Natural Language Processing
with Deep Learning

CS224N/Ling284

P

Christopher Manning
Lecture 5: Language Models and Recurrent Neural Networks

(oh, and finish neural dependency parsing ©)

Lecture Plan

Neural dependency parsing (20 mins)
A bit more about neural networks (15 mins)

Language modeling + RNNs (45 mins)
* A new NLP task: Language Modeling

motivates

e A new family of neural networks: Recurrent Neural Networks (RNNs)

These are two of the most important concepts for the rest of the class!

Reminders:

You should have handed in Assignment 2 by today
In Assignment 3, out today, you build a neural dependency parser using PyTorch

1. How do we gain from a neural dependency parser?
Indicator Features Revisited

Stack Buffer
e Problem #1| --mmmmmmmmmmmmmmmmmmmmeesy e :
ROOT has.VBZ good_JJ ! + control NN o
e Problem#2| /nsubJ ---------------------------
e Problem #3 He PRP

dense

0.1 0.9 [0.2 p3[. [o1fos
dim = WHH® than 95% of parsing time is consumed by

feature computatlon

oo éi"r'l”"b'aV\A”””c'th'c'h
: s2.w=h
52w =hoplot 3 Jéhsé'ahd Ercompact feature representation

: lc(s2).t =PRPAsat =VBZAs1.t=JJ
+ le(sg).w = He Ale(sz).l = nsubj A sp.w = has
3

I 4

A neural dependency parser [Chen and Manning 2014]

e Results on English parsing to Stanford Dependencies:
e Unlabeled attachment score (UAS) = head

* Labeled attachment score (LAS) = head and label

Parser UAS LAS sent. /s
MaltParser 89.8 87.2 469
MSTParser 91.4 38.1 10

TurboParser 92.3 89.6 8
C& M 2014 92.0 89.7 654

First win: Distributed Representations

e We represent each word as a d-dimensional dense vector (i.e., word embedding)

* Similar words are expected to have close vectors.

e Meanwhile, part-of-speech tags (POS) and degendency labels are also represented as
d-dimensional vectors.

was were
e The smaller discrete sets also exhibit many semantic@les. &
& good

IS

NNS (plural noun) should be close fo NN (singular; &b
nummod (numerical modifier) should be|close to amoé (adjective modifier). :

.
oo

Extracting Tokens & vector representations from configuration

e We extract a set of tokens based on the stack / buffer positions:

Stack Buffer
{ ROOT hasVBZ good JJ control NN
/nsubj
He PRP

word POS dep
S1 good J) 1) A concatenation
2 has \VBZ 1) of the vector
b1 control NN 1) representation of
Ic(s1) =—pp @ + 0 + 0 all these is the
rc(si) 1) 1) 1) neural
c(s2) He PRP nsubj representation of
rc(s2) 1) 1) 1) a configuration

Second win: Deep Learning classifiers are non-linear classifiers

A softmax classifier assigns classes y € C based on inputs x € R? via the probability:
exp(W,.x)
zcczl eXp(WC.x) a.k.a. “cross entropy loss”

pylz) =

 We train the weight matrix W € R¢*4 to minimize the neg. log loss :),; — log p(y;|x;)

 Traditional ML classifiers (including Naive Bayes, SVMs, logistic regression and softmax
classifier) are not very powerful classifiers: they only give linear decision boundaries

: ol Lo This can be quite limiting
0 .E\B —> Unhelpful when a problem is complex
e Taw
.'0. K4 Teed
I oo Wouldn’t it be cool to get these correct?
7

Neural Networks are more powerful

* Neural networks can learn much more complex functions with nonlinear decision
boundaries!

. Non-linear in the original space, linear for the softmax at the top of the neural network

Visualizations with ConvNetJS by Andrej Karpathy!

8 http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Simple feed-forward neural network multi-class classifier

o Log loss (cross-entropy error) will be back-
Softmax probabllltles propagated to the embeddings

Output layer y
y = softmax(Uh + b,) () The hidden layer re-represents the input —

M it moves inputs around in an intermediate

Hidden layer h 9000000 layer vector space—so it can be easily
h = ReLU(Wx + b,) m classified with a (linear) softmax
Inputlayerx ())@ CeaCCd)

x is result of lookup
X(i,..,i+d) = L€
lookup + concat

RelLU = Rectified .
Linear Unit 2o
-1
2

rect(z) = max(z,0)

Neural Dependency Parser Model Architecture

Softmax probabilities— { Shift, Left-Arc,, Right-Arc, }

Output layer y
y = softmax(Uh + b,) ()

LN

Hidden layer h 2000000
h = ReLU(Wx + b,) %&
Input layer x |()() () () ()

lookup + concat f

--

--

nsubj

He PRP
|| 10

Dependency parsing for sentence structure

Chen and Manning (2014) showed that neural networks can accurately
determine the structure of sentences, supporting meaning interpretation

W ik

nsubjpass
ux nmod nmod
: Wauxpass VBN case NNS_’/_@ycase NNI3] D

Markets have been Jolted by concerns about China.

It was the first simple, successful neural dependency parser

The dense representations (and non-linear classifier) let it outperform other
greedy parsers in both accuracy and speed

11

Further developments in transition-based neural dependency parsing

This work was further developed and improved by others, including in particular at Google
* Bigger, deeper networks with better tuned hyperparameters
* Beam search
* Global, conditional random field (CRF)-style inference over the decision sequence
Leading to SyntaxNet and the Parsey McParseFace model (2016):
“The World’s Most Accurate Parser”
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Method ________|UAS___|LAS(PTBWS)SD3.3)

~"~ Chen & Manning 2014 92.0 89.7
G Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79

Q

12

https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Graph-based dependency parsers

e Compute a score for every possible dependency (choice of head) for each word
* Doing this well requires more than just knowing the two words

* We need good “contextual” representations of each word token, which we will
develop in the coming lectures

e Repeat the same process for each other word; find the best parse (MST algorithm)

0.5 0.8
0.3 2.0
ROOT The big cat sat

e.g., picking the head for “big”

I 13

Graph-based dependency parsers

e Compute a score for every possible dependency (choice of head) for each word
* Doing this well requires more than just knowing the two words

* We need good “contextual” representations of each word token, which we will
develop in the coming lectures

e Repeat the same process for each other word; find the best parse (MST algorithm)

0.5 0.8
0.3 2.0
ROOT The big cat sat

e.g., picking the head for “big”

I 14

A Neural graph-based dependency parser
[Dozat and Manning 2017; Dozat, Qi, and Manning 2017]

e This paper revived interest in graph-based dependency parsing in a neural world
e Designed a biaffine scoring model for neural dependency parsing

e Also crucially uses a neural sequence model, something we discuss next week

e Really great results!

e But slower than the simple neural transition-based parsers
* There are n? possible dependencies in a sentence of length n

Method _________|UAS____|LAS(PTBWSJSD3.3

~"~ Chen& Manning 2014 92.0 89.7
5 Weiss etal. 2015 93.99 92.05
5 Andoretal. 2016 94.61 92.79

A~

Dozat & Manning 2017 95.74 94.08
15

2. A bit more about neural networks

We have models with many parameters! Regularization!

e A full loss function includes regularization over all parameters 0, e.g., L2 regularization:

—)
1) = ig:—lo el +2> 6
=< g S k K

1=1 c=1

e C(Classic view: Regularization works to prevent overfitting when we have a lot of features
(or later a very powerful/deep model, etc.)
e Now: Regularization produces models that generalize well when we have a “big” model

e We do not care that our modAeIs overfit on the training data, even though they are hugely overfit

.

error
overfitting

'

0 >
17 model “power”

Dro PO Ut (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov 2012/JMLR 2014)

Preventing Feature Co-adaptation = Good Regularization Method!

e Training time: at each instance of evaluation (in online SGD-training), randomly set
50% of the inputs to each neuronto O

e Test time: halve the model weights (now twice as many)
e (Except usually only drop first layer inputs a little (~15%) or not at all)

e This prevents feature co-adaptation: A feature cannot only be useful in the presence
of particular other features

* |In a single layer: A kind of middle-ground between Naive Bayes (where all feature

weights are set independently) and logistic regression models (where weights are
set in the context of all others)

e Can be thought of as a form of model bagging (i.e., like an ensemble model)

* Nowadays usually thought of as strong, feature-dependent regularizer
[Wager, Wang, & Liang 2013]

18

“Vectorization”

 E.g., looping over word vectors versus concatenating them all into one large matrix
and then multiplying the softmax weights with that matrix:

from numpy import randod
N = 500 # number of windows to classify

d = 300 # dimensionality of each window
C = 5 # number of classes

W = random.rand(C,d)
wordvectors list = [random.rand(d,l) for i in range(N)]
wordvectors one matrix = random.rand(d,N)

ttimeit [W.dot(wordvectors list[i]) for i in range(N)]
ttimeit W.dot(wordvectors one matrix)

e 1000 loops, best of 3: 639 us per loop
10000 loops, best of 3: 53.8 us per loop < Now using a single a C x N matrix

e Matrices are awesome!!l Always try to use vectors and matrices rather than for loops!
 The speed gain goes from 1 to 2 orders of magnitude with GPUs!

19

Non-linearities, old and new

logistic (“sigmoid”) tanh hard tanh RelLU (Rectified Linear Unit)
N 1 | | €% — e~ 2 -1 %fx<—1
f(2) 1+ oxp(—2)° f(z) = tanh(z) = e HardTanh(x):{)16 i£x—>1 1<:x<:1 rect(z) = max(z,O)
1 - 1 = ;
] 2
1
05 Z0
-1F
-2
0—6 -4 -lz Oo ; zlt els I LR ,? L2 3
tanh is just a rescaled and shifted sigmoid (2 X as steep, [-1,1]): Leaky ReLU / Swish [Ramachandran,
tanh(z) = 2logistic(2z) -1 Parametric ReLU Zoph & Le 2017]

sssss

Both logistic and tanh are still used in various places (e.g., to get a
probability), but are no longer the defaults for making deep networks /

For building a deep network, the first thing you should try is ReLU — |
it trains quickly and performs well due to good gradient backflow — —

Parameter Initialization

You normally must initialize weights to small random values (i.e., not zero matrices!)

e To avoid symmetries that prevent learning/specialization

Initialize hidden layer biases to 0 and output (or reconstruction) biases to optimal value
if weights were 0 (e.g., mean target or inverse sigmoid of mean target)

Initialize all other weights ~ Uniform(—r, r), with r chosen so numbers get neither too
big or too small [later the need for this is removed with use of layer normalization]

Xavier initialization has variance inversely proportional to fan-in n;, (previous layer size)
and fan-out n_, (next layer size):

2

TNin + Nout

Var(W;) =

Optimizers

e Usually, plain SGD will work just fine!

* However, getting good results will often require hand-tuning the learning rate
e See next slide

e For more complex nets and situations, or just to avoid worry, you often do better with
one of a family of more sophisticated “adaptive” optimizers that scale the parameter
adjustment by an accumulated gradient.

* These models give differential per-parameter learning rates
Adagrad

RMSprop

Adam < A fairly good, safe place to begin in many cases

SparseAdam

Learning Rates

e You can just use a constant learning rate. Start around /r = 0.0017?
* |t must be order of magnitude right — try powers of 10

e Too big: model may diverge or not converge
e Too small: your model may not have trained by the assignment deadline

e Better results can generally be obtained by allowing learning rates to decrease as you
train

* By hand: halve the learning rate every k epochs
e An epoch = a pass through the data (shuffled or sampled — not in same order each time)

e By a formula: Ir = lrge ™, for epoch t
e There are fancier methods like cyclic learning rates (q.v.)

e Fancier optimizers still use a learning rate but it may be an initial rate that the
optimizer shrinks —so you may want to start with a higher learning rate

3. Language Modeling + RNNs

Language Modeling

e Language Modeling is the task of predicting what word comes next
books

the students opened their // laptops
\\ exams

minds
e More formally: given a sequence of words V) 22 ,w(t),

compute the probability distribution of the next word xt+l) .
t+1 t 1
Pzt £® . gW)
where ="t can be any word in the vocabulary V' = {w1, ..., w)y |}

e A system that does this is called a Language Model

25

Language Modeling

* You can also think of a Language Model as a system that
assigns probability to a piece of text

e For example, if we have some text (1) ... z(T), then the
probability of this text (according to the Language Model) is:

PxW,. . 1) =PaxW) x P(®| ™) x ... x P(xD| D, . W)

T
= H P(xW| £t-D . 2W)
t=1

\ J
Y

This is what our LM provides

26

You use Language Models every day!

e I'll meet you at the @ >

airport

You use Language Models every day!

28

Go

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

what is the |

Google Search

gle

I'm Feeling Lucky

(=

n-gram Language Models

the students opened their

e Question: How to learn a Language Model?
e Answer (pre- Deep Learning): learn an n-gram Language Model!

e Definition: A n-gram is a chunk of n consecutive words.

e unigrams: “the”, “students”, “opened”, “their”

e bigrams: “the students”, “students opened”, “opened their”
e trigrams: “the students opened”, “students opened their”

e J-grams: “the students opened their”

e |dea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

29

n-gram Language Models

e First we make a Markov assumption: x(&+D depends only on the preceding n-1 words

n-1 words
A
[\

Pz D)g® M) = Pt |g® L gtmnt2) (assumption)

prob of a n-gram \ P(m(t—i-l)7 w(t), . ’w(t—n—l-2))

iy el SLA (definition of
> (w yoooyL) conditiona| prOb)

prob of a (n-1)-gram

e Question: How do we get these n-gram and (n-1)-gram probabilities?
e Answer: By counting them in some large corpus of text!

count (T, g . glt=nt2) (statistical
count(x®), ... xt-—n+2)) approximation)

Y

30

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

-as-hhe-prem-!ed-ﬂreebek—thestudents opened the/r

discard

condltlon on this

count(students opened their w)

P(w|students opened their) =
(w] P) count(students opened their)

For example, suppose that in the corpus:

e “students opened their” occurred 1000 times

e “students opened their books” occurred 400 times
e = P(books | students opened their) = 0.4 Should we have discarded

e “students opened their exams” occurred 100 times the “proctor” context?

¢ - P(exams | students opened their) =

31

Sparsity Problems with n-gram Language Models

32

Sparsity Problem 1

opened their w” never

probability O!

Problem: What if “students

occurred in data? Then w has

(Partial) Solution: Add small §
to the count for everyw € V.
This is called smoothing.

\ 4

\

count(students opened their w
P(w|students opened their) = (p)

\

- j{count(students opened their)

Sparsity Problem 2

Problem: What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any w!

(Partial) Solution: Just condition
on “opened their” instead.
This is called backoff.

4

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Storage Problems with n-gram Language Models

33

Storage: Need to store
count for all n-grams you
saw in the corpus.

T

count(students opened their w)

P(wlstudents opened their) =

count(students opened their)

Increasing n or increasing
corpus increases model size!

n-gram Language Models in practice

34

You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the

Business and financial news

get probability

distribution
company |0.153 _ Sparsity problem:
bank @.153 not much granularity
price 0.077 in the probabilit
italian 0.839 o p‘b ALY
emirate 0.039 Istribution
Otherwise, seems reasonable! * Try for yourself: https://nlpforhackers.io/language-models/

https://nlpforhackers.io/language-models/

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the
\\)
Y
CondltIOn get probability
on thlS distribution

company ©.153
bank 9.153
“price 0.077 |
italian 0.039
emirate 0.039

hampm

35

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

36

today \the price
Y J
Cond ition get probability
on thlS distribution
of 0.308 Jsample
for 0.050
it 0.046
to 0.046
is 0.031

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of
——
COndltlon get probability

on this distribution
the 0.072
18 0.043
0il 0.043
its 0.036
|gold 0.018 | sample

37

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size...

How to build a neural Language Model?

e Recall the Language Modeling task:
* Input: sequence of words 1), (2 .. 2
e Output: prob dist of the next word Pz V| 2® . . 2W)

e How about a window-based neural model?
 We saw this applied to Named Entity Recognition in Lecture 3:

LOCATION
N\

U
(000000000000

N

|14

(0000 0000 0000 0000 0000

[I f I I

museums in Paris are amazing

39

A fixed-window neural Language Model

. Y
discard fixed window

S——— T O TS O et el {he students opened thei5
I 40

41

A fixed-window neural Language Model

books
laptops
output distribution
y = softmax(Uh + by) € RIV!
a N 200
U
hidden layer
000000000000
h = f(WG -+ bl) [v Y]
w
concatenated word embeddings
(D). L(2). .(3). L(4) [0000 0000 0000 QQQQ]
€ = [6 y € , € ; €] N A / /
words / one-hot vectors the students opened their

2D 2?2 2() 4@ 2D +(2) -(3) ()

A fixed-window neural Language Model
Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

Improvements over n-gram LM: books
* No sparsity problem
* Don’t need to store all observed n-grams

laptops

A 200

Remaining problems:

* Fixed window is too small
* Enlarging window enlarges W (000000000000 |
* Window can never be large enough! 1

U

e x(M and x@ are multiplied by w
completely different weights in W. [0000 Q000 0000 0000]
No symmetry in how the inputs are
processed. 1]] T
We need a neural architecture the students opened their
that can process any length input z! z z® z®

42

43

Recurrent Neural Networks (RNN) Core idea: Apply

the same weights
A family of neural architectures W repeatedly

outputs
(optional) {

hidden states <

input sequence
(any length) {

9y = P(x® |the students opened their)

A Simple RNN Language Model books

laptops
output distribution
4 = softmax (Uh“) + bg) e RV : :
U
h©)__ h() h(2) h(3) h4)
hidden states ® ® @ @ @
Bt _ o (Whh(t—l) L We® b1> e W, Ry e W, | ® Wy, | ® Wy, | ®
() L () () ()
h(9) is the initial hidden state @ @ (] ("])
— 7 5 5 5
We We We We
| o o (@) o
word embeddings o) o 2| @ 3| O e ©
e®) — pp® o @) @) O
@) @) @) @)
T = T s
words / one-hot vectors the students opened their
m(t) - R|V| m(l) CU(Z) w(3) m(4)

Note: this input sequence could be much /

44 longer now!

9y = P(x® |the students opened their)

RNN Language Models books

laptops

* Recurrent computation is slow More on

* In practice, difficult to access | these later ,
information from many steps [inthe the — students opened their
2D @) () (@)

baCk course

RNN Advantages:

* Can process any length input {Hl
« Computation for step t can (in a 200
theory) use information from U

many steps back ho) R B2 h(3) h(4)
* Model size doesn’t increase for @ W @ - O -) W O
longer input context : h : h : hy : h :
 Same weights applied on every 0O O ® o ®
: - — Y 5 7 5
jcm;}este.p, scithere IS symmjtry W, W, AWe W,
in how inputs are processed. 8 Fg o Fg
6(1) 6(2) 6(3) @) 6(4)
RNN Disadvantages: N 8 8 8 8
T Jz & Ts

45

Training an RNN Language Model

46

Get a big corpus of text which is a sequence of words =, ..., z(T)
Feed into RNN-LM; compute output distribution Q(t) for every step t.
* i.e. predict probability dist of every word, given words so far

Loss function on step tis cross-entropy between predicted probability
distribution ¢, and the true next word y(*) (one-hot for z(*+1):

JO©O) = CE®,§0) = - 3 y®log g = —log g

Tt41
wevV

Average this to get overall loss for entire training set:

T

T
1 1 .
=7 > JB(9) = T > —log gl |

t=1

t=1

47

Training an RNN Language Model

= negative log prob

of “students”

Loss —— | J)(h) J2)(6) J3)(6) J1)(6)
T N N N
Predicted 5 e 5® 5
prob dists A A A
U U U U
h©)__ h h(2) h(3) h4)
L @ @ @ @
o W, (@06 W, @ Wr |@|Wr |@| W,
@ 1@ | @ | @ | @
() @ @ () @
— 7 e N e
We W We We
e(l) 6(2) 6(3) 6(4)

—B—ja[cccc

Corpus =—— the

(D)

?[oooo

students

2 (2)

opened

2(3)

their
2 (4)

exams

48

Training an RNN Language Model

= negative log prob

of “opened”
Loss — JW)(p) J2)(6) J3) () JH ()
T N N N\
Predicted e e e 4@
prob dists A A A
U U U U
h©)__ h h(2) h(3) h4)
@ @ @ O ()
o W, (@06 W, @ Wr |@|Wr |@| W,
@ 1@ | @ 1@ 1@
() @ () () @
— = 'y 'y
W, W, W, W,
(1) 2)| © 3) © (4) ©
el “le| “le| ¢ e
@) @) @) @)
T T8 Tz s
Corpus — the students opened their
2 (1) 2(2) 2(3) (%)

exams

Training an RNN Language Model

= negative log prob

of “their”
Loss — JW)(p) J2)(6) J3) () JH ()
T N N N\
Predicted :_lA/(l) Q(Q) ’,@7(3) Q(4)
prob dists A A A
U U U U
h©)__ h h(2) h(3) h4)
@ @ () O @
o W, (@06 W, @ Wr |@|Wr |@| W,
@ 1@ | @ 1@ 1@
() @ () () @
— = 'y 'y
W, W, We W,
(1) 2)| © 3) © (4) ©
el “le| “le| ¢ e
@) @) @) @)
T T8 Tz s
Corpus — the students opened their exams
2 (1) 2(2) 2(3) 7 (4)

49

Training an RNN Language Model

= negative log prob

of “exams”
Loss — JW)(p) J2)(6) J3) () JH ()
T N N N
Predicted :_lA/(l) Q(Q) ’,@7(3) Q(4)
prob dists A A A
U U U U
h©)__ h h(2) h(3) h4)
@ @ () O @
o W, (@06 W, @ Wr |@|Wr |@| W,
@ 1@ | @ 1@ 1@
() @ () () @
— . e
W, W, We W,
(1) (2) © 3)| © (4) ©
el “le| “le| ¢ e
@) @) @) @)
T T8 Tz s
Corpus — the students opened their exams
2 (1) 2(2) 2(3) 7 (4)

50

Training an RNN Language Model

‘ “Teacher forcing”

T
Loss —— JW(B) + JA@G) + JOEO) + JOO) +. = JO)= 5> I00)
T N N N t=1
PredicFed 4 e e 4@
prob dists " " "
U U U U
h©)__ h h(2) h(3) h4)
@ @ @ @ @
o W, (@06 W, @ Wr |@|Wr |@| W,
® 1@ 1 1@ e
@ @ @ @ @
— N N N N
We We We We
e(l) 6(2) 6(3) 6(4)

—59[0000
?[oooo

their
2 (4)

opened
2(3)

students
2(2)

Corpus =—> the
(1)

exams

51

Training a RNN Language Model

e However: Computing loss and gradients across entire corpus =, ..., 2" js too
expensive!

J(0) = % S0)

e |n practice, consider V), ..., (™ as a sentence (or a document)

e Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small
chunk of data, and update.

e Compute loss J(6)for a sentence (actually, a batch of sentences), compute gradients
and update weights. Repeat.

52

53

Backpropagation for RNNs

J(t)(g)
h©) h(t=3) h(t—2) h(t—1) h(®)
@ @ @ @ @
@ W, Wi |@| W, |@|Wr |@| Wh |@| Wi
° 1o e[e[e[
® o o [of (o

Question: What’s the derivative of J)(8) w.r.t. the repeated weight matrix Wy, ?

“The gradient w.r.t. a repeated weight
is the sum of the gradient
(4) w.r.t. each time it appears”

o.J®) t o 9J®
oW, ~ L~ oW,

1

Answer:

Why?

Multivariable Chain Rule

« Given a multivariable function f(z,y), and two single variable functions
z(t) and y(t), here's what the multivariable chain rule says:

d _O0f dz Of dy

Ve

Derivative of composition function

One final output f(a(t),y(t))

AN

Two gﬂeprgg:diﬂte X (t) Y (t)

One input

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

54

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs: Proof sketch

55

« Given a multivariable function f(z,y), and two single variable functions
z(t) and y(t), here's what the multivariable chain rule says:

d _O0f dz Of dy

Ve

Derivative of composition function

In our example: Apply the multivariable chain rule:
T (0) -1
/\ oJ®) zt: o.J) 0Wh\ 0
Wh‘u) Wh‘(z) Wh‘(t) oWy, i=1 oWy, © oW},
Q
%, t 57t
@qua Y \)3\5 . 0J
A -y
W = Wala

Source:

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs

J®(6)
h(OB_ h(t—3) h(t—2) h(f;l) h(®)
@ @
Q_W_h> Wi @ Wh\: Wh\: Wh\‘ Wy
® 1@ 1@) . ' i
© ° o (9 L
Answer: Backpropagate over
timesteps i=t,...,0, summing
, . . gradients as you go.
0J®) B Z 0.1 This algorithm is called
oW, — oWy, (@) “backpropagation through time”
' [Werbos, P.G., 1988, Neural

T Networks 1, and others]

Question: How do we
56 calculate this?

Generating text with a RNN Language Model

Just like a n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

favorite season Is spring
N N N
sample sample sample sample
g g2 73 g®
N N N
U U U U
h©)__ h h(2) h(3) h4)
@ @ @ @ @
O\ Wy (0| W, (@ Wi 0| Wr |0 Wi _
@ 1@ 1@ 1@ | @ :
) — ﬂ\ \ /\ J h/\—l \ /\ J
W, W, We W,
: r:1 r—.—x r:1
1 (2) 3) © (4)
e() o) e o e o e o
o @ @) @
Te T& & s
57 my favorite season is spring

Generating text with an RNN Language Model

Let’s have some fun!
 You can train an RNN-LM on any kind of text, then generate text in that style.

e RNN-LM trained on Obama speeches:

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done.

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2eal

58

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Generating text with an RNN Language Model

Let’s have some fun!
 You can train an RNN-LM on any kind of text, then generate text in that style.
e RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“T'll leave those brooms in London, are

they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-82a9431803da6

59

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Generating text with an RNN Language Model

Let’s have some fun!
 You can train an RNN-LM on any kind of text, then generate text in that style.
e RNN-LM trained on recipes:

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies

Yield: 6 Servings

2 tb Parmesan cheese —- chopped
1 ¢ Coconut milk
3 Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and simmer
until firm. Serve hot in bodied fresh, mustard, orange and cheese.

Combine the cheese and salt together the dough in a large skillet; add the ingredients
and stir in the chocolate and pepper.

Source: https://gist.github.com/nylki/lefbaa36635956d35bcc

60

https://gist.github.com/nylki/1efbaa36635956d35bcc

Generating text with a RNN Language Model

Let’s have some fun!
e You can train a RNN-LM on any kind of text, then generate text in that style.
e RNN-LM trained on paint color names:

" Ghasty Pink 231 137 165 | 'Sand Dan 201 172 143

I Power Gray 151 124 112 I Grade Bat 48 94 83

| 'Navel Tan 199 173 140 " | Light Of Blast 175 150 147
Bock Coe White 221 215 236 I Grass Bat 176 99 108
Horble Gray 178 181 196 Sindis Poop 204 205 194

I Homestar Brown 133 104 85 Dope 219 209 179

I snader Brown 144 106 74 I Testing 156 101 106
Golder Craam 237 217 177 " Stoner Blue 152 165 159
Hurky White 232 223 215 Burble Simp 226 181 132

Burf Pink 223 173 179 ' Stanky Bean 197 162 171
Rose Hork 230 215 198 © | Turdly 190 164 116

This is an example of a character-level RNN-LM (predicts what character comes next)

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

61

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

Evaluating Language Models

e The standard evaluation metric for Language Models is perplexity.

T 1/T
_ 1
perplexity =[] (PLM(m<t+1>| 20, ,a:(l))) " Normalized by

t=1 number of words

N J
Y

Inverse probability of corpus, according to Language Model

e Thisis equal to the exponential of the cross-entropy loss J(6):

T 1/T ! T
H < ~(t)) = ©xp (T Z — log yg—"tt)+1> — exp(J(H))

t=1 yiBt+1 t=1

Lower perplexity is better!

62

RNNs have greatly improved perplexity

Model Perplexity
n-gram model — | Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013) 1 L
RNN-2048 + BlackOut sampling (J1 et al., 2015) 68.3
Increasingly Sparse Non-negative Matrix factorization (Shazeer et 52 9
complex RNNs Al 2015) :
LSTM-2048 (Jozefowicz et al., 2016) 43.7
2-layer LSTM-8192 (Jozefowicz et al., 2016) 30
Ours small (LSTM-2048) 43.9
| | Ours large (2-layer LSTM-2048) 39.8 !

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

63

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

Why should we care about Language Modeling?

e Language Modeling is a benchmark task that helps us
measure our progress on understanding language

e Language Modeling is a subcomponent of many NLP tasks, especially those involving
generating text or estimating the probability of text:

* Predictive typing

* Speech recognition

e Handwriting recognition

* Spelling/grammar correction
e Authorship identification

* Machine translation

* Summarization

* Dialogue

* etc.

64

Recap

e Language Model: A system that predicts the next word

e Recurrent Neural Network: A family of neural networks that:
e Take sequential input of any length
* Apply the same weights on each step

e Can optionally produce output on each step

e Recurrent Neural Network # Language Model

e We've shown that RNNs are a great way to build a LM.

e But RNNs are useful for much more!

65

RNNs can be used for tagging
e.g., part-of-speech tagging, named entity recognition

DT J

—

NN VBN

i1
i

the startled cat knocked over

N

)
=
=
=

\ 4

\ 4

\ 4
\ 4

—e000| —

A4

\ 4

— o000} —

SR oM oE G
T 77 77

~
>
®
<
Q
n
M

RNNs can be used for sentence classification
e.g., sentiment classification

I 67

©
O
»
=

Sentence

I

encoding

How to compute
sentence encoding?

—(e0000]

overall

\ 4
A4
Vv

—(e0000]

@ ‘@
@ @
@ @
@ @

/ the

enjoyed

\ 4
\ 4
\ 4

RNNs can be used for sentence classification
e.g., sentiment classification

positive How to compute
i sentence encoding?
(@)
Sentence : Basic way:
encoding @) Use final hidden

state
ech‘:?/s

\ 4

— 0000

\ 4

\ 4

\ 4

\ 4

—(e0000]

A4

%

ot

— 0000

! !

—

enjoyed the movie

overall
I 68

RNNs can be used for sentence classification
e.g., sentiment classification

positive How to compute
i sentence encoding?
o Usually bett
O sually better:
Sentence o - |
encoding %) ake element-wise

max or mean of all
hidden states

\ 4
\ 4

\ 4

\ 4

\ 4

—/e00@

\ 2

—/o00@

T

enjoyed the movie

overall
I 69

RNNs can be used as an encoder module
e.g., question answering, machine translation, many other tasks!

Answer: German
Here the RNN acts as an A
: N T
encoder for the Question (the e %, "o,
i K O RN
hidden states represent the \O&so\(.\\&e(%.»‘“ s..?"% %/
Question). The encoder is part e %0
of a larger neural system. Context: Ludwig
van Beethoven was
a German
composer and
pianist. A crucial
figure ...

Vv

A4

—(o000|

\ 4

——| 0000

A4

—/e00®

—e00®

!

Question: what nationality was Beethoven

70

RNN-LMs can be used to generate text
e.g., speech recognition, machine translation, summarization

RNN-LM
AL
' \
what’s the weather

Input (audio)

T 1T
i

<START> what’s the

\ 4

\ 4

s
:

This is an example of a conditional language model.
We’ll see Machine Translation in much more detail later.

71

Terminology and a look forward

The RNN described in this lecture = simple/vanilla/ElIman RNN

Next lecture: You will learn about other RNN flavors

& £5i
PTrac O i
37 4 o

like GRU =%

" and multi-layer RNNs

By G
£
Y -~

By the end of the course: You will understand phrases like
“stacked bidirectional LSTM with residual connections and self-attention”

——

72

