Continuous Space Reprasentation (PA153)

Pavel Rychlý

Problems with statistical NLP

- many distinct words (items) (from Zipf)
- zero counts
 - MLE gives zero probability
- not handling similarities
 - some words share some (important) features
 - driver, teacher, butcher
 - small, little, tiny

Many distinct words

How to solve:

- use only most frequent ones (ignore outliers)
- use smaller units (subwords)
 - prefixes, suffixes
 - -er, -less, pre-

But:

- we want to add more words
- black hole is not black or hole
- even less frequent words are important

Zero counts

How to solve:

- bigger corpora
- more data = better estimation

But:

- sometimes there is no more data
 - ► Shakespeare, new research field
- any size is not big enough

Noun test

- British National Corpus
- ▶ 15789 hits, rank 918
- word sketches from the Sketch Engine
- object-of: pass, undergo, satisfy, fail, devise, conduct, administer, perform, apply, boycott
- modifier: blood, driving, fitness, beta, nuclear, pregnancy
- can we freely combine any two from that lists?

Collocations of noun test

- blood test in BNC
 - b object-of: order (3), take (12)
- blood test in enClueWeb16 (16 billion tokens)
 - object-of: order (708), perform (959), undergo (174), administer (123), conduct (229), require (676), repeat (80), run (347), request (105), take (1215)

Phrase *pregnancy test* in 16 billion corpus

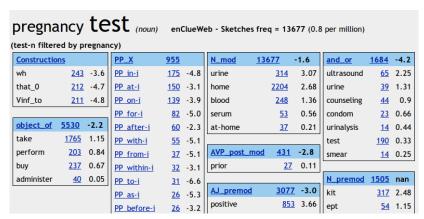


Figure 1: pregnancy test word sketch

Phrase black hole in 16 billion corpus

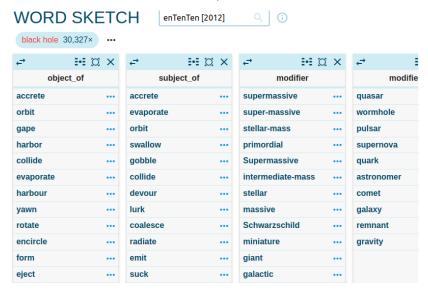


Figure 2: black hole word sketch

Similarities of words

Distinct words?:

- supermassive, super-massive, Supermassive
- ► small, little, tiny
- black hole, star
- apple, banana, orange
- red, green, orange
- auburn, burgundy, mahogony, ruby

Continuous space representation

- words are not distinct
- represented by a vector of numbers
- similar words are closer each other
- more dimensions = more features
 - tens to hundreds, up to 1000

Words as vectors

continue = [0.286, 0.792, -0.177, -0.107, 0.109, -0.542, 0.349]

being

How to create a vector representation

From co-occurrence counts:

- Singular value decomposition (SVD)
 - each word one dimension
 - select/combine important dimenstions
 - ► factorization of co-occurrence matrix
- Principal component analysis (PCA)
- ► Latent Dirichlet Allocation (LDA)
 - learning probabilities of hidden variables
- Neural Networks

Neural Networks

- training from examples = supervised training
- sometimes negative examples
- generating examples from texts
- from very simple (one layer) to deep ones (many layers)

Are vectors better than IDs

- even one hit could provide useful information
- ► Little Prince corpus (21,000 tokens)
- modifiers of "planet"
 - seventh, stately, sixth, wrong, tine, fifth, ordinary, next, little, whole
 - each with 1 hit
 - many are close together, share a feature

Simple vector learning

- each word has two vectors
 - ▶ node vector (*node_w*)
 - ightharpoonup context vector (ctx_w)
- generate (node, context) pairs from text
 - ▶ for example from bigrams: w1, w2
 - ▶ w1 is context, w2 is node
- move closer ctx_{w1} and node_{w2}

Simple vector learning

```
node_vec = np.random.rand(len(vocab), dim) * 2 -1
ctx_vec = np.zeros((len(vocab), dim))

def train_pair(nodeid, ctxid, alpha):
    global node_vec, ctx_vec
    L1 = node_vec[nodeid]
    L2 = ctx_vec[ctxid]
    corr = (1 - expit(np.dot(L2, L1)))* alpha
    L1 += corr * (L2 - L1)
    L2 += corr * (L1 - L2)
```

Simple vector learning

```
for e in range(epochs):
    last = tokIDs[0]
    for wid in tokIDs[1:]:
        train_pair(wid, last, alpha)
        last = wid
        # update alpha
```