line segments
representing observations that intersect the selector.
We sometimeswish to replace these selectors according to the purpose of our anal-

ysis. Such replacement is easily realized by following the “Strategy” design pattern.

heStrategy pattern defines a family of algorithms, encapsulates each one, and
makes them interchangeable. Strategy lets the algorithm vary independently
from the clients that use it (Gamma et al., ).

he strategy pattern consists of decoupling an algorithm from its host, and encap-
sulating the algorithm into a separate class. When we have several objects that are
basically the same, and differ only in their behavior, the strategy pattern is useful. We
can reduce these several objects to one class that uses several strategies.
We first implement a strategy interface for strategy objects. We then implement

concrete strategy classes that implement the strategy interface. In the context class,
we maintain a private reference to a strategy object. hen context class implements
public “setter” and “getter” methods for the strategy object. We can see that the strat-
egy pattern satisfies the open–closed principle. he context class can be extended by
adding new strategy objects without changing any code inside the context class.
he strategy and state patterns can be confused.he strategy pattern is better if the

context will contain only one of several possible state/strategy objects. On the other
hand, the state pattern is better if the contextmay containmany different state/strategy
objects. An object is usually put into a state by an external client, while it will choose
a strategy on its own.
In Jasplot, we use the Selector interface to define common methods for all

selectors such as create, getRegion, and mouseReleased. Rectangle-
Selector,PointSelector andLineSelector implementSelector. Fig-
ure . shows a class diagram for these classes.
For example, HistogramPlotModeluses PointSelector as default. his

is realized by a setSelector(new PointSelector)method call in the con-
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Figure .. Classes for selecting observations

structor. We can easily replace a selector by using RectangleSelector instead
of PointSelector.his is the advantage of the strategy pattern. he context (ab-
stract) class BasicPlotModel has a selector field in order to reference a con-
crete strategy class such as PointSelector. We always use methods of the strat-
egy class through the selector field, for example, selector.create.
Wenow explain how thePointSelector object is used inHistogramPlot-

Model. When we press the mouse button on the histogram graphic, the mouse-
Pressed method in the MouseInputHandler class that implements the
MouseInputListener interface defined in JasplotPanelDragLayerUI
detects the event.hemousePressedmethod calls thestate.mousePressed
method, and then it calls the createSelector method and executes the
selector.createmethod to create a PointSelector object. When we re-
lease the mouse button (ater dragging), the mouseReleased method in the
MouseInputHandler class detects the event, and themouseReleasedmethod
calls state.mouseReleased, and it executes the mouseReleasedmethod in
the SelectingState class. his method performs the getIndexFor-
Locationmethod that checks whether representations of all observations are in-
cluded in the selector box just defined or not. Selected observations are drawn in
different colors by the repaintmethod. See Fig. ..
As a selection operation is dynamic, the graphic must change dynamically. We

must then be careful about the time taken to repaint. If the number of observa-
tions is huge, repainting will require a considerable period of time. In Jasplot, we
can choose between two approaches to repainting. One is real-time repainting; that
is, repainting many times during mouse operation. his may be natural if we use
RectangularSelector and drag it. We wish to select observations in the selec-
tor box at each moment of dragging. If we drag the selector box and one selected ob-
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servation moves outside the selector box, we expect that the observation is deselected
as soon as possible.his type of repainting requires much computation and works for
only a limited number of observations. Another natural approach is to repaint when
the mouse button is released. If we use PointSelector and specify a rectangular
area, it is reasonable to repaint at the last moment of specifying the selector box; that
is, when the mouse button is released.his approach is computationally light and ap-
propriate when the number of observations is huge. We can choose these timings by
using the setDynamicChangemethod defined in the JasplotPanel class. If
we execute setDynamicChange(true), real time repainting is executed. If we
execute setDynamicChange(false), repainting is performed whenwe release
the mouse button.

Classes for Linked Views
We have explained mechanisms of selecting or brushing observations in a single sta-
tistical graphic. It is also important, however, to connect such operations across sev-
eral graphics; that is, to realize linked views or linked highlighting and linked brush-
ing. To do this, we must inform other graphics of changes in selected observations in
one graphic. his can be realized by the “Observer” and “Mediator” design patterns.

he Observer pattern defines a one-to-many dependency between objects so
that when one object changes state, all its dependants are notified and updated
automatically (Gamma et al., ).

he observer pattern allows one object (the observer) to watch another (the subject).
It forms a publish–subscribe relationship between the subject and the observer. Ob-
servers can register to receive events from the subject. When the subject needs to
inform its observers of an event, it simply sends the event to each observer.
In Jasplot, the PlotModelHandler object, accompanied by the DataModel

object, behaves as a subject. Observers are other graphics’ JasplotPanel-
PaletteLayer objects that implement the PlotModelListener interface.
Observers can be registered by using the addPlotModelListenermethod in
the PlotModelHandler class. See Fig. ..
Consider that selected observations are changed by a selector operation. he

SelectingState object creates a PlotModelEvent object in which the se-
lected/unselected information for each observation is stored, and sets it by using
the setSelectedObservation method in the PlotModelHandler class.
It informs registered JasplotPanelPaletteLayer objects of the new Plot-
ModelEvent object. It executes the observationSelected(Plot-
ModelEvent e) method in the JasplotPanelPaletteLayer. As this
method executes the repaint method, each JasplotPanelPaletteLayer
object is repainted according to the new information.
We know that PlotModelEvent, PlotModelHandler and PlotModel-

Listener are associated with changes in the PlotModelobject.here are similar
classes, such as DataModelEvent, DataModelHandler and DataModel-
Listener, which can handle changes in DataModel objects; that is, changes in
data values, the addition and deletion of observations and variables. ADataModel-



ProgrammingStatistical Data Visualization in the Java Language 751

Figure .. Classes for linked views

Handler object is generated together with a DataModel object that is a subject.
PlotModel objects that implement the DataModelListener interface are ob-
servers. Observers are registered by a addDataModelListenermethod in the
DataModelHandler class.
PlotModelHandler and DataModelHandler are also examples of the

“Mediator” in the “Mediator” design pattern.

he Mediator pattern defines an object that encapsulates how a set of objects
interact. A mediator promotes loose coupling by keeping objects from refer-
ring to each other explicitly, and it lets you vary their interaction indepen-
dently (Gamma et al., ).

We sometimes notice that many objects need to communicate with each other. Such
mutual interactions may prevent an object from working without the support of
many other objects. he mediator pattern is a useful approach to use to solve such
amess.hemediator object provides a common connection point, centralized behav-
ior, and behavioral management. he mediator pattern promotes loose coupling by
keeping objects from referring to each other explicitly. Objects do not need to know
about each other and only need to know their mediator. Several JasplotPanel-
PaletteLayer objects communicatewith aPlotModelHandlermediator ob-
ject. Figure . shows these classes.

Classes for Tables of Data 17.3.8

We sometimes wish to display a table of data that can be linked with graphics. Jas-
plot has two classes for this purpose: TableModel and TableDisplayer. he
TableModel class is similar to PlotModel, and the constructor method requires
a DataModel object as an argument. he TableDisplayer class is similar to
Plotter and displays an TableModel object on the screen by using the JTable
class in Swing. As it implements a PlotModelListener interface, the rows spec-
ified by the observationSelected method are highlighted and linked with
other graphics of Jasplot via a PlotModelHandler.

A Class for Building Complicated Graphics 17.3.9

Jasplot provides a MultiPlotModel class for drawing several graphics on one
panel.his class extends the BasicPlotModel class and is inherited by the Box-
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PlotModel class that is composed of several SingleBoxPlotModel objects.
Scatterplot matrices and parallel coordinate plots are implemented using this class.
he MultiPlotModel class defines a simple matrix whose elements are graph-

ics. It has a setRowColumn(row, column) method to specify the numbers
of rows and columns. he window defined by a MultiPlotModel object is di-
vided into row�column small components of the same size. Graphics are placed
on each component by the setPlotModel(model, row, column)method
inMultiPlotModel, wheremodel specifies aPlotModel object, and row and
column specify the location of the component. It is possible to overlay several graph-
ics on the same component. However, mouse operations are effective only for the
graphics overlaid last.
Our scatterplot matrix is realized by placing scatterplots on off-diagonal com-

ponents and histograms on diagonal components. he main part of the program is
straightforward:
MultiPlotModel multiPlotModel = new MultiPlotModel(dataModel);
multiPlotModel.setRowColumn(dataModel.getVariableNumber(),

dataModel.getVariableNumber());

for (int i = 0; i < dataModel.getVariableNumber(); i++) {
for (int j = 0; j < i; j++) {

PlotModel pModel =
new ScatterPlotModel(dataModel, j, i);

multiPlotModel.setPlotModel(pModel, i, j);
}

HistogramPlotModel hModel =
new HistogramPlotModel(dataModel, i);

hModel.setTitle(dataModel.getVariableName(i));
multiPlotModel.setPlotModel(hModel, i, i);

}

Another example is a parallel coordinate plot. he main part of the program is the
following:
MultiPlotModel multiPlotModel = new MultiPlotModel(dataModel);
multiPlotModel.setRowColumn(1, dataModel.getVariableNumber());
multiPlotModel.setConnect(true);
multiPlotModel.setSelector(new LineSelector());

for (int i = 0; i < dataModel.getVariableNumber(); i++) {
ScatterPlotModel plotModel =

new ScatterPlotModel(dataModel, PlotModel.NULL, i);
plotModel.setDrawXTick(false);
plotModel.setDrawYTick(false);

Limits yLimits = plotModel.getYLimits();
yLimits.setMin(dataModel.getMin(i));
yLimits.setMax(dataModel.getMax(i));
plotModel.setYLimits(yLimits);

plotModel.drawString(String.valueOf(dataModel.getMin(i)),
0.5, 0.1, DrawString.CENTER, null);
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plotModel.drawString(String.valueOf(dataModel.getMax(i)),
0.5, 0.9, DrawString.CENTER, null);

plotModel.setXAxisLabel(plotModel.getYAxisLabel());
plotModel.setDrawYAxisLabel(false);
plotModel.setDrawFrame(false);
plotModel.setDrawXZeroLine(true);
multiPlotModel.setPlotModel(plotModel);

}

We generate a MultiPlotModel object for a DataModel object specified by
dataModel. We divide it into �(number of variables) regions. he
setConnect(true)method of the MultiPlotModel class enables us to con-
nect the points for the same observation. setSelector(new Line-
Selector()) specifies the use of aLineSelector object. In the nextfor com-
mand, we place scatterplots generated by the new ScatterPlotModel(data-
Model, PlotModel.NULL, i) method for each variable. We specify that no
data are available for the x-axis, and the i-th variable of dataModel is used as
data for the y-axis.hemethodssetDrawXTick(false) and setDrawYTick
(false) specify that the x- and y-axes are not drawn. Next, several lines set and
draw the maximum values of the variables at the top of the y-axis and the minimum
values at the bottom.hesetXAxisLabel(plotModel.getYAxisLabel())
method draws a variable name given for the y-axis at the place where the label for the
x-axis is drawn. setDrawYAxisLabel(false) does not draw a variable name
for the y-axis, setDrawFrame(false)does not draw a frame for the scatterplot,
and setDrawXZeroLine(true)draws a line at the  position of the x-axis. We
do not set the location in the setPlotModel(plotModel) method, because
graphics are automatically placed from let to right when they are not given.
his type of parallel coordinate plot usually becomes long horizontally. In this case,

it may be useful to attach a JasplotPanel object to a JScrollPane object of
Swing, which has a scroll bar and can show a part of the whole graphic in the window.
We can attach these MultiPlotModel classes to a MultiPlotModel class

recursively. For example, Fig. . shows a scatterplot matrix and a parallel coordi-
nate plot on a MultiPlotModel object.

Concluding Remarks 17.4

By following design patterns, Java statistical graphics programming is made exten-
sible and reusable. Such patterns are useful for building new graphics from existing
components in the library.We illustrate the usefulness of these solutions with Jasplot,
a Java statistical graphics library.
Note that we did not use all of the  GoF design patterns to build Jasplot. We

should not use design patterns excessively in a project; this would impact negatively
on the simplicity and execution speed of the program. However, it is a good idea to
use design patterns appropriately. If it is possible to use design patterns with a little
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Figure .. MultiPlotModel example

additional programming effort and a little decrease in execution speed in some parts
of the project, it is worth adopting them.
Jasplot still lacks several important functions associated with data visualization.

For example, the MultiPlotModel class should be able to divide the whole win-
dow into components of unequal size. Color handling in Jasplot is not fully realized.
We note that three-dimensional graphical functions are oten used inmodern data

visualization (Symanzik, ). he Java D API seems a promising approach to re-
alizing them. We plan to include them in a future version of Jasplot.

Appendix: Using the Jasplot Library
Jasplot is a Java library developed using Java SDK, Standard Edition (Version . or
later), which is freely available from http://java.sun.com/products/. It is required to
use Jasplot.
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Jasplot is available from our site http://jasp.ism.ac.jp/Jasplot/. All source code,
class files and jar files are provided as one zip file Jasplot-1_0_0.zip
(the version number may vary). Unpack it by using an unpack tool and go
into the Jasplot-1_0_0 directory. You can see demo by executing the
jasplot-demos.jar file by, for example, double-clicking it. he menu that ap-
pears enables you to choose graphics from Figs. . – . and ..
We use a Java-based build tool, Apache Ant (Version .. or later), which is freely

available from http://ant.apache.org/ for developing Jasplot. If you install
it, you can rebuild the jar file by executing the commands
ant
ant demo

in the Jasplot-1_0_0 directory.
We now explain how to use the Jasplot library from your own Java program. Con-

sider, say, MyClass.java, which uses the Jasplot library, jasplot.jar,
stored at /xxx/jasplot.jar. We first import the jasplot library at the top
of the program:
import jp.ac.ism.jasplot.*;
MyClass.java can then be compiled and executed with the following commands:
javac -classpath .:/xxx/jasplot.jar MyClass.java
java -classpath .:/xxx/jasplot.jar MyClass
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Introduction18.1

Most statistical graphics on the Web are static, noninteractive and undynamic, even
though other statistical analysis systems usually provide various interactive statis-
tical graphics. Interactive and dynamic graphics, see Symanzik (), can be im-
plemented using Internet technologies such as Java or Flash (Adobe, ). Scalable
Vector Graphics (SVG) and Extensible D (XD) offer alternative means of realiz-
ing an XML-based graphics format. One advantage of using XML is that data from
a wide range of research topics are easy to deal with, because they are all presented in
the XML format. Another advantage is that XML is a text-based graphics format, i.e.,
it is scriptable, meaning that it can be generated dynamically by a statistical analysis
system or web application. Before introducing XML-based graphics, we introduce
the relationship between the Web, XML, and statistical graphics.

TheWeb, Statistics and Statistical Graphics18.1.1

Although the Internet is a powerful communication tool, at present, its core function
iswebpage access, which has brought about dramatic changes to theway that statistics
are made available.
In addition to the publication of official statistical data and the results of company

research, members of the general public have begun to make data available through
their own websites. Huge databases that can be accessed by anyone via the Internet
have made information available to the public. As a result, statistical databases (see
Boyens et al., ) have been developed to store such data, and statistical analysis
methods such as data mining (see Wilhelm, ) have been developed to help the
public access such data. Moreover, new target areas in statistical analysis, such as
network intrusion detection (see Marchette, ), have been developed.
he popularization of the Web has brought about significant changes to the field

of statistical analysis and statistics education. Early in the history of the Internet in-
dividuals made textbooks and data available to the public, so sites such as StatLib,
which gathered statistical information, were important. At present, various services
and applications that use multimedia and multiplatform characteristics are available
for statistical analysis and for statistics education. Client–server type systems, such as
XploRe (MD*Tech, ) and Jasp (Project Jasp, ), are also available to the sta-
tistical analysis systems. Moreover, server-type commercial sotware, such as SPSS
and S-PLUS, is also available.
Numerous data sets, tutorials and analysis tools have beenmade available for statis-

tics education, for example by the UCLA Department of Statistics and the Web In-
terface for Statistics Education (WISE, WISE Project ()) program at Claremont
University.MD*Base (MD*Tech, ) andDASL (DASLProject, ) are databases
of case studies. he EMILeA Stat (e-stat) project (BMBF, ) and the @d project
(@d Project, ) enable analysis to be performed on the Web using statistical en-
gines. In addition, e-learning systems, such as New Statistics (University of Hagen,
), use multimedia teaching materials that include video and interactive applica-
tions.
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hese types of content require statistical graphics in order to visualize statisti-
cal data. Early in the history of web publication, static (noninteractive) and raster
(nonvector) graphics formats such as JPEG or GIF were used. However, using the
Java mechanism, it became possible to implement interactive and dynamic graphics
on the Web. However, such graphics did not become sufficiently popular. With the
spread of Flash, the interactive features available on the Web became more popular.
As a result, the demand for interactive and dynamic graphics using web technology is
rising. InWeb-based systems, it is sometimes necessary to create graphics according
to user requests. In such cases, it is impossible to create graphs and prepare infor-
mation beforehand. Moreover, a feature to display detailed information according
to user requests is also necessary. herefore, Web-based statistical graphics packages
require interactive features.

XML and Statistical Graphics 18.1.2

HTML can provide functions on webpages by cooperating with other technologies,
such as CGI or JavaScript, by linking to other pages, and by arranging information
well. However, when the information described in HTML is reused, it is difficult to
automate these tasks, because the accompanying information consists solely of tags
that control the display of information on the webpage. his causes databases on the
Web to become enormous. herefore, the concept of the semantic web (WC, )
was devised in order to allow information to be used efficiently and effectively.
Semantic web uses the metadata that accompanies all web contents to interpret

exchanges between information devices, without mediation by a human operator, by
conveying the meaning (semantics) of the information to the computer. he basic
technologies for realizing the semantic web are XML and its associated technologies,
which are standardized by the World Wide Web Consortium (WC, ).
Standards based onXMLhave been developed for various kinds of data in order to

realize the semantic web. StatDataML and DandD have been developed for statistical
data, and GML has been developed for geographical information data. To realize
statistical graphics in the semantic web framework, XML graphics such as SVG and
XD are necessary.

XML-Based Vector Graphics Formats 18.2

What is XML? 18.2.1

As we noted above, standards based on XML have been developed for various forms
of data in order to create the semantic web, including StatDataML (Meyer et al., )
and DandD (DandD Project, ) for statistical data and GML (Open Geospatial
Consortium, ) for geographical information data. But what is XML?
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Just like HTML, XML uses tags to specify the meaning of data. he grammar as-
sociated with XML tags can easily enable computational processing while simultane-
ously expressing various types of data flexibly, enabling the data type to be set freely.
One of the advantages of SVG and XD being XML-based is that documents writ-

ten in these languages are easily interconverted using XSL Transformations (XSLT).
XSLT is a language to convert XML document into other format, and itself is de-
scribed by XML. Suppose that a user wants to get a scatter plot by SVG format when
the data is given by XML format such as StatDataML. An XSLT that is possible to
convert can be applied to any data of StatDataML format. he other advantage in-
cludes that an interactive function can be realized by scripting source code of the
programming language which supports Document Object Model (DOM), such as
JavaScript, in the XMLdocument. DOMdefines Application Programming Interface
(API) which specifies the manipulating methods for XML elements and attributes by
programming language and the tree-structured object model referenced by the in-
terface. Some examples will be shown in a later section.

XML Files as Text Files
While conventional raster graphics such as JPEG,GIF, PNGand BMP are binary files,
XML graphics are text files. hus, we can confirm or modify the content of an XML
file by opening it a simple text editor. herefore, it is easy to reuse the contents of an
XML file. his also allows us to develop systems more flexibly, because graphics can
be output simply by displaying a text file, no matter what kind of programming lan-
guage is used. Moreover, if the graphics (e.g., a statistical graph, a map or a CAD) are
closely related to the outside resource, we include the related information between
the element of the graphics and the outside resource within the graphics themselves.
For example, a circle element which represents the point on a scatter plot can include
not only its coordinates on the SVG canvas but also its data value and data label.
In the case of GIS, graphic elements of SVG which represent geographical objects
can include its latitude and longitude. On the other hand, raster graphics use binary
images, so it is difficult to link outside resources and images because we have no in-
formation about figure elements. Moreover, in order to generate raster graphics, we
need a library corresponding to the particular programming language we are using,
and for different programming languages, the graphics must be output by different
grammars.

Vector Graphics
here are twomethods of displaying graphics by a computer: raster graphics and vec-
tor graphics. Raster graphics, which are expressed as enumerations of points (pixels)
and colors (of the pixels), do not reproduce all of the information contained in the
original image. In raster graphics, outlines appear jagged (notches appear) when the
image is examined closely, and information is lost when we move away from the im-
age. herefore, raster graphics are not suitable for zooming or transformation. On
the other hand, vector graphics contain drawing information, such as position, size
and shape. herefore, image quality deterioration can be prevented by using this in-
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Figure .. Vector and raster graphics

formation to redraw the image via sotware when the image is expanded, reduced, or
transformed. In other words, the advantage of vector graphics over raster graphics is
that the degree of freedom is high for vector graphics with high-quality images. In
addition, vector graphics have the advantage that the file size relies on the quantity
of information in the diagram, and the size of the image is unrelated to the file size.

Implementation of Interactive Functionality and Animation
he sotware or plug-ins that display most XML graphics have functions that allow
actions similar to zooming and graphic movement. In addition, we can indepen-
dently add a new interactive function to the XML graphics, as written in JavaScript.
In addition, in SVG, we can change the attribute of an SVG element into SVG with
a change in time using Synchronized Multimedia Integration Language (SMIL,WC
()), which can be built onto SVG.his is referred to as animation.Wewill present
examples of the implementation of interactive functionality using JavaScript later.

Interactive Capabilities of XML Statistical Graphics
he following interactive functions are particularly required for statistical graphs in
exploratory data analysis (EDA), not only to visualize the data and the results from
the analysis, but also to support the interpretation of the graph:

zoom and pan (Fig. .)
tooltip, layer and highlight (Fig. .)
cooperation with other diagrams and tables (Fig. .)

Zoom and pan helps us to observe local properties of the original graphics. It is es-
pecially useful for visualizing datasets with large amounts of information, such as
scatter plots that include lots of data points and detailed map data. Figure . shows
a plot of the number of live births per , -year-old women in the United States
between  and , and its smoothing curve, as realized by SVG. he right-hand
side of Fig. . shows a magnified view of part of the plot. Zoom and pan can be
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Figure .. Zoom and pan

achieved without special programming in XML graphics because its rendering ap-
plications and plug-ins contain zoom and pan functions.
he tooltip function is used to display a variety of information types, such as data

labels and values in relation to a particular location or point indicated by the mouse
cursor.Detailed information is hidden in order to help users to intuitively understand
the data through visualization. Tooltip is useful when users want to obtain informa-
tion on demand.
he layer function overlays various kinds of information in a single display area.

In this case, each type of information is called a “layer,” and users can select which
layers to display. In the case of geostatistical data, there are oten several types of
information – such as maps, locations of data points, roads, railways, institutions,
and results of statistical analyses – that need to be displayed. However, it is usually
desirable to display only selected layers at any one time, because displaying all of them
at once will hinder comprehensibility. Examples of the use of the tooltip and layer
functions in SVG are shown in Fig. .. hese data, the Cities data of DASL (DASL
Project, ), were collected by the Economic Research Department of the Union
Bank of Switzerland. hey represent the economic conditions in  cities around in
world in . he Cities data contain three variables: Work, Price and Salary. Work
is the weighted average of the number of working hours for  occupations. Price is
the index of the cost  goods and services, excluding rent (Zurich = ). Salary
is the index of hourly earnings for  occupations ater deductions (Zurich = ).
Figure . shows a scatter plot of the first two principal component scores and cluster
regions. Each state label can be obtained by the tooltip by pointing with the mouse.
Furthermore, the elliptical regions show the two clusters obtained from the k-means
method. Checkboxes on the html forms can be used to specify whether the cluster
layer and the city labels layer should be visible or invisible.
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Figure .. Examples of using a tooltip and switching layers
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Figure .. Cooperation between map view and histogram view

Figure . shows a tool for exploring spatial data using dynamic graphics that
was proposed by Haselett et al. () as an example of the application of cooperation
between two statistical graphs. his tool was also realized via SVG. he locations
of observation points are plotted in the “Map View” on the let, and a histogram of
the observed data is displayed in the “Histogram View” on the right. An arbitrary
region can be specified by dragging the cursor over the “Map View.” he data in the
histogram that corresponds to the locations included in the specified region will then
be overwritten on the “Histogram View.” his tool makes it possible to explore the
local variability in spatial data intuitively.
Although it is possible to realize these functions by raster graphics in a web ap-

plication, we encounter some problems if we do this using the conventional method.
It is difficult to update part of the image dynamically with raster graphics because
the color data are associated with the individual pixels. herefore, it is necessary to
regenerate the entire image from the server upon a user request, and then display the
image on the client side. hat is, the server and the client must communicate upon
each individual user request, which leads to a decline in the operability and perfor-
mance of the web application. Because the amount of information in a raster graphic
increases with the quality and the image size, this decline is significant. In addition,
there are portability problems in that functions such as () and () work only within
the web application; they cannot be executed in other environments. XML graphics
can solve such problems and they offer many advantages to the user and the devel-
oper. We will discuss this in more detail in the following section.
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SVG 18.3

Overview of SVG 18.3.1

SVG is an XML format for describing two-dimensional vector graphics. In the days
before SVG, the Microsot-led Vector Markup Language (VML) and the Adobe-led
Precision Graphics Markup Language (PGML)were proposed toWC (WC, ).
SVG. was released in September  byWC as an integrated format.he current
version, SVG., was recommended in January .

SVG Viewers
SVG consists of a plain text file as well as HTML. hus, exclusive sotware that dis-
plays SVG as a graphic is required. Functionsmentioned in the previous section, such
as zooming, are implemented in the viewer. Table . lists some SVG viewers; they
be classified into the following three categories:

Browser plug-in: he browser plug-in is the most common form of SVG dis-
play environment. Adobe SVGViewer . (ASV, Adobe ()),which supports
SVG ., is the de facto standard for SVG browser plug-ins. ASV, which supports
the next version of SVG (SVG.), is currently at the beta testing stage and is set
to be released ater the SVG. recommendation is announced.
Web browsers that support native rendering of SVG: SVG-enabled builds of
Firefox andMozilla (the official binary packages do not support native rendering)
and Opera . support native rendering of SVG.
Stand-alone application: Batik (Apache Sotware Foundation, ) is a Java
technology-based toolkit for SVG. One application of Batik is Batik Squiggle,
which is a full-fledged SVG browser.

We will briefly illustrate the SVG language specification through simple examples.
For more detail, refer to the WC website WC (). Note that all SVG examples
were obtained with Internet Explorer . + ASV..

Basic Structure 18.3.2

he first line of a SVG document is the XML declaration, and the second line is
the Document Type Definition (DTD) declaration. he root element of SVG is the

Table .. SVG Viewers

Type Products Version SVG Developer

Plug-in for IE SVG Viewer . . Adobe Systems, Inc.

SVG Viewer . beta . Adobe Systems, Inc.

Web browser Firefox . . Mozilla Corporation

Opera . . Opera Sotware

JAVA application Batik Squiggle . . Apache Sotware Foundation
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<svg> element, which has width and height attributes that set the canvas size
of SVG. When the attribute unit is not specified, the units are assumed to be pixels.
he <title> and <desc> elements provide a title and detailed information about
the SVG document, respectively. he text node content of the <title> element is
shown in the title bar of the window.

Coordinate System
SVG operates on an infinite plane on which the coordinate system is oriented such
that the positive x-axis is to the right and the positive y-axis is downward from the
coordinate origin. However, in many statistical graphs, the positive y-axis is directed
upward. herefore, when coding a statistical graph in SVG, developers must take
this quirk into account in order to make sure that the graphs are displayed correctly.
An SVG viewport is a physical area that displays graphics elements on the screen;
its size is set via the width and height attributes in the <svg> element. When
no units are specified, the units of the width and height attributes are assumed
to be pixels. Although other units, including cm and pt, can also be designated, no
units are specified in the cases presented herein.When only thewidth and height
attributes are designated, a domain of size width � height extending from the origin
of the coordinate plane is assigned to a viewport of size width � height. When an
specific domain is required in the coordinate plane (coordinates of the upper let
quadrant of the domain: (originX, originY), size: width � height) in this viewport,
the viewBox attribute is designated as follows:

viewBox="originX originY width height"

When the aspect ratios of the domain and the viewport are different, the default ac-
tion is to shrink or enlarge the x- and y-axes appropriately, but this behavior can also
be controlled by designating the preserveAspectRatio attribute.

Figure .. Viewport and viewbox
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Basic Shapes
Basic shapes available using SVG are illustrated in Fig. ., along with the corre-
sponding SVG codes.heminimum information required to display the shapes, such
as position and size, are specified as attributes of each element. Additional informa-
tion, such as the line and fill colors and the line width, are specified via the style
attribute in Cascading Style Sheet (CSS) format.

Figure .. Basic shapes
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Text
Text can be realized in SVG using the <text> element, which has the attributes x
and y that determine the position at which the string in the text node enclosed by the
<text> element is displayed. Figure . shows a simple example of text in SVG.
Various properties of text, such as font size, family, weight, and color, are specified

using the style attribute. he shape of the text in SVG is controlled by the font
border and the area inside the border, which can be specified in various ways, as
shown by the third string in the example. he text-anchor property is used to
determine how the string is positioned with respect to the text position specified by
the x and y attributes (in other words, whether the text position corresponds to the
start, the middle, or the end of the string).

Group
One of the advantages of vector graphics is that layers can be included. In SVG, layer
functionality is realized using the group element <g>.his means that elements that
are grouped by the g element are considered to be one layer. By using <g> elements
appropriately, it is possible to turn a specific layer on and off, and apply styles and in-
teractive functions (as described in the next section) to all of the elements in the layer
collectively. Figure . shows a simple scatter plot obtained using the <g> element.
he data points (circle elements) are collected into one layer using one <g> el-

ement that has a style attribute which is reflected in all of the data points. he
size of an SVG file that includes several elements, such as a scatter plot with several
data points, is significantly increased when the style attribute is specified for each
<circle> element. herefore, it is desirable to minimize the size of the SVG file by
using the <g> element.

Implementation of Interactive Functionality
via JavaScript18.3.3

As stated earlier in this section, interactive functions other than those supported by
default in SVG browsers (such as zooming), can be implemented using JavaScript.
VBScript is also available in some SVG browsers. All of these languages are Docu-
ment Object Model (DOM)-compliant. In other words, all of these languages define

Figure .. Text elements
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Figure .. Grouped elements

an API and a corresponding object model for manipulating XML documents. Each
SVG element can include event handlers that implement the appropriate script when
events are captured (such as keyboard and mouse operations and SVG document
loading). In this example, the onclick attribute has an alert method (which
displays messages in a pop-up window) that is set as the event handler in the group
element that has text and circle elements. he most frequently used event handlers
in SVG are those associated with mouse events, such as onmouse {down, move,
out, over, up}, SVG-specific events such as onload, onresize and
onzoom, and keyboard events such asonkeydown,onkeypress and onkeyup.

Tooltip
We will now briefly illustrate how to realize tooltip and layer functionality by Java-
Script in SVG. hree functions, ShowTooltip, HideTooltip, and
ZoomControl, are defined in the script of Fig. .. he ShowTooltip func-
tion is called from the onmousemove attribute in the <g> element, which includes
<circle> elements for data points. When the mouse cursor is moved over one of
the data points, the ShowTooltip function is executed. In this function, the text
and rectangle element grouped together as a tooltip (hidden in the initial state)
are updated by JavaScript. At first, the id of the <circle> element indicated by the
mouse cursor is acquired, and the tooltip text is updated. he position of the mouse
cursor is then acquired, and the positions of the text and the rectangle are updated.
Finally, the visibility property of the style attribute of the tooltip is set to
visible.
he HideTooltip function is called from the onmouseout attribute of the

<g> element. he process that is executed when the mouse cursor moves out of the
region associated with the element is described in the onmouseout attribute. his
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Figure .. Tooltip example

function causes the tooltip to disappear (the visibility property of the style
attribute of the tooltip is set to hidden).
he ZoomControl function is called from the onzoom attribute of the <svg>

element; this function executes when zooming is required in the SVG viewer. he
script-revising scale property (which depends on the degree of zoom) of the
transform attribute of the tooltip is specified, so that the tooltip is not magnified
excessively when zooming is requested.

Switching Layer
Displaying related information on statistical graphs and maps is an effective means
to perform visual analysis. However, this approach may actually be disadvantageous
at times, since there may be too much information displayed at any one time. here-
fore, functions that control whether information is displayed or not are necessary in
visual analysis. Such a function can easily be realized in SVG using JavaScript. Ob-
jects that may or may not be displayed are first gathered into one <g> element, and
the visibility property is set in the style attribute. Code to set whether the
item is visible or hidden is provided in a script called from an event.
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In the example shown in Fig. ., the SVG component (cluster.svg) that displays
the graph and the HTML form (control.html) that provides an interface for changing
the visibility of items in the graph are separated by a frame (index.html). he con-
trol.html form contains check boxes that specify whether the data point labels and/or
ellipse domains are visible; the function that is executed when the check boxes are se-
lected is designated in the onclick attribute.
In cluster.svg, the element for the ellipse domain is described as a child element

of the <g> element in which the id attribute is “clustArea,” and the <text> ele-
ment for the individual label is described as a child element of the <g> element in
which the id attribute is “label.” When cluster.svg is loaded, the setVisibility
function defined in cluster.svg is linked to index.html. As a result, this function can
be called by control.html. he setVisibility function receives the contents of
the id attribute of the check box clicked in control.html as an argument, and the
visibility property of the <g> element corresponding to the id is changed.
Figure . shows another example of layer functionality. In this example, the

number of clusters displayed can be changed interactively. his plot has several layers
containing cluster polygons for cluster numbers of –. If the Overlap check box is
checked, the cluster polygons are displayed such that they overlap the previous view.
hus the plot can show the hierarchical structure of clustering results obtained using
a hierarchical clustering method.

X3D 18.4

Extensible D (XD) is an open-standardXML-enabled three-dimensionalmodeling
language that enables the real-time communication of Ddata across all applications,
including network applications. XD is neither a programming API nor a simple
file format for geometrical data interchange. Instead, XD combines both geometry
and runtime behavioral descriptions into a single file. XD is the next revision of
the VRML ISO specification, referred to as VRML-NG (Next Generation). In this
section we will introduce some features of XD; a full description of XD can be
found at the WebD website (WebD Consortium, ) and in Geroimenko and
Chen ().

Overview of X3D 18.4.1

Speciications
he first drat of the VRML . specification was published in . In , the first
version of the VRML . specification was released, and the JTC/SC committee
of the International Standards Organization (ISO) agreed to publish VRML . as
Committee Drat (CD) . his specification is known as VRML. XD, a new
version of VRML, has been designated International Standard ISO/IEC , and
was published in  by the WebD Consortium. As of September of , there
are six XD International Specification Standards, including XD encodings, which
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Figure .. Scatter plot with cluster polygons
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specify XML and Classic VRML encoding. he latest specifications are described at
the WebD website.
he WebD Consortium organizes several working groups to deal with various

problems regarding WebD. Several working groups, such as GeoSpatial (XD Geo-
Spatial Working Group), H-Anim (Humanoid Animation), and a number of focus
market working groups, such as CAD, are researching and proposing solutions to
specific technical problems related to XD.

Component and Proile
Component and profile are new XDmethods of defining both extensibility and the
set of services required by user content. A component defines a specific collection
of nodes, and a profile is a collection of components at specific levels of support.
XD allows developers to support subsets of the specification (profiles) composed of
modular blocks of functionality (components).
A component-based architecture supports the creation of different profiles that

can be individually supported. Components can be individually extended or modi-
fied by adding new levels, or new components can be added to introduce new fea-
tures, such as streaming. hrough this mechanism, the specification can be rapidly
advanced because development in one area does not slow down the specification as
a whole.
he following are XD baseline profiles:
he Interchange profile is the basic profile for communication between ap-
plications. Interchange supports geometry, texturing, basic lighting, and an-
imation.
he Interactive profile enables basic interaction with a D environment by
adding various sensor nodes for user navigation and interaction (e.g., Planse-
Sensor, TouchSensor, etc.), enhanced timing, and additional lighting (Spotlight,
PointLight).
he Immersive profile enables full D graphics and interaction, including au-
dio support, collision, fog, and scripting.
he Full profile includes all defined nodes, including NURBS, H-Anim and
GeoSpatial components.

X3D viewers
XD requires a viewer, a XD browser or a plug-in for a Web browser, in order to
parse and realize a D world. It is possible to move and rotate this world using the
functions of the viewer. Details of the viewer are provided at the XDDocumentation
website (WebD Consortium, ).
Octaga Player is the first D player for both VRML and XD. Octaga Player sup-

ports the entire profile of XD and is freely available for personal noncommercial
use Octaga AS (). Octaga Player is a high-performance, standards-compliant
D player that can run as a standalone application or as a plug-in in any Internet
browser. In this section, all XD objects are shown using Octaga Player.
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Table .. XD Viewers

Product Type OS License

Octaga Player Viewer Linux, Windows Commercial

Octaga Professional Viewer Windows Commercial

Flux Player Plug-in Windows Commercial

FreeWRL Viewer, Plug-in Java, Linux, MacOS X GPL-style

XjD Viewer Linux, MacOS X, Windows GPL-style

FreeWRL is an open-source XD/VRML browser and plug-in. Platforms that sup-
port FreeWRL include MacOS X, Linux, Unix, IRIX, and Java. Other plug-ins for
MS Windows are Flux Player, OpenWorlds and VcomD Venues. XjD is a project
of the WebD Consortium (WebD Consortium, ) that focuses on the creation
of a toolkit for VRML and XD content written completely in Java. A standalone
viewer is included.

Basic Structure18.4.2

he first line is the XML declaration, and the second and third lines are the DTD
declaration. he root element of XD is the <X3D> tag (called a node in XD), with
a version attribute that specifies the version of XD and a profile attribute
that specifies the profile. he XD world is described with the <Scene> node, by
arranging its contents appropriately. he default background color is black.

Node and Field
Since XD uses an object-description format, the world or components consist of
D, multimedia and interactive objects. An object is described by a nest of nodes,
and the parameters of an object are described as fields. New components can reuse
the grouping and prototype of an existing node.

Standard Units and Coordinate System
XD defines the unit of measurement of the global coordinate system as the meter.
All other coordinate systems are generated from transformations based on the global
coordinate system. he unit of linear distance is the meter. Angles are given in radi-
ans, and time is given in seconds. he color space is specified by three real numbers
(RGB) between  and , e.g., ’1 0 0’ for red.
XD uses a Cartesian, right-handed and three-dimensional coordinate system. By

default, the viewer is positioned along the positive z-axis, looking in the z-direction
with the +y-axis directed upwards. Amodeling transformation (<Transform> and
<Billboard>) or viewing transformation (<Viewpoint>) can be used to alter
this default projection.
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Basic Objects
Objects that construct a XD world are described within the <Shape> node. he
basic nodes for figures are <Box>, <Sphere>, <Cylinder> and <Cone>, and
parameters (such as size and radius) are specified using fields.hematerial of an ob-
ject is specified within the <Appearance> node using the <Material> node or
the texture node.he color and the degree of transparency of a object is also specified
within the<Material>node using thediffuseColor and thetransparen-
cy fields. he position of an object is specified by nesting with the <transform>
node and setting the translation field. When using the <Text> node, it is pos-
sible to show strings with the string field and set the font type and size with the
fontstyle field.When using the <Billboard> node, it is possible to orient the
text face to the front view. Figure ., let, shows the coordinate axes generated by
using <Cyllinder> as the axis, <Cone> as the arrows for the coordinate axes,
and <Text> as the axis labels. By arranging points in the same way via XD objects
such like Sphere or Box, a scatter plot can be composed. he right-hand side of
Fig. . shows a D scatter plot of the Cities data. his viewpoint gives almost the
same D scatter plot as Fig. ..
Using the Octaga player, the mode can be set by choosing from the fourth to ninth

buttons from the let of the tool bar. he modes are Walk, Fly, Examine, Slide,
Pan and Look-at from the let. Various views can be realized using these modes. It
is possible to specify a mode that describes the type attribute of <Navigation-
Info> node. If a particular mode is specified, then all of the other mode buttons
that are not specified become disabled.
Moreover, it is possible to create a two-dimensional plane with IndexFaceSet

and IndexLineSet.hus, a statistical map can be constructed using these nodes.
Figure . displays a D bar chart of ward populations in the city of Sapporo (in

Figure .. Coordinate axes (let) and D scatter plot (right)
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Figure .. Bar chart placed on a city map

northern Japan) plotted on the city map construct by XD. he city map is made as
an SVG file using IndexLineSet. he statistical map is created by utilizing the
SVG file of the city map and by placing <Cylinder> nodes with suitable lengths
on the map. his approach is convenient when creating a statistical map on top of
a physical map.

Grouping and Prototype
heGroupnode can be used to group objects in order tomove or copy all of the com-
ponents. he DEF keyword can be used to define an object that can be used by the
USE keyword. In the above example involving coordinate axes, a cylinder and a cone
can be grouped together in order to create an arrow.he arrow is used to indicate an-
other axis with the USE keyword, and it is rotated to point in the appropriate direc-
tion. he labels of axes are composed of different strings, so we define the prototype
of the label with the <ProtoDeclare> node. It is easy to create individual labels
that can be used to make instances of the prototype using the <ProtoInstance>
node.

Interactive Functionality
XD has various sensors. he touch sensor, for example, generates an event when the
mouse is clicked or the item of interest is approached.his event requires animation,
during which the colors and positions of objects change. If the example of Fig. .,
all of the points have an <Anchor>node with adescriptionfield that describes
the case name and point coordinates. By positioning the mouse cursor over a point,
the case name and the coordinates of the point are shown at the status bar on the
bottom right-hand corner of the viewer. Moreover, it is possible to implement more
interactive functions in order to use Java and JavaScript (ECMAScript) within the
<Script> node.
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Figure .. Colored scatterplot with frame and coordinate axes

X3D Scatter Plot Function of R 18.4.3

Using the D coordinate system introduced above as a template, it is easy to create
a D scatter plot by simply transforming the coordinates and plotting points using
a text editor. However, this is not easy when there are numerous data points to visu-
alize.
herefore, we provide a function that enables the statistical package R (R Project,

) to make a D scatter plot. he options available for the D scatter plot are
rescaling and presentation of the coordinate axes, coordinate planes, frames, and case
labels. An interactive function to show the case name and the coordinates on the bot-
tom right-hand status bar when a point is selected is also implemented. he function
x3dplot3d() can create a grouped scatter plot with colors (see Fig. .).

Applications 18.5

SVG Application as Teachware 18.5.1

As we mentioned in Sect. ., there is a great deal of sotware on the Web that can be
used to teach statistical thinking or concepts. Since most students are familiar with
TV or games, it is most productive to teach statistics in an interactive and visual way.
his is the aim of statistical teachware such as MM*Stat (MD*Tech, ) and inter-
active textbooks like e-books (MD*Tech, ), including those provided by XploRe
(MD*Tech, ).
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Figure .. Teachware that illustrates the concepts of the mean and the median

Such interactive applications are developed using Java or Flash, but it is possible to
develop similar applications by utilizing the interactive characteristics of SVG. One
advantage of SVG teachware is that it is possible to use the interactive teachware
without a network connection or statistical engine.
he application introduced here is an SVG version of teachware developed in Java

for the Case project (Project CASE, ). his application was written to teach
the difference between the concepts of the mean and the median. he application
presents a coordinate axis. When a point on the axis is clicked, this data point is
added to the axis, and the mean and median of all data points are calculated and
presented.his application therefore shows the difference between the mean and the
median visually.
In Fig. ., the plot at the top shows five data points and displays the mean and

the median as triangles. he plot below shows that adding a data point that is much
less than the others changes the mean a lot, but changes the median only slightly. It is
easy to edit this SVG application, since the SVG is in a text file. If someone wanted to
change the language presented by the applications, they would only need to change
the corresponding parts; a special authoring tool would not be needed.

Application to Three-Dimensional Representations18.5.2

By rearranging a XD scatter plot, it is possible to generate a new graphical repre-
sentation. Figure . shows the results of a principal components analysis (PCA),
including the first three principal components, of the Cities data, colored according
to k-means clustering for six clusters. Figure . shows a prototype of a D dendro-
gram.



Web-Based Statistical Graphics using XML Technologies 779

Figure .. D dendrogram for the first two principal components

he first two principal component scores are plotted and the dendrogram is con-
structed according to the hierarchical clustering method. XD graphics make it easy
to realize D graphical representations via statistical sotware like R or XploRe.
Another application of XD graphics is to visualize association rules for a market

basket analysis. For more detail on association rules, see Wilhelm (). In general,
an association rule is described in the form X , Y , in which X and Y are referred
to as the rule head and rule body, respectively. he method of obtaining the associa-
tion rules depends on the specification parameters, support and confidence. In addi-
tion, it is difficult to visualize association rules, because there are too many parame-
ters. Figure . shows a prototype of a representation of association rules. Items are
arranged according to item score by Hayashi’s quantification method, type III. he
height and color of each bar indicate the confidence and the support, respectively.
he redder bars indicate high support and the bluer bars indicate low support. he
translucent plane represents a confidence level of .. Meaningful rules are there-
fore represented by the tall red bars. he status bar at the bottom on the right shows
information about the rule selected by the mouse cursor (pointing finger); the rule
is x� ; the support is .; and the confidence is ..

GIS Applications 18.5.3

One of the most important fields that can benefit from the use of SVG is that of GIS
(geographic information system) web. GIS applications do not require simply a func-
tion that displays amap. Functions that enable the enlargement/reduction/movement
of themap and those that display information, such as on roads, railroads or facilities,
are required depending on the demands of the user. Furthermore, statistical informa-
tion on domains and points retrieved from databases associated with statistical sur-
veys and location-dependent statistical data is presented on themap. Althoughmany
such systems have been designed, most have been built as web applications using
raster graphics or as Java applications, which is a somewhat problematic approach.
Applications that use raster graphics encounter issues related to the cost of preparing
large numbers of image files (all of the maps required for the system and maps that
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Figure .. [his figure also appears in the color insert.] A representation of association rules

have layered information) and operability, because extensive communication with
a server is necessary upon every user request. Moreover, scalability problems (extra
functionality cannot be added to the application) and picture quality issues (as de-
scribed in the “Introduction") are also troublesome. In the case of Java applications,
developmental costs increase because many components (including the interface and
drawing components) are required in order to develop a useful and convenient sys-
tem.headoption of SVG is expected to enahnce productivity and conveniencewhen
applied to GIS applications on the Web.he advantage of using SVG in GIS applica-
tions is easy operability, because SVG enables only part of a graphic to be changed,
and it allows graphics layering without necessitating the entire graphic to be reread
upon a user request.
An example of a SVG-based GIS web application is described below.

Okayama Trade Area Analysis System
his system was developed in order to visualize data for a trade area obtained in ten
behavioral area surveys performed in Okayama prefecture, Japan, from . In each
survey, ,–, replies were collected, and a number of samples were obtained
for each of  municipalities in proportion to the population of the city, town or
village in the area in order to examine the change in the population of each local
municipality. he survey consisted of questionnaire items regarding the city, town
or village in which the respondent most frequently purchased or used  items or
services.
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Degree of Dependence and Outlow Ratio
he degree of dependence and the outflow ratio, which are important characteristics
in the analysis of trade areas, can be calculated using these data. We let nab be the
number of inhabitants of city A that purchase a particular item in city B. nab�&b nab

is the proportion of people who purchase the item in city B out of the total number
of people in city A who purchased the item. When city A is fixed and this propor-
tion is calculated for each city, town and village B in the prefecture, the results are
collectively referred to as the outflow ratio from city A to each of the municipalities.
In contrast, when one city B is fixed, and the proportions are calculated for each city,
town and village A in the prefecture, the results are collectively referred to as the de-
gree of dependence on city B of each of the municipalities. he behavioral tendency
of inhabitants of a particular municipality can be determined by examining the out-
flow rate of the municipality, and when the degree of dependence is examined, the
trade area of the municipality can be determined. his system can visualize the out-
flow rate with a spider plot (Fig. .) and the degree of dependence with a choro-
plethmap (Fig. .).he annual change in each characteristic can also be visualized
(Fig. .). Furthermore, because the system has a function that displays/hides in-
formation (Fig. .) such as the locations of government offices, railways, stations,
roads and borders of cities, towns and villages on the map, the relationship between
the change in the trade area and these factors can be determined. When a position of
public office is selected for the cities, towns, and villages, corresponding time series
plots for “Degree of dependence” and “Outflow ratio” are displayed (Fig. .).

Ajax Technology
As well as using SVG as a tool for visualization, another feature of this system is
that it is implemented in the form of a web application written in Asynchronous
JavaScript + XML (Ajax). Ajax is implemented in the form of a web application that
executes processing while transmitting and receiving XML or plain text data and
without updating an entire web page using the HTTP communication function of
JavaScript implemented in a web browser. Because HTML is output whenever a user
request is processed in a CGI-based web application, sufficient operability is still not
achieved. However, a seamless Web application that does not make a user conscious
of the server can be realized because only the minimum information required to
update the web page is obtained from the server using Ajax, and the HTML and SVG
descriptions can be updated through the DOM API. Because SVG consists of XML
and a text file, SVG can be treated in the same way as HTML in websites that are
constructed using Ajax technology.
Naturally, the user interface is a web browser, and the HTML file, which is a frame

consisting of three files (menu.html, layercontrol.html, okayama.svg), is loaded first
from a web server. he back end of the server side is a RDBMS. A CGI script that
receives requests from clients, sends queries to the RDBMS, receives the results, and
sends the required data to the client is installed in the web server. A map and related
information regarding Okayama prefecture are contained in okayama.svg. he map
is described by polyline elements, which are grouped together as g elements with
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Figure .. Choropleth map Figure .. Spider diagram

Figure .. Time variation Figure .. Displaying other layers

an id property for each municipality. he following five functions are defined in the
script and they can be called from menu.html and layercontrol.html by associating
them with index.html upon loading.

setBorder(col): Boundaries of cities, towns and villages are set by colors
designatedwith col. Display or non-display of the boundaries is realized by chang-
ing the color of the boundary to black or white, respectively.
fillColor(id,col): Fills the domains of the cities, towns and villages spec-
ified by id with the color specified by col. Called when a choropleth map is
drawn.
setVisibility(id,visibility): Sets the visibility property of
the layer for information associated with the specified id that can bemade visible
or hidden.
setArrow(id1,id2,sw):Draws an arrow with a stroke width sw from gov-
ernment officeid1 to government office id2. Called when drawing a spider dia-
gram.
eraseArrows(): Erases every arrow.
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Figure .. Time series plot of the Okayama trade area analysis system

layercontrol.html consists of check boxes that specify whether to display a layer of re-
lated information, and the setVisibility function is called when an onclick
event occurs for a check box. menu.html provides an interface such as a drop-down
menu that can be used to select the city, town or village, shopping item, and survey
year in order to obtain the required degree of dependence and the outflow rate. Func-
tions called by events from this interface are defined in index.html. First, in the script
part of index.html, an XMLHttpRequest object is created, as follows:
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

his object has the ability to publish HTTP requests, obtain resources and to analyze
them as XML, as well as to build DOM trees, but only the first of these abilities is used
here. In other words, the object is utilized as a simple HTTP client component. he
getResult function receives the URL of the resource as an argument and initiates
communication between the web browser and the server that has the resource using
the openmethod of XMLHttpRequest.he process that occurs when the server
communication status changes is specified in theonreadystatechangemethod
as a function. When the data have been received in the correct way they are stored in
res, and res is returned as the value of this function.
he getDepend function passes the URL of the CGI script (getDepend.cgi) of

the server to the getResult function along with a parameter that is necessary for
calculation, and then receives the IDs of the cities, towns and villages and any color
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Figure .. Structure of the Okayama market area analysis system

data that are needed to draw a choropleth map. A choropleth map is then created by
calling the fillColor function with these data as its argument.

Authoring Tool for SVG Statistical Graphics in R18.5.4

RSvgDevice
R (R Project, ) is one of the most popular open source sotware packages and
is supported by numerous statisticians. R can output various statistical graphs. he
library RSvgDevice (Luciani, ), developed for R by T. Jake Luciani, can treat SVG
as a graphic device (as well as devices such as postscript and pdf) in R. Using this li-
brary, the user can generate a statistical graph in SVG format using the R commands.
Even if the user has no knowledge of the SVG format, the user can benefit from the
advantages of SVG by presenting the generated SVG files on the Web or by investi-
gating the effects of small modifications made using a text editor. For example, it may
not be realistic to describe all of the parts of a scatter plot using SVG in a text editor,
but using RSvgDevice, we can create the plot by simply changing the graphic device
to SVG using R command devSVG.
In this way, we can obtain the SVG output as shown in Fig. .. here is little

change in the labor required to input the command that outputs the graphics in other
devices. In addition, we can immediately use functions such as expansion, reduction
and movement, as shown in Fig. ..
he data is the Cars data from DASL (DASL Project, ), which are measure-

ments from  – model automobiles, specifically the gas mileage in miles
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Figure .. A scatter plot matrix created by RSvgDevice

Figure .. Close-up of the scatter plot matrix

per gallon as measured by a consumers’ union on a test track and other values re-
ported by the automobile manufacturer. he measurements comprise six variables
in all, making it difficult to comprehend Fig. ., but Fig. . gives clearer infor-
mation.
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RInG Library
If we use techniques such as tooltip display or layer changing, as described in the
section on SVG scripting, we can develop interactive statistical graphs. However, it
is difficult for users who have no knowledge of JavaScript or DOM to apply these
techniques. In addition, RSvgDevice does not have a function that adds interactive
functionality, and can only output drawing information in SVG form. While inter-
active functionality can be obtained by editing the SVG graphs that are output us-
ing RSvgDevice, such functionality requires a great deal of work, including adding
a script, grouping the elements, and numbering the ID. To solve such problems, we
developed the R Interactive Graphics (RInG) library.he RInG library provides an R
function that outputs fundamental statistical graphs, including an interactive func-
tion, in SVG form. At present, the source code and binary package of the Windows
version can be downloaded from our website. Ater installing this package, the user
can use the RInG library by invoking the command library(ringlib).
In the RInG library, we provide three functions that output fundamental interac-

tive statistical graphs. iplot is a function that outputs a two-dimensional scatter
plot with interactive features using SVG. he interactive statistical graphs provided
by this function have the following features. When the mouse cursor is positioned
over a data point, the value of the data point is displayed by a tooltip, and additional

Figure .. Histogram obtained using the iplot function of the RInG library
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Figure .. Boxplot obtained using the iplot function of the RInG library

lines running from the data point to both the x- and y-axes of the graph are also
displayed.
ihist is a function that outputs the histogram in SVG form with interactive fea-

tures. For example, when the mouse cursor is positioned over a bar in the histogram,
information for this bar such as its upper and lower values, its class, and the num-
ber of observations included in it are displayed as a tooltip. he histogram shown in
Fig. . is the output of the commandihist(rnorm(1000),breaks="FD").
iboxplot is a function that outputs a boxplot in SVG form with interactive fea-

tures. If the mouse cursor is positioned over a box in the boxplot, Tukey’s five number
summary is displayed as a tooltip. In addition, the values of outlying data points are
displayed as tooltips when the mouse cursor is positioned over them.
Typing the following command yields a boxplot like that shown in Fig. .:

> iboxplot(split(Weight,Country),file="carsbox.svg",
xlab="Country", ylab="Weight",
main="Boxplot for Weights grouped by Country")

hese functions are available in server applications such as the “Okayama trade area
analysis system” described in the previous section. Figure . is an example of dy-
namic graphics. his dynamic functionality is implemented using the RInG library,
which can output the SVG code directly to the standard output as well as to a file.
herefore, an interactive plot that is dynamically generated without a temporary file
according to the request of the user can be provided through theWeb using a combi-
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nation of the RInG and CGIwithR libraries. While many CGI-based systems use R,
most of them invoke R as a child process of an interpreter of a script language such as
Perl. However, by using that combination it has been possible to achieve from com-
munication with RDBMS to statistical computing and graphics only by R.
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Introduction1.1

his chapter reviews data visualization techniques that are used to reconstruct ge-
netic networks from genomics data. Reconstructed genetic networks are predicted
interactions among genes of interest and these interactions are inferred from ge-
nomics data, e.g., microarray data or/and DNA sequence data. Genomics data are
generally contaminated and high-dimensional. he dimensionality of a microarray
is the number of genes in it, and it usually numbers in the thousands at least. It is
important to examine and clean data carefully to attain meaningful inferences. hus
visualization tools that are used in the preprocessing of data associated with genetic
network reconstruction are also reviewed.
With the advent of high-throughput genomics and proteomics data, simultaneous

interrogation of the status of each component in a cell is now possible. One chal-
lenging issue in the post-genomics era is to understand the biological interaction
networks that are relevant to cell function (Barabási and Oltvai, ). Biological
networks include protein–protein interaction pathways and genetic networks. he
latter include direct interactions or those in which the biological principle is known,
such as transcriptional networks and metabolic networks, as well as subtle ones like
synthetic genetic interaction networks (Tong et al., ; Tong et al., ), transcrip-
tional compensation interactions (Wong and Roth, ), among others. Although
protein chips and semiautomatic yeast two-hybrid screens are available, they are not
yet as widely used as microarray gene expression data. Hence, in this article we focus
on visualization for genetic network reconstruction frommicroarray data.
With the abundant information produced by microarray technology, various ap-

proaches to inferring genetic networks have been proposed. Most of them can be
grouped into three classes: discrete variable models, continuous variable models, and
graph models. he discrete variable models discretize gene expression into a few
states. he dynamics of gene expression may be perceived as transitions of finite
states. Typical discrete variable models are Boolean networks (Liang et al., ;
Akutsua et al., ) and discrete Bayesian networks (for example, Friedman et al.,
). In general, continuous variable models characterize the expression of a gene
or changes in it as a linear or nonlinear function of other genes (for instance, Beal
et al., ). Graph models, for example Schäfer and Strimmer (), depict genetic
interactions through directed graphs (“digraphs") instead of characterizing the inter-
actions quantitatively. For exhaustive literature reviews of both static and dynamic
models used to reconstruct genetic networks, we refer the reader to De Jong (),
van Someren et al. (), and Shieh et al. ().

Visualization for Data Preprocessing1.2

Outlier Detection1.2.1

Although many microarray data sets in yeast have been made available, microar-
ray experiments conducted under similar treatments are still sparse compared to the
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Figure .. Aligned expression of the gene TOP in the alpha, cdc and cdc data sets

complex genetic networks to be reconstructed.herefore, the integration of microar-
ray data sets from homogeneous or similar, but not identical, experimental condi-
tions is of interest. Bar-Joseph et al. () developed an algorithm to align data sets;
for example, they aligned alpha, cdc and cdc in Spellman et al. ().he cDNA
microarray gene expression data were from synchronized yeast cells (red-channel
intensities) versus nonsynchronized ones (green-channel intensities that served as
background signals). Note that all data sets except for cdc were processed by nor-
malization procedures in Yang et al. (); cdc data were provided in log ratios
only, so normalization could not be applied. Figure . depicts the curves of a given
gene’s expression (in log ratios) from the three aligned data sets. Consistency across
all three curves (data sets) supports the validity of the data, whereas any inconsis-
tency in one curve with respect to the other curves suggests a potential outlier. For
example, in Fig. . the gene expression of TOP at minutes in the cdc data set is
likely to be an outlier, since it is very different to its corresponding points in the alpha
and cdc data sets. In addition, the small ups and downs at the fith and later points
of the cdc data set indicate that the data quality of the cdc is worse than that of
the alpha and the cdc data sets. Hence, aligning data sets with similar experimental
conditions provides a route to the detection of outliers or noisy data visually; it also
helps to exclude patterns suggested by contaminated data.

Data Augmentation 1.2.2

here are , ,  and  time points without replicates in the alpha, cdc, cdc
(originally from Cho et al., ), and Elu microarray data sets in Spellman et al.
(). To augment data for inference, Xie and Bentler () integrated these four
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data sets to infer the regulation of latent factors (to model protein, RNA degradation
and other factors that cannot be measured by microarrays) on genes by structure
equation modeling.
Without augmenting data in the aforementioned four data sets, those time points

(sample sizes) are not sufficient to obtain statistical inferences. However, in order to
carefully distinguish which data sets among alpha, cdc, cdc and Elu to integrate,
Shieh et al. () applied the algorithm in Bar-Joseph et al. () to align the four
data sets in the same time domain. Figure . clearly shows that alpha, cdc and
cdc exhibit similar trends, while Elu does not. his observation is consistent with
the following biological argument. he Elu data set was synchronized by elutriation,
unlike the other three sets, which were treated by pheromone α factor, cdc and
cdcmutant, respectively. Based on Fig. ., they integrated those three data sets and
applied the proposed structural equation modeling algorithm to the integrated data
in order to infer genetic interactions. A gene network of five genes that are synthetic

Figure .. he expression levels of two genes in the four aligned data sets; each gene’s expression

pattern in Elu is clearly different from its corresponding patterns in the other sets
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sick or lethal (SSL) to SIS (Tong et al., ; Tong et al., )was predicted; checked
against the quantitative RT-PCR, the inferred results are satisfactory.

Visualization for Genetic Network
Reconstruction 1.3

Clustering and Graphical Models 1.3.1

Cell cycle regulated genes display periodicity through two cell cycles in the alpha,
cdc and cdc data sets of Spellman et al. (). For genes that show periodic
expression across phases, the target gene B may be enhanced in the S phase but it
may be repressed or there may be no interaction with the gene B in other phases.
his suggests that the interaction between two given genes may vary from phase to
phase over a cell cycle. Due to data limitations, most of the approaches used so far
have assumed that genetic interactions are invariant across time or phase, but there
are some approaches that have dealt with genetic interactions that vary with phase,
e.g., Toh and Horimoto () and Aburatani et al. (). hese authors utilized
clustering and a graphical model to infer interactions of pseudogenes that may vary
across phases, where a pseudogene denotes a group of genes clustered via similar
gene expression patterns.
Modeling genetic interactions that varywith phase requiresmore (four timesmore

for four phases in a cell cycle) data than those that have interactions that are invari-
ant with phase. To reduce the huge number of interactions among genes in a given
genome, graphical model requires that clustering is performed as a preprocessing
step. Namely, coexpressed genes are grouped into clusters, and each cluster is treated
as a random variable to infer its interaction with other clusters. For instance, a hierar-
chical clustering analysis was applied in Toh and Horimoto () to aggregate 
genes into  clusters. he averaged expression profile of each cluster was then ana-
lyzed by a graphical Gaussian model (GGM). Inevitably, this makes it more difficult
to interpret the meaning of such interactions. his GGM inferred direct interactions
between variables based on their partial correlations, which is a function of the ele-
ments in Σ−, where Σ is the covariance matrix.
A graph G = (V , E), where V and E denote a set of vertices (variables) and a set

of ordered edges (the associations between pairs of variables), represents the interac-
tions among M clusters. Note that G assumes the Markov property.he chain graph
model (Aburatani et al., ) consists of the following steps. First, the variables are
partitioned into a few ordered blocks, e.g., four blocks for four phases. Second, within
each block, the conditional independence of each pair of variables is tested by a like-
lihood ratio test given the rest of the variables in the block. his likelihood ratio test
is based on the inverse of the covariance matrix Σ−, If the conditional direct associ-
ation of two given variables is significant, then an undirected edge is drawn between
them. hird, one can similarly test for the conditional independence between any
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two variables given the rest of the variables in blocks k and l . If the conditional asso-
ciation between variables i and j in blocks k and l is significant, an arrow pointing
from k (blocks with lower index) to l (blocks with higher indices) is plotted. Like-
wise, the fitting continues until all significant direct associations between variables
within each block and between any two blocks are determined. Figure ., which is
reproduced from Fig. . of Aburatani et al. (), depicts the interactions of pseu-
dogenes within and between phases.he causal relationship between variables in one
phase to those in a latter phase is illustrated more clearly by a chain graph, for exam-
ple Fig. .c, than by formula and tables. Moreover, a graph also clearly demonstrates
which gene is the highly connected “hub gene," for example C, inG among the four
pseudo-genes. Hub genes are likely to be important because randommutations in or-
ganisms lacking these genes would likely lead to fitness defects. By comparing graphs
of genetic networks among different species, one may infer which hub genes are con-
served; this may lead to important applications to complex diseases in humans. Tong
et al. () observed that synthetic genetic interactions have the property that the
connectivity of genes follows a power law distribution. Namely, many genes have few
interactions and a few genes have many interactions. Networks of the World Wide
Web (WWW) and protein–protein interactions also share this power law property.
Figure .c also shows that graphs can help to identify networks whose connectiv-
ity distributions follow the power law. Further, graphical similarity may indicate that
analytic methods applied in the area of the WWWcan also be applied to the areas of
genetic and protein–protein interactions.

Figure .. Chain graphs used to depict genetic interactions within and across phases
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A Time-lagged Correlation Approach 1.3.2

In order to study the mechanism of the physiological response of the photosyn-
thetic cyanbacterium Synechocystis sp. to alternating light conditions, Schmitt Jr. and
his colleagues conducted time series experiments (Schmitt Jr. and Stephanopoulos,
). In these experiments, a culture of Synechocystis sp. was exposed to serial per-
turbations in light intensity;  samples were successfully hybridized to DNA mi-
croarrays. he time series experiments were set  min apart over periods of eight
and sixteen hours. he transcriptional networks of Synechocystis sp. that responded
to various light intensities were of interest. Postulating that the expression level of
target gene  follows the pattern of the input with a time lag, and similarly gene 
follows its regulating gene  with another time lag, as depicted in Fig. ., Schmitt
Jr., Raab and Stephanopoulos () used a time-lagged correlation approach to in-
fer transcriptional interactions. Let xi(t) denote the expression level of gene i at
time t and x̄i be the average expression level of gene i across the time points. he
time-lagged correlation between genes i and j, proposed in Arkin and Ross ()
and Arkin et al. (), is defined as ri j(τ) = si j(τ)�Zsi i(τ)s j j(τ), where si j =&T

t=(xi(t) − x̄i)(x j(t + τ) − x̄ j) and  � τ < T.
Let R(τ) denote the n � n matrix consisting of lagged-τ correlation between any

pair from n genes. he matrix R(τ) can be used to rank the correlation and anticor-
relation between genes via a Euclidean distance metric di j . he metric Di j assumes
the form di j = (ci i − ci j + c j j)	 = R

( − ci j)	, where the maximal correlation
ci j = maxτ �ri j(τ)�. he matrix D = (di j) is a distance-based correlation that maps
genes that are the least correlated (for any τ) – the “farthest” apart. By using thematrix
D, Schmitt Jr. et al. () were able to include both highly correlated and anticorre-
lated genes for further analysis. Using the modified time-lagged correlation method,
the input profile was employed as a “seed” to find genes that had time-lagged corre-
lated expression profiles, where the input signal profile consisted of the autoscaled
light intensity values at each time point.

Figure .. he time-lagged correlations between input and gene, and between cascades of genes
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Specifically, this time-lagged correlation approach comprised the following steps.
Step : Genes with low expression levels or low expression changes were filtered.

Furthermore, coexpressed genes (�R()� � .), which are located adjacently in
DNAsequences, were clustered. All clustered genes (their averaged gene profiles)
and nonclustered genes were submitted for further analysis in Step .

Step : Lag-τ correlations between expression profiles were computed, using the in-
put signal in the first iteration or the averaged profiles of each subgroup resulting
from Step  in subsequent iterations.
All clusters and genes with at least one �r(τ)� value that is greater than the pre-
specified threshold of . were retained for Step .

Step : Genes retained from Step  were partitioned by the time-lag τ from their
lagged correlations. For instance, all genes that were best correlated with lag-
were grouped into category . Within each category, a nearest neighbor cluster-
ing method (Dillon and Goldstein, ) was applied to cluster the genes into
subgroups using the usual correlation as the similarity metric.

Step : he significantly correlated groups in each category were used as “seed”
nodes in Step  to expand the interaction network. Iterations were then stopped,
provided that the network could not be further expanded for a given threshold.

Step : he Graphviz program from ATT research labs (http://www.graphviz.org/)
was adapted in order to minimize the crossovers in a given network, while the
sotware for displaying graphics was written in Matlab.

Figure .. Simplified time-lagged correlation network across four time points; second iteration; where��, − � and −− denote lagged correlation, lagged inverse correlation and zero-lagged correlation
between groups
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his time-lagged correlation approach resulted in a predicted network comprising 
groups of  genes; a simplified network, obtained at iteration , is shown in Fig. ..
he graph illustrates zero-lagged highly correlated groups at the same time point.
Moreover, it depicts groups that are correlated between different time points, which
demonstrates the dynamic interactions between groups across timemuchmore clear-
ly than when any analytical method is used. Among the predicted groups, several
have known light-stimulated gene clusters – for example carbon dioxide fixation
pathways – while others are novel findings.

A Smooth Response Surface Approach 1.3.3

Let A, R and T denote the activator (enhancer), the repressor and their regulated
target gene, respectively. Woolf and Wang () proposed that the interaction re-
lation of A, R and T could be elucidated via a fuzzy logic algorithm, where A and
R are inputs and T is the output. he fuzzy logic function used is discrete and has
the drawback that it can map two adjacent boundary inputs to two quite different
outputs.he fuzzy logic algorithm was improved by the smooth response surface ap-
proach (Xu et al., ), which provides a continuous regulatory influence that has
biological bearing. Xu and his colleagues proposed that the triplets could be fitted to
the following response surface:

S(A, R) =
NOOOOOOPOOOOOOQ

A( − R),  � A � ., . � R � 
 − ( − A)R, . � A � ,  � R � .
A− R + ., otherwise .

(.)

his approach captures the basic idea that an activator increases its regulated target
gene’s expression level while a repressor decreases its target gene’s expression level. To
fit gene expression levels of triplets into certain fixed surfaces (WuandHamada, 
and Xu et al., ), gene expression levels (in log scale) were transformed into the
interval [, ]. he minimum and maximum values of each gene were transformed
into  and , respectively.
If a given triplet fits the (A, R, T) relation specified by the response surface in (.)

well, the predicted target gene’s expression over time should be close to the observed
one’s, and themean squared error should be small compared to the target gene’s vari-
ance. hus the lack-of-fit and diagnostic functions are defined as follows:

RT(A, R, T) = &T
t=(Tt − T̂t)&T
t=(Tt − T̄) (.)

and

Diag(A, R, T) = y 
T &T

t=�RT(t)(A, R, T) − RT(A, R, T)�z	
RT(A, R, T) , (.)
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where T is the total number of time points and RT(t)(A, R, T) denotes the lack-of-
fit score of (A, R, T) with the tth sample deleted. From (.), the diagnostic function
can apparently screen out any gene that has one or more time points that deviate
greatly from themodel in (.). A largeDiag value suggests that either gene expression
levels of the triplet at one or more time points may be problematic or that the triplet
does not fit the response surface well. It is clear that the criteria that should be used
to check whether a triplet fits the response surface well are RT(A, R, T) � C and
Diag(A, R, T) � C , where the Ci values are constants. he following score function
was defined to measure the overall fitting:

Score(A, R, T) = RT(A, R, T)[ +Diag(A, R, T)] . (.)

he SRS algorithm was applied to two sets of microarray data: GeneChip data on the
yeast cell cycle (Cho et al., ) and cDNA microarray data on the yeast cell cycle
(Eisen et al., ). here were  genes with  time points from the affymetrix
Ye chip in the former set. Ater filtering,  genes were retained and processed
by the SRS algorithm. Among those triplets formed,  had RT scores of < .
and Diag < .. hose best-scoring triplets that have biological meaning are plotted
in Fig. . (Fig.  in Xu et al., ). A few targets in the network of Fig. . asso-
ciated with regulators either carry out similar cellular functions or are involved in
the same cellular process. For instance, CDC is an essential gene for cell division
and DNA recombination; four regulators of CDC (SMC, NIP, BTT, NUM)
are functionally related. HAP is a transcription factor; the predicted repression of
HAP on CYC agrees with the literature that HAP represses CYC under anaer-
obic growth and activates CYC under aerobic growth. FAA and HES, which are
related to cellular lipidmetabolism and ergosterol biosynthesis, have been implicated
in HAP regulation in the literature.
Besides those described in Xu et al. () and Shieh et al. (), there is a wide

range of sotware available for the visualization of gene networks; for instance, for vi-
sualizing biomedical networks (BioMiner, Graphviz, Ospray, among others), for inte-
grating genomics and proteomics data from external databases to visualize pathways
or genetic networks (Dynamic Signal Maps, KnowledgeEditor, PathFinder, Pathway
Assist, PubGene, Vector, PathBlazer and others), and for modeling and simulating
gene regulatory networks (Genetic Network Analyzer, GenePath, among others).

A Regression Approach1.3.4

Recently, there have been a few studies on transcriptional compensation (TC) inter-
actions (Lesage et al., ; Kafri et al., ; Wong and Roth, ). Following the
loss of a gene, the expression of its compensatory gene increases; this phenomenon is
known as TC. Reverse-transcription (RT)-PCR experiments have shown that, aside
from TC, compensatory gene expression decreases in some cases following the ab-
sence of a gene; we call this phenomenon transcriptional diminishment (TD).he TC
interactions among a group of  yeast genes, which are synthetic sick or lethal to
SGS or RAD (Tong et al., ), are of interest (Shieh et al., ). he SRS algo-
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Figure .. Reconstruction of a genetic network based on the fitting of the top-scoring triplets to Xu’s

model, where A −+ � (−− �) B denotes that A activates (represses) B, respectively

rithm is a pioneer application of the response surface method that is used to recon-
struct genetic networks. Unfortunately, it failed to reconstruct the TC interactions of
interest. his stimulated Shieh and her colleagues to develop a regression approach,
as described below.
Although the SRS approach utilizes the principle that an activator activates its tar-

get gene’s expression and a repressor represses its target gene’s expression, the coeffi-
cients of the response surface in Equation (.) were based only on that the effect of
A (R) is positive (negative) and the resulting expression level of the target gene falls
in the interval [, ] (personal communication with Xu). In fact, there are an infinite
number of sets of coefficients that satisfy the boundary condition. In biology, genes
with similar functions may have similar interaction patterns. Similar patterns of in-
teractions tend to identify components from the same biological pathway (Tong et al.,
).herefore, it was proposed that the surface should be determined by the data,
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in particular, by the majority of triplets. Furthermore, a time lag was allowed in the
model for the target gene to respond to the influences of its activator and repressor.
Given n genes, in order to attain the surface that fits the majority of triplets (A, R,

T), the following regression model was fitted to all >n
? ċ ! triplets:

Ti(t + ) = β + βA i(t) + βRi(t) + βA i(t)Ri(t) , (.)

where  � i � n, β � , β <  and β � R.
Fitting (At , Rt , Tt+) to the response surface with a time lag has the following bio-

logical bearing. Microarrays measure the concentration of mRNAs, the lag− in time
characterizes that mRNAs of gene A (R) translate into protein a (r) within the time
lag, then their protein a (r) activates (represses) its associated target gene. An A–R–T
relationship, with T lagged − in time behind A and R, is depicted in Fig. ., where
the curves of R and T are roughly converse to each other but T’s curve roughly fol-
lows A’s. A few RT-PCR-confirmed A–R–T triplets have also shown similar patterns
to those in Fig. .; this reinforces the validity of the A–R–T model.
Time course microarray data for each triplet were fitted to the model in (.) to

obtain (β̂i , β̂i , β̂i , β̂i), where i = ,' , n(n−)(n−) and n is the number of genes.
hat is, there were n(n−)(n−) response surfaces (models) fitted in total. Next, the
goodness-of-fit criteria that R � . and all of the p-values of the β̂i must be < .
were utilized to select models that were good fits. Due to themultiple testing problem
(four β̂i values) and the significance level for entry in variable selection (Younger,
), . was set to be the threshold for all p-values. his threshold and that for R

can be adjusted according to the number of triplets that satisfy the goodness-of-fit
criterion. For instance, if there are relatively few triplets that satisfy the criterion, one
can loosen just the threshold for p-values or both thresholds.
To gain insights from R, triplets of  genes related to DNA synthesis and DNA

repair in yeast were fitted to the model in (.); those models where (β̂i , β̂i , β̂i)
satisfied the criterion that R � . and all p-values of β̂i < . were retained,

Figure .. he Activator–Repressor–Target pattern displayed by three genes in the alpha data set
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where i = , , . hose  data-fitted models (β̂i , β̂i , β̂i) (denoted by +) and Xu’s
model in (.) (denoted by w) are plotted in Fig. .. Figure . clearly shows that Xu’s
model does not fit the cluster of (β̂i , β̂i , β̂i) points well. Instead, the center point
of the clustered points could be a better fit. his confirmed the intuition that the
A–R–T model should be data-driven. his data-driven response surface was devel-
oped as follows.
Among those models (surfaces) fitted well by microarray data of triplets, the fol-

lowing method was employed to determine exactly one surface, called the mode sur-
face, that most of the triplets are close to. For any given i, treating (β̂i , β̂i , β̂i , β̂i)
as a point in R, we partitioned [, ] by Silverman’s rule in nonparametric density
estimation (Scott, ; Härdle et al., ).
Silverman’s rule is a method that determines the mode of points that exist in high-

dimensional space; the formula to compute the partition number for each coordinate
hi is:

hi = . �min�si , IQRi�.� � n−	(d+) ,

where si and IQRi denote the standard error and interquartile range of the data in
coordinate i, and d is the dimensionality of the points to be partitioned. A general

Figure .. β̂,β̂ and β̂ of models fitted well to (.) and those of Xu’s model, denoted by + and  ,
respectively
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smoothing spline method (Gu, ) is currently under investigation as a method to
obtain the mode surface.
Genetic networks of  genes in yeast that are SSL to SGS or RAD were of

interest. SGS (RAD) has homologs in human cells, including WRN , BLM and
RECQ (FEN and ERCC) genes. Mutations in these genes lead to cancer-pre-
disposition syndromes, symptoms resembling premature aging, and Cockayne syn-
drome (Tong et al.,  and NCBI OMIM database). he regression approach was
applied to these  genes to infer their TC interactions using the alpha data set in
Spellman et al. (). here were  quartets (β̂ , β̂ , β̂ , β̂) that satisfied the cri-
teria

R � . and p − values of β̂ , β̂ , β̂ and β̂ < . . (.)

Upon partitioning the  quartets into ��� cubes according to Silverman’s
rule, Shieh and her colleagues obtained the following surface:

Ti(t + ) = . + .A i(t) − .Ri(t) + .A i(t)Ri(t). (.)

From the top ten triplets, a small network was reconstructed. Some TC and TD inter-
actions were consistent with the published literature, so the prediction was promis-
ing. To infer novel TC interactions, the Score was relaxed to . and  triplets were
included, which resulted in a larger network. Among those predictions, some TC and
TD interactions of interest were checked by RT-PCR experiments; the prediction ac-
curacy including both layers was about %. Note that the mode surface is deter-
mined by the majority of triplets, so this regression approach can be applied to any
data set. Figure . confirms not only the validity of taking a data-driven approach,
but also the development of the mode surface.

A Pattern Recognition Approach1.3.5

Similarly to Sect. ., transcriptional compensation (TC) interactions among a group
of  yeast genes which are synthetic sick or lethal to SGS or RAD (Tong et al.,
) are also of interest. Chuang et al. () proposed a pattern recognition ap-
proach to infer TC interactions. he proposed approach, in fact, was implemented
on indirect interactions among RT-PCR-confirmed TC and transcriptional dimin-
ishment (TD) gene pairs. For ease of description, in this section we utilize A, R and
T, which are involved in direct interactions, to denote the genes involved in TD and
TC interactions. Among RT-PCR-confirmed gene pairs, when the time course mi-
croarray gene expression (Spellman et al., ) of a target gene T was plotted lagged− in time behind that of A or R, the AT gene pairs generally exhibited similar pat-
terns across time, as depicted in the blue zone of Fig. .. On the other hand, RT
gene pairs showed complementary patterns across time, as illustrated in Fig. ..
his is consistent with the ideal patterns for RT and AT, in which the expression of R
and that of its corresponding lagged − T are mirror images, whereas those of A and
lagged − T are similar. Furthermore, the areas enclosed by the RT curves are much
larger than those enclosed by the AT curves, and this phenomenon was displayed
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Figure .. he gene expression pattern of Activator (solid line)–Target (dashed line) genes over time

Figure .. he gene expression pattern of Repressor (solid line)–Target (dashed line) genes over time

bymany quantitative RT-PCT-confirmed gene pairs. his motivated Chuang and his
colleagues to develop a pattern-recognition method that extracts the features of time
course microarray data from confirmed gene pairs; the method was then applied to
predict similar interactions among genes of interest. Specifically, they generalized the
snake energymodel (SEM) (Kass et al., ) by incorporating the particle swarm op-
timization (PSO) algorithm and a criterion including the areas enclosed by the AT
and RT curves. Moreover, a cost function was integrated into the SEM to improve
its discrimination power. his method is called the extended snake energy model
(eSEM).
Typical indicators of a compensatory relationship are redundant genes (paralogs),

redundant pathways, and synthetic sick or lethal (SSL) interactions (Wong and Roth,
). Among the  yeast genes of interest, those  genes whose TC and TD interac-
tions were confirmed by RT-PCR experiments were focused upon (see the appendix
of Chuang et al. () for details). eSEM was applied to the cDNA microarray data
in Spellman et al. () to infer TC and TD interactions. For the alpha data set, ex-
periment and control groups were mRNAs extracted from yeast cultures which were
synchronized by alpha factor arrest and unsynchronized, respectively; there are 
time points with no replicates. A full description and complete data sets are avail-
able at http://cellcycle-www.stanford.edu. he red (R) and green (G) fluorescence
intensities were measured from the mRNA abundance in the experiment group and
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Table .. he prediction results of eSEM with PSO_Set applied to the alpha data set with(Ts , Te) = (, )
Training set

Score Num. of Test set

Type funcċ α β TH Cutoff predicted Accuracy accuracy

gene

pairs

TD ECost . . . .  % % %

TC (Std=.) (Std=.) (Std=.)  %

TD ECost . . . .  % % %

TC (Std=.) (Std=.) (Std=.)  %

control group, respectively. Log ratios of R to G were used to reconstruct the genetic
interactions.
Among the RT-PCR-confirmed gene pairs, two-thirds (randomly chosen) were

used as the training set to tune the parameters of eSEM. Leave-one-out cross-valid-
ation was performed in the training set to give the averaged accuracy, whichwas used
to check against the prediction accuracy in order to detect any overfitting problem.
Finally, the trained eSEM was applied to the test set ( pairs) to yield the prediction
accuracy. eSEM was first applied to one cell cycle of data, consisting of the fourth to
the twelth time points, which correspond to the first and second peaks of the two
sine waves for genes exhibiting sinusoidal patterns. he prediction results of eSEM
with the first set of the PSO cost function are summarized in Table ..he prediction
accuracy is defined to be the ratio of the number of correctly predicted pairs to the
total number of gene pairs in the test set (). Checked against the RT-PCR results,
the prediction accuracy of eSEM with the first set of the PSO cost function is about
%. Note that if we consider only the  TC interactions in the test set, prediction
accuracies range from % to %.
Next, the performance of eSEM was evaluated for the entire time course ( time

points) of the alpha data set. Table . summarizes the results of eSEM with the first

Table .. he prediction results of eSEM with PSO_Set applied to the alpha data set with(Ts , Te) = (, )
Training set

Score Num. of Test set

Type funcċ α β TH Cutoff predicted Accuracy accuracy

gene

pairs

TD ECost . . . .  % % %

TC (Std=.) (Std=.) (Std=.)  %

TD ECost . . . .  % % %

TC (Std=.) (Std=.) (Std=.)  %
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set of the PSO cost function. Checked against RT-PCRs, the prediction accuracy of
eSEM ranges from % to %. Overall, the prediction accuracies of eSEM when
applied to the alpha data set in Spellman et al. () were as high as % (about %
on average). Figures . and .motivated the incorporation of the areas enclosed by
the RT curves versus those enclosed by the AT curves into eSEM, which improved
the aforementioned prediction accuracy to % for the alpha data set. his example
demonstrates how visualization aids the development of methodology.
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Advances inmedical imaging systemshavemade significant contributions tomedical
diagnoses and treatments by providing anatomic and functional information about
human bodies that is difficult to obtain without these techniques. hese modalities
also generate large quantities of noisy data that need modern techniques of com-
putational statistics for image reconstruction, visualization and analysis. his arti-
cle will report recent research in this area and suggest challenges that will need to
be addressed by future studies. Specifically, I will discuss computational statistics
for positron emission tomography, ultrasound images and magnetic resonance im-
ages from the perspectives of image reconstruction, image segmentation and vision
model-based image analysis.

Introduction2.1

It has been a boon to researchers frommany scientific fields to be able to use data vi-
sualization to “see the unseen.” It is rather amazing that researchers can see through
the human body and accurately visualize brain function using cutting edge medical
imaging techniques – something that would have been very difficult to imagine at
the beginning of the twentieth century (Kevles, ). Indeed, modern medical im-
age modalities have made significant contributions to the understanding, diagnosis
and treatment of biological activities and diseases inside the human body; these con-
tributions are introduced and reviewed in most books on medical imaging (Suetens,
; Prince and Links, ). As techniques for capturing medical images continue
to advance, it has become more of a challenge to visualize and analyze them, be-
cause they inherently contain a massive amount of noisy data. Modern techniques in
computational statistics are crucial to extracting useful information from the various
classes of modern medical images. Here, I discuss computational statistical methods
for studyingmedical images, including images captured by positron emission tomog-
raphy (PET), ultrasound images, and magnetic resonance images (MRI), from the
perspectives of image reconstruction, image segmentation, and vision model-based
image analysis.
Computerized tomography (CT) is an important technique for obtaining accu-

rate information about the interior of a human body based on observations detected
outside the body. he precise reconstruction of images of the interior of the human
body from this data is a challenge suited to computational statistics. As the detected
observations are indirectly related to the target image, the tomographic reconstruc-
tion problem is an inverse problem, which is oten ill-posed or ill-conditioned. Due
to the nature of ill-posedness, the reconstruction of, for example, positron emission
tomography (PET) images by maximum likelihood estimation with the EM algo-
rithm (MLE-EM) (Shepp and Vardi, ; Vardi et al., ) weighted least square
estimation (WLSE), and other methods without regularization, will produce images
with edge and noise artifacts (Fessler, ;Ouyang et al., ).hus, computational
statistical techniques must be used to integrate and fuse the correlated but incom-
plete structure information with other medical modalities, like X-ray CT, magnetic
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resonance imaging, and others (Lu et al., ; Lu and Tseng, ; Tu et al., ).
he reconstruction problems are even more challenging for the types of molecular
imaging associated with genomic and medical studies in the post-genomic era, such
as microPET, which requires further research to provide more accurate images at
molecular levels of resolution.
Image synthesis and segmentation by spatial–frequential analysis were developed

to model human vision; see Malik and Perona (); Jain and Farrokhnia ();
Dunn et al. (); Tan (); Zhu et al. ().hese studies reveal that the descrip-
tors of texture images can be represented by the outputs from multichannel Gabor
filters, which are constructed to detect the responses at different orientations and fre-
quencies.his visionmodel can be applied to segmentmedical images using the tech-
niques of image processing and computational statistics. In particular, ultrasound
images are noisy due to inherent speckle noise. Vision model-based segmentation
methods for ultrasound images were developed from active contour models (i.e., the
snake–balloon model), region competition, and related methods (Chen et al., ;
Chen and Lu, ; Chen et al., a,b, , ). In addition, the technique of
sliced inverse regression (Li, ) was extended to segment dynamic images, includ-
ing magnetic resonance images (Wu and Lu, ). Further developments and chal-
lenges associated with the visualization and analysis of dynamic images in -D are
also discussed in this chapter.

PET Images 2.2

he scanning, acquisition and reconstruction process of a PET system is displayed
in Fig. .. An object with a radioactive chemical tracer is injected into the body in
order to detect the biochemical activity inside it; detectors outside the body monitor
the radiation emitted by the tracer. his type of imaging is described in more depth
in various books on medical imaging (Suetens, ; Prince and Links, ).
An ideal model for PET images was introduced in Shepp and Vardi (); Vardi

et al. (). Initially, positrons resulting from biochemical activity are emitted from
inside the body. hese positrons hit nearby electrons and annihilate themselves.
When a positron hits an electron, a pair of photons are generated and they travel
in opposite directions. his photon pair is detected by a pair of scintillation detectors
outside the body. Before these pairs of photons arrive at the detectors, their energy
is attenuated by Compton scattering as they pass through tissue. herefore, some of
these photon pairs do not retain a detectable level of energy, and remain undetected.
he other attenuated photon pairs are recorded, and can be described by a survival
probability (Politte and Snyder, ). he detectors may also receive stray photon
pairs that are not generated by the annihilations that occur at the target imagein a spe-
cific slice of the body. hat is, there are accidental (or random) coincidence (AC or
RC) events. he observations made by a pair of detectors are the sum of the photon
pairs that occur at the target image and the AC events. herefore, to recover the true
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Figure .. he scanning, acquisition and reconstruction process of a PET system

image, one can subtract the number of photon pairs resulting from the presence of
AC events (Politte and Snyder, ; Fessler, ).
Suppose the target image is partitioned into B boxes (or pixels in -D or voxels

in -D), and there are D detector tubes formed from pairs of detectors positioned
outside the body. For each pixel, b = , , . . . , B, and each tube, d = , , . . . ,D, the
following notations are adopted:

λ(b): the emission intensity of the target at box b
q(b, d): the probability of an emission from box b being detected along detector
tube d
s(b, d): the survival probability that a photon pair emitted from box b and trav-
eling in tube d will have an energy that is greater than the threshold level of the
detectors ater attenuation.

With attenuation, the transition probability becomes

p(b, d) = q(b, d)s(b, d) . (.)
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In order to correct for AC (or RC) events, the recent generation of commercial PET
systems use prompt (or real-time) window coincidence to subtract the random co-
incidences from delay windows (Spinks et al., ; Fessler, ).he following no-
tation is used:

n�p(d): the number of coincident photon pairs collected in the prompt windows
for detector tube d
n�d(d): the number of coincident photon pairs collected in the delay windows for
detector tube d.

Furthermore, n�p(d) and n�d(d) are assumed to be statistically independent and Pois-
son-distributed with different means:

n�p(d) 9 Poisson(λ�(d) + λ�d(d)) , (.)

n�d(d) 9 Poisson(λ�d(d)) , (.)

where “9” means that the random variable “is distributed as,” λ�d(d) is the mean in-
tensity of n�d(d), and

λ�(d) = �
b

p(b, d)λ(b) . (.)

One can define the precorrecting value in detector tube d, n�(d) by subtracting
n�d(d) from n�p(d):

n�(d) = n�p(d) − n�d(d) . (.)

However, n�(d) can take a negative value. Also, the mean and variance of n�(d)
are different when λ�d(d) � . herefore, n�(d) is not Poisson-distributed. When
λ�(d) = λ�d(d) = , n�(d) =  with probability . Otherwise, by approximating
the moment-generating function in the neighborhood of , n�(d) is approximately
distributed as a normal distribution with mean λ�(d) and variance λ�(d)+ λ�d(d).
herefore, the maximum likelihood estimate of this approximate model turns out to
be the weighted least square estimate (WLSE).
WLSEmethods can be achieved by applying finite series expansion reconstruction

methods (Censor, ) like the algebraic reconstruction technique (ART) (Herman,
; Herman et al., ). he idea of ART is to solve the system of equations suc-
cessively, but not simultaneously. Because it is an iterative method based on row op-
erations, it is efficient in terms of computation time and storage requirements. Range
limit constraints, such as nonnegativeness, can be easily implemented during every
iteration as well.
Due to the ill-posedness of this inverse problem, the reconstruction procedure

needs to be regularized.Oneway to regularize theWLSE is to combine the (weighted)
least square term and a penalty term into a functional object to be optimized. In
a Bayesian framework, the penalty term is related to the prior distribution. Various
methods of Bayesian estimation with Markov chain Monte Carlo (MCMC) meth-
ods have been proposed in the literature. For example, it was proposed that the local
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smoothness information should be incorporated in order to get better reconstructed
PET images (Ouyang et al., ). his was accomplished by combining the prior
boundary information with Gibbs sampling in the Bayesian reconstruction. How-
ever, the choices of the neighborhood system, the parameters in the Gibbs prior, and
the weighting factors in the weighted line sites are difficult to determine, and their
computational costs are considerable.
herefore, this author and his colleagues proposed a more efficient method that

used ART to combine the local smoothness information, to get better PET recon-
struction in the presence of AC events and attenuation (termed the cross-reference
weighted least square estimate, CRWLSE), with the algebraic reconstruction tech-
nique (ART) (Lu et al., ). First, the WLSE with ART algorithm is applied to get
an initial reconstruction. Second, the boundaries and the WLSE are used to retrieve
a mean estimate. Finally, a penalized WLSE incorporates the boundary information
using the ART algorithm. he computational complexity is only linear with respect
to the sizes of the pixels and detector tubes. he range limits and spatially variant
penalty are easily incorporated without compromising computational efficiency. he
reconstructionwas quite successful at reducing the noise and edge effects, as reported
in Lu et al. ().
he author and colleagues also proposed a cross-reference MLE (CRMLE) with

amodified EM algorithm for PETwith or without AC events (Lu and Tseng, ; Tu
et al., ). hese efficient methods equip the MLE with the related but incomplete
boundary information and only one penalty parameter. hese forms of penalized
MLE have penalty terms that are derived from the boundary information of related
medical modalities. Several speedy approaches can be used that apply the bound-
ary information during reconstruction. he solution, the accelerated cross-reference
maximum likelihood estimate (ACRMLE), is unique. New algorithms adap-
ted from the expectation/conditional maximization (ECM) algorithm in Meng and
Rubin () as well as the space-alternating generalized expectation maximization
(SAGE) algorithms in Fessler and Hero (, ) allow the computational com-
plexity to remain linear and the range limits to be preserved. hese algorithms are
convergent, and even faster convergence speeds are achieved by using the modified
SAGE algorithm first, followed by the modified ECM algorithm. he penalty param-
eter can be selected by users or data-driven methods. he penalty parameter can
be quickly determined automatically using generalized approximate cross-validation
(GACV) (Xiang and Wahba, ).
Currently, the high spatial resolution and sensitivity of microPETmake it an ideal

modality for in vivo molecular and genetic imaging in functional genomic studies.
At this stage, it can be used to detect the effects of gene therapy inside animals. High-
quality image reconstruction is important for establishing a solid basis for the quan-
titative study ofmicroPET images (Chatziioannou et al., ).Maximum likelihood
estimation with the expectation maximum algorithm (MLE-EM) permits the recon-
struction of microPET images with random correction using joint prompt and delay
sinograms (PDEM) (Chen et al., ).he joint Poissonmodel has the advantages of
preserving Poissonpropertieswithout increasing the variance caused by randomcor-
rection. he stopping criterion for PDEM is determined by K-fold cross-validation.
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Figure .. Coronal and sagittal images of a mouse reconstructed by PDEM (right) and FBP (let). he

images reconstructed by PDEM have less noise than those reconstructed by FBP. he enlarged brain

image reconstructed by PDEM has clearer boundaries than that reconstructed by FBP

he signal-to-noise ratio (SNR) is used to compare the quality of the reconstructed
microPET images of the experimental phantom obtained by filtered backprojection
(FBP) and PDEMmethods.he results reveal that PDEMoffers higher image quality
than FBPdoes. A comparison of these twomethods for themicroPET reconstruction
of a real mouse is shown in Fig. .. More studies and comparisons are discussed in
Chen et al. ().

Ultrasound Images 2.3

henoninvasive, real-time, convenient and economical properties of ultrasound im-
ages have resulted in their widespread clinical application to the early detection of
several diseases and routine monitoring in clinical practice. However, it is difficult to
segment the regions of tumors, for example, because of the low signal-to-noise ratio
of speckle noises in ultrasound images (Burckhardt, ; Goodman, ).here are
several possible computational statistical methods that can be used to address these
issues during the analysis of ultrasound images.
An ultrasound image can be regarded as a type of texture image, and therefore

the segmentation methods of texture images can be considered. Inspired by recent
studies of the early vision system and human V cells, image synthesis and the seg-
mentation of static images based on a spatial-frequential analysis that mimics human
vision were investigated (Malik and Perona, ; Jain and Farrokhnia, ; Dunn
et al., ; Tan, ; Zhu et al., ). Recent progress has been made in modeling
textures and dynamic textures using statistical models (Wu et al., ; Zhu et al.,
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; Soatto et al., ; Wu et al., ). Methods for extracting features from static
and dynamic images in -D can be applied to ultrasound andMRI images, and these
are discussed in Sects. . and . (Wu and Lu, ). hese methods can also be
extended to -D or higher dimensions.

Space Domain: Local Blocks
Let us denote a rectangular lattice containing a -D digital image of size N � M by

S = �(I, J)� � I � N ,  � J � M , I, J � Z� .
he spatial characteristics of a pixel in the image are described by its neighboring
pixels.herefore, a local block in one time frameof size b�b can be created as a feature
vector x(i)(t j) of the central pixel i � S , i = ,' , n and n = (M − b + )(N − b + )
for each time point t j, j = ,' ,m. he dimension of the feature vector in the space
domain is b. Pixels at different time frames are not included in the feature vector
because they may vary according to the motion. For the same pixel i, the collection
of feature vectors along the sequence of images �x(i)(t j), j = ,' ,m� represents the
temporal variation of the features due to motion over time.
Given a sequence ofm training images, the class labels �y(i)(t j), j = ,' ,m�, and

the feature vectors �x(i)(t j), j = ,' ,m�, the projection directions of feature vectors
for classification and prediction can be found. If the number of training images, m,
is bigger than the dimension of the feature vectors, b, then it is feasible to estimate
the projection direction in the dimension of b. However, for a short sequence of
training images, m is not necessarily bigger than b. herefore, information from
neighborhood pixels must be borrowed.
Let N (i)q be the set of neighboring sites for pixel i in a q-order neighborhood

system. For example, a first-order neighborhood system is a -neighborhood system,
since each interior site has four neighbors and the size of N (i) is . here are eight
neighbors for every interior site in a second-order neighborhood system, which is
also called an -neighborhood system, and the size ofN (i) is .hen, for pixel i, the
neighboring feature vectors can be collected as the training set:

X (i) = |x(i)l (t j), j = ,' ,m, l � N (i)q } , (.)

where i = ,' , n and n = (M − b + )(N − b+ ). For instance, if q = , then the size
of the training set becomes m, which is bigger than b when m � b�.

Frequency Domain: Fourier Transform of Local Blocks
If the features of an image are periodic over space, then the features in a local block
in the space domain can be transformed to the frequency domain by a Fourier trans-
form. his transform will highlight the periodic pattern (Weaver, ). his can be
performed using a fast Fourier transform (FFT) if the block size is of the power . For
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a block of size b � b, a two-dimensional discrete Fourier transform can be expressed
as

F(u, v) = 

b

b−�
x=

b−�
y=

f (x , y) exp J−iπ :ux
b

+ vy

b
;K , (.)

where i = R−,u, v = ,' , b − . Because the image intensity is real-valued, the
Fourier transform is symmetrical about the center. Because of this symmetry, almost
half of the FFT calculation is redundant. herefore, the feature in the frequency do-
main consists of �F(u, v)� with dimension b� +  if b is of the power .
Space-Frequency Domain: Gabor Filter Banks of Local Blocks
Human vision has demonstrated its superior capacity to detect the boundaries of
desired objects.he visionmodel based upon the previouswork of this author and his
collaborators is described in Chen et al. (, a), although similar approaches
can be applied too. A neuroimage or distance map is constructed by convolving the
observed image with a bank of specific frequency and orientation bands, such as
a bank of Gabor functions. he general form of a Gabor function is given by

g(x , y) = exp L−[(x − x)a + (y − y)a]πM
exp �−πi[u(x − x) + v(y − y)]� , (.)

and its Fourier transform is

G(u, v) = exp_− 
π
0(u − u)

a
+ (v − v)

b
1`

exp �−πi [x(u − u) + y(v − v)]� . (.)

Each local block is convolved with a bank of Gabor filters with different orientations
and frequencies. he so-called G-vector is employed as the feature vector at pixel(I, J), which is computed by

GV(I, J) = �gpk(I, J), gnk(I, J); k = ,' , r� , (.)

where gpk(I, J) and gnk(I, J) are the summations of the positive and negative values
for the neuroimage that is the convoluted image with the kth Gabor filter. hus, the
dimension of the feature vector is r in the space–frequency domain. For instance,
a bank of r = � =  Gabor filters are designed with three scales of center frequen-
cies, where

R
�,R, and b

R
� = R when b = , as well as eight orientations of

angles, , , , , , ,  and �.
On the other hand, statistical distributions can be used to model speckle noise

in ultrasound images. Suppose the intensities are independently and identically dis-
tributed as Rayleigh and related distributions (Burckhardt, ; Goodman, ).
hese different types of features can be combined with active contour models (i.e.,
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Figure .. A rosette map consisting of  Gabor filters. he half-peak magnitude frequency bandwidth

is set to one octave for each Gabor filter. Only the half-peak supports of the filters are shown in the

map

snake-balloon models and their improvements), region growing/competition meth-
ods, and other segmentation methods in order to analyze ultrasound images (Chen
et al., ; Chen and Lu, ; Chen et al., a,b, , ). For example,  Ga-
bor filters can be considered in the space–frequency domain, as shown in Fig. .. An
ultrasound image is then transformed to a distance map by the Gabor filter banks, as
illustrated in Fig. .. he active contour model can be modified with the features in
the distance map in order to obtain segmentation results, as demonstrated in Fig. ..
More studies are discussed in Chen et al. (). Further improvements are reported
in Chen and Lu (); Chen et al. (a,b, , ).

Magnetic Resonance Images2.4

Magnetic resonance images (MRI) and functional MRI (fMRI) are important medi-
cal modalities for understanding human diseases and brain function. hese modali-
ties are discussed in depth in various books onmedical images (Suetens, ; Prince
and Links, ). A typical application of computational statistics to fMRI is the sta-
tistical parametric mapping (SPM, see http://www.fil.ion.ucl.ac.uk/spm/) system. In
an attempt to advance the study of MRI and fMRI images, the author and his collab-
orators segmented dynamic images with just a few training images that extend the
studies of spatial-frequential analysis to motion segmentation.
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Figure .. Derivation of the distance map. he underlying liver ultrasound image is decomposed into

overlapping blocks of subimages. Each block is filtered with a set of Gabor functions to derive its

G-vector. he distance map is formed from the G-vector lengths of all blocks

Figure .. he boundaries derived by the proposed snake model are plotted; the initial contours and

the derived boundaries are as indicated
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Sliced inverse regression (SIR) was proposed in Li () as a way to find compact
representations that explore the intrinsic structure of high-dimensional observations.
It has been extended and used in various applications (Chen and Li, ; Li, ;
Chen and Li, ).his technique has been applied with spatial-frequential analysis
in order to segment and diagnose static images, like ultrasound images in Sect. .
(Chen et al., ; Chen and Lu, ; Chen et al., a,b, , ). We now
consider the possibility of extending SIR and spatial-frequential analysis to dynamic
images.
When extended to dynamic data, the SIR model is known as dynamic SIR (DSIR)

(Wu and Lu, ). DSIR is combined with spatial-frequential analysis for motion
segmentation. Every pixel in an image is regarded as a realization of a stochastic pro-
cess over space and time. he feature vector for one pixel in one time frame is an-
alyzed through the spatial-frequential analysis of local blocks centered at that pixel.
Assuming that the relationship between these feature vectors and class labels remains
similar between successive frames for neighboring pixels, then the intrinsic dimen-
sions of feature vectors in the training images can be found by DSIR.hese projected
feature vectors thus provide prediction rules for forthcoming images in the test set.
Only a small number of training images are needed to decide the projection of feature
vectors and prediction rules.
he following model of SIR was introduced in Li ():

y = f (β′x ,' , β′Kx , є) , (.)

where y is a univariate variable, x is a random vector with dimension p � , p 	 K,
the β’s are vectors with dimensions p � , є is a random variable that is independent
of x, and f is an arbitrary function. he β’s are referred to as the effective dimension
reduction (e.d.r.) or projection directions. Sliced inverse regression (SIR) is a method
used to estimate the e.d.r. directions based on y and x. Under regular conditions, it is
shown that the centered inverse regression curve E[x �y] − E[x] occurs in the linear
subspace spanned by βkΣxx (k = ,' ,K), where Σxx denotes the covariance ma-
trix of x. Based on these facts, the estimated β’s can be obtained by standardizing x,
partitioning slices (or groups) according to the value of y, calculating the slice means
of x, and performing a principal component analysis of the slice means with weights.
he above model, (.), can be extended to dynamic data as follows:

y(t) = f (β′x(t),' , β′Kx(t), є(t)), (.)

where y(t) and x(t) are response variables and p-dimensional covariates observed
at time t. he projection directions, the β’s, are assumed to be invariant over time,
and є(t) is the stochastic process of noise. Analogous to the steps in Li (, ),
the following conditions can be assumed, which prove the subsequent theorem (Wu
and Lu, ).

1 Condition 1 For any b in Rp , E[b′x(t)�β′x(t),' , β′Kx(t)] is linear in
β′x(t),' , β′Kx(t) for any t.hat is, E[b′x(t)�β′x(t),' , β′Kx(t)] = c + cβ′x(t)+' + cKβ′Kx(t) for some constants c , c ,' , cK and any t.
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1Theorem 1 UnderModel (.) andCondition , E[x(t)� y(t)]−E[x(t)] fallswithin
the linear subspace spanned by Cov(x(t))βk for any t, k = ,' ,K.

When x(t) is elliptically symmetric for any time t, the above condition is fulfilled.
his condition is weaker than the assumption of elliptical symmetry for x(t). When
this condition is violated, the biases involved with estimating the projection direc-
tions are not large, as discussed in Li (, ). Because the model (.) does
not consider any structural changes over time, successive data can be pulled together
to estimate the projection directions more effectively, so long as the projection di-
rections remain the same. Furthermore, all of the existing properties for SIR can be
passed on to this dynamic model without any difficulty, so this model is called the
dynamic SIR (DSIR) model.
he technique of MR imaging has become widely used as a diagnosis tool due to

the high-quality sot tissue contrast it yields, its noninvasiveness and its functionality.
It is necessary to identify components that correspond to different types of tissues and
structures with computers automatically. For example, human brain tissues can be
classified into three types byMR images: graymatter, whitematter, and cerebrospinal
fluid (CSF).he performance of the DSIRmethod when applied to a sequence ofMR
images of the epi- and endocardial surfaces of myocardium is a good example. Since
the heart is an organ that exhibits motion, examining its image characteristics with
a sequence of -D images leads to useful information about its physical condition.
he goal in this experiment is to extract the boundary description for the inner and

Figure .. Segmentation results are displayed for a sequence of MR images of myocardium in the

space domain. he top three images display classification results and the bottom three images show

prediction results
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Figure .. Segmentation results are displayed for a sequence of MR images of myocardium in the

frequency domain. he top three images display classification results and the bottom three images show

prediction results

Table .. Classification error rates for a sequence of MR imageswhere Obj represents the object, Bg

denotes the background, and Total refers to the average error of the whole image

Frame  Frame  Frame 

Feature Obj Bg Total Obj Bg Total Obj Bg Total

Space . . . . . . . . .

FFT . . . . . . . . .

Gabor . . . . . . . . .

outer walls of the let ventricle endocardium. he training set can be obtained from
the first three images by a medical expert. Using the proposed procedure, the seg-
mentation results in the three feature domains shown in Figs. ., ., and .. he
classification error rates (derived based on the target boundaries drawn by a doctor)
are reported in Tables . and ..hus, DSIR successfully performs the segmentation
of this sequence of MR images. More studies are reported in Wu and Lu ().

Conclusion and Discussion2.5

his article introduces and discusses several studies on the reconstruction, visualiza-
tion and analysis of medical images. In particular, computational statistical methods
are used as important tools in the analysis of PET, ultrasound and magnetic reso-
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Figure .. Segmentation results are displayed for a sequence of MR images of myocardium in the

space–frequency domain. he top three images display classification results and the bottom three

images show prediction results

Table .. Prediction error rates for a sequence of MR images are reported, where Obj represents the

object, Bg denotes the background, and Total refers to the average error of the whole

image

Frame  Frame  Frame 

Feature Obj Bg Total Obj Bg Total Obj Bg Total

Space . . . . . . . . .

FFT . . . . . . . . .

Gabor . . . . . . . . .

nance images. hese represent very interesting and challenging applications of com-
putational statistics to medical and biological images in the scientific community.
Further studies of microPET, SPECT and other tomography systems along with

the image fusion of other medical modalities will be challenging topics for the future
development of computational statistics. Dynamic -D and -D images generated by
medical imaging modalities, including different applications of tomography images,
color Doppler ultrasound images, fMRI images, molecular images and so forth, will
present special challenges to computational statistics.
Further successes in relation to the development of even more advanced medical

imaging systems in the future can be expected from interdisciplinary collaborations
between researchers in statistics, computation, biological and medical sciences. We
will then be able to develop and apply state-of-art techniques in computational statis-
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tics in order to reconstruct, visualize and analyze huge numbers of noisy biological
and medical images with high accuracy and efficiency in the future.
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Introduction3.1

he first stages of any data analysis are to get to know the aims of the study and to
get to know the data. In this study the main goal is to predict a company’s chances of
going bankrupt based on its recent financial returns. In another chapter of the Hand-
book, some sophisticated prediction models based on support vector machines are
discussed for a similar dataset. Here, visualization methods are used to explore the
large dataset of American company accounts that was made available for predicting
bankruptcy in order to get to know the data and to assess the quality of the dataset.
his is an initial exploratory analysis that does not use any expert accounting knowl-
edge.
Exploratory data analysis (EDA) has been a well-known term in the field of statis-

tics since Tukey’s historic book (Tukey, ). While everyone acknowledges the im-
portance of EDA, little else has been written about it, and modernmethods – includ-
ing interactive graphics (Unwin, ) – are not as commonly applied in practice as
they might be. Interactive graphics were used extensively in the exploratory work for
this chapter.he dataset is by nomeans particularly big but it does contain more than
  cases. Ways of graphically displaying large datasets are discussed in detail in
Unwin et al. ().
When considering graphic displays, it is necessary to distinguish between presen-

tation and exploratory graphics. Graphics for displaying single variables or pairs of
variables are oten used to present distributions of data or to present results. Care
must be taken with scales, with aspect ratios, with legends, and with every graphical
property that may affect the success of the display at conveying information to others.
Graphics for exploration are very different. hey are more likely to be multivariate,
and there is no need to be particularly concerned about the aesthetic features of the
graphic; the important thing is that they give a clear representation of the data. Pre-
sentation graphics are drawn to be inspected by many people (possibly millions of
people, if they are used on television), and they can be long-lived. For example, Play-
fair’s plots (Playfair, ) of English trade data are over  years old, but are still
informative. Exploratory graphics are drawn for one or two people and may be very
short-lived. A data analyst may examine a large number of graphics before finding
one that reveals information, and, having found that information, the analyst may
decide that another kind of display is actually better at presenting it than the display
or displays that led to its discovery.
he graphics shown in this chapter are a subset of those used in the study.hey are

not supposed to be “pretty;” they have been drawn to do a job. Detailed scales have
not been included, as it is always the distributional form that is of primary interest.
Exploratory analyses are subjective, and each analyst may choose different graph-
ics and different combinations of them to uncover information from data. he only
thing that can be said with certainty is that analysts who do not use graphics to get to
know their data will have a poor understanding of the properties of the data they are
working with. If nothing else, graphics are extremely useful for assessing the quality
of data and for cleaning data.
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Description of the Data 3.2

here are   records in the dataset. Each record contains financial information
for a company for one year. Table . gives a list of the variables in the dataset.
For each company there are  ratios, one size variable (log transform of assets),

and a binary variable, which records whether or not the company went bankrupt
within three years of the financial returns. here is also information on the State in
which the company is registered, the industry sector to which it belongs, and the
year of the accounts. he term “bankruptcy” includes Chapter  reorganization as
well as liquidation under Chapter  of the US Bankruptcy Code. Financial ratios are
commonly used so that data are comparable across years. Sometimes it is helpful
to look at the raw data as well, particularly if there are data cleaning issues. An un-
usual value or a cluster of unusual values in Total Assets would affect all twelve ratios
that depend on this variable. here were no missing values. Some of the ratio vari-
ables can be grouped into categories: profitmeasures (Ebit.TA,NI.TA); leverage ratios
(Kap.TA, TL.TA, and Eq.TA); liquidity ratios (Cash.TA, CA.TA and CA.CL.TA); and
activity/turnover ratios (Inv.TA, S.TA, and Ebit.Int).
In order to be able to generalize results from statistical models, the dataset be-

ing analyzed must be a random sample from the population under study. For the
bankruptcy dataset, there are a very large number of cases, but it is not clear whether
they comprise a random sample. Apart from anything else, it is not at all clear that
they can be considered to be homogeneous. Most companies are rather small and

Table .. Variables in the Bankruptcy dataset

Variable Description

Cash.TA Cash/Total Assets

Inv.TA Inventories/Total Assets

CA.TA Current Assets/Total Assets

Kap.TA Property, Plant and Equipment/Total Assets

Intg.TA Intangibles/Total Assets

LogTA log(Total Assets)

CL.TA Current Liabilities/Total Assets

TL.TA Total Liabilities/Total Assets

Eq.TA Equity/Total Assets

S.TA Sales/Total Assets

Ebit.TA EBIT/Total Assets

Ebit.Int EBIT/Interest Payments

NI.TA Net Income/Total Assets

CA.CL.TA (Current Assets–Current Liabilities)/Total Assets

BANKR status (Bankrupt or OK)

Year Year of accounts

State Where the company was registered

NAICS North American Industry Classification System
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a few are very large. Can the same financial ratios really be used for companies that
are so different in scale?his is the kind of question that exploratory analysis can help
us to answer by looking at the distributions of data values for the different groups.
he assumption is that results from this dataset can be applied to datasets collected

in a similar fashion in the future.

Figure .. A bankruptcy

barchart.  of the 

records refer to bankruptcy

First Graphics3.3

Figure . is a barchart for the bankruptcy variable. Only
a small proportion of companies actually went bankrupt,
which is a good thing for the companies, but it makes any
statistical analysis more difficult.
he displays in Figs. . and . show that the compa-

nies are fairly equally distributed across the regions, but that
some of the data are surprisingly old, with a few cases prior
to the mid s. In the s there is one record per year,
and by linking to the geographic data we can show that this
was not always for the same company, as might have been
suspected.
he geographic information was originally provided by

State, so there were many small counts and only a few
big ones. Grouping by region gives a good overview, al-
though other groupings (e.g., by population) could also be
attempted.he regional classification used here is one from
the FBI. Selecting the foreign group (comprising a little
more than % of the cases) and linking to a spinogram
(Hofmann and heus, submitted) of years (see Fig. .)
shows that the percentage of foreign registered companies
has increased over the years. Querying shows that this per-
centage increases from about % in the early s to %
in . In the most recent year, , the rate falls to just
under  %. It is expensive for foreign firms to be listed on
the US exchanges, and opinion has changed as to what ben-
efits it brings. he Sarbanes–Oxley Act has also made it less
attractive to be listed in the US.
Information was also available on industry sector in two

different ways; one classification involved  categories by
name andnumerical coding, while theNAICS classification
used number, and had  categories. Both are too detailed
for graphical analysis, and a hierarchical grouping similar
to the spatial grouping of the States can be attempted. he
six-digit NAICS codes can be aggregated by their first two
digits and then further grouped by sector to give Fig. ..
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Figure .. A barchart of the number of records by US region

Figure .. A histogram of the number of records per year

he manufacturing sector clearly dominates. To check for associations between the
two classifications, a crude scatterplot approach was tried. A fairly random spread of
points was obtained, but no particular pattern.
Histograms can be drawn for the continuous variables, but they take up quite a lot

of room, so boxplots are more efficient at displaying many variables at once. Since
logTA, the log of total assets, is a different kind of variable from the others and im-
portant in its own right too (because it groups the companies by size), a histogram
has been drawn specifically for it (see Fig. .). his shows a roughly symmetric dis-
tribution with a few very low values. Selecting the foreign registered companies again
and linking to a spinogram of logTA reveals that for the % of the companies that
are the biggest, the percentage of foreign registered companies rose steadily, from %
up to more than %.
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Figure .. A spinogram of the number of records per year, with foreign registered companies selected.

he width of a bar in the spinogram is proportional to the height of the corresponding bar in the

original histogram

Figure .. A barchart of the number of records categorized by NAICS group
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Figure .. A histogram of log(Total Assets), logTA, for the companies. he marks below the axis to the

let are interactive controls for the anchorpoint and binwidth. he horizontal (red) marks record bins

where the count is too small to be drawn

Figure .. Parallel boxplots of financial ratios. Each boxplot is individually scaled

A set of parallel boxplots for the ratio variables is shown in Fig. .. he boxplots
reveal that several of the ratios are highly skewed, and this may affect whether they
can be of much help in discriminating between the companies which went bankrupt
and those which did not. It is possible that many of these outliers are errors of some
kind, and it may be that most of the outliers for individual variables are actually out-
liers for several variables.

Outliers 3.4

Outliers can be checked with a parallel coordinates display (Inselberg, ), as in
Fig. ., where the eight ratios with highly skewed distributions have been plotted
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Figure .. [his figure also appears in the color insert.] Parallel coordinate plot of financial ratios with

skew distributions. Seven outliers have been selected

and seven of the worst outliers selected. It is easy to see that several are outliers for
more than one variable. It is also apparent that the ratio of equity to total assets Eq.TA
is perfectly inversely correlated with the ratio of total liabilities to total assets TL.TA.
his is a matter of definition, with TL.TA+Eq.TA = . Although this equation looks
innocuous, it masks the fact that TL.TA ranges from  to  in this dataset. Not
surprisingly, the high values of TL.TA only arise for low values of Total Assets, as the
L-shaped scatterplot on the let of Fig. . shows. his plot is somewhat misleading.
he zoomed version on the right reveals that there is more variability amongst the
low values than the default plot suggests, although the most extreme values of TL.TA
still only occur for very low values of Total Assets. he bulk of the pattern suggests
that very small companies have a broader range of possible liability ratio values than
small companies. he low-density region to the lower right implies that companies

Figure .. Scatterplots of TL.TA, the ratio of total liabilities to total assets, plotted against Total Assets.

he let-hand plot presents all of the data, and it shows that all high values of liabilities are associated

with low asset values. he right-hand plot presents a zoom of about − on the x-axis by − on the

y-axis, along with some α-blending
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Figure .. [his figure also appears in the color insert.] Parallel coordinate plot of the financial ratios

with skewed distributions. he seven outliers selected in Fig. . have been removed. he plot’s (red)

border is a sign that not all data are displayed

exceeding a certain sizemust have some liabilities.hedistorting effect of the extreme
values is demonstrated by the fact that the zoomed plot, which covers a region −

times the size of the default plot, contains % of the data. α-Blending has been used
to make the distributional structure more visible. α-Blending weights the shading of
each object by a specified fraction. he darkness of a pixel is that fraction multiplied
by either the number of objects overlapping the pixel or , whichever is smaller.
Setting aside the seven worst outliers, Fig. . rescales to Fig. .. Some of the

variables become potentially more informative, while the scales of some of the others
are dominated by newly visible outliers.
Outliers can be dealt with in several ways. A transformation might help (but it is

not always appropriate; in this case, several ratios have some negative or zero values).
heoutliers could be trimmed or discarded (depending onwhat kinds of outliers they
are). With ratio variables, such as those used here, the component variables of the ra-
tios can be examined. Figure . shows a scatterplot of the variable Sales against Total
Assets with the same seven outliers still highlighted. All turn out to be small compa-
nies in terms of both Sales and Total Assets, and small companies should probably be
treated separately anyway. he scatterplot also reveals that there are some bivariate
outliers. Querying shows that the six cases with high Sales but low Total Assets (the
upper let group) are all data for the same big retail company over several succes-
sive years. he seven cases with low Sales but very high Total Assets (the lower right
group) represent three companies from the information and communication sector.
hese two groups make up a tiny proportion of the dataset, even if they all have very
large Sales or Total Assets.
For exploratory work it is distributional structure that is of interest, not precise

values. he minima and maxima of the variables are used to determine the limits of
the axes. he lower limit for Sales in Fig. . shows that the lowest Sales values are
actually negative and that plenty of them are zero or almost zero too. he negative
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Figure .. Scatterplot of Sales vs. Total Assets with the seven outlying companies highlighted (the

lighter blob in the lower let corner)

values could be an accounting quirk, but should undoubtedly be discarded from the
dataset, although there are only five of them. he low Sales values are also worth
considering; what types of companies do these correspond to, and should they be
kept in the dataset? hey may be very new companies or companies on their last
legs. here are  companies with zero Sales and another  with Sales that are
more than zero but less than . hese data could in principle have been obtained by
zooming into a histogram for Sales and querying the cells, but for queries with precise
boundaries it is quicker to calculate the appropriate frequency table. Graphics are
better for more general, qualitative insights, while tables and statistical summaries
are better for exact details.
he empirical distributions can be examined in many ways. When cases are of

different sizes or weights, it can be illuminating to look at weighted distributions.
For instance, Fig. . shows a histogram of CA.TA, the ratio of current assets to total
assets, on the let and a histogram of the same variable weighted byTotal Assets on the
right. Companies with the highest current assets ratios clearly have low Total Assets.
Outliers and negative values are some of the data cleaning problems that can arise;

there may be others as well.
Some statistical modeling approaches are hardly affected by individual gross er-

rors, and it may be that it matters little to the model fit whether these cases are ex-
cluded, adjusted, or just included in the analysis anyway. Even when this is the case,
it is useful to know what kinds of errors or unusual values can occur. It is also an
opportunity to talk to people who know the context of the data well, and to get them
to provide more background information. Analyzing data blind without any back-
ground information is just reckless. A surprising (and sometimes shocking) amount
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Figure .. A histogram of the current assets ratio on the let and a weighted histogram of the same

variable, weighted by Total Assets, on the right

of the useful information known about datasets is not incorporated into analyses,
such as information about the selection of the variables collected, the way the sam-
ple was chosen, or details about the collection and recording of data. Dataset owners
may assume that analysts know this information, but it is useful to check.

Scatterplots 3.5

here is oten a temptation with large numbers of continuous variables to calculate
correlation coefficients for all possible pairs of variables. he trouble with this ap-
proach is that correlations can be high because of outliers, or low because the associ-
ation between the two variables is nonlinear. Fourteen variables (the original ratios
plus logTA) are too many to draw a scatterplot matrix, but it is interesting to look at
the associations between subsets of the ratios. Scatterplots for two pairs of the finan-
cial variables Cash.TA, Inv.TA, CA.TA and Kap.TA are shown in Fig. .. he trian-

Figure .. Scatterplots of Cash.TA and Inv.TA, the ratios of cash and inventories to total assets (let),

and of CA.TA and Kap.TA, current assets and property to total assets (right)
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Table .. Correlations between the four ratio variables in Fig. .

Cash.TA Inv.TA CA.TA Kap.TA

Cash.TA .

Inv.TA -. .

CA.TA . . .

Kap.TA -. -. -. .

gular shapes to the lower let show that the sum of the corresponding ratios is less
than a particular limit;  here. (he triangular shapes to the lower right are obtained
when the y variable is always lower in value than the x variable, such aswhen the cash
or inventory ratio is plotted against the current assets ratio.)he negative cash values
that have already been discussed are easily seen to the let of the bulk of the data in
the plots of cash and inventory ratios. In the plot of the current assets and property
ratios there are a few companies that surprisingly lie above the bounding diagonal –
more outlying cases to investigate. he correlation coefficients for the variables are
given in Table .. Some of them are quite high, and they are certainly all significantly
different from zero, but they hint little at the structure shown. he highest value in
absolute terms is the correlation between current assets and property (–.).his
deserves further investigation, and Fig. . shows the same scatterplots as shown in
Fig. ., but this timeusing the smallest pointsize and some α-blending instead of the
defaults, providing a rough bivariate density estimate. It is now possible to see that,
for many of the companies, the sum of current assets and property assets is almost
equal to the Total Assets.
he scatterplots of the corresponding raw data variables provide another view of

the associations between variables in the dataset, andmore structure can be seen than
with scatterplots of the ratios. A few of the raw scatterplots exhibit a funnel structure,
such as the plot of inventories against fixed assets and that of cash against current as-

Figure .. he same scatterplots as shown in Fig. ., but with a smaller pointsize and α-blending to

better display the bivariate structures
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Figure .. Scatterplots of inventories against fixed assets (let) and of cash against current assets

(right)

sets (Fig. .). Querying and linking can be used to identify specific sectors or out-
liers. he companies with high assets and low inventories are in the information and
communications sector. Companies in the retail sector have higher inventories and
lower assets. he three points to the top let in the inventories/fixed assets plot which
initially appear to be unusual are from investment banking and are consistent with
other companies in that sector – except for being considerably bigger. he biggest
companies for both variables in the let-hand plot are car manufacturers (higher in-
ventories) and oil companies (higher assets).
Sometimes features stand out in a parallel coordinate plot, while sometimes they

are more visible in raw data scatterplots. As always, a range of different graphics
should be explored.

Mosaic Plots 3.6

Combinations of categorical variables can be displayed in mosaicplots of various
kinds (Hofmann, ). However, if we attempt to draw such plots we encounter
two difficulties. Firstly, all but one of the categorical variables have a large number
of categories (there are  states and  NAICS categories). Secondly, the one cat-
egorical variable that is binary (BANKR) comprises less than % of the cases in one
category, so that highlighting is rarely visible. he first problem can be circumvented
to some degree by grouping, combining states into regions, and using a less detailed
form of the NAICS. he second problem can be solved by using a special form of
zooming.
Figure . shows a fluctuation diagram of the numbers of companies by industry

sector and region. Classicalmosaicplots try tomake themost efficient use of the space
available by making each cell as large as possible. his can make the plot difficult to
interpret, especially when there are many cells. Fluctuation diagrams preserve a grid
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Figure .. Fluctuation diagram of industry sectors by region

structure, so that comparisons by rows and columns are easier.he dominance of the
manufacturing sector stands out in Fig. ., as well as individual details, such as the
concentration of mining companies in WestSouthCentral.
All cases are treated equally in Fig. .. Of course, some companies are much

bigger than others, and Fig. . shows the same cases weighted by Total Assets. he
differences between the two figures are striking. Foreign registered companies in the
manufacturing sector are much bigger than was apparent previously. he regional
distribution of companies in the professional sector changes a lot.

Initial Comparisons
Between Bankrupt Companies3.7

Up to now, our analysis has considered all of the data as one group, and a number
of outliers, distributional features, and specific properties have been identified. he
main aim of the study is still to investigate how the companies that went bankrupt
differ from the rest. A first approach would be to look at the information available.
Any company whose total liabilities exceed their total assets (TL.TA� ) is likely to be
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Figure .. Fluctuation diagram of sectors by regions weighted by Total Assets

in trouble.his variable is bizarrely skewed and so difficult to visualize with standard
plots. In this situation a simple table is better.
Clearly the variableTL.TA on its own is very informative.he choice of the bound-

ary limit () is determined by the context. Varying the limit interactively using a slider
confirms that it is a good choice in that the differences in both bankruptcy rates and
the number of bankrupt companies are high.
To investigate the effects of more than one variable, two kinds of parallel plots

can be used with the bankruptcy cases highlighted. Parallel boxplots give univariate
summary comparisons, while parallel coordinate plots potentially offer multivariate
comparisons.
Figure . shows the default parallel coordinate plot of the ratios (without Eq.TA

but with logTA) drawn for all data except for the  outliers removed in an initial data
clean.he companies that went bankrupt have been selected.he heavy overplotting
may be obscuring information, and the fact that every line is drawn in the same way
whether it represents one case ormanymay alsomislead. Nevertheless, some features
can be identified: all bankrupt companies had low values of CL.TA, high values of
Ebit.TA, and medium values of Ebit.Int; there are two unusual bankrupt companies
(one a high outlier on TL.TA, and the other a high outlier on S.TA).
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Figure .. Parallel coordinate plot of financial ratios and logTA, excluding  outliers, with bankrupt

companies highlighted

One way to get better discriminatory power is to use α-blending. A factor of .
has been used in Fig. ., and it is now possible to see that the concentration of values
for bankrupt companies for some of the variables applies to the bulk of the rest of the
data as well, so that variables like CL.TA and Ebit.TA will not be as informative as
might have been hoped. A final step can be to apply α-blending to the highlighting
as well, and this has been tried in Fig. .. his suggests that Cash.TA and Intg.TA
might be more helpful than at first thought.

Figure .. Parallel coordinate plot of financial ratios and logTA, excluding  outliers, with bankrupt

companies highlighted, α-blending=. only for unselected data
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Figure .. Parallel coordinate plot of financial ratios and logTA, excluding  outliers, with bankrupt

companies highlighted, α-blending=. for selected and unselected data

he utilization of selection and linking for scatterplots can be highly effective,
but it is dependent on the data distribution. Consider the two variables just men-
tioned above, Cash.TA and Intg.TA, and their distribution for the companies that
went bankrupt. A scatterplot can be drawn with a little α-blending, as shown on the
let of Fig. ., or with a lot of α-blending, as shown on the right. (α-Blending has not
been used for the highlighted cases, as they then disappear on this scale.) Both plots
contribute information but neither is fully satisfactory. Another alternative would be
to draw a pair of scatterplots, one for each of the two groups of companies, but this is
difficult to interpret.he success of a particular plot depends on there being clear-cut

Figure .. Scatterplots of the ratios of intangibles and cash to total assets, with companies that went

bankrupt selected. More α-blending has been used in the right-hand plot
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information to find. he differences between the companies that went bankrupt and
the others that did not are more complicated than can be displayed in a scatterplot
of two variables.
Another alternative would be to use spinograms (as shown in Fig. .), but the

number of bankrupt companies is so small relative to the total number of companies
that little can be seen. Fitted smooths would be better, although they require more
computation.
he parallel coordinate plots employed here are a selection of many that might

have been shown. he choice and order of variables influences what might be seen.
he decision to discard some extreme outliers does too. he level of α-blending is
also an influential factor. In other words, a parallel coordinate plot is like any other
multivariate analysis in that the user has a lot of freedom of choice. Careful thought
helps, and so does statistical modeling. Having explored the data and built a model,
parallel coordinate plots can again be useful, this time as a way to understand the
model’s relationship to the dataset.

Investigating Bigger Companies3.8

Financial data for small companies is highly variable and could well be more unreli-
able than data for large companies, although this is difficult to assess. Large compa-
nies are certainly different from small companies, and so studying them separately
makes sense. In one important way they do not differ: the bankruptcy rate for the
biggest  companies (each with Total Assets � ), .%, is close to the rate for
the rest of the dataset, .% for the remaining   companies. On the other hand,
a looser definition of big (Total Assets � ) yields bankruptcy rates of .% for
the   “big” companies and .% for the rest, a significant difference. Given the
many different limits that might be used, a wide range of results is possible. However,
it is not modest variations in bankruptcy rates by company size that are of interest to
us; it is identifying which companies might go bankrupt.
Over forty years it would be reasonable to expect that company size has increased.

Curiously, for this dataset, the effect on logTA is negligible, as Fig. . shows.
Figure . shows boxplots of the original ratio variables for all of the data with the

group of big companies highlighted. Only the first five financial ratios are shown, as
the distributions of the others are, as Fig. . shows, far too skewed to be informative.
logTA is included to show the size distribution. Although the medians for the bigger
companies differ noticeably from the median ratios for all companies (for cash, in-
ventories and hence, obviously, current assets, they are lower, while the median ratio
is higher for the capital assets ratio), the distributions overlap substantially.
Amore effective way of looking at the ratios is to use spinograms. In Fig. . there

are plots of the ratios Cash.TA, Inv.TA, Kap.TA, and Intg.TA with the big companies
selected. he proportion of big companies declines as the cash ratio increases; it also
declines as the inventory ratio increases, apart from the lowest group (Inv.TA < .),
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Figure .. Parallel boxplots of logTA by year from  to , all on the same scale

Figure .. Parallel boxplots of financial ratios and logTA for all companies. he background boxplots

are for all of the data, and the superimposed standard boxplots are for the selected cases, companies

with Total Assets � 

where the proportion is relatively low; the proportion increases as the fixed capital
ratio increases; and the proportion is fairly constant for the intangibles ratio.
Figure . shows just the data for the bigger companies for all variables, with the

bankrupt companies selected. Outliers still affect most of the second group of ra-
tios, but two features stand out: TL.TA is generally higher, as we would expect from
Table . for the whole dataset, and Ebit.TA is generally lower. It is tempting to draw
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Figure .. Spinograms of the ratios Cash.TA, Inv.TA, Kap.TA, and Intg.TA. he companies with Total

Assets �  have been selected

Figure .. Parallel boxplots of financial ratios and logTA for the  companies with Total Assets �
. Companies that went bankrupt have been selected
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Table .. Cases with more liabilities than assets, and their bankruptcy status

Bankrupt OK

TL.TA �   

.% .%

TL.TA �   

. % . %

conclusions about the fact that none of the biggest companies went bankrupt and that
none of the companies thatwent bankrupt had a high cash ratio (even though theme-
dian is higher for these companies), but the selected cases make up such a small per-
centage of the total that caution should be exercised before drawing any conclusions.

Summary 3.9

Every data analysis is unique because the data are always different. In the study re-
ported here, there were mainly continuous variables (so parallel coordinate plots
were useful); the few categorical variables usually had large numbers of categories (so
these had to be combined into groups); there was a fairly large number of cases (so
approximating density estimations were helpful); and there were some variables that
were highly skewed (so that outliers and transformations were issues). A variety of
plots were used, including barcharts, histograms, spinograms, boxplots, scatterplots,
mosaicplots and parallel coordinate plots. Weighted versions of some plots also con-
tributed. Trellis displays might have been tried, but then shingling of the conditional
variables would have been required. hat would be more appropriate ater model-
ing. Interactivity, primarily selection, querying and linking, was used extensively, as
is clear from the plots, but zooming and reformatting were also used a lot in the ex-
ploratory analyses. It is not easy to illustrate EDA in print, and the chapter can only
convey a pale shadow of the actual process.
Data exploration is an important part of any data analysis. It is necessary to learn

about the data, to check data quality and to carry out the data cleaning that is needed
(and data cleaning is always needed with real datasets). EDA revealed here that there
were some extreme outliers and some suspicious negative values. It underlined the
need to transform some of the variables and it highlighted the geographic and sec-
toral structure of the dataset. It also revealed the surprising age of some of the data
and the unexpected stability of the size distribution over time. Several interesting
associations between variables were uncovered. An investigation of the factors influ-
encing bankruptcy provided further insight into the data and prepared the ground
for statistical modeling.
Applying statistical models before exploring data is an inefficient approach. Prob-

lems may arise because of peculiarities in the data. Features are revealed that could
have been found much more easily just by looking. he only possible advantage of
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modeling without exploring the data first is the purist one of satisfying the ideal-
ist prerequisite for a hypothesis test – although whether that is relevant for any real
analysis is moot.
Graphics are essential for exploratory work. hey provide overviews and insights

that complement statistical summaries. On the other hand, graphical analyses with-
out follow-up analytic support remain inconclusive. Visualization results tend to be
qualitative rather than quantitative, general rather than precise. Statistical model-
ing can assess the strength of evidence supporting ideas generated from graphical
EDA and help to define those ideas more exactly. On top of that, statistical modeling
can tease out more complex relationships that are not immediately visually apparent.
However, there is not much point in looking for complex relationships if the quality
of the data is in doubt, which is one of the reasons that modeling benefits from prior
data visualization. Modeling also benefits from graphical support ater analysis, in
relation to investigating residual patterns for individual models and comparing and
combining groups ofmodels.hese are discussed in other chapters in the Handbook.

Software3.10

hesotware used formost of the displays in this paper wasMartinheus’sMondrian
(http://stats.math.uni-augsburg.de/Mondrian/). Other sotware was used at various
stages to assist with data cleaning and restructuring.
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Graphical data representation is an important model selection tool in bankruptcy
analysis, since this problem is highly nonlinear and its numerical representation is
not very transparent. In classical rating models, the convenient representation of the
ratings in a closed form reduces the need for graphical tools. In contrast to this, more
accurate nonlinear nonparametric models oten rely on visualisation. We demon-
strate the utilisation of visualisation techniques at different stages of corporate de-
fault analysis, which is based on the application of support vector machines (SVM).
hese stages are the selection of variables (predictors), probability of default (PD)
estimation, and the representation of PDs for two- and higher dimensional models
with colour coding. he selection of a proper colour scheme becomes crucial to the
correct visualisation of PDs at this stage. he mapping of scores into PDs is done as
a nonparametric regression with monotonisation. he SVM learns a nonparametric
score function that is, in turn, nonparametrically transformed into PDs. Since PDs
cannot be represented in a closed form, other ways of displaying themmust be found.
Graphical tools make this possible.

Company RatingMethodology4.1

Statistical techniques were first applied to corporate bankruptcy in the s due to
the advent of computers. he first technique introduced was discriminant analysis
(DA) for univariate (Beaver, ) and multivariate models (Altman, ).he logit
and probit models were then introduced in (Martin, ) and (Ohlson, ).hese
models are now widely used in practice – they are at the core of the rating solu-
tions used by most European central banks. he solution in the traditional frame-
work is a linear function (a hyperplane in a multidimensional feature space) that
separates successful and failing companies. A company score is computed as a value
of that function. In the probit and logit models, the score can be transformed di-
rectly into a probability of default (PD), which denotes the probability of a company
going bankrupt within a certain period. he major disadvantages of these popular
approaches is the linearity of the solution and, in the logit and probit models, the
prespecified form of the link function between the PDs and the linear combination
of predictors (Fig. .).
In Fig. ., successful and failing companies are denoted by black triangles and

white quadrangles, respectively. Both classes contain the same number of companies
in the sample. According to the DA and logit classification rules, which give virtually
the same results, we are more likely to find a failing company above and to the right
of the straight line.his may lead to the conclusion that companies with significantly
negative values of operating profit margin and equity ratio can be classified as being
successful. his, for example, means that companies with liabilities that far outweigh
their total assets can be classified as successful. Such a situation is avoided through
the use of a nonlinear classification method, such as support vectormachines (SVM),
which produces a nonlinear boundary.



Graphical Data Representation in Bankruptcy Analysis 855

Figure .. A classification example. he boundary between the classes of solvent (black triangles) and

insolvent (white squares) companies was estimated using DA, the logit regression (two indistinguishable

linear boundaries) and an SVM (a nonlinear boundary) for a subsample of the Bundesbank data. he

background corresponds to the PDs computed with an SVM

Following a traditional approach, we would expect a monotonic relationship be-
tween predictors and PDs, like the falling relation for the interest coverage ratio
(Fig. .). However, in reality this dependence is oten nonmonotonic for impor-
tant indicators such as the company size or net income change. In the latter case,
companies that grow too quickly or slowly have a higher probability of default. his
is why nonlinear techniques are considered as alternatives. Two prominent exam-
ples are recursive partitioning (Frydman et al., ) and neural networks (Tam and
Kiang, ). Despite the strengths of these two approaches they also have noticeable
drawbacks: orthogonal division of the data space for recursive partitioning, which is
usually not justified, and heuristic model specification for neural networks.
Recursive partitioning, also known as classification and regression trees (CART)

(Breiman, ), performs classification by dividing up the data space orthogonally.
A division (split) along just one of the axes is possible at each step.he axis is chosen
such that a split along it reduces the misclassification impurity. Entropy-based cri-
teria can also be used. he visible drawback is the orthogonal division itself, which
imposes severe restrictions on the smoothness of the classifying function and may
not adequately capture the correlation structure between the variables. Orthogonal
division means that the separating hyperplane can only consist of orthogonal seg-
ments parallel to the coordinate grid, whereas the boundary between the classes has
a smoothly changing gradient.
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Figure .. One-year cumulative PDs evaluated for several financial ratios from the German

Bundesbank data. he ratios are net income change (K), net interest ratio (K), interest coverage

ratio (K), and logarithm of total assets (K). he k nearest neighbors procedure was used with

a window size of around % of all of the observations. he total number of observations is  

heneural network (NN) (Rosenblatt, ;Minsky andPapert, ) is a network
of linear classifiers (neurons) that are connected to one another in a prespecified way.
he outputs of some of the neurons are inputs for others. he performance of a NN
greatly depends on its structure, which must be adapted to solve different problems.
he network must be designedmanually, which requires substantial operator experi-
ence. Moreover, NNs do not usually provide a global solution, only a local one that is
valid for some range of variables. his feature and the many heuristics involved make
NNs difficult to use in the rating departments of banks.
We would like to have a model that is able to select a classifying function based

on very general criteria. he SVM is a statistical technique that in many applica-
tions, such as optical character recognition and medical diagnostics, has shown very
good performance. It has a flexible solution and is controlled by adjusting only a few
parameters. Its overall good performance and flexibility make the SVM a suitable
candidate (Härdle et al., a).
Within a rating methodology, each company is described by a set of variables x,

such as financial ratios. Financial ratios, such as debt ratio (leverage) or interest cov-
erage (earnings before interest and taxes to interest) characterise different sides of
company operation. hey are constructed based on balance sheets and income state-
ments. For example, the Bundesbank uses  ratios (predictors) computed using the
company statements from its corporate bankruptcy database. he predictors and ba-
sic statistics are given in Table ..hewhole Bundesbank database covers the period
– and consists of   anonymised statements of solvent and insolvent
companies. Most companies appear in the database several times in different years.
he class y of a company can be either y = − (“successful”) or y =  (“bankrupt”).

Initially, an unknown classifier function f � x � y is estimated for a training set of
companies (xi , yi), i = , . . . , n. he training set represents the data for companies
that are known to have survived or gone bankrupt. In order to obtain PDs from the
estimated scores f , financial analysts rely on verbally defined classes such as CCC,
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Figure .. One-year probabilities of default for different rating grades (Füser, )

A, or BB. Each company is placed into a specific class depending on how well it fits
the description. For example, the AAA grade is associated with extremely strong, AA
with very strong, Awith strong, BBBwith good, BBwithmarginal, B withweak, CCC
with very weak and CC with extremely weak financial security characteristics, while
C signals imminent default, and D default.
A certain range of scores and PDs belongs to each rating class. he ranges were

computed on the basis of historical data. To derive a PD for a newly scored company,
its score f is compared with the historical values of the f values for each class. Based
on how similar the scores are, the company is assigned to one particular class. he
PD of this class becomes the PD of the company.
Company bond ratings play an important role in determining the cost of debt

refinancing, since they reflect the probability of defaulting on the debt (Fig. .). Note
that the differences between the classes in terms of PDs are not the same. For example,
the PD increases by .% or -fold between classes BBB and B, but only by . or
-fold between classes AAA und A. he colours used to code PDs must be selected
so that the classes appear to be equidistant, no matter what the absolute PD is. his
can be achieved by using an appropriate colour scheme and colour distance scaling.
he use of the HLS colour scheme in combination with a logarithmic colour scaling
will be demonstrated in Sect. ..

The SVMApproach 4.2

he SVM (Vapnik, ) is a classification and regression (which is not applied in
this case) technique that is based onmarginmaximisation (Fig. .) between twodata
classes.hemargin is the region between the hyperplanes bounding each class where
no observation can lie in a linear perfectly separable case.he classifier function used
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Figure .. he separating hyperplane x�w + b =  and the margin in an inseparable case. he

observations marked with bold crosses and zeros are support vectors. he hyperplanes bounding the

margin zone (which are equidistant from the separating hyperplane) are represented as x�w + b = 
and x�w + b = −
by the linear SVM is a hyperplane symmetrically surrounded by amargin zone. It can
be shown (Härdle et al., a) that the complexity of such a classifier can be reduced
bymaximizing the margin. By applying kernel techniques, the SVM can be extended
to learn nonlinear classifying functions (Fig. .).
In Fig. ., misclassifications are unavoidable when linear classifying functions

are used (linearly inseparable case). To account for misclassifications, the penalty ξi

is introduced, which is related to the distance from the hyperplane bounding obser-
vations of the same class to observation i. ξi �  if a misclassification occurs. All
observations satisfy the following two constraints:

yi(x�i w + b) 	  − ξi , (.)

ξi 	  . (.)

With the normalisation of w, b and ξi as shown in (.), the margin equals � fwf.
he convex objective function to be minimised given the constraints (.) and (.)
is:




fwf + C

n�
i=

ξi . (.)

heparameterC, called the capacity, is related to thewidth of themargin zone. Larger
margins become possible as the value of C decreases. Using a well-established theory
for the optimisation of convex functions (Gale et al., ), we can derive the dual
Lagrangian

LD = 


w(α)�w(α) − n�

i=
αi − n�

i=
δiαi + n�

i=
γi (αi − C) − β

n�
i=

αi yi (.)
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Figure .. Mapping from a two-dimensional data space to a three-dimensional space of features

R
 " R

 using a quadratic kernel function K(x i , x j) = (x�i x j) . he three features correspond to the

three components of a quadratic form: x̃ = x , x̃ = 

xx , and x̃ = x . he transformation is thus

Ψ(x , x) = (x ,
xx , x)�. he data that are separable in the data space with a quadratic function

will be separable in the feature space with a linear function. A nonlinear SVM in the data space is

equivalent to a linear SVM in the feature space. he number of features will grow rapidly with the

dimensionality d and the degree of the polynomial kernel p, which is  in our example, making the

closed-form representation of Ψ such as that shown here practically impossible

for the dual problem:

min
α i ,δ i ,γ i ,β

max
wk ,b ,ξ i

LD . (.)

Here, for a linear SVM,

w(α)�w(α) = n�
i=

n�
j=

αiα j yi y jx
�
i x j . (.)

A more general form is applicable in order to obtain nonlinear classifying functions
in the data space:

w(α)�w(α) = n�
i=

n�
j=

αiα j yi y jK(xi , x j). (.)

he functionK(xi , x j) is called a kernel function. Since it has a closed form represen-
tation, the kernel is a convenient way of mapping low-dimensional data into a highly
dimensional (oten infinitely dimensional) space of features. It must satisfy the Mer-
cer conditions (Mercer, ), i.e. it must be symmetric and semipositive definite; in
other words it must represent a scalar product in some Hilbert space (Weyl, ).
In our study, we applied an SVM with an anisotropic Gaussian kernel

K(xi , x j) = expL−(xi − x j)�r−Σ−(xi − x j)�M , (.)

where r is a coefficient and Σ is a variance–covariance matrix. he coefficient r is
related to the classifying function complexity: as r increases, the complexity drops. If
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kernel functions allow for sufficiently rich feature spaces, the performances of SVMs
are comparable in terms of out-of-sample forecasting accuracy (Vapnik, ).

Company Score Evaluation4.3

he company score is computed as:

f (x) = x�w + b , (.)

where w = &n
i= αi yixi and b = 

(x+ + x−)�w; x+ and x− are the observations from
the opposite classes for which constraint (.) becomes equality. By substituting the
scalar product with a kernel function, we will derive a nonlinear score function:

f (x) = n�
i=

K(xi , x)αi yi + b . (.)

he nonparametric score function (.) does not have a compact closed form rep-
resentation. his means that graphical tools are required to visualise it.

Variable Selection4.4

In this section we describe the procedure and the graphical tools for selecting the
variables of the SVM model used in forecasts. We have two very important model
accuracy criteria: the accuracy ratio (AR), which will be used here as a criterion for
model selection (Fig. .), and the percentage of correctly classified out-of-sample
observations. Higher values indicate better model accuracy.
Model selection proceeds from the simplest (i.e. univariate) models to the one

with the highest AR. he problem that arises is: how do we determine the variable
that provides the highest AR across possible data samples? For a parametric model,
we would need to estimate the distribution of the coefficients at the variables and
therefore their confidence intervals. his approach, however, is practically irrelevant
for nonparametric models.
Instead we can compare models using an accuracy measure, in our case AR. We

first estimate the AR distributions for different models. his can be done using boot-
strapping (Horowitz, ). We randomly select training and validation sets, each of
which is a subsample of  solvent and  insolvent companies. We use a / ra-
tio since this is the worst case with the minimum AR. he two sets do not overlap –
they do not contain common observations. For each of these sets we apply the SVM
with parameters that provide the highest AR for bivariate models (Fig. .) and esti-
mate the ARs.hen we perform aMonte Carlo experiment: we repeat this process of
generating subsamples and computing ARs  times. Each time we will record the
ARs and then estimate their distribution.
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Figure .. he power curves for a perfect model, a random model, and some real classification

models. AR is the ratio of the two areas (A�B). It lies between  (a random model with no predictive

power) and  (a perfect model)

Figure .. he relationship between an accuracy measure (AR) and the coefficient r in the SVM

formulation. Higher r values correspond to less complex models. he median ARs were estimated for

training and validation sets of  bootstrapped subsamples each of  solvent and  insolvent

companies. A bivariate SVM was used with the variables K and K. We will be using r =  in all
SVMs discussed in this chapter
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At the end of this procedure, we obtain an empirically estimated AR distribution
for the bootstrapped subsamples. hemedian AR provides a robust measure that can
be used to compare different variables used as predictors.he same approach can be
used to compare SVM with DA and logit regression in terms of predictive power.
We compute AR for the same subsamples with the SVM, DA, and logit models. he
median improvements in AR for the SVM over DA and the SVM over the logistic
regression are also reported below.
We will start this procedure with univariate models for  variables, K–K and

K–K (as they are denoted by the Bundesbank) and variable K, which is a stan-
dard normal random variable used as a reference (Table .). For each model, the
resulting distribution of ARs will be represented as box plots (Fig. .). he broken

Table .. Summary statistics for the Bundesbank data. qα is an α quantile. IQR is the

interquartile range

Var. Name Group q0.01 Median q0.99 IQR

K1 Pre-tax profit margin Profitability −26.9 2.3 78.5 5.9
K2 Operating profit margin Profitability −24.6 3.8 64.8 6.3
K3 Cash flow ratio Liquidity −22.6 5.0 120.7 9.4
K4 Capital recovery ratio Liquidity −24.4 11.0 85.1 17.1
K5 Debt cover Liquidity −42.0 17.1 507.8 34.8
K6 Days receivable Activity 0.0 31.1 184.0 32.7
K7 Days payable Activity 0.0 23.2 248.2 33.2
K8 Equity ratio Financing 0.3 14.2 82.0 21.4
K9 Equity ratio (adj.) Financing 0.5 19.3 86.0 26.2
K10 Random Variable Test −2.3 0.0 2.3 1.4
K11 Net income ratio Profitability −29.2 2.3 76.5 5.9
K12 Leverage ratio Leverage 0.0 0.0 164.3 4.1
K13 Debt ratio Liquidity −54.8 1.0 80.5 21.6
K14 Liquidity ratio Liquidity 0.0 2.0 47.9 7.1
K15 Liquidity 1 Liquidity 0.0 3.8 184.4 14.8
K16 Liquidity 2 Liquidity 2.7 63.5 503.2 58.3
K17 Liquidity 3 Liquidity 8.4 116.9 696.2 60.8
K18 Short term debt ratio Financing 2.4 47.8 95.3 38.4
K19 Inventories ratio Investment 0.0 28.0 83.3 34.3
K20 Fixed assets ownership r. Leverage 1.1 60.6 3750.0 110.3
K21 Net income change Growth −50.6 3.9 165.6 20.1
K22 Own funds yield Profitability −510.5 32.7 1998.5 81.9
K23 Capital yield Profitability −16.7 8.4 63.1 11.0
K24 Net interest ratio Cost struct. −3.7 1.1 36.0 1.9
K25 Own funds/pension prov. r. Financing 0.4 17.6 84.0 25.4
K26 Tangible asset growth Growth 0.0 24.2 108.5 32.6
K27 Own funds/provisions ratio Financing 1.7 24.7 89.6 30.0
K28 Tangible asset retirement Growth 1.0 21.8 77.8 18.1
K29 Interest coverage ratio Cost struct. −1338.6 159.0 34350.0 563.2
K30 Cash flow ratio Liquidity −14.1 5.2 116.4 8.9
K31 Days of inventories Activity 0.0 42.9 342.0 55.8
K32 Current liabilities ratio Financing 0.3 58.4 98.5 48.4
K33 Log of total assets Other 4.9 7.9 13.0 2.1
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Figure .. Accuracy ratios for univariate SVM models. Box plots are estimated based on  random

subsamples. he AR for the model containing only the random variable K is zero

line depicts medians. he box within each box plot shows the interquartile range
(IQR), while the whiskers span to the distance of / IQR in each direction from the
median. Outliers beyond that range are denoted by circles.
Based on Fig. ., we can conclude that variables K (Debt Cover) and K (Inter-

est Coverage Ratio) provide the highest median AR, of around %. We also notice
that the variables K, K, and K yield very low accuracy: their median ARs do
not exceed . %. he model based on the random variable K has an AR of zero;
in other words it has no predictive power whatsoever. For the next step we will select
variable K, which was included in the best univariate model.
For bivariate models, we will select the best predictor from the univariate models

(K) and one of the rest that delivers the highest AR (K) (Fig. .).his procedure
will be repeated for each new variable added.he AR grows until the model has eight
variables, and then it slowly declines. Median ARs for the models with eight variables
are shown in Fig. .. he forward selection procedure cannot guarantee that the
variables selected will provide the highest accuracy. However, since many of them
are highly correlated, we can expect that the selected variables capture most of the
information.
We have also conducted experiments with subsamples of  observations. he

change in the median was extremely small (– orders of magnitude smaller than the
interquartile range). As expected, the interquartile range narrowed, i.e. the difference
between themodels with more samples becamemore statistically significant. hus, if
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Figure .. Accuracy ratios for bivariate SVM models. Each model includes variable K and one of the

remaining variables. Box plots are estimated based on  random subsamples

Figure .. Accuracy ratios for SVM models with eight variables. Each model includes the variables

K, K, K, K, K, K, K, and one of the remaining variables. Box plots are estimated based on

 random subsamples
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Figure .. Median improvement in AR. SVM vs. DA (upper line) and SVM vs. logit regression (lower

line). Box plots are estimated based on  random subsamples for the case of DA. Each model includes

variables K, K, K, K, K, K, K, and one of the remaining variables

the SVM significantly outperforms DA and the logit regression for a sample of 
observations, it will also do so for larger samples.
he SVM based on the variables K, K, K, K, K, K, K, K, and K

attains the highest median AR, around .%. For comparison we plot the improve-
ment in AR for the SVM vs. DA and logit regression for the same  subsamples.
he data used in the DA and logit models were processed as follows: if xi < q.(xi)
then xi = q.(x), and if xi � q.(xi) then xi = q.(xi); i = , , . . . , ; qα(xi) is
an α quantile of xi . hus, the DA and logit regressions applied were robust versions
that were not sensitive to outliers. Without such a procedure the improvement would
be much higher.
Figure . represents the absolute improvement obtained by SVM over DA (up-

per line) and SVM over logit regression (lower line). We can see that, for all models
containing the variables K, K, K, K, K, K, K and one of the remaining
variables, the median AR was always higher for the SVM. his means that the SVM
model always outperforms DA and logit regressions with regard to AR.

Conversion of Scores into PDs 4.5

here is another way to look at the company score. It defines the distance between
companies in terms of the distance to the boundary between the classes. he lower
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the score, the farther the company is from the class of bankrupt companies, and so
(we can assume) the lower its PD is. his means that the dependence between scores
and PDs is assumed to be monotonous. his is the only kind of dependence that was
assumed in all rating models mentioned in this chapter, and the only one we use for
the PD calibration.
he conversion procedure consists of the estimation of PDs for the observations

in the training set with a subsequent monotonisation (steps one and two) and then
the computation of the PD for a new company (step three).
Step one is the estimation of PDs for the companies in the training set. We used

kernel techniques to perform a preliminary evaluation of the PD for observation i
from the training set, i = , , . . . , n:

~PD(xi) = &n
j= Kh(xi , x j)I�y j=�&n

j= Kh(xi , x j) . (.)

A k nearest neighbor Gaussian kernel was used here. h is the kernel bandwidth.
he preliminary PDs evaluated in this way are not necessarily a monotonic func-

tion of the score. he monotonisation of ~PD i , i = , , . . . , n is achieved at step two
using the pool adjacent violators (PAV) algorithm (Barlow et al. () and Mam-

Figure .. PD and cumulative PD estimated with the SVM for a subsample of  observations from

the Bundesbank data. he variables included in the model were those for which the higher AR

achieved: K, K, K, K, K, K, K and K. he higher the score, the higher the rank of the

company
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men ()). As a result we obtain monotonised probabilities of default PD(xi) for
the observations in the training set.
Finally, at step three the PDs are computed for any observation described by x as

an interpolation between the two PDs of neighboring (in terms of the score) obser-
vations in the training set, xi and xi−, i = , , . . . , n:

PD(x) = PD(xi) + f (x) − f (xi−)
f (xi) − f (xi−) �PD(xi) − PD(xi−)� . (.)

If the score for an observation x lies beyond the range of scores for the training set,
then PD(x) equals the score of the first neighboring observation of the training set.
Figure . is an example of the cumulative PD curve (power curve) and estimated

PDs for a subsample of  companies. he PD curve has a plateau area for observa-
tions with a high score. Default probabilities can change from % to %depending
on the score.

Colour Coding 4.6

he RGB colour space is based on three primary colours, red, green and blue, that
are mixed to produce others. his is the colour coding scheme that is used in mon-
itors and TVs. It is, however, an inconvenient colour coding scheme here since we
only wish to adjust the channel responsible for colour while keeping lightness and
saturation constant. his can be achieved with the HLS colour space.
We will represent the probability of default (PD) estimated with the SVM using

two-dimensional plots where each colour denotes a specific PD.he PD is a number
that can be represented on a greyscale. For example, in the RGB encoding as (i, i, i)
where i is in the range  to  (e.g. the colour R=,G=, B= corresponds to red,
and R=, G=, B= to violet, etc.).
HLS stands for hue, lightness (or luminance) and saturation. By adjusting only

the hue and keeping the luminance and saturation fixed, we can generate simulated
colours from the range shown in Fig. .. A pure red colour corresponds to H= or
, a pure green to H=, and a pure blue to H=.
Red is oten used in finance to highlight negative information, while green and

blue are used to convey positive information. herefore, we would like to code PDs
with colours that range from red for the highest PD to blue-green for themost solvent
company. We therefore normalise the PDs such that the lowest PD has a hue of 
(green-blue) or  (green) while the highest PD has a hue of  (red). he resulting
graphs that show the data and PDs in the dimensions of variables K and K are
shown in Figs. .–..
he SVMwith the radial basis parameter r =  provides the highest AR (Fig. .).

he near-linear SVM, r = , only uses almost linear classification functions and
has a lower classification power due to this limitation (Fig. .). he SVM with an
excessively high complexity, r = ., suffers from overfitting and also has a lower
prediction accuracy (Fig. .).
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he three figures therefore correspond to three SVMs with high, average and high
complexity. he saturation was fixed at . to make the colours look more natural
and sot, and the luminance was fixed at ., the maximum possible value for the
chosen saturation. heHLS colours obtained in this way were transformed into RGB
ones and plotted by XploRe (Härdle et al., b,a) as a contour plot. he outliers
that lie beyond the % and % quantiles are plotted at the edge.
To produce the plot, a grid was generated with  steps in both the horizontal and

vertical directions. For each point of the grid, a PD was estimated and represented
in the HLS colour space. hen the HLS colour was converted into an RGB colour

Figure .. [his figure also appears in the color insert.] he luminance and saturation dimensions of

the HLS colour space. We will keep luminance and saturation constant and encode PD information

with the hue

Figure .. [his figure also appears in the color insert.] he hue dimension of the HLS colour space
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Figure .. Probability of default, estimated for a random subsample of  failing and  surviving

companies, and plotted for the variables K and K. An SVM of high complexity with a radial basis

kernel of .Σ� was used

Figure .. Probability of default, estimated for a random subsample of  failing and  surviving

companies, and plotted for the variables K and K. An SVM of average complexity with a radial

basis kernel of Σ� was used
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Figure .. Probability of default, estimated for a random subsample of  failing and  surviving

companies, and plotted for the variables K and K. An SVM of low complexity with a radial basis

kernel of Σ� was used

Figure .. Probability of default, plotted for the variables K and K. he boundaries of five risk

classes are shown, which correspond to the rating classes BBB and above (investment grade), BB, B+, B,

B– and lower
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and plotted by XploRe as a small filled quadrangle. he quadrangles evenly cover the
whole area, giving a continuous PD representation. Contour lines can also be added
to the graph, as illustrated in Fig. ..

Conclusion 4.7

In this chapter we demonstrated the application of graphical tools to variable selec-
tion, data visualisation and financial information representation, and we discussed
essential aspects of graphical analysis, such as colour coding. We believe that graph-
ical analysis will become increasingly important as nonparametric models, such as
SVM, become more and more popular. On the other hand, graphical representa-
tion can aid the acceptance of nonparametric models in various areas, such as fi-
nance, medicine, and sound and image processing. he application of graphical rep-
resentation will contribute to the development of these areas, since nonlinear non-
parametric models are better at representing reality and provide higher forecasting
accuracy.
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Introduction5.1

Technological advances in the measurement, collection, and storage of data have led
tomore andmore complex data structures. Examples of such structures includemea-
surements of the behavior of individuals over time, digitized two- or three-dimen-
sional images of the brain, and recordings of three- or even four-dimensional move-
ments of objects traveling through space and time. Such data, although recorded in
a discrete fashion, are usually thought of as continuous objects that are represented
by functional relationships. his gave rise to functional data analysis (FDA), which
was made popular by the monographs of Ramsay and Silverman (, ), where
the center of interest is a set of curves, shapes, objects, or, more generally, a set of func-
tional observations, in contrast to classical statistics where interest centers on a set of
data vectors. In that sense, functional data is not only different from the data struc-
ture studied in classical statistics, but it actually generalizes it. Many of these new
data structures require new statistical methods to unveil the information that they
carry.
here are many examples of functional data. he year-round temperature at

a weather station can be thought of as a continuous curve, starting in January and
ending in December, where the amplitude of the curve signifies the temperature level
at each day or at each hour. A collection of temperature curves fromdifferent weather
stations is then a set of functional data. Similarly, the price during an online auction
of a certain product can be represented by a curve, and a sample of multiple auction
price curves for the same product is then a set of functional objects. Alternatively,
the digitized image of a car passing through a highway toll booth can be described by
a two-dimensional curve measuring the pixel color or intensity of that image. A col-
lection of image curves from all of the cars passing through the toll booth during
a single day can then be considered to be a set of functional data. Lastly, the move-
ment of a person through time and space can be described by a four- (or even higher)
dimensional hyperplane in x-, y-, z- and time coordinates. he collection of all such
hyperplanes from people passing through the same space is again a set of functional
data.
Data visualization is an important part of any statistical analysis and it servesmany

different purposes. Visualization is useful for understanding the general structure
and nature of the data, such as the types of variables contained in the data (categori-
cal, numerical, text, etc.), their value ranges, and the balance between them. Visual-
ization is useful for detecting missing data, and it can also aid in pinpointing extreme
observations and outliers. Moreover, unknown trends and patterns in the data are of-
ten uncovered with the help of visualization. Ater identifying such patterns, they can
then be investigated more formally using statistical models.he exact nature of these
models (e.g., linear vs. log-linear) is again oten based on insight learned from visu-
alization. Finally, model assumptions are typically verified through the visualization
of residuals and other model-related variables.
While visualization is an important step in comprehending any set of data, differ-

ent types of data require different types of visualization. Take for instance the example
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of cross-sectional data vs. time series data. While the information in cross-sectional
data can oten be displayed satisfactorily with the help of standard bar charts, box-
plots, histograms or scatter plots, time series data require special graphs that can
also capture the temporal information. hemethods used to display time-series data
range from rather simple time-series plots, to streaming video clips for discrete time
series (Mills et al., ), to cluster- and calendar-based visualization for more com-
plex representations (van Wijk and van Selow, ).
Functional data are different to ordinary data in both structure and concept, and

thus require special visualization methods. While the reasons for visualizing func-
tional data are similar to those for ordinary data, functional data entail additional
challenges that require extra attention. One such challenge is the creation of func-
tional observations. Functional data are typically obtained by recovering the con-
tinuous functional object from the discrete observed data via data-smoothing. he
implication of this is that there are two levels to the study of functional data. he first
level uses the discrete observed data to recover the continuous functional object. Vi-
sualizing data at this level is important for detecting anomalies that are related to the
data generation process, such as data collection and data entry, as well as for assess-
ing the fit of the smoothed curves to the discrete observed data. his is illustrated
and discussed further in Sect. .. he second and higher level of study operates on
the functional objects themselves. Since at this level the functional objects are the
observations of interest, visualization is now used for the same reasons mentioned
previously for ordinary data: to detect patterns and trends, possible relationships,
and also anomalies. In Sect. . we describe different visualizations that enhance data
comprehension and support more formal analyses.
he visualization of functional data has not received much attention in the litera-

ture to date. Most of the work in this area has focused on the derivation ofmathemat-
ical models for functional data, with visualization playing a minor role and typically
appearing only as a side product of the analysis. Some noteworthy exceptions include
the display of summary statistics, such as the mean and the variability of a set of func-
tional objects, the use of phase-plane plots to understand the interplay of dynamics,
and the graphing of functional principal components to study sources of variability
within functional data (Ramsay and Silverman, ). Another exception is the work
of Shmueli and Jank () and Hyde et al. (), which is focused directly on the
visualization of functional data, and which suggests a few novel ideas for the display
of functional data, such as calendar plots and rug plots.
Most of the visualizations currently used for functional data are static in nature.

By “static” we mean a graph that can no longer be modified by the user without re-
running a piece of sotware code ater it has been generated. A static approach is
useful for differentiating subsets of curves by attributes (e.g., by using color), or for
spotting outliers. A static approach, however, does not permit an interactive explo-
ration of the data. By “interactive” wemean that the user can performoperations such
as zooming in and out, filtering the data, and obtaining details about the filtered data,
all within the environment of the graphical interface. Interactive visualizations that
can be used for the special structure of functional data are not straightforward to de-
vise, and so solutions have only recently begun to receive consideration (Aris et al.,
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; Shmueli et al., ). In Sect. . we describe an interactive visualization tool
designed for the display and exploration of functional data. We illustrate its features
and benefits using the example of price curves, which capture the price evolution in
online auctions.
he insightful display of functional data comes with many, many different chal-

lenges, and we are only scraping the tip of the iceberg in this essay. Functional data is
challenging due to its high object dimensionality, complex functional relationships
and the concurrency present among the functional objects. We discuss some of these
extra challenges in Sect. ..

Online Auction Data from eBay5.2

eBay (www.eBay.com) is one of the major online marketplaces and currently the
biggest consumer-to-consumer online auction site. eBay offers a vast amount of rich
bidding data. Besides the time and amount of each bid placed, eBay also records
plenty of information about the bidders, the seller, and the product being auctioned.
On any given day, several million auctions take place on eBay, and all closed auctions
from the last  days are made publicly available on eBay’s website.his huge amount
of information can be quite overwhelming and confusing to the user (i.e., either the
seller, the potential buyer, or the auction house) that wishes to incorporate this infor-
mation into his/her decision-making process. Data visualization can help to alleviate
this confusion.
Online auctions lend themselves naturally to the use of functional data for a variety

of reasons. Online auctions can be conceptualized as a series of bids placed over time.
he finite time horizon of the auction allows the study of the price evolution between
the start and the end of the auction. By “price evolution” we mean the changes in
the price due to new bids as the auction approaches its end. Conceptualizing the
price evolution as a continuous price curve allows the researcher to investigate price
dynamics via the price curve’s first and second derivatives.
It is worth noting that empirical research into online auctions has largely ignored

the temporal dimension of the bidding data, and has instead only considered a con-
densed snapshot of the auction. hat is, most research has only considered the end
of the auction by, for example, concentrating only on the final price rather than on
the entire price curve, or by only looking at the total number of bidders rather than
the function describing the bidder arrival process. Considering only the end of the
auction results in information loss, since such an approach entirely ignores the way
in which that end-point was reached. Functional data analysis is a natural solution
that allows us to avoid this information loss. In a recent series of papers, the first two
authors have taken a functional approach and shown that pairing the price evolution
with its dynamics leads to a better understanding of different auction profiles (Jank
and Shmueli, ) or to more accurate forecasts of the final auction price (Wang
et al., ).
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Visualization
at the Object Recovery Stage 5.3

Any functional data set consists of a collection of continuous functional objects, such
as a set of continuous curves describing the temperature changes over the course of
a year, or the price increases in an online auction. Despite their continuous nature,
limitations in human perception and measurement capabilities allow us to observe
these curves only at discrete time points. Moreover, the presence of human and mea-
surement error results in discrete observations that are noisy realizations of the un-
derlying continuous curve. hus, the first step in every functional data analysis is to
recover the underlying continuous functional object from the observed data. his is
typically done with the help of smoothing techniques.
A variety of different smoothers exist. One very flexible and computationally ef-

ficient choice is the penalized smoothing spline (Ruppert et al., ). Let τ , . . . , τL

be a set of knots. hen, a polynomial spline of order p is given by

f (t) = β + β t + β t
 + ċ ċ ċ + βp t

p + L�
l=

βpl(t − τl )p
+ , (.)

where u+ = uI[u
] denotes the positive part of the function u. Define the roughness
penalty

PENm(t) = ∫ �Dm f (t)�dt , (.)

where Dm f ,m = , , , . . . , denotes the mth derivative of the function f .he penal-
ized smoothing spline f minimizes the penalized squared error

PENSSλ ,m = ∫ �y(t) − f (t)�dt + λ PENm(t) , (.)

where y(t) denotes the observed data at time t and the smoothing parameter λ con-
trols the trade-off between the data fit and the smoothness of the function f . Using
m =  in (.) leads to the commonly encountered cubic smoothing spline. Other
possible smoothers include the use of B-splines or radial basis functions (Ruppert
et al., ).
We want to emphasize that we use a common set of smoothing parameters across

all functional objects. For instance, for the penalized smoothing splines, we pick
a common set of knots τ , . . . , τL , a common spline order p, and a common penal-
izing term λ, and apply this common set of smoothing parameters to all functional
objects,  � i � n. he rationale behind using a common set is that it allows us to
make comparisons among the individual functional objects. Conversely, if one were
to use, say, a large value of λ for object i but a small value for object i′, then it is not
quite clear whether an observed difference between i and i′ is attributable to a dif-
ference in the underlying population or instead to the difference in the smoothing
parameters.
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he actual choice of the smoothing parameters is oten driven by the context. In
our application, we pick the location and number of knots to reflect the bid-arrival
distribution, which is densest for the last day, and in particular for the last few mo-
ments of the auction. he choice of p depends, among other things, on whether
higher order derivatives of the curve are also desired. he value of the penalty term
λ is chosen by inspecting the resulting functional objects in order to ensure satisfac-
tory results (Ramsay and Silverman, ). An alternative approach is to pick λ so as
to balance the smoothness and the data fit (Wang et al., ). In particular, one can
measure the degree of smoothness of the spline via its distance to the smoothest pos-
sible fit, a straight line through the data. he data fit, on the other hand, can be mea-
sured as the distance between the spline and the actual data points. One then chooses
a value of λ that balances the two. We investigate and compare different smoothing
parameters for our dataset in what follows.
heprocess ofmoving fromobserved data to functional data is then as follows. For

a set of n functional objects, let ti j denote the time of the jth observation ( � j � ni)
of the ith object ( � i � n), and let yi j = y(ti j) denote the corresponding mea-
surements. Let f i(t) denote the penalized smoothing spline fitted to yi  , . . . , yin i .
hen, functional data analysis is performed on the continuous curves f i(t) rather
than on the noisy observations yi  , . . . , yin i . hat is, ater creating the functional ob-
jects f i(t), the observed data yi  , . . . , yin i are discarded and subsequent modeling,
estimation and inference are based on the functional objects only.
One important implication of this practice is that any error or inaccuracy in the

smoothing step will propagate into the inferences and conclusions made based on the
functional model. To make matters worse, the observed data are discarded ater the
functional data are created and are therefore oten hard to retrieve, and any violation
of the functional model is confounded with the error at the smoothing step. hat
is, it is hard to know whether a model violation is due to model misspecification or
due to anomalies at the smoothing step. For this reason, it is important to carefully
monitor the functional object recovery process and to detect inaccuracies early in
the process using appropriate tools. Although measures for evaluating the goodness
of fit of the functional object to the observed data are available (such as those based
on the residual sums of squares, or criteria that include the roughness penalty), it is
unwise to rely on these measures alone, and visualization becomes an indispensable
tool in the process.
Consider Figs. .–. for illustration. he figures compare the functional objects

recovered for three different smoothing scenarios. Specifically, for bidding data from
 different eBay online auctions, Fig. . shows the functional objects obtained from
penalized smoothing splines using a spline order p =  and a small smoothing pa-
rameter λ = .. Figure . on the other hand corresponds to the same spline order
(p = ) but a larger smoothing parameter (λ = ). In Fig. . we use a spline order
p = , a smoothing parameter λ = , and a data preprocessing step via interpolation.
he exact details of the smoothing are not of interest here and can be found elsewhere
Jank and Shmueli (). What is of interest here though is the fact that Figs. .-.
correspond to three different approaches to recovering functional objects from the
same data. he researcher could have taken either one of these three approaches and
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used the resulting functional objects for subsequent analysis. However, as we will
explain next, two of the three approaches lead to very unrepresentative functional
objects and therefore probably to erroneous conclusions.
Statistical conclusions typically make sense only in the context of their applica-

tion, and ignorance thereof will lead to wrong conclusions. his is no different for
visualizations. As mentioned earlier, Figs. .-. show bidding data from  eBay
auctions. All auctions are for the same item (a Palm PDA M personal digital as-
sistant), all lasted seven days, and all auctions were collected during the same time
period (March to June, ) and had a retail value of about $ at the time of col-
lection. In that sense, all  auctions are comparable. he circles correspond to the
observed bids (i.e., the times and sizes of the bids), while the solid lines correspond
to the resulting functional objects via penalized smoothing splines. he objective at
this stage is to recover, from the observed bidding data, the underlying price curve.
he price curve describes the price evolution during an auction, and its derivatives
measure the price dynamics. In that sense, the objective is to create a functional ob-
ject that is representative of the evolution of price between the start and end of the
seven-day auction. he process of bidding on eBay follows an ascending format and
the price curve should naturally reflect that. his goal is somewhat complicated by

Figure .. Creating functional objects: price curves using penalized smoothing splines with p =  and
λ = .. Note that the x-axis denotes the day of the auction, which is between  and , and the y-axis

denotes the auction price on a log scale
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Figure .. Creating functional objects: price curves using penalized smoothing splines with p =  and
λ = 

the fact that observed bids do not increasemonotonically due to eBay’s proxy bidding
system (Jank and Shmueli, ). hus, creating representative functional objects is
not a straightforward task.
Consider Fig. .. We can see that the functional objects are very “wiggly" and

certainly do not do a good job of representing the monotonic price increase in the
auction. Moreover, we also notice that some of the objects (e.g., # and #) only par-
tially cover the seven-day period and thus do not represent the price evolution over
the entire auction. he reason for this is the sotware: the penalized spline module
pspline in R, by default, returns a function that is defined only on the range of the
input data. Hence, since the bids for # and # cover only a small part of the du-
ration of the auction, so does the resulting functional object. Lastly, we notice that
there are no functional objects for # and #. he reason for this is that the pspline
module requires at least p+  data points to estimate a smoothing spline of order p.
his means that for a second-order smoothing spline we need at least ()() +  = 
points. However, both # and # only have three bids and thus no functional object is
created. his loss of information is quite disturbing from a conceptual point of view,
since data are in fact available for these two auctions and themissing (functional) data
are a consequence of the functional object generation process. In summary, if the re-
searcher were to use the smoothing approach from Fig. . “blindly" (i.e., without
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Figure .. Creating functional objects: price curves using data preprocessing via interpolation of the

bids and penalized smoothing splines with p =  and λ = 

carefully checking the results), then very unrepresentative functional objects would
be obtained and valuable information would be lost.
One reason for the poor representativeness of the objects in Fig. . is the low value

of the smoothing parameter. Increasing λ to  (Fig. .) results inmuch smoother (i.e.,
less wiggly) price curves. However, there are still some partial functional objects (#,
#) and missing functional objects (#, #). Moreover, while the higher value of λ
results in curves that are much less wiggly, some of the functional objects now appear
to be too inflexible (e.g., # may be too similar to a straight line).
We can achieve a better fit (i.e., one with more flexibility, but only a little extra

wiggliness) by increasing the order of the spline together with the magnitude of the
smoothing parameter. We can also solve the problem of partial and missing func-
tional objects by using a preprocessing step via interpolation. hat is, we interpolate
the observed bidding data and fit the smoothing spline to a discretized grid of the
interpolating function. Specifically, let t̃i j denote the time that the jth bid is placed
in auction i, and let ỹi j denote the corresponding bid amount. We interpolate the
ỹi j values linearly to obtain the interpolating function ỹi(t). Let now  � t j �  be
a commongrid of time points.We evaluate all ỹ i (t) values at the commongrid points
t j to obtain yi j �= ỹi(t j) and fit the smoothing spline to the yi j values. In this way,
we can ensure that we estimate the smoothing spline based on a sufficient number of
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points that cover the entire range of the seven-day auction. he results obtained from
doing this can be seen in Fig. .. Now the functional objects appear to be very rep-
resentative of the price evolution, much better than in the previous two approaches.
Equally importantly, there are nownomissing or partial functional objects. Inference
based on the objects in Fig. . is likely to yield the most reliable insights about the
price evolution in online auctions.
he previous examples illustrate the importance of visualization at the object re-

covery stage. Although the causes of problems at this stage may oten be quite trivial
(e.g., unfortunate sotware default settings or poor parameter choices), they are typ-
ically hard to diagnose without the use of proper visualizations.

Visualizing Functional Observations5.4

Visualizing Individual Objects and Their Dynamics5.4.1

hefirst step in statistical analysis is typically to scrutinize data summaries and graphs.
Data summaries includemeasures of central tendency, variability, skewness, etc. Tra-
ditionally, summary statistics are presented in numerical form. However, in the func-
tional setting, each summary statistic is actually a functional object, such as themean
function or the standard deviation function. Since there are usually no analytical,
closed-form representations of these functions, one resorts to graphical representa-
tions of the summarymeasures.he let panel in Fig. . shows the (pointwise) mean
price curve (solid thick line) together with the % pointwise upper and lower confi-
dence curves (broken thick lines) for the  auctions from Sect. ..We compute these
pointwise measures in the following way. For an equally spaced grid ti � [, ], we
compute the mean and standard deviation for the  auction prices at each grid point
ti . We use these two measures to construct % upper and lower confidence bounds
at each grid point. By interpolating the results, we obtain the mean and confidence
curves in Fig. .. Notice that since we only consider  auctions in this example, one
can easily identify the minimum and maximum prices of all curves. In larger data
sets, one may also want to add a curve for the (pointwise) minimum and maximum,
respectively.
One of the main advantages of functional data analysis is that it allows for an esti-

mation of derivatives. he nonparametric approach to the recovery of the functional
object guarantees that local changes in the data are well-reflected, and yet the object’s
smoothness properties also allow for a reliable estimation of partial derivatives. For
instance, setting m =  in the penalty term in (.) guarantees smooth first and sec-
ond derivatives. Knowledge of the derivatives can result in an important advantage,
especially for applications that experience change. Take the online auction setting as
an example. While the price curve f (t) describes the exact position of the price at
any time point t, it does not reveal how fast the price is moving. Attributes that we
typically associate with a moving object are its velocity (or its speed) and its accelera-
tion. Velocity and acceleration can be computed via the first and second derivatives
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Figure .. Summaries for functional objects: pointwise mean and % pointwise confidence bounds

for the price evolution, price velocity, and price acceleration of the  eBay online auctions

Figure .. Phase-plane plot of the mean velocity vs. the mean acceleration. Each number on the curve

indicates a particular day of the auction
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of f (t), respectively. Knowledge of the dynamics can be important for pinpointing
the periods during which the auction price experiences only minor change, which in
turn is important for forecasting the final price (Wang et al., ). he middle and
right panels of Fig. . show the velocity and acceleration for the  eBay auctions
together with the pointwise mean and confidence bounds.
Another way of investigating the interplay of dynamics is with the aid of so-called

phase-plane plots. Phase-plane plots graph dynamics against one another. For in-
stance, Fig. . shows a graph of mean velocity versus mean acceleration. he num-
bers on the curve indicate the day of the auction. We can see that at the start (day ),
high velocity is accompanied by low, negative acceleration (=deceleration). Accel-
eration precedes velocity, so deceleration now results in a lower velocity tomorrow,
and consequently the velocity decreases to below . on day . his trend continues
until the acceleration turns positive (between days  and ), causing the velocity to
pick up towards the end of the auction end. Phase-plane plots are useful for diagnos-
ing whether the interplay of dynamics suggests a system that could be modeled by
a suitable differential equation.

Figure .. Distribution of functional objects: histograms of price (plotted on a log scale) at days , 

and  of the  eBay online auctions. he gray line corresponds to a kernel density estimate with

a Gaussian kernel
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Another reason to explore the data is to investigate the distributions of individual
variables. Since most parametric models require the response to follow a certain dis-
tribution (typically the normal distribution), this step is important for selecting the
right model and for ensuring the appropriateness of the selected model. One stan-
dard tool for investigating the distribution of a numerical variable is the histogram.
However, generalizing the idea of a histogram to the functional context is a challeng-
ing task, since the input variable is a continuous function. One solution is to graph
the distribution of the functional object at only a few select snapshots in time. his
can be done by discretizing the object and graphing pointwise histograms (or simi-
lar plots such as probability plots) at each time point. Figure . shows snapshots of
the distributions of the  eBay price curves at days ,  and . hese snapshots allow
conclusions to be drawn about the distribution of the entire functional object. Notice
that Fig. . also shows kernel density estimates of the distributions and thus allows
conclusions to be drawn about the evolution of the functional density over days –.
One can generalize this idea to obtain the density continuously over the entire func-
tional object (rather than only at discrete time points). Specifically, Fig. . shows the
density estimates evaluated over a fine grid and subsequently interpolated. We can
see that the distribution is very flat at the beginning of the auction and it starts to
peak towards the end.

Figure .. Contour plot of the density of the functional objects over the seven-day auction. he

contour plot is obtained by calculating kernel density estimates (as done in Fig. .) over a fine grid and

subsequent interpolation over the seven-day period
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Visualizing Relationships Among Functional Data5.4.2

Ater examining each variable individually, the next step in exploratory data analy-
sis is typically to investigate relationships across several variables. For two numerical
variables, this is oten accomplished with the help of scatterplots. Oneway of general-
izing the traditional scatterplot to the functional setting is, again, to draw a sequence
of pointwise scatterplots. Figure . shows scatterplots at days ,  and  for the auc-
tion price versus the opening bid (on a log scale). We can see that the relationship
between the two variables changes over the course of time. While there is a strong
positive effect at the beginning of the auction (let panel), the magnitude of the ef-
fect decreases at day  (middle panel), and there is barely any effect at all (possibly
even a slightly negative effect) at the end of the auction (right panel). his suggests
that the relationship between the opening bid and the auction price can be mod-
eled well using a time-varying coefficient model. Of course, one aspect that remains
unexplored in this pointwise approach is a possible three-way interaction between
the opening bid, the price and the time. Such an interaction could be detected using
a three-dimensional scatterplot.However, as the let panel in Fig. . illustrates, three-
dimensional graphs have the disadvantage that they are oten cluttered and difficult
to read. We can improve the interpretability by using smoothing. he right panel in

Figure .. Relationships among functional objects: scatterplots of (log) price vs. (log) opening bid at

days ,  and  for a sample of eBay online auctions. he solid gray line corresponds to a cubic

smoothing spline with three degrees of freedom
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Figure .. [his figure also appears in the color insert.] Relationships among functional objects: the

let panel shows a -D scatterplot of opening bid (x), day of the auction (y) and price (z). he right

panel shows a smoother version of the price surface, obtained using a Nadaraya–Watson smoother. In

that plot, the x-axis is the opening bid and the y-axis is the day of the auction

Fig. . shows a smoother image of the price surface obtained using a Nadaraya–
Watson smoother. he three-way relationship between opening bid, price and time
is now much easier to see.

Visualizing Functional and Cross-sectional Information 5.4.3

As illustrated above, it is more challenging to visualize functional data than classi-
cal data. he visualization process is oten further complicated by the coupling of
functional observations with cross-sectional attribute data. For example, online auc-
tion data include not only the bid history (i.e., the times and sizes of bids), but also
auction-specific attributes corresponding to auction design (e.g., length of the auc-
tion, magnitude of the opening bid, use of a secret reserve price, use of the “Buy It
Now" option, etc.), bidder characteristics (e.g., bidder IDs and ratings), seller char-
acteristics (e.g., seller ID and rating, seller location, whether or not a seller is a “Pow-
erseller," etc.), and product characteristics (e.g., product category, product quality and
quantity, product description, etc.). All of these characteristics correspond to cross-
sectional information in that they do not change during the auction. he coupling
of time series with cross-sectional information is important because the relationship
between the two could be the main aim or at least one of the aims of the analysis.
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Figure .. Profile plot of a single five-day auction. he circles represent bids, with circle size

proportional to the bidder’s eBay rating

Standard visualization tools are geared towards the display of either time-series data
alone or cross-sectional data alone – almost never both.
he combination of time-series and cross-sectional data into one display is rare

and requires careful, application-specificmodifications of standardmethods. Shmueli
& Jank () propose the use of profile plots for displaying the temporal sequence of
bids together with additional auction attributes (such as a bidder’s rating) in the same
graph. his is illustrated in Fig. ., which describes the sequence of bids in a five-
day eBay auction. he circle size is proportional to the bidder’s eBay rating. However,
profile plots are more suitable for visualizing single auctions, and do not scale well.
Another type of plot that is suitable for visualizing functional data is the rug plot

(Hyde et al., ). A rug plot displays curves (i.e., functional objects) over calen-
dar time in order to explore the effects of event concurrency. Figure . shows a rug
plot displaying the price curves of  eBay auctions of a Palm M PDA that took
place over a three-month period. Each colored line represents an individual auction,
and it is estimated via monotone smoothing (Ramsay and Silverman, ). Mono-
tone smoothing is computationally more expensive than penalized smoothing, but
it ensures that the resulting line increases monotonically. he black line represents
the average daily closing price. We can see that daily prices vary quite significantly,
and so does the daily variation in price (gray bands). Furthermore, we can see that
there are time periods with many similar, almost parallel price curves for the same
auction durations (e.g., seven-day auctions – green curves – at around / and also
around /). Moreover, the closing prices ater / appear to be relatively low, and
so does the associated price variability. Most auctions closing at that time are seven-
day auctions with similar shapes. It would be interesting to see if one could establish
a more formal relationship between similar price patterns (i.e., parallel price curves)
and their effect on the price and its uncertainty.
he rug plot in this example combines functional data with attribute data via the

time axis (calendar time on the x-axis takes into account the start and the end of
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Figure .. [his figure also appears in the color insert.] Rug plot displaying the price evolution

(y-axis) of  online auctions over calendar time (x-axis) during a three-month period. he colored

lines show the price path of each auction, with color indicating auction length (yellow, three days; blue,

five days; green, seven days; red, ten days). he dot at the end of each line indicates the final price of the

auction. he black line represents the average of the daily closing price, and the gray band is the

interquartile range

the curve) and via color (different colors for different auction durations). Notice that
the plot scales well for a large number of auctions, but it is limited in the number of
attributes that can be coupled within the visualization.
Finally, trellis displays (Cleveland et al., ) are another method that supports

the visualization of relationships between functional data and an attribute of inter-
est. his is achieved by displaying a series of panels where the functional objects are
displayed at different levels (or categories) of the attribute of interest (see for instance
Shmueli and Jank, ). In general, while static graphs can capture some of the re-
lationships between time series and cross-sectional information, they become less
and less insightful as the dimensionality and complexity of the data increase. One
of the reasons for this is that they have to accomplish meaningful visualizations at
several data levels: relationships within cross-sectional data (e.g., find relationships
between the opening bid and a seller’s rating) and within time-series data (e.g., find
an association between the bid magnitudes, which is a sequence over time, and the
number of bids, which is yet another sequence over time). To complicate matters,
these graphs also need to portray relationships across the different data types; for ex-
ample, between the opening bid and the bid magnitudes. In short, the graphs have
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to be very flexible to accommodate all of these different criteria. Ideally, one would
want to literally “dive" into the data and explore it interactively.
Information visualization tools apply several common strategies that enable user

control over data displays (see Shneiderman and Plaisant (), Card et al. () or
Plaisant ()). Aprimary strategy is to allow the user tomanipulate a set of widgets,
such as dynamic query sliders that allow the user to select the ranges of the desired
variables, in a process oten called conditioning.he power of interaction is that users
can rapidly ( ms) and incrementally change the ranges and explore the effect of
these changes on the display. For example, users can move a slider to gradually elimi-
nate auctionswith low starting prices and see if that removes time series plots that end
with low, middle, or high closing prices. A second strategy is to have multiple views
of the data, such as scattergram, histogram, tabular, or parallel coordinate views. he
users can then select a single or multiple items in one view and see the results in
another view (“brushing"). For example, users can select the time series with sharp
increases near the finish in order to see if these had relatively few previous bids.
Selectivity and user control are essential, as they support exploration (to confirm

hypotheses) and discovery (to generate new hypotheses) (Chen, ). he large
number of possibly interesting features in high-dimensional data means that static
displays and a fixed set of data-mining algorithms may not be enough. Users can
quickly spot unusual outliers, bimodal distributions, spikes, long or short tails on one
side of a distribution, and surprising clusters or gaps. Users may also detect strong or
weak relationships, which can be positive or negative, linear, quadratic, sinusoidal,
exponential, etc.
he strongest tools are likely to be those that combine data-mining algorithms

with potent user interfaces (Shneiderman, ).hese have the potential to provide
thorough coverage through a systematic process of exploration in which users can
decompose a complex problem domain into a series of simpler explorations with
ranking criteria, and they guide user attention to potentially interesting features and
relationships (Seo and Shneiderman, ).

Interactive Information Visualization
of Functional and Cross-sectional
Information via TimeSearcher5.5

TimeSearcher is a time series visualization tool developed at the Human–Computer
Interaction Laboratory (HCIL) of the University of Maryland. TimeSearcher enables
users to see an overview of long time series (�   points), to view multivariate
time series, to select data with rectangular time boxes, and to search for a selected
pattern. Its main strength comes from its interactivity, which allows users to explore
time series data in an active way. Unlike static graphs, an interactive approach can be
more powerful and can lead to a better understanding of the data.
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TimeSearcher can be used to visualize functional data if a discretized version of
the curves is used as input. he level of discretization is chosen by the user, and is
generally selected such that the interpolated points result in apparently continuous
curves. In a collaborative project, the authors (two statisticians and two computer
scientists fromHCIL) further developed the tool to accommodate a particular type of
functional data, namely price curves from online auctions. As described in Sect. .,
auction data include bid histories, whichwe convert to smooth curves, and additional
attributes. To illustrate the enhanced features ofTimeSearcher that support functional
data exploration, we use a dataset of  magazine auctions on eBay that took place
during the fall of . he data include the bid histories (converted to curves) and
the attributes for each auction.
he first step involves aligning the auctions of different durations that took place

at different times. We chose to align the time scale so that in TimeSearcher the x-axis
shows the proportion of the full duration of the auction. We then added the auction
duration and the additional lost temporal information (day and time at which the
auction commenced and finished) to the list of attributes.

Capabilities of TimeSearcher 5.5.1

TimeSearcherwas extended for the analysis of online auction data to include attribute
data browsing with tabular views and filtering by attribute values and ranges (e.g.,
start date or seller), which were both tightly coupled to the time series visualiza-
tion. he application is available for download from http://www.cs.umd.edu/hcil/
timesearcher. Figure . shows the main screen of the visualization tool with a data-
set of  eBay auctions for magazines. he time series are displayed in the let panel,
with three series (i.e., three variables) for each auction: “Price" (top), “Velocity" (mid-
dle), and “Acceleration" (bottom), which correspond to the price curves and their first
and second derivatives, as explained in the previous section. At the bottom of the
screen, an overview of the entire time period covered by the auctions is provided to
allow users to specify time periods of interest to be displayed inmore detail in the let
panel. On the right, the attribute panel shows a table of auction attributes. Each row
corresponds to an auction, and each column to an attribute, starting with the auction
ID number. In this dataset there are  attributes, and scrolling provides access to at-
tributes that do not fit into the available space. Users can choose how much screen
space is allocated for the different panels by dragging the separators between the pan-
els, enlarging some panels and reducing others. All three panels are tightly coupled
so that an interaction in one of the panels is immediately reflected in the other panels.
Attributes are matched with time series using the auction ID number as a link.
he interactive visualization operations can be divided into time series operations

(functional data) and attribute operations. We describe these next.

Functional Object Operations
TimeSearcher treats each time series, represented by a curve, as a single observation,
and allows operations on the complete curve or on subsets of it. he following oper-
ations can be applied to the functional data (curves).
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Figure .. he main screen of TimeSearcher, showing price curves and dynamics curves (let) coupled

with attribute data (right) for  online auctions

Curve selection: Aparticular curve (or a set of curves) is selected bymouse-clicking
on any point in that curve. he selected curve is then highlighted in blue (see
Fig. .). Hovering over a curve will highlight it in orange, thereby simplifying
the task of mouse coordination.

Zooming: he overview panel at the bottom of the screen displays the time series
for one of the variables and allows users to specify the part of the time series
they want to zoom in on. he orange field of the view box determines the time
range that is displayed on the upper let panels. Any one of the panels can be
used for the display in the orange field. To zoom, users drag the sides of the
box. By zooming in, the user can focus on a specific period in the data and see
more details. In many cases zooming also results in better separation between
the curves, enabling easier selection and deselection of lines. he box can also
be dragged right and let to pan the display and show a different time period.
Regardless of the range of the detail view, the overview always displays the entire
time series and provides context for the detail view.

Focusing on a variable: To focus on a certain variable (price, velocity, or accelera-
tion curves), users can choose to view only the panel on the let, which provides
a larger view of those curves. his results in clearer separation between curves,
which can be especially useful when there are many auctions. Users can specify
the number of variables to be shown (here one, two or three) and select which
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of the variables should be displayed. his allows extra flexibility in terms of the
choice of derivatives to display.

Filtering curves: Users can filter the curves to see only auctions of interest by using
filter widgets called TimeBoxes. One can click on the TimeBox icon of the tool-
bar and draw a box on the time series panel of interest. Every curve that passes
through the box (between the bottom and top edges of the box for the duration
that the box occupies) is kept, while all of the other curves are filtered by graying
them out.he corresponding auctions are also removed from the attribute panel
on the right. Figure . shows a typical filter TimeBox used to view only the
auctions that end with high price velocity. In the attributes panel, users can see
that all of these auctions finished around the weekend. hey can apply multiple
TimeBoxes to the same or separate variables in order to form conjunctive queries
(i.e., a logical AND combination of individual TimeBox queries). For example,
users can search for auctions that end with low prices and high velocities.

Searching for patterns in curves: When comparing price curves and (especially)
price dynamics, one useful tool is the pattern search. his is achieved by draw-
ing a SearchBox on a selected curve for a certain time duration. he pattern is
the part of the series that the SearchBox covers horizontally, and this SearchBox
is searched Simultaneously for all other curves at any time point in the auction.
here is a tolerance handle on the right of the SearchBox that allows the simi-
larity to be specified. For example, users can search for auctions that have price
curves with steep escalations at any time during the auction. TimeBoxes and
SearchBoxes can be combined into multistep interactive searches.

Functional summaries: One can obtain numerical summaries for a set of func-
tional objects using the riverplot in Fig. ..he riverplot is a continuous form of
the boxplot and displays the (pointwise) median together with the % and %
confidence bounds. he riverplot allows for a condensed display of the average
behavior of all curves together with the uncertainty around this average.

Attribute Operations
Manipulating the attribute data and observing the coupled functional data are useful
ways of learning about relationships within the data across the different data types.
he following operations support such explorations (in addition to more standard
explorations of attribute data alone).
Sorting auctions: Users can sort the auctions by any attribute by clicking on the

attribute name in the first row. A click sorts in ascending order, while the next
click sorts in descending order. Sorting can be performed on numerical as well
as text attributes. he sorting also recognizes day-of-the-week and time formats.
he sorting is useful for learning about the ranges of the values for the different
attributes, the existence of outliers, the absence of certain values, and possible
errors and duplications in the data. Furthermore, sorting can allow users to visu-
ally spot patterns of “similar" auctions, bymaking auctions with similar attribute
values appear consecutively in the auction list. Users can sort according to more
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than one column. In addition, the order of the attribute columns can be changed
by clicking and dragging the attribute names to the right or let.

Highlighting groups of auctions: Ater the attribute/s of interest have been sorted,
groups of auctions can be selected and their corresponding time series in the let
panels are highlighted. For example, if the attributes table is sorted by the end
day of the auction, it is easy to select all auctions that ended on a weekday from
the table, and see the corresponding time series highlighted, which reveals that
they are the auctions that tend to end with the highest prices (Fig. .).

Summary statistics: he summary statistics tab shows the mean, standard devia-
tion, minimum, max,median, and the quartiles for each attribute for the selected
auctions. his is updated interactively when the auctions are filtered with Time-
Boxes, or when users select a subset of auctions manually. For example, while
the median seller rating of all auctions is , when users apply a TimeBox to
select the auctions that started with a low price, the median seller rating jumps
to . Moving the TimeBox to select auctions that started with a high price re-
sults in a median seller rating of , which may imply that starting the auction
with a low starting price is a strategy that tends to be employed by experienced
sellers.

he array of interactive operations described above support data exploration, and
Shmueli et al. () describe how these operations can be used for the purpose of
decision-making, through a semi-structured exploration. Exploration can be guided
by a set of hypotheses, and the results can then help the user to find support for and
direct the direct the user towards suitable formal statistical models. In particular,
they show how insights gained from the visual exploration can improve seller, bidder,
auction house, and other vendors’ understanding of the market, thereby assisting
their decision-making processes.

Forecasting with TimeSearcher5.5.2

Functional object value forecasting is an area of functional data analysis that has not
received much attention so far. It involves forecasting the value of a curve at a par-
ticular time t (either a particular curve in the data or the average curve), based on
information contained in the functional data and the attribute data. We propose the
following general forecasting procedure:
Select similar items: For a partial curve (e.g., an ongoing auction that has not

closed), we select the subset of curves that are closest to the curve of interest
in the sense of similar attributes and curve evolutions and dynamics. For the
attribute criterion, this can be achieved either by sorting by attributes and se-
lecting items with similar values for the relevant attributes (e.g., auctions of the
same duration and with the same opening price), or directly by using a filtering
facility that allows the user to specify limits on the values of each of the attributes
of interest (this facility is currently not available in the public version of Time-
Searcher). When curve-matching, TimeBoxes can be used to find curves that
have similar structures during the time periods of interest (e.g., auctions with
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high price velocities on day  and high prices on day ). We are currently work-
ing on developing a facility for “curve-matching" that is more automated. For
instance, consider the case of forecasting the closing price of a seven-day auc-
tion that is scheduled to close on a Sunday, with an opening price of $., and
that has displayed very low dynamics so far. Let us assume that we observe this
auction until day  (% of the auction duration). Figure . illustrates a selec-
tion of auctions that all have similar attributes to the above auction (all are seven
days long, have an opening price of less than $, and close on a weekend), and
also have similar curve structures during the first six days of the auction (low
velocities, as shown by the filtering box placed on the velocity curves).

similar set: Make a forecast based on the We then use the selected “similar" set of
curves tomake a prediction for time t by examining their riverplots. hemedian
at time t is then the forecast of interest, and the quartiles at that time can serve
as a confidence interval. Although this is a very crude method, it is similar in
concept to collaborative filtering.hekey is to have a large enoughdataset, so that
the “similar" subset is large enough. To continue our illustration, Fig. . shows
the riverplot of the subset of “similar" auctions. he forecasted closing price is
then the median of the closing prices of the subset of auctions, and we can learn
about the variability in these values from the percentile curves on the riverplot.

he forecasting module is still under development, with the goal being a more auto-
mated process. However, the underlying concept is that interactive visualization can
support more advanced operations (including forecasting) than static visualization.

Figure .. Filtering the data to find a set of “similar" auctions to an ongoing open auction
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Figure .. Riverplot of the subset of “similar" auctions. he thick black line is the pointwise median

used for forecasting. he dark gray bands around the median show the  and % percentile range

and the light gray bands show the envelope for all similar auctions. his can be seen as a continuous

form of box plot

Further Challenges and Future Directions 5.6

Functional data analysis is an area of statistical research that is receiving a growing
amount of interest. To date, most of this interest has centered around developing new
functional models and techniques for estimating them, while little effort has been
expended on exploratory techniques, especially visualization. Classical statistics has
become very popular due to both the availability of a wide array of models and the
ability to check the appropriateness of these models.he results obtained by applying
a particular model will only be wholeheartedly supported if the model is shown to
be appropriate. However, this requires that the data can be compared to the model.
In this sense, the widespread acceptance and usage of functional models is only go-
ing to happen when a range of visualization tools that perform similar tasks to their
counterparts in classical statistics are made available.
In this paper, we have outlined a variety of functional visualizations that are avail-

able. However, significant challenges remain. hese challenges range from concur-
rency of functional objects, to high dimensionality, to complex functional relation-
ships.
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Concurrency of Functional Events 5.6.1

he standard assumption in functional data analysis is independence of the func-
tional observations in the data set. his assumption may not, however, always be
plausible. For instance, if the functional object represents the evolution of the price
in an online auction, then it is quite possible that the price in one auction is affected by
the price of an object in another action.hat is, if the price in one auction jumps to an
unexpectedly high level, then this may cause some bidders to leave that auction and
move on to another auction of a similar item. his results in a dependence in price
between the two auctions. Or more generally, the result is a dependence between the
two functional objects. Capturing this kind of dependence in a mathematical model
is not a straightforward task. For a start, how can we unveil such a concurrency in
graphical fashion? One promising attempt in this direction is the work of Hyde et al.
(), which suggests that rug plots can be used for the functional objects and their
derivatives.

Dimensionality of Functional Data 5.6.2

Another challenge when visualizing functional data is the dimensionality of the data.
As pointed out earlier, it is not uncommon for functional data to have three, four or
even more dimensions. Most standard visualization techniques work well for two di-
mensions at most, which is the number of dimensions of the paper that we write on
and the computer screen that we look at. Moving beyond two dimensions is a chal-
lenge in any kind of visualization task, including that of visualizing functional data.

Complex Functional Relationships 5.6.3

In addition to the high dimensionality, functional data is also oten characterized
by complex functional relationships. Take for instance the movement of a object
through time and space. his movement may be well characterized by a three- or
four-dimensional differential equation (Ramsay and Silverman, ). However, how
should we visualize a differential equation? One way is to use phase-plane plots like
that in Fig. .. Other approaches have been proposed in Schwalbe ().
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Introduction6.1

his chapter concerns risk processes, which may be the most suitable for computer
visualization of all insurance objects. At the same time, risk processes are basic in-
struments for any non-life actuary – they are needed to calculate the amount of loss
that an insurance company may incur.hey also appear naturally in rating-triggered
step-up bonds, where the interest rate is bound to random changes in company rat-
ings, and catastrophe bonds, where the size of the coupon payment depends on the
severity of catastrophic events.
A typicalmodel of insurance risk, the so-called collective riskmodel, has twomain

components: one characterizing the frequency (or incidence) of events and another
describing the severity (or size or amount) of the gain or loss resulting from the oc-
currence of an event (Klugman et al., ; Panjer and Willmot, ; Teugels and
Sundt, ). Incidence and severity are both generally assumed to be stochastic and
independent of each other. Together they form the backbone of a realistic risk pro-
cess. Consequently, both must be calibrated to the available historical data. All three
visualization techniques discussed in Sect. .:

mean excess function
limited expected value function
probability plot

are relatively simple, but at the same time they provide valuable assistance during the
estimation process.
Once the stochastic models governing the incidence and severity of claims have

been identified, they can be combined into the so-called aggregate claim process,

St = N t�
k=

Xk , (.)

where the claim severities are described by the random sequence �Xk� with a finite
mean, and the number of claims in the interval (, t] is modeled by a counting pro-
cess Nt , oten called the claim arrival process.
he risk process �Rt�t
 describing the capital of an insurance company is then

defined as

Rt = u + c(t) − St , (.)

where the non-negative constant u stands for the initial capital of the company and
c(t) is the premium the company receives for sold insurance policies.
he simplicity of the risk process (.) is only illusionary. In most cases no analyt-

ical conclusions regarding the time evolution of the process can be drawn. However,
it is this evolution that is important to practitioners, who have to calculate function-
als of the risk process, like the expected time to ruin and the ruin probability. his
calls for efficient numerical simulation schemes (Burnecki et al., ) and powerful
inference tools. In Sect. . we will present four such tools:
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ruin probability plot
density evolution plot
quantile lines
probability gates.

All four of these techniques permit an immediate evaluation of model adequacy and
the risks faced by the company based on visual inspection of the generated plots. As
such they are especially useful for high-levelmanagers who are interested in a general
overview of the situation and do not need to study all of the computational details
underlying the final results.
To illustrate the usefulness of the presented visualization tools, throughout this

chapter we will apply them to two datasets. he first one, studied in detail, is the
Property Claim Services (PCS) dataset, which covers losses resulting from catas-
trophic events in the USA. he data include – market loss amounts in US
dollars (USD), adjusted for inflation using the Consumer Price Index. Only natural
events that caused damage exceeding fivemillion dollars were taken into account, see
Fig. .. he second dataset, used here solely to illustrate the risk process inference
tools, concerns major inflation-adjusted Danish fire losses of profit (inDanish Krone,
DKK) that occurred between  and  and were recorded by Copenhagen Re.

Figure .. Graph of the PCS catastrophe loss data, –. he two largest losses in this period

were caused by Hurricane Andrew ( August ) and the Northridge Earthquake ( January ).

From XploRe
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Software6.2

Visualization tools would not be very useful without adequate sotware. All of meth-
ods discussed in this chapter are demonstrated using two sotware libraries and one
standalone application.he Insurance Library of XploRe (www.xplore-stat.de) is a col-
lection of quantlets that illustrate various topics related to insurance (Čižek et al.,
). It is accompanied by online, hyperlinked web tutorials that are freely down-
loadable from the Web (www.xplore-stat.de/tutorials/_Xpl_Tutorials.html).
he Ruin Probabilities toolbox for MATLAB is a set of m-functions with a graphi-

cal user interface (GUI) that is primarily created to visualize risk processes and evalu-
ate ruin probabilities (Miśta, ). It can be downloaded fromwww.im.pwr.wroc.pl/
~hugo/stronaHSC/Podstrony/Programy.html.
he SDE-Solver is a standalone application for the Windows environment. It en-

ables the construction and visualization of solutions of stochastic differential equa-
tions (SDEs) with Gaussian, Poisson, and stable random measures (Janicki et al.,
); for SDE modeling concepts, the reader should consult (Kloeden and Platen,
).he graphics make use of quantile lines and density evolution techniques and
introduce the interesting concept of interactive probability gates, which give the prob-
ability that the simulated process passes through a specified interval at a specified
point in time (for details see Sect. ..). More information about the sotware can
be found at www.math.uni.wroc.pl/~janicki/solver.html.

Fitting Loss andWaiting Time
Distributions6.3

he derivation of loss and waiting times (interarrival) distributions from insurance
data is not an easy task. here are three basic approaches: empirical, analytical, and
moment-based. he analytical approach is probably the one most oten used in prac-
tice and certainly the one most frequently adopted in the actuarial literature. It re-
duces to finding an analytical expression that fits the observed data well and is easy
to handle (Daykin et al., ).
Having a large collection of distributions to choose from, we need to narrow our

selection to a single model and a unique parameter estimate. he type of objective
loss distribution (the waiting time distribution can be analyzed analogously) can eas-
ily be selected by comparing the shapes of the empirical and theoretical mean excess
functions. Goodness-of-fit can be verified by plotting the corresponding limited ex-
pected value functions or drawing probability plots. Finally, the hypothesis that the
modeled random event is governed by a certain loss distribution can be statistically
tested (but is not discussed in this chapter; for a recent review of goodness-of-fit hy-
pothesis testing see Burnecki et al. ()).
In the following subsections we will apply the abovementioned visual inference

tools to PCS data. hey will narrow our search for the optimal analytical model of
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the loss and waiting time distributions to one or two probability laws. Moreover, they
will allow for a visual assessment of the goodness-of-fit.

Mean Excess Function 6.3.1

For a random claim amount variable X, the mean excess function or mean resid-
ual life function is the expected payment per claim on a policy with a fixed amount
deductible of x, where claims of less than or equal to x are completely ignored:

e(x) = E(X − x�X � x) = ∫
�
x � − F(u)�du

 − F(x) . (.)

In practice, the mean excess function e is estimated by ên , based on a representative
sample x , . . . , xn :

ên(x) = &x i�x xi

#�i � xi � x� − x . (.)

Note that in a financial risk management context, switching from the right tail to the
let tail, e(x) is referred to as the expected shortfall (Weron, ).
When considering the shapes of mean excess functions, the exponential distri-

bution with the cumulative distribution function (cdf) F(x) =  − exp(−βx) plays
a central role. It has the memoryless property, meaning that whether or not the in-
formation X � x is given, the expected value of X − x is the same as if one started
at x =  and calculated E(X). he mean excess function for the exponential distri-
bution is therefore constant. One can in fact easily calculate that e(x) = �β for all
x �  in this case.
If the distribution of X has a heavier tail than the exponential distribution, we

find that the mean excess function ultimately increases, and when it has a lighter tail
e(x) ultimately decreases. Hence, the shape of e(x) provides important information
on the sub-exponential or super-exponential nature of the tail of the distribution at
hand. hat is why, in practice, this tool is used not only to discover the relevant class
of the claim size distribution, but also to investigate all kinds of phenomena. We will
apply it to data on both PCS loss and waiting times.
Mean excess functions of the well known and widely used distributional classes

are given by the following formulae (selected shapes are sketched in Fig. ., while
the empirical mean excess functions ên(x) for the PCS catastrophe data are plotted
in Fig. .):

log-normal distribution with cdf F(x) = Φ�(log x − μ)�σ�:
e(x) = exp gμ + σ

 h| −Φ g ln x−μ−σ
σ h}

| −Φ g ln x−μ
σ h} − x ,

where Φ(ċ) is the standard normal (with mean  and variance ) distribution
function;
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Pareto distribution with cdf F(x) =  − �λ�(λ + x)�α :

e(x) = λ + x

α −  , α �  ;
Burr distribution with cdf F(x) =  − �λ�(λ + xτ)�α :

e(x) = λ	τΓ >α − 
τ ? Γ > + 

τ ?
Γ(α) ċ : λ

λ + xτ
;−α

ċ \ − B: + 

τ
, α − 

τ
,

xτ

λ + xτ
;^ − x ,

where Γ(ċ) is the standard gamma function and B(ċ, ċ, ċ) is the beta function;
Weibull distribution with cdf F(x) =  − exp(−βxτ):

e(x) = Γ ( + �τ)
β	τ

\ − Γ : + 

τ
, βxτ;^ exp (βxτ) − x ,

where Γ(ċ, ċ) is the incomplete gamma function;
gamma distribution with cdf F(x) = ∫

x
 β(βs)α− exp(−βs)�Γ(α)ds:

e(x) = α

β
ċ  − F (x , α + , β)

 − F (x , α, β) − x ,

where F(x , α, β) is the gamma cdf;
mixture of two exponential distributions with cdf F(x) = a � − exp(−βx)� +( − a)�− exp(−βx)�:

e(x) = a
β
exp (−βx) + −a

β
exp (−βx)

a exp (−βx) + ( − a) exp (−βx) .
A comparison of Figs. . and . suggests that log-normal, Pareto, and Burr dis-
tributions should provide a good fit for the loss amounts. he maximum likelihood
estimates of the parameters of these three distributions are as follows: μ = .
and σ = . (log-normal), α = . and λ = .� (Pareto), and α = .,
λ = .�  and τ = . (Burr). Unfortunately, the parameters of the Burr dis-
tribution imply that the first moment is infinite, which contradicts the assumption
that the random sequence of claim amounts �Xk� has a finite mean.his assumption
seems natural in the insurance world, since any premium formula usually includes
the expected value of Xk . herefore, we exclude the Burr distribution from the anal-
ysis of claim severities.
he classification of waiting time data is not this straightforward. If we discard

large observations, then the log-normal and Burr laws should yield a good fit. How-
ever, if all of the waiting times are taken into account, then the empirical mean excess
function ên(x) approximates a straight line (although one that oscillates somewhat),
which suggests that the exponential law could be a reasonable alternative.
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Figure .. Top panel: shapes of the mean excess function e(x) for the log-normal (dashed line),

gamma with α <  (dotted line), gamma with α �  (solid line) and a mixture of two exponential

distributions (long-dashed line). Bottom panel: shapes of the mean excess function e(x) for the Pareto
(dashed line), Burr (long-dashed line), Weibull with τ <  (solid line) and Weibull with τ �  (dotted line)

distributions. From XploRe
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Figure .. he empirical mean excess function ên(x) for the PCS catastrophe loss amounts in billions
of USD (top panel) and waiting times in years (bottom panel). Comparison with Fig. . suggests that

log-normal, Pareto, and Burr distributions should provide a good fit for loss amounts, while

log-normal, Burr, and exponential laws work well for the waiting times. From: XploRe
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Limited Expected Value Function 6.3.2

he limited expected value function L of a claim size variable X, or of the correspond-
ing cdf F(x), is defined as

L(x) = E�min(X , x)� = ∫
x


ydF(y) + x � − F(x)� , x �  . (.)

he value of the function L at point x is equal to the expectation of the cdf F(x)
truncated at this point. In other words, it represents the expected amount per claim
retained by the insured on a policy with a fixed amount deductible of x.he empirical
estimate is defined as follows:

L̂n(x) = 

n

���
x j<x

x j + �
x j
x

x
�� . (.)

In order to fit the limited expected value function L of an analytical distribution to
the observed data, the estimate L̂n is first constructed. hereater, one attempts to
find a suitable analytical cdf F such that the corresponding limited expected value
function L is as close to the observed L̂n as possible.
he limited expected value function (LEVF) has the following important proper-

ties:
(i) the graph of L is concave, continuous and increasing
(ii) L(x) � E(X) as x � U
(iii) F(x) = − L′(x), where L′(x) is the derivative of the function L at point x; if F

is discontinuous at x, then the equality holds true for the right-hand derivative
L′(x+).

he limited expected value function is a particularly suitable tool for our purposes
because it represents the claim size distribution in the monetary dimension. For ex-
ample, we have L(U) = E(X) if it exists. he cdf F, on the other hand, operates
on the probability scale, i.e., it takes values of between  and . herefore, it is usu-
ally difficult to work out how sensitive the price of the insurance – the premium – is
to changes in the values of F by looking only at F(x), while the LEVF immediately
shows how different parts of the claim size cdf contribute to the premium.Aside from
its applicability to curve-fitting, the function L also turns out to be a very useful con-
cept when dealing with deductibles Burnecki et al. (). It is alsoworthmentioning
that there is a connection between the limited expected value function and the mean
excess function:

E(X) = L(x) + P(X � x)e(x) . (.)

he limited expected value functions (LEVFs) for all of the distributions considered
in this chapter are given by the following formulae:

exponential distribution:

L(x) = 

β
� − exp(−βx)� ;
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log-normal distribution:

L(x) = exp2μ + σ


3Φ2 ln x − μ − σ

σ
3 + x \ −Φ: ln x − μ

σ
;^ ;

Pareto distribution:

L(x) = λ − λα(λ + x)−α
α −  ;

Burr distribution:

L(x) = λ	τΓ >α − 
τ ? Γ > + 

τ ?
Γ(α) B: + 

τ
, α − 

τ
;

xτ

λ + xτ
; + x : λ

λ + xτ
;α

;

Weibull distribution:

L(x) = Γ ( + �τ)
β	τ

Γ : + 

τ
, βxα; + xe−βx

α

;

gamma distribution:

L(x) = α

β
F(x , α + , β) + x � − F(x , α, β)� ;

mixture of two exponential distributions:

L(x) = a

β
� − exp (−βx)� +  − a

β
� − exp (−βx)� .

From a curve-fitting point of view, the advantage of using the LEVFs rather than
the cdfs is that both the analytical function and the corresponding observed func-
tion L̂n , based on the observed discrete cdf, are continuous and concave, whereas
the observed claim size cdf Fn is a discontinuous step function. Property (iii) implies
that the limited expected value function determines the corresponding cdf uniquely.
When the limited expected value functions of two distributions are close to each
other, not only are the mean values of the distributions close to each other, but the
whole distributions are too.
Since the LEVF represents the claim size distribution in the monetary dimension,

it is usually used exclusively to analyze price data. In Fig. ., we depict the empirical
and analytical LEVFs for the two distributions that best fit the PCS catastrophe loss
amounts (as suggested by the mean excess function). We can see that the Pareto law
is definitely superior to the log-normal one.

Probability Plot6.3.3

he purpose of the probability plot is to graphically assess whether the data comes
from a specific distribution. It can provide some assurance that this assumption is not
being violated, or it can provide an early warning of a problemwith our assumptions.
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Figure .. he empirical (solid line) and analytical limited expected value functions (LEVFs) for the

log-normal (dashed line) and Pareto (dotted line) distributions for the PCS loss catastrophe data. From

XploRe

he probability plot is constructed in the following way. First, the observations
x , . . . , xn are ordered from the smallest to the largest: x() � ċ ċ ċ � x(n). Next, they
are plotted against their observed cumulative frequency, i.e., the points (the crosses
in Figs. .–.) correspond to the pairs (x(i), F−([i − .]�n)), for i = , . . . , n. If
the hypothesized distribution F adequately describes the data, the plotted points fall
approximately along a straight line. If the plotted points deviate significantly from
a straight line, especially at the ends, then the hypothesized distribution is not ap-
propriate.
Figure. . shows a Pareto probability plot of the PCS loss data. Apart from the

two very extremeobservations (corresponding toHurricaneAndrew andNorthridge
Earthquake), the points more or less constitute a straight line, validating the choice
of the Pareto distribution. Figures . and . present log-normal probability plots
of the PCS data. To this end we applied the standard normal probability plots to the
logarithms of the losses and waiting times, respectively. Figure . suggests that the
log-normal distribution for the loss severity is not the best choice, whereas Fig. .
justifies the use of that particular distribution for the waiting time data. Figure .
depicts an exponential probability plot of the latter dataset. We can see that the expo-
nential distribution is not a very good candidate for the underlying distribution of the
waiting time data – the points deviate from a straight line at the far end. Nevertheless,
the deviation is not that large, and the exponential law may be an acceptable model.
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Figure .. Pareto probability plot of the PCS loss data. Apart from the two very extreme observations

(Hurricane Andrew and Northridge Earthquake), the points (crosses) more or less constitute a straight

line, validating the choice of the Pareto distribution. he inset is a magnification of the bottom let part

of the original plot. From the Ruin Probabilities Toolbox

Figure .. Log-normal probability plot of the PCS loss data. he x-axis corresponds to logarithms of

the losses. he deviations from the straight line at both ends question the adequacy of the log-normal

law. From the Ruin Probabilities Toolbox
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Figure .. Log-normal probability plot of the PCS waiting time data. he x-axis corresponds to

logarithms of the losses. From the Ruin Probabilities Toolbox

Figure .. Exponential probability plot of the PCS waiting time data. he plot deviates from a straight

line at the far end. From the Ruin Probabilities Toolbox

hese probability plots suggest that, as far as the loss amounts are concerned, the
Pareto law provides a much better fit than the log-normal distribution. In fact, apart
from the two very extreme observations (Hurricane Andrew and Northridge Earth-
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quake), it does provide a very good fit. Note that the procedure of trimming the top
–% of the data before calibration is known as “robust estimation” and it leads to
very similar conclusions (see a recent paper by Chernobai et al., ).
From the probability plots, we can also infer that the waiting time data can be

described by the log-normal and – to some degree – the exponential distribution.
he maximum likelihood estimates of the parameters of these two distributions
are given by μ = −. and σ = . (log-normal) and β = .
(exponential).

Risk Process and its Visualization6.4

he risk process (.) is the sum of the initial capital and the premium function mi-
nus the aggregate claim process governed by two random phenomena – the severity
and incidence of claims. In many practical situations, it is reasonable to consider the
counting process Nt (responsible for the incidence of events) to be (i) a renewal pro-
cess, i.e., a counting processwith interarrival times that are i.i.d. positive randomvari-
ables with a mean of �λ, and (ii) independent of the claim severities �Xk�. In such
a case, the premium function can be defined in a natural way as c(t) = ( + θ)μλt,
where μ is the expectation of Xk and θ �  is the relative safety loading on the
premium which “guarantees” the survival of the insurance company. he (homoge-
neous) Poisson process (HPP) is a special case of the renewal process with exponen-
tially distributed waiting times.
Two standard ways of presenting sample trajectories of the risk process are dis-

played in Figs. . and .. Here, we use the Danish fire losses dataset, which can
be modeled by a log-normal claim amount distribution with parameters μ = .
and σ = . (obtained via maximum likelihood) and a HPP counting process with
a monthly intensity λ = .. he company’s initial capital is assumed to be u = 
million DKK. In Fig. ., five real (discontinuous) sample realizations of the resulting
risk process are presented, whereas in Fig. . the trajectories are shown in a con-
tinuous fashion. he latter way of depicting sample realizations seems to be more
illustrative. Also note that one of the trajectories falls below zero, indicating a sce-
nario leading to bankruptcy of the insurance company.

Ruin Probability Plots6.4.1

When examining the nature of the risk associated with a business portfolio, it is oten
interesting to assess how the portfolio may be expected to perform over an extended
period of time. his is where the ruin theory (Grandell, ) comes in handy. Ruin
theory is concerned with the excess of the income c(t) (with respect to a business
portfolio) over the outgoings, or claims paid, S(t). his quantity, referred to as the
insurer’s surplus, varies over time. Specifically, ruin is said to occur if the insurer’s
surplus reaches a specified lower bound, e.g., minus the initial capital. his can be
observed in Fig. ., where the time of ruin is denoted by a star. One measure of risk
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Figure .. Discontinuous visualization of the trajectories of a risk process. he initial capital u = 
million DKK, the relative safety loading θ = ., the claim size distribution is log-normal with

parameters μ = . and σ = ., and the driving counting process is a HPP with monthly
intensity λ = .. From the Ruin Probabilities Toolbox

Figure .. Alternative (continuous) visualization of the trajectories of a risk process. he bankruptcy

time is denoted by a star. he parameters of the risk process are the same as in Fig. .. From the Ruin

Probabilities Toolbox
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is the probability of such an event, which clearly reflects the volatility inherent in the
business. In addition, it can serve as a useful tool when planning how the insurer’s
funds are to be used over the long term.
he ruin probability in a finite time T is given by

ψ(u, T) = P : inf
<t<T

�Rt� < ; . (.)

Most insurance managers will closely follow the development of the risk business
and increase the premium if the business behaves badly. he planning horizon may
be thought of as the sum of the following: the time until the risk business is found to
behave “badly,” the time until the management reacts, and the time until the decision
to increase the premium takes effect (Grandell, ).
In Fig. ., a three-dimensional (-D) visualization of the ruin probability with

respect to the initial capital u (varying from zero to eight million DKK) and the time
horizon T (ranging from zero to five months) is depicted.he remaining parameters
of the risk process are the same as those used in Figs. . and ., except that the
relative safety loading was raised from θ = . to θ = .. We can see that the
ruin probability increases with the time horizon and decreases as the initial capital
grows.
he ruin probability in finite time can always be computed directly using Monte

Carlo simulations. Naturally, the choice of the intensity function and the distribution

Figure .. Ruin probability plot with respect to the time horizon T (let axis, in months) and the

initial capital u (right axis, in million DKK). he relative safety loading θ = .; other parameters of
the risk process are the same as in Fig. .. From the Ruin Probabilities Toolbox



Visualization Tools for Insurance Risk Processes 915

of claim severities heavily affects the simulated values and the ruin probability. he
graphical tools presented below can help in assessingwhether the choicesmade result
in a reasonable risk process and, hence, greatly reduce the time needed to construct
an adequate model.

Density Evolution 6.4.2

Density evolution plots (and their two-dimensional projections) are a visually at-
tractive method of representing the time evolution of a process. At each time point
t = t , t , . . . , tn , a density estimate of the distribution of process values at this time
point is evaluated; see Fig. . (the same parameters of the risk process as those in
Fig. . were used). hen the densities are plotted on a grid of t values. he three-
dimensional surface obtained can be further rotated to better present the behavior of
the process over a particular interval.
A two-dimensional projection of the density evolution plot (see Fig. .) reveals

equivalent information to that represented by the quantile lines (see Sect. ..).
However, in this case, the presented visual information is more attractive to the eye,
but not that rigid. Depending on the discretization of the time and process value in-
tervals and the kernel density estimate used, slightly different density evolution plots
can be obtained (Janicki and Izydorczyk, ; Miśta, ).

Figure .. [his figure also appears in the color insert.] hree-dimensional visualization of the

density evolution of a risk process with respect to the risk process value Rt (let axis) and time t (right

axis). he parameters of the risk process are the same as in Fig. .. From the Ruin Probabilities

Toolbox
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Figure .. Two-dimensional projection of the density evolution depicted in Fig. .. From the Ruin

Probabilities Toolbox

Quantile Lines6.4.3

hefunction x̂p(t) is called a sample p-quantile line if for each t � [t , T], x̂p(t) is the
sample p-quantile, i.e., if it satisfies Fn(xp−) � p � Fn(xp), where Fn is the empirical
distribution function (edf). Recall that for a sample of observations �x , . . . , xn�, the
edf is defined as

Fn(x) = 

n
#�i � xi � x� , (.)

in other words, it is a piecewise constant function with jumps of size �n at points xi

Burnecki et al. ().
Quantile lines are a very helpful tool in the analysis of stochastic processes. For

example, they can provide a simple justification of the stationarity of a process (or the
lack of it); (see Janicki and Weron, ). In Figs. ., ., and ., they visualize
the evolution of the risk process.
Quantile lines can be also a useful tool for comparing twoprocesses; see Fig. .. It

depicts quantile lines and two sample trajectories of the risk process and its diffusion
approximation; consult Burnecki et al. () for a discussion of different approxi-
mations in the context of ruin probability. he parameters of the risk process are the
same as in Fig. .. We can see that the quantile lines of the risk process and its ap-
proximation coincide. his justifies the use of the Brownian approximation for these
parameters of the risk process.
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Figure .. [his figure also appears in the color insert.] A Poisson-driven risk process (discontinuous

thin lines) and its Brownian motion approximation (continuous thin lines). he quantile lines enable an

easy and fast comparison of the processes. he thick solid lines represent the sample ., . . . , .-quantile

lines based on   trajectories of the risk process, whereas the thick dashed lines correspond to their

approximation counterparts. he parameters of the risk process are the same as in Fig. .. From the

Ruin Probabilities Toolbox

We now return to the PCS dataset. To study the evolution of the risk process we
simulate sample trajectories and compute quantile lines. We consider a hypotheti-
cal scenario where the insurance company insures losses resulting from catastrophic
events in the United States. he company’s initial capital is assumed to be u = 
billion USD and the relative safety loading used is θ = .. We choose two differ-
ent models of the risk process based on the results from a statistical analysis (see
Sect. .): a homogeneous Poisson process (HPP) with log-normal claim sizes, and
a renewal process with Pareto claim sizes and log-normal waiting times. he results
are presented in Fig. ..he thick solid line is the “real” risk process, i.e., a trajectory
constructed from the historical arrival times and values of the losses. he different
shapes of the “real” risk process in the subplots are due to the different forms of the
premium function c(t). he thin solid line is a sample trajectory. he dotted lines
are the sample ., ., ., ., ., ., ., ., .-quantile lines based
on  trajectories of the risk process. he quantile lines visualize the evolution of
the density of the risk process. Clearly, if the claim severities are Pareto-distributed
then extreme events are more likely to happen than in the log-normal case, where
the historical trajectory falls outside even the .-quantile line. Figure . sug-
gests that the second model (Pareto-distributed claim sizes and log-normal waiting
times) yields a reasonable model for the “real” risk process.
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Figure .. he PCS data simulation results for a homogeneous Poisson process with log-normal

claim sizes (top panel) and a renewal process with Pareto claim sizes and log-normal waiting times

(bottom panel). he dotted lines are the sample ., ., ., ., ., ., ., .,

.-quantile lines based on  trajectories of the risk process. From XploRe
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Figure .. “Probability gates” are an interactive graphical tool used for determining the probability

that the process passes through a specified interval. he ., . . . , .-quantile lines (thick lines) are based

on  simulated trajectories (thin lines) of the risk process originating at u =  billion USD. he

parameters of the α-stable Lévy motion approximation of the risk process were chosen to comply with

PCS data. From the SDE-Solver

Probability Gates 6.4.4

“Probability gates” are an interactive graphical tool implemented in SDE-Solver.hey
can provide invaluable assistance in the real-time analysis of the risk process and
its models. A “probability gate” gives the so-called cylindrical probability P�Xt �(a, b]� that the simulated process Xt passes through a specified interval (a, b] at
a specified point in time t (Janicki and Izydorczyk, ; Janicki et al., ). Two
probability gates are defined in Fig. .; Monte Carlo simulations can be used to ob-
tain the probability estimates. One yields the probability of the risk process falling
below  billion ater four years, i.e., P�R � (, ]� = .. he other yields the
probability of the risk process being in the range (, ] billion ater eight years,
i.e., P�R � (, ]� = .. Additionally, product probabilities of the process
passing through all of the defined gates are provided. In the above example, the prod-
uct probability of the risk process first falling below  billion (ater four years) and
then recovering to over  billion but less than  billion (ater eight years) is equal
to P�R � (, ], R � (, ]� = .. he parameters of the α-stable Lévy
motion approximation (Furrer et al., ) of the risk process were chosen to comply
with the catastrophic data example.
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− cars, , 
− cdc, –
− cdc, –
− dentitio, 
− detergent, 
− elu, , 
− German election, 
− Pollen, 
− Tour de France, 
de Fourcroy, Charles, 
de Witt, Jan, 
deceleration, 
decision support, –
decision tree, 
deductible, 
degree of interest, 
Delaunay triangulation, 
dendrogram, , , , , 
− cutting level, 
density estimation, 
density evolution, 
dentitio data, 
dependency inversion principle, 
depth shading, 
derivative, , , , 
Descartes, René, , 
design patterns, , 
− decorator pattern, 
− factory method pattern, 
− mediator pattern, 
− observer pattern, 
− state pattern, 
− strategy pattern, 
details, 
detergent data, 
DFBETAS, , 
dffits, 
diagnostic, , 
diagram
− alignment, 
− butterfly, 
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− cartogram, , 
− Chernoff faces, 
− circle, 
− contour, , 
− coxcomb, 
− divided circle, 
− geometric, 
− Hertzsprung–Russell, 
− historical, 
− nomogram, 
− pie, 
− rose, , 
− sieve, 
− statistical, 
− stereogram, 
− tree, 
differential equation, , 
dimension
− high, 
− reduction, , , , , 
− three, 
dimension ordering, 
− correlation-driven, 
− data-driven, 
− symmetry-driven, 
− user-driven, 
dimensionality, , , 
direct clustering, 
directed acyclic graph, 
discretization, , 
disparity, 
display
− fourfold, 
− trellis, 
− two-way table, 
dissimilarity, 
dissimilarity measure, 
distance, 
− in R

p , 
distance measure, 
− Euclidean, 
− Manhattan, 
distance transfer function, 
distance-based linking, 
distortion, , 

distribution
− Burr, , 
− exponential, , 
− gamma, , 
− log-normal, , 
− loss, 
− mixture of  exponentials, , 
− Pareto, , 
− tail, 
− Weibull, , 
divergence metric, 
domain-specific linking, 
domain-specific visualizations, 
dotplot, , 
doubledecker plot, , , 
drill-down, , 
du Carla-Boniface, Marcellin, 
dualities
− -D, 
Dupin, Charles, 
dynamic binding, 
dynamic interaction, 
dynamic sliced inverse regression (DSIR), 
dynamics, 

e-learning, , 
eBay, , , , 
EDA, see exploratory data analysis
edge frequency polygon, 
edge-preserving smoothing, 
effect
− curvature, 
− interaction, 
effect-ordered data display, , 
Eigenvalue, 
− decomposition, 
Eigenvector, 
elliptical glyphs, 
elliptical seriation, , , , 
EM algorithm, 
empirical linking, , 
energy data, 
entropy, 
equally spaced grid, 
Euclid, 
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− “elements”, 
Euclidean distance, , , 
Euclidean geometry, , 
evaluation, , 
− perception-based, 
− performance-based, 
event-driven programming, 
evolution, 
expected shortfall, 
exploration, , 
exploratory data analysis, , , , ,

, , 
− atomic queries, –
− compound queries, –
− guidelines, –
− requirements, 
− visual cues, 
exploratory graphics, 

faceting, 
factor analysis, , 
− factorial plan, 
− output interpretation, 
− visualization, 
FDA, see functional data analysis
feature map, –, , 
feature space, 
Fermat, Pierre, 
figure
− geometric, 
filtered kernel, 
filtered mode tree, 
filtering, , 
− curves, 
final auction price, 
financial data, –
finite mixture model, 
finite time horizon, 
flexclust, 
flexmix, 
flipping of intermediate nodes, 
flow map, , 
fluctuation diagram, , , 
focusing, 
fonts, 

forecast, , , 
forest, , 
FORTRAN, 
frequency polygon, 
− bias-optimized, 
− edge, 
Friendly, Michael, 
functional, 
− data, , 
− model, 
− object, , , 
− observation, 
− summary, 
functional data analysis, 
fuzzy logic algorithm, 

Gabor filter, 
Galilei, Galileo, 
Galton, Francis, , , –
Gannett, Henry, 
GAP, see generalized association plots
Gauss, Carl Friedrich, 
Gaussian distribution, 
Gemma-Frisius, Reginer, 
general similarity coefficient, 
generalized association plots, , , 
genetic algorithms, 
German Bundesbank, 
German election data, 
GGobi, , , , , 
Giffen, Robert, 
Gini index, 
GIS, 
GIS data, –
glyph, , , 
− design, , , , 
− evaluation, 
− examples, , 
− limitations, 
− strengths, 
gold & currencies, –
Golden Age, , 
Goodman, Leo, 
goodness-of-fit, 
gradient fill, 
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Grammar of Graphics, 
grand tour, , , , 
graph, , , , 
− age pyramid, 
− bilateral polygon, 
− circle, 
− hanging rootogram, 
− high-resolution, 
− line, , 
− model, 
− paper, 
− time-series, , , , 
graphical
− Gaussian model, 
− interface, 
− layout, 
− parameter, 
− path, 
− primitive, , 
− test statistic, 
graphics
− multivariate, 
Graunt, John, , 
Greenacre, Michael, 
Gresham’s Law, 
grid
− coordinate, 
− hexagonal, 
group stimulus space, 
Guerry, André-Michel, , 
GUI, , , 
GUIDE, 

Haberman, Shelly, 
Halley, Edmund, 
Hamman, 
Harrison, John, 
head injury, 
heatmap, 
Herschel,William, 
hexagonal bin, , 
Hidalgo stamps, 
hierarchical
− clustering, , , 
− linking, 

− model, 
−− parameter naming, 
−− sources of variation, 
− tree, 
− view, 
hierarchical cluster analysis, see cluster anal-

ysis
high-dimensional data visualization, 
high-dimensional visualizations, interacting

with, 
higher-order kernel, 
highlighting, , 
− linked, 
histogram, , –, , , , , ,


− averaged shited, , 
− bivariate, –
− density, 
− frequency, 
− percentage, 
histospline, 
HLS, , , 
Homals, 
homogeneous Poisson process (HPP), 
HTML, 
Human–Computer Interaction Laboratory,


hundreds of variables, –
Huygens, Christiaan, 

icon, see glyph
identity linking, 
image
− analysis, 
− fusion, 
− plot, 
− reconstruction, 
− segmentation, 
impurity measure, 
independence, 
INDSCAL, 
information loss, 
inheritance, 
insurance, 
− automobile, 
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− company
−− bankruptcy, 
− premium, 
− relative safety loading, 
insurer’s surplus, 
integrating data
− Dynamic Signal Maps, 
− KnowledgeEditor, 
− PathFinder, 
− Pathway Assist, 
− PubGene Vector PathBlazer, 
interactive, , , , , , 
− graphics, , , , , 
− operation, 
− plot, –
− statistical graphic, 
− visualization, , 
interpolation, , , 
interquartile range, 
inverse problem, 
isoline, 
isomap, 
Italian Household Income and Wealth, 

Jaccard coefficient, , 
Jasp, 
Jasplot, , 
Java, , , , 
− Abstract Window Toolkit (AWT), 
− Java D, , 
− Java Foundation Classes (JFC), 
− Swing, 
Jevons, William Stanley, 
JPEG, 
juxtaposition, 

k-means, , 
Karush–Kuhn–Tucker conditions, 
KEGG, 
Kendall’s tau coefficient, 
kernel, 
kernel density estimate, –, 
− bivariate, –
− multivariate, –
kernel function, 

kernel machine, , 
− support vector clustering, 
− kernel canonical correlation analysis, ,
, –

− kernel principal component analysis, ,
–, 

− smooth support vector machine, 
− smooth support vector regression, 
− support vector clustering, , , –


kernel method, 
keyword data, 
knots, 
Kulczynski, 

lack-of-fit, , 
Lallemand, Charles, 
Lambert, Johann, 
Laplace, Pierre Simon, 
large data sets, 
larger view, 
lassoing, 
lattice graphics, 
layer, , , 
layout, 
− data-driven, 
− manager, 
− structure-driven, 
le Blon, Jacob, 
leaf, 
legend, , 
Levasseur, Pierre Émile, 
leverage, 
life table, 
likelihood ratio test, 
limited expected value function, 
line
− contour, 
− graph
−− -D, 
− isogon, 
− isoline, , 
− slope as rate, 
− timeline, 
− type, , 
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linear
− graph, 
− projection, 
linear regression
− multiple, 
linkage methods, 
linked
− brushing, , 
− clustering view, 
− data view, 
− highlighting, , , 
− map, 
− micromap plot, 
− network graph, 
− plot, , 
− view, , , , , 
linking, 
− with memory, 
− without memory, 
Liskov substitution principle, 
Lisp-Stat, , 
lithography, 
LM plots, 
local linear, , , , , 
loglinear model, 
longitude, 
loss distribution, 
loss of information, 
low-rank approximation, 
lowess, 

MacSpin, 
magnetic resonance images (MRI), 
Mahalanobis distance, 
majorization, , 
MANET, , 
Manhattan distance, 
map, , , , 
− anamorphic, 
− cartography, 
− chloropleth, 
− contour, 
− disease, 
− epidemiological, 
− flow, , 

− geological, 
− linked to statistical charts, 
− shaded, 
− thematic, , 
− topographic, 
− weather, , 
mappings, 
− many-to-one, 
− one-to-many, 
− one-to-one, 
Marey, Étienne Jules, 
marginal panels, 
marketplaces, 
Markov chain Monte Carlo (MCMC), 
Markov property, 
Marshall, Alfred, 
mathematical framework, 
matrix
− scatterplot, 
matrix maps, , 
matrix visualization, , , , , 
Maunder, E.W., 
maximum likelihood estimate (MLE), 
mean
− acceleration, 
− excess function, , 
− integrated squared error, 
− residual life function, 
− squared error, 
− velocity, 
measurement
− physical, 
measurement error, 
medical image, 
metabolic networks, 
metric, see distance
metric scaling, , 
metric space, 
Michael, 
microarray data, , , , , , 
microarrays, 
micromaps, , 
microplot, , 
Microsot Excel format, 
Minard, Charles Joseph, , , 
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minimal span loss, 
Minkowski metric, 
missing functional objects, 
missing values, , , , 
mode
− forest, 
− surface, 
− tree, 
−− filtered, 
model
− checking, , 
− generalized linear, 
− loglinear, 
− misspecification, 
− mixed, 
− piecewise constant, 
− piecewise linear, 
− selection, 
− tree-structured, 
− understanding, 
model–view–controller (MVC), , 
model-based cluster analysis, see cluster anal-

ysis
modeling and simulation
− GenePath, 
− Genetic Network Analyzer, 
Mondrian, , 
monitor, 
monolithic visualizations, 
monotone smoothing, 
mosaic
− mondrian display, 
− multiple bars, 
− reorder rows and columns, 
− same-bin-size display, 
mosaicplot, , , , , , , , ,

, , , , , , 
− conditional probability, 
− construction, 
− fluctuation diagram, 
− multiple barcharts, 
− order of variables, 
− same bin size, 
− variations, 
Moseley, Henry, 

mountain plot, , 
Mountford, 
multidimensional scaling, , , , 
multilevel models, 
multiple correspondence analysis, 
multiple linked views, 
multiple testing, 
multiscale visualization, –
multivariate data, 
multivariate Gaussian distribution, 
multivariate graphics, 
mussels
− horse, 

Nadaraya–Watson, 
neighborhood graph, 
network graphs linked to statistical charts, 
neural networks, 
Neurath, 
NHTSA, 
Nightingale, Florence, 
node, 
noisy realizations, 
nominal data, 
nominal variable, 
nomogram, 
non-metric scaling, , 
nonlinear color mapping, 
nonlinear models, –
nonparametric density estimation, 
nonparametric regression, 
normalization, 

object, 
object-oriented programming (OOP), 
observed bids, 
occlusion, , 
Ochiai, 
odds ratio
− conditional, 
− sufficient set, 
− definition, 
− high dimensional generalization, 
online, 
online auction, , 
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open-closed principle, 
OpenGL, 
operational taxonomy units, 
ordering, 
Oresme, Nicole, 
Ortelius, Abraham, 
outlier, , , , , , 
outlier detection, 
overall fitting, 
overlay, 
overview, 

p-values, , 
paint mode, 
pairs plot, 
PAM, see partitioning around medoids
panel plot, 
parallax sotware, 
parallel coordinate, , –, 
− axes permutations, –
− classifiers, –
− D’Ocagne, 
− decision support, –
− dualities
−− -D, 
− exploration guidelines, –
− exploratory data analysis, –
− origins, –
− Parallax sotware, 
− plot, , , , , , , , ,
, , 

− projective plane, 
− proximate planes, 
− queries
−− atomic, 
−− atomic – EDA, –
−− compound boolean – EDA, –
−− compound-boolean, 
−− exploration, 
− relations� patterns, , 
− review, –
− scatterplot matrix, 
− visual cues, 
parametric bootstrap, 
partial functional objects, 

particle swarm optimization, 
partition
− recursive, 
partitioning around medoids, 
partitioning cluster analysis, see cluster anal-

ysis
Pascal, Blaise, 
passive plot, 
Patefield algorithm, 
path, 
pathway, , 
pattern, , 
− fill, 
− recognition, , , 
− search, 
PCA, see principal component analysis
PDF, 
Pearson correlation, , 
Pearson residuals, 
Pearson, Karl, 
penalized smoothing spline, 
penalized squared error, 
penalizing term, 
penalty term, 
permutation, , , 
permutation matrices, 
permutation test, 
Perozzo, Luigi, 
perspective plot, , 
Petermann, Augustus, 
Petty, William, , 
phase-plane plots, , 
Phi, 
pictogram, 
pie chart, , 
piecewise additive, 
piecewise constant, 
piecewise linear, 
piechart, 
Pima Indian data, 
pivot table, 
planar graph, 
Playfair, William, , , , , , 
plot
− association, 
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− bivariate, 
− Fourier function, 
− log-log, , 
− mosaic, , , 
− parallel coordinate, 
− probability, , 
− star, , 
− stem-leaf, 
PNG, 
pointwise histograms, 
Poisson regression, , 
political arithmetic, 
politician data, 
Pollen data set, 
polymorphism, 
polynomial spline, 
positive definite kernel, , 
positron emission tomography (PET), 
posterior predictive checking, 
posterior predictive distribution, 
posterior uncertainty, 
PostScript, , , , , , , 
power law, 
prediction shading, 
predictive distribution, , 
preprocessing, , 
presentation, 
presentation graphics, 
price
− curve, , , 
− dynamic, , 
− evolution, 
Priestley, Joseph, , , 
PRIM-, 
primary monotone least-squares regression,


principal component analysis, , , ,

, , , , , , 
− correlation circle, 
− kernel, , –, 
− principal components, 
−− correlations, 
−− orthogonality, 
− reduced kernel, 
− supplementary

−− points, 
−− variables, 
principal components, 
printing
− three-colour, 
probability
− cylindrical, 
− gate, 
− plot, 
− product, 
probability theory, 
process
− aggregate claim, 
− claim arrival, 
− counting, 
− density evolution, 
− Poisson
−− homogeneous (HPP), 
− renewal, 
− risk, 
−− trajectory, 
− stationary, 
Procrustes analysis, , 
product kernel, , –
product probability, 
profile plots, 
profiles, 
projection, , 
− axonometric, 
projection pursuit, , 
projection pursuit index, 
projection pursuit, central mass index, 
projection pursuit, holes index, 
projection pursuit, LDA index, 
projection pursuit, optimization, 
projection pursuit, PCA index, 
propagate, 
propagation condition, , , , , 
Propagation-Separation (PS), 
Property Claim Services, 
proximate planes, 
proximity data, 
proximity graph, 
proximity matrices, , 
Psychometrika, 
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Ptolemy, Claudius, , 
Python, 

Quételet, Adolphe, , , 
quantile, 
quantile line, 
query
− atomic, 
−− explained, –
− atomic – EDA, –
− compound boolean – EDA, 
− compound-boolean, 
− compound-boolean – EDA, 
− exploration, 

R, , , , , , , , , , 
R, , 
RWinBUGS, , 
radial basis function, , , 
rail travel data, 
random forest, 
random graph, 
random subset, 
Rao, 
rating, 
reciprocal averaging, 
recover, 
rectangle selection, 
recursive partitioning, 
reduced kernel, , , , 
reference band, , , , 
reference distribution, , 
reference region, 
region competition, 
regression, , , , 
− diagnostic, , , 
− model, 
− Poisson, , 
− sliced inverse, 
− stepwise, 
− tree, , , 
relationship, , 
relative risk, –
relative safety loading, 
relativity of a statistical graph, , , 

renewal process, 
reorderable matrix, 
reordering, 
replacement, 
replicated data, , 
replication, 
replication distribution, 
reproducing kernel, 
reproducing kernel Hilbert space, , 
residual, 
residual-based shading, 
resolution of a statistical graph, 
response model, 
response surface, –
RGB
− cube, 
Rheticus, Georg, 
Rice Virtual Lab in Statistics, 
ridge regression
− smooth support vector regression, 
risk process, 
− α-stable Lévy motion approximation, 
− diffusion approximation, 
− trajectory, 
Riverplot, 
Robinson matrix, 
ROC curve, 
− area under, 
Rogers, Tanimoto, 
rooted tree, 
rootogram, , 
roughness functional, 
roughness penalty, 
Royal Statistical Society, , 
rubber-band selection, 
rug fringe, 
rug plot, , 
ruin
− probability, 
− theory, 
Ruin Probabilities toolbox, 
ruin probability, 
ruin theory, 
Russell, 
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S-Plus, , , 
Saccharomyces cerevisiae yeast, 
Sammon map, 
SAS, 
scagnostics, 
scalability, , 
scalable vector graphics, , , , , ,

, 
scale, 
− common, 
scaling, 
− multidimensional, , 
scattergram, 
scatterplot, –, , , , , ,

, , 
− brushing, , 
− matrix, , , , , , –, ,
, , , , , , , 

Scheiner, Christopher, 
Schwabe, Hermann, 
scree plot, 
SDE-Solver, 
SearchBox, 
searching, 
sectional display, 
sectioned scatterplot, , , 
sediment display, 
selecting, 
selection bias, 
selection modes, 
self-organizing map, , 
semitransparency, , 
Senefelder, Aloys, 
separation, 
sequences, 
seriation, 
shadow value, , 
Shakespeare keywords, 
shape, 
Shepard plot, 
shingles, 
shortest path, 
shortest spanning path, 
sieve diagram, 
sieve plot, , 

significance probability, 
silhouette plot, 
silhouette value, 
similar set, 
similarity, 
similarity coefficient, 
similarity metric, 
simple effects, , , 
simple matching coefficient, , 
Simpson, 
simulated annealing, 
SiZer plot, 
sliced inverse regression (SIR), 
small multiple, , , 
Smalltalk, 
Smith, William, 
smoother, 
smoothing, , , 
smoothing parameter, , , –, ,

, , , 
smoothing parameters, 
smoothness, 
snake energy model, 
snake–balloon model, 
Sneath, Peter H.A., 
Snow, John, , 
Soergel metric, 
sotware, 
− Ruin Probabilities toolbox, 
− SDE-Solver, 
− XploRe
−− Insurance Library, 
Sokal, Robert, 
Solka, Jeff L., 
SOM, see self-organizing map
sorting, , 
Sorting auctions, 
spanning tree, 
spatial data, 
Spearman’s rank correlation, 
speckle noise, 
spectrum, 
spineplot, , 
spineplot of leaves, , 
spline order, 
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split, 
SPLOM, see scatterplot matrix
SPOL, see spineplot of leaves
spreadplot, 
spring model, 
star plot, , 
static, 
static graphs, 
statistical atlas, 
statistics
− demographic, 
− moral, 
stem-leaf plot, 
stereogram, 
Steven andWeber laws, 
stratigraphic geology, 
streaming, 
stress, , 
strip labels, 
structural adaptation, 
Sturges’ rule, 
subjects space, 
sufficient matrix visualization, 
summary, 
summary statistics, , 
supervised classification, 
supervised classification, LDA, 
supervised classification, QDA, 
supervised classification, trees, 
support vector, , 
− bounded, 
support vector machine, 
− smooth, 
support vector regression
− smooth, 
surface estimation, –, , 
SVG, see scalable vector graphics
SVM, see support vector machine
symbol
− sunflower, 

table
− graphical, 
− life, 
− semi-graphic, 

tableau-graphique, 
tabular, 
tabular views, 
tandem analysis, 
Tcl/Tk, 
temporal information, 
terminal node, , , , 
test statistic, 
thematic cartography, 
theorem
− Ekart and Young, 
three-dimensional scatterplot, 
threshold, , 
time boxes, 
time series, , , , , 
− multiple, 
− operation, 
time-lagged, –
TimeBox, , 
timeline, , 
TimeSearcher, 
Titanic, 
tour
− axes, 
− basis, 
− finding structure, , 
− frame, 
− geodesic, 
− grand, , , 
− guided, , 
− interpolation, 
− manual, , 
− path, , 
− target basis, 
− target plane, , 
− within-plane, , 
Tour de France, , 
− data set, 
trace plot, , 
transformations, 
traveling salesman, , 
tree seriation, 
treemap, , , , , 
Trellis
− display, , , , 
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− graphic, 
− layout, 
− paradigm, –, , 
− plot, , , , 
trends, 
triangulation, 
Tute, Edward, , , 
Tukey, John Wilder, , , 
two-way table, 
typesetting, 

ultrametric tree, 
ultrasound image, 
unaggregated view, 
unidimensional scaling, 
unified modeling language (UML), 
UNIX, 
unrepresentative, 

van Langren, Michael F., 
variability band, , , , 
variable bandwidth, 
variable location, 
variable selection, , , 
vertex, , 
view box, 
viewport, 
virus data, 
vision model, 
ViSta, 
visual thinking, 
visualization, , , , , , 
− Archimedes, 
− BioMiner, 
− displays for exploration, 
− early successes, 
− Geometry, 

− Graphviz, , 
− interaction effects, 
− multidimensional, 
− Ospray, 
− system, 
− the case for, –
VITAMIN-S, VIsualization and daTA MIN-

ing System, 
von Mayr, Georg, 
Voronoi partition, 
Voronoi tessellation, 

Walker, Francis A., 
wall quadrant, 
Wave–Hedges, 
weather map, , 
Wegman, Edward J., 
weighted Euclidean distance, 
weighted graph, 
weighted least square estimate (WLSE), 
weighted plots, , 
widgets, 
wireframe plot, 
WMF, 
WorldWide Web, 

XD, 
XGobi, , 
XML, 
XploRe
− Insurance Library, 
xysplom, , , 

yeast two-hybrid screen, 
Yule, 

Zeuner, Gustav, 
zooming, , 


