Continuous Space Reprasentation (PA153)

Pavel Rychlý

Problems with statistical NLP

many distinct words (items) (from Zipf)

zero counts

MLE gives zero probability

- not handling similarities
 - some words share some (important) features
 - driver, teacher, butcher
 - small, little, tiny

Many distinct words

How to solve:

use only most frequent ones (ignore outliers)
 use smaller units (subwords)
 prefixes, suffixes
 -er, -less, pre-

But:

- we want to add more words
- black hole is not black or hole
- even less frequent words are important

Zero counts

How to solve:

- bigger corpora
- more data = better estimation

But:

sometimes there is no more data
 Shakespeare, new research field
 any size is not big enough

How big corpus?

Noun test

- British National Corpus
- 15789 hits, rank 918
- word sketches from the Sketch Engine
- object-of: pass, undergo, satisfy, fail, devise, conduct, administer, perform, apply, boycott
- modifier: blood, driving, fitness, beta, nuclear, pregnancy
- can we freely combine any two from that lists?

Collocations of noun test

blood test in BNC

object-of: order (3), take (12)

blood test in enClueWeb16 (16 billion tokens)

 object-of: order (708), perform (959), undergo (174), administer (123), conduct (229), require (676), repeat (80), run (347), request (105), take (1215)

How big corpus?

Phrase pregnancy test in 16 billion corpus

pregnancy test (noun) enClueWeb - Sketches freq = 13677 (0.8 per million)													
(test-n filtered by pregnancy)													
Constructions			<u>PP_X</u>	<u>955</u>		N_mod	<u>13677</u>	-1.6	and_or	<u>1684</u>	-4.2		
wh	<u>243</u>	-3.6	PP in-i	<u>175</u>	-4.8	urine	<u>314</u>	3.07	ultrasound	<u>65</u>	2.25		
that_0	<u>212</u>	-4.7	<u>PP_at-i</u>	<u>150</u>	-3.1	home	<u>2204</u>	2.68	urine	<u>39</u>	1.31		
Vinf_to	<u>211</u>	-4.8	PP on-i	<u>139</u>	-3.9	blood	<u>248</u>	1.36	counseling	<u>44</u>	0.9		
			PP for-i	<u>82</u>	-5.0	serum	<u>53</u>	0.56	condom	<u>23</u>	0.66		
object_of	<u>5530</u>	-2.2	PP_after-i	<u>60</u>	-2.3	at-home	<u>37</u>	0.21	urinalysis	<u>14</u>	0.44		
take	<u>1765</u>	1.15	PP with-i	<u>55</u>	-5.1				test	<u>190</u>	0.33		
perform	<u>203</u>	0.84	PP from-i	<u>37</u>	-5.1	AVP_post_m	od <u>431</u>	-2.8	smear	<u>14</u>	0.25		
buy	<u>237</u>	0.67	PP within-i	<u>32</u>	-3.1	prior	<u>27</u>	0.11					
administer	<u>40</u>	0.05	PP to-i	<u>31</u>	-6.6				N_premod	<u>1505</u>	nan		
			PP as-i	<u>26</u>	-5.3	AJ_premod	<u>3077</u>	2 -3.0	kit	<u>317</u>	2.48		
			PP before-i	<u>26</u>	-3.2	positive	<u>853</u>	3.66	ept	<u>54</u>	1.15		

Figure 1: pregnancy test word sketch

How big corpus?

Phrase black hole in 16 billion corpus

WORD SKETCH

enTenTen [2012]

black hole 30,327× ····

←	X Ø HE	↔	1	×	↔	•• (C)	×	←	3
obje	ect_of	subject_of			modifier			modifie	
accrete		accrete		••••	supermassiv	е	••••	quasar	
orbit		evaporate		•••	super-massiv	ve	•••	wormhole	
gape		orbit		•••	stellar-mass		•••	pulsar	
harbor		swallow		•••	primordial		•••	supernova	
collide		gobble		•••	Supermassiv	'e	•••	quark	
evaporate		collide		•••	intermediate	-mass	•••	astronomer	
harbour		devour		•••	stellar		•••	comet	
yawn		lurk		•••	massive		•••	galaxy	
rotate		coalesce		•••	Schwarzschi	ld	•••	remnant	
encircle		radiate		•••	miniature		•••	gravity	
form		emit		•••	giant		••••		
eject		suck		•••	galactic		•••		

Figure 2: black hole word sketch

Similarities of words

Distinct words?:

- supermassive, super-massive, Supermassive
- small, little, tiny
- black hole, star
- apple, banana, orange
- red, green, orange
- auburn, burgundy, mahogony, ruby

Continuous space representation

- words are not distinct
- represented by a vector of numbers
- similar words are *closer* each other
- more dimensions = more features
 - tens to hundreds, up to 1000

Words as vectors

continue = [0.286, 0.792, -0.177, -0.107, 0.109, -0.542, 0.349]

being

How to create a vector representation

From co-occurrence counts:

- Singular value decomposition (SVD)
 - each word one dimension
 - select/combine important dimensions
 - factorization of co-occurrence matrix
- Principal component analysis (PCA)
- Latent Dirichlet Allocation (LDA)
 - learning probabilities of hidden variables
- Neural Networks

Neural Networks

- training from examples = supervised training
- sometimes negative examples
- generating examples from texts
- from very simple (one layer) to deep ones (many layers)

Are vectors better than IDs

- even one hit could provide useful information
- Little Prince corpus (21,000 tokens)
- modifiers of "planet"
 - seventh, stately, sixth, wrong, tine, fifth, ordinary, next, little, whole
 - each with 1 hit
 - many are close together, share a feature

Simple vector learning

each word has two vectors

node vector (node_w)
context vector (ctx_w)

generate (node, context) pairs from text

for example from bigrams: w1, w2
w1 is context, w2 is node

move closer ctx_{w1} and node_{w2}

Simple vector learning

```
node_vec = np.random.rand(len(vocab), dim) * 2 -1
ctx_vec = np.zeros((len(vocab), dim))
```

```
def train_pair(nodeid, ctxid, alpha):
  global node_vec, ctx_vec
  L1 = node_vec[nodeid]
  L2 = ctx_vec[ctxid]
  corr = (1 - expit(np.dot(L2, L1)))* alpha
  L1 += corr * (L2 - L1)
  L2 += corr * (L1 - L2)
```

Simple vector learning

```
for e in range(epochs):
    last = tokIDs[0]
    for wid in tokIDs[1:]:
        train_pair(wid, last, alpha)
        last = wid
        # update alpha
```