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Lecture 5: Language Models and Recurrent Neural Networks

(oh, and finish neural dependency parsing J)



Lecture Plan

1. Neural dependency parsing (20 mins)
2. A bit more about neural networks (15 mins)
3. Language modeling + RNNs (45 mins)

• A new NLP task: Language Modeling

• A new family of neural networks: Recurrent Neural Networks (RNNs)

Reminders: 
You should have handed in Assignment 2 by today
In Assignment 3, out today, you build a neural dependency parser using PyTorch 
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motivates

These are two of the most important concepts for the rest of the class!



1. How do we gain from a neural dependency parser?
Indicator Features Revisited

• Problem #1:  sparse
• Problem #2:  incomplete
• Problem #3:  expensive computation

More than 95% of parsing time is consumed by 
feature computation

Neural Approach:
learn a dense and compact feature representation

0.1
dense
dim = ~1000

0.9 -0.2 0.3 -0.1 -0.5…
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A neural dependency parser [Chen and Manning 2014]

• Results on English parsing to Stanford Dependencies:
• Unlabeled attachment score (UAS) = head
• Labeled attachment score (LAS) = head and label

Parser UAS LAS sent. / s

MaltParser 89.8 87.2 469

MSTParser 91.4 88.1 10

TurboParser 92.3 89.6 8

C & M 2014 92.0 89.7 654
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First win: Distributed Representations

• We represent each word as a d-dimensional dense vector (i.e., word embedding)
• Similar words are expected to have close vectors.

• Meanwhile, part-of-speech tags (POS) and dependency labels are also represented as 
d-dimensional vectors.
• The smaller discrete sets also exhibit many semantical similarities.

come

go

werewas

is
good

NNS (plural noun) should be close to NN (singular noun).

nummod (numerical modifier) should be close to amod (adjective modifier).
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Extracting Tokens & vector representations from configuration

• We extract a set of tokens based on the stack / buffer positions:

s1

s2

b1

lc(s1)
rc(s1)
lc(s2)
rc(s2)

good
has
control
∅
∅
He
∅

JJ
VBZ
NN
∅
∅
PRP
∅

∅
∅
∅
∅
∅
nsubj
∅

+ +

word POS dep.

}
A concatenation 
of the vector 
representation of 
all these is the 
neural 
representation of 
a configuration
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Second win: Deep Learning classifiers are non-linear classifiers

• A softmax classifier assigns classes 𝑦 ∈ 𝐶 based on inputs 𝑥 ∈ ℝ" via the probability:

• We train the weight matrix 𝑊 ∈ ℝ#×" to minimize the neg. log loss : ∑%− log 𝑝(𝑦%|𝑥%)

• Traditional ML classifiers (including Naïve Bayes, SVMs, logistic regression and softmax
classifier) are not very powerful classifiers: they only give linear decision boundaries

This can be quite limiting

à Unhelpful when a problem is complex

Wouldn’t it be cool to get these correct?
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a.k.a. “cross entropy loss”



Neural Networks are more powerful

• Neural networks can learn much more complex functions with nonlinear decision 
boundaries!

• Non-linear in the original space, linear for the softmax at the top of the neural network

Visualizations with ConvNetJS by Andrej Karpathy!
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html8

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Simple feed-forward neural network multi-class classifier

Input layer x

Hidden layer h
h = ReLU(Wx + b1)

Output layer y
y = softmax(Uh + b2)

Softmax probabilities
Log loss (cross-entropy error) will be back-
propagated to the embeddings
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The hidden layer re-represents the input —
it moves inputs around in an intermediate 
layer vector space—so it can be easily 
classified with a (linear) softmax

ReLU = Rectified 
Linear Unit

rect(z) =max(z, 0)

x is result of lookup
x(i,…,i+d) = Le
lookup + concat



Neural Dependency Parser Model Architecture

Input layer x
lookup + concat

Hidden layer h
h = ReLU(Wx + b1)

Output layer y
y = softmax(Uh + b2)

Softmax probabilities
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Dependency parsing for sentence structure
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Chen and Manning (2014) showed that neural networks can accurately 
determine the structure of sentences, supporting meaning interpretation

It was the first simple, successful neural dependency parser

The dense representations (and non-linear classifier) let it outperform other 
greedy parsers in both accuracy and speed



Further developments in transition-based neural dependency parsing
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This work was further developed and improved by others, including in particular at Google

• Bigger, deeper networks with better tuned hyperparameters

• Beam search

• Global, conditional random field (CRF)-style inference over the decision sequence

Leading to SyntaxNet and the Parsey McParseFace model (2016):
“The World’s Most Accurate Parser”

https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Method UAS LAS (PTB WSJ SD 3.3)
Chen & Manning 2014 92.0 89.7
Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79

https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html


Graph-based dependency parsers
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• Compute a score for every possible dependency (choice of head) for each word
• Doing this well requires more than just knowing the two words 
• We need good “contextual” representations of each word token, which we will 

develop in the coming lectures 
• Repeat the same process for each other word; find the best parse (MST algorithm)

ROOT          The            big            cat          sat

0.5

0.3

0.8

2.0

e.g., picking the head for “big”



Graph-based dependency parsers
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• Compute a score for every possible dependency (choice of head) for each word
• Doing this well requires more than just knowing the two words 
• We need good “contextual” representations of each word token, which we will 

develop in the coming lectures 
• Repeat the same process for each other word; find the best parse (MST algorithm)

ROOT          The            big            cat          sat

0.5

0.3

0.8

2.0

e.g., picking the head for “big”



A Neural graph-based dependency parser
[Dozat and Manning 2017; Dozat, Qi, and Manning 2017]
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• This paper revived interest in graph-based dependency parsing in a neural world
• Designed a biaffine scoring model for neural dependency parsing
• Also crucially uses a neural sequence model, something we discuss next week

• Really great results!
• But slower than the simple neural transition-based parsers
• There are n2 possible dependencies in a sentence of length n

Method UAS LAS (PTB WSJ SD 3.3
Chen & Manning 2014 92.0 89.7
Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79
Dozat & Manning 2017 95.74 94.08



2. A bit more about neural networks 
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We have models with many parameters! Regularization!
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• A full loss function includes regularization over all parameters 𝜃, e.g., L2 regularization:

• Classic view: Regularization works to prevent overfitting when we have a lot of features 
(or later a very powerful/deep model, etc.)

• Now: Regularization produces models that generalize well when we have a “big” model
• We do not care that our models overfit on the training data, even though they are hugely overfit

model “power”

Training error

Test error

overfitting
error

0



Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov 2012/JMLR 2014)
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Preventing Feature Co-adaptation = Good Regularization Method!
• Training time: at each instance of evaluation (in online SGD-training), randomly set 

50% of the inputs to each neuron to 0
• Test time: halve the model weights (now twice as many)
• (Except usually only drop first layer inputs a little (~15%) or not at all)
• This prevents feature co-adaptation: A feature cannot only be useful in the presence 

of particular other features
• In a single layer: A kind of middle-ground between Naïve Bayes (where all feature 

weights are set independently) and logistic regression models (where weights are 
set in the context of all others)

• Can be thought of as a form of model bagging (i.e., like an ensemble model)
• Nowadays usually thought of as strong, feature-dependent regularizer 

[Wager, Wang, & Liang 2013]



“Vectorization”
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• E.g., looping over word vectors versus concatenating them all into one large matrix 
and then multiplying the softmax weights with that matrix:

• 1000 loops, best of 3:   639 µs per loop
10000 loops, best of 3: 53.8 µs per loop ß Now using a single a C x N matrix

• Matrices are awesome!!! Always try to use vectors and matrices rather than for loops!
• The speed gain goes from 1 to 2 orders of magnitude with GPUs!



tanh is just a rescaled and shifted sigmoid (2 × as steep, [−1,1]): 

Both logistic and tanh are still used in various places (e.g., to get a 
probability), but are no longer the defaults for making deep networks
For building a deep network, the first thing you should try is ReLU —
it trains quickly and performs well due to good gradient backflow

Non-linearities, old and new

logistic (“sigmoid”)                  tanh                       hard tanh                   ReLU (Rectified Linear Unit)

tanh(z) = 2logistic(2z)−1

1

0

1

−1

rect(z) =max(z, 0)

Leaky ReLU /          Swish [Ramachandran,
Parametric ReLU Zoph & Le 2017]



Parameter Initialization

• You normally must initialize weights to small random values (i.e., not zero matrices!)
• To avoid symmetries that prevent learning/specialization

• Initialize hidden layer biases to 0 and output (or reconstruction) biases to optimal value 
if weights were 0 (e.g., mean target or inverse sigmoid of mean target)

• Initialize all other weights ~ Uniform(–r, r), with r chosen so numbers get neither too 
big or too small [later the need for this is removed with use of layer normalization]

• Xavier initialization has variance inversely proportional to fan-in nin (previous layer size) 
and fan-out nout (next layer size):



Optimizers

• Usually, plain SGD will work just fine!
• However, getting good results will often require hand-tuning the learning rate 
• See next slide

• For more complex nets and situations, or just to avoid worry, you often do better with 
one of a family of more sophisticated “adaptive” optimizers that scale the parameter 
adjustment by an accumulated gradient.
• These models give differential per-parameter learning rates
• Adagrad
• RMSprop
• Adam  ß A fairly good, safe place to begin in many cases
• SparseAdam
• …



Learning Rates

• You can just use a constant learning rate. Start around lr = 0.001?
• It must be order of magnitude right – try powers of 10
• Too big: model may diverge or not converge
• Too small: your model may not have trained by the assignment deadline

• Better results can generally be obtained by allowing learning rates to decrease as you 
train
• By hand: halve the learning rate every k epochs 
• An epoch = a pass through the data (shuffled or sampled – not in same order each time)

• By a formula: 𝑙𝑟 = 𝑙𝑟!𝑒"#$, for epoch t
• There are fancier methods like cyclic learning rates (q.v.)

• Fancier optimizers still use a learning rate but it may be an initial rate that the 
optimizer shrinks – so you may want to start with a higher learning rate



3. Language Modeling + RNNs
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• Language Modeling is the task of predicting what word comes next

the students opened their ______

• More formally: given a sequence of words                                 ,
compute the probability distribution of the next word             :

where            can be any word in the vocabulary

• A system that does this is called a Language Model

Language Modeling

exams
minds

laptops
books

25



Language Modeling

• You can also think of a Language Model as a system that 
assigns probability to a piece of text

• For example, if we have some text                          , then the 
probability of this text (according to the Language Model) is:

26

This is what our LM provides



You use Language Models every day!

27



You use Language Models every day!

28



n-gram Language Models

the students opened their  ______

• Question: How to learn a Language Model?
• Answer (pre- Deep Learning): learn an n-gram Language Model!

• Definition: A n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”
• bigrams: “the students”, “students opened”, “opened their”
• trigrams: “the students opened”, “students opened their”
• 4-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-grams are and use these to 
predict next word.

29



n-gram Language Models

30

• First we make a Markov assumption: 𝑥($&') depends only on the preceding n-1 words

(statistical 
approximation)

(definition of 
conditional prob)

(assumption)

n-1 words

prob of a n-gram

prob of a (n-1)-gram

• Question: How do we get these n-gram and (n-1)-gram probabilities?
• Answer: By counting them in some large corpus of text!



n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their _____
discard

condition on this

For example, suppose that in the corpus:
• “students opened their” occurred 1000 times
• “students opened their books” occurred 400 times

• à P(books | students opened their) = 0.4
• “students opened their exams” occurred 100 times

• à P(exams | students opened their) = 0.1

Should we have discarded 
the “proctor” context?

31



Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Problem: What if “students 
opened their” never occurred in 
data? Then we can’t calculate 
probability for any 𝑤!

Sparsity Problem 2

Problem: What if “students 
opened their 𝑤” never 
occurred in data? Then 𝑤 has 
probability 0!

Sparsity Problem 1

(Partial) Solution: Add small 𝛿
to the count for every 𝑤 ∈ 𝑉. 
This is called smoothing.

(Partial) Solution: Just condition 
on “opened their” instead. 
This is called backoff.

32



Storage Problems with n-gram Language Models

33

Storage: Need to store 
count for all n-grams you 
saw in the corpus. 

Increasing n or increasing 
corpus increases model size!



n-gram Language Models in practice

• You can build a simple trigram Language Model over a 
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the _______

* Try for yourself: https://nlpforhackers.io/language-models/Otherwise, seems reasonable!

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability 
distribution

Sparsity problem: 
not much granularity 

in the probability 
distribution

Business and financial news
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https://nlpforhackers.io/language-models/


Generating text with a n-gram Language Model

35

You can also use a Language Model to generate text

today the _______

condition 
on this

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability 
distribution

sample



Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price _______

condition 
on this

of 0.308
for 0.050
it 0.046
to 0.046
is 0.031

…

get probability 
distribution

sample
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Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of _______

condition 
on this

the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018

…

get probability 
distribution

sample

37



Generating text with a n-gram Language Model
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You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe 
lasts and shoe industry , the bank intervened just after it 
considered and rejected an imf demand to rebuild depleted 
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than 
three words at a time if we want to model language well.

But increasing n worsens sparsity problem, 
and increases model size…



How to build a neural Language Model?

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob dist of the next word 

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition in Lecture 3:

39
in Paris are amazingmuseums

LOCATION



A fixed-window neural Language Model

the students opened theiras the proctor started the clock ______
discard fixed window
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A fixed-window neural Language Model

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors 

hidden layer

a zoo

output distribution 

41



A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-grams

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊
• Window can never be large enough!
• 𝑥(') and 𝑥()) are multiplied by 

completely different weights in 𝑊.
No symmetry in how the inputs are
processed.

We need a neural architecture 
that can process any length input

42

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model



Recurrent Neural Networks (RNN)

hidden states 

input sequence 
(any length)

…

…

…

Core idea: Apply 
the same weights 
𝑊 repeatedlyA family of neural architectures

43

outputs 
(optional)



A Simple RNN Language Model

the students opened theirwords / one-hot vectors 

books
laptops

word embeddings

a zoo

output distribution 

Note: this input sequence could be much 
longer now!

hidden states 

is the initial hidden state
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RNN Language Models

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Computation for step t can (in 

theory) use information from
many steps back

• Model size doesn’t increase for 
longer input context

• Same weights applied on every 
timestep, so there is symmetry 
in how inputs are processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access 

information from many steps 
back 

More on 
these later 
in the 
course
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Training an RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution         for every step t.

• i.e. predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability 
distribution        , and the true next word        (one-hot for           ):

• Average this to get overall loss for entire training set:
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Training an RNN Language Model
= negative log prob

of “students”

the students opened their …examsCorpus

Loss

…

47

Predicted 
prob dists



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

48

Predicted 
prob dists

= negative log prob
of “opened”



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…
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Predicted 
prob dists

= negative log prob
of “their”



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

50

Predicted 
prob dists

= negative log prob
of “exams”



Training an RNN Language Model

+                  +                   +                  + …      =

the students opened their …exams

…
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Corpus

Loss

Predicted 
prob dists

“Teacher forcing”



Training a RNN Language Model

• However: Computing loss and gradients across entire corpus is too 
expensive!

• In practice, consider                       as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small 
chunk of data, and update.

• Compute loss          for a sentence (actually, a batch of sentences), compute gradients 
and update weights. Repeat.

52



Backpropagation for RNNs

……

Question: What’s the derivative of              w.r.t. the repeated weight matrix         ?

Answer:
“The gradient w.r.t. a repeated weight 

is the sum of the gradient 
w.r.t. each time it appears”

53

Why?



Multivariable Chain Rule
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Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version


Backpropagation for RNNs: Proof sketch
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…

In our example:

equalsequals

equals

Apply the multivariable chain rule:
= 1

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version


Backpropagation for RNNs

……

Question: How do we 
calculate this?

Answer: Backpropagate over 
timesteps i=t,…,0, summing 
gradients as you go.
This algorithm is called 
“backpropagation through time” 
[Werbos, P.G., 1988, Neural 
Networks 1, and others]
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Generating text with a RNN Language Model
Just like a n-gram Language Model, you can use a RNN Language Model to 
generate text by repeated sampling. Sampled output becomes next step’s input.

my favorite season is

…

sample

favorite
sample

season
sample

is
sample

spring

spring57



Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Obama speeches:

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
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https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0


Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Harry Potter:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
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https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6


Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on recipes:

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc
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https://gist.github.com/nylki/1efbaa36635956d35bcc


Generating text with a RNN Language Model

61

Let’s have some fun!
• You can train a RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on paint color names:

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

This is an example of a character-level RNN-LM (predicts what character comes next)

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network


Evaluating Language Models

• The standard evaluation metric for Language Models is perplexity.

• This is equal to the exponential of the cross-entropy loss          :
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Inverse probability of corpus, according to Language Model

Normalized by 
number of words

Lower perplexity is better!



RNNs have greatly improved perplexity

n-gram model

Increasingly 
complex RNNs

Perplexity improves 
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/
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https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/


Why should we care about Language Modeling?
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• Language Modeling is a benchmark task that helps us 
measure our progress on understanding language

• Language Modeling is a subcomponent of many NLP tasks, especially those involving 
generating text or estimating the probability of text:

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.



Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks that:
• Take sequential input of any length 
• Apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model 

• We’ve shown that RNNs are a great way to build a LM.

• But RNNs are useful for much more!
65



RNNs can be used for tagging
e.g., part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT JJ NN
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RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

e.g., sentiment classification

67



RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

equals

How to compute 
sentence encoding?

Basic way: 
Use final hidden 

state

e.g., sentiment classification
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RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

Usually better: 
Take element-wise 
max or mean of all 

hidden states

e.g., sentiment classification

69



RNNs can be used as an encoder module
e.g., question answering, machine translation, many other tasks!

Context: Ludwig 
van Beethoven was 
a German 
composer and 
pianist. A crucial 
figure …

Beethoven ?what nationality wasQuestion:

Here the RNN acts as an 
encoder for the Question (the 
hidden states represent the 
Question). The encoder is part 
of a larger neural system.

Answer: German

lots o
f n

eural 

arch
ite

ctu
re

lots of neural 

architecture
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RNN-LMs can be used to generate text
e.g., speech recognition, machine translation, summarization

what’s the

weatherthewhat’s

This is an example of a conditional language model.
We’ll see Machine Translation in much more detail later.

71

Input (audio)

<START>

conditioning

RNN-LM



Terminology and a look forward

By the end of the course: You will understand phrases like 
“stacked bidirectional LSTM with residual connections and self-attention”

The RNN described in this lecture = simple/vanilla/Elman RNN

Next lecture: You will learn about other RNN flavors

like GRU and LSTM

72

and multi-layer RNNs


