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Lecture Plan

1. RNN Language Models (25 mins)
2. Other uses of RNNs (8 mins)
3. Exploding and vanishing gradients (15 mins)
4. LSTMs (20 mins)
5. Bidirectional and multi-layer RNNs (12 mins)

• Projects
• Next Thursday: a lecture about choosing final projects
• It’s fine to delay thinking about projects until next week
• But if you’re already thinking about projects, you can view some info/inspiration on 

the website. It’s still last year’s information at present!
• It’s great if you can line up your own mentor; we also lining up some mentors
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Overview
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• Last lecture we learned: 
• Language models, n-gram language models, and  Recurrent Neural Networks (RNNs)

• Today we’ll learn how to get RNNs to work for you
• Training RNNs
• Uses of RNNs
• Problems with RNNs (exploding and vanishing gradients) and how to fix them
• These problems motivate a more sophisticated RNN architecture: LSTMs
• And other more complex RNN options: bidirectional RNNs and multi-layer RNNs

• Next lecture we’ll learn: 
• How we can do Neural Machine Translation (NMT) using an RNN-based architecture 

called sequence-to-sequence with attention



1. The Simple RNN Language Model

4

the students opened theirwords / one-hot vectors 

books
laptops

word embeddings 

a zoo

output distribution 

Note: this input sequence could be much 
longer now!

hidden states 

is the initial hidden state



Training an RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution         for every step t.

• i.e., predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability 
distribution        , and the true next word        (one-hot for           ):

• Average this to get overall loss for entire training set:
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Training an RNN Language Model
= negative log prob

of “students”

the students opened their …examsCorpus

Loss

…
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Predicted 
prob dists



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…
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Predicted 
prob dists

= negative log prob
of “opened”



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…
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Predicted 
prob dists

= negative log prob
of “their”



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…
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Predicted 
prob dists

= negative log prob
of “exams”



Training an RNN Language Model

+                  +                   +                  + …      =

the students opened their …exams

…
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Corpus

Loss

Predicted 
prob dists

“Teacher forcing”



Training a RNN Language Model

• However: Computing loss and gradients across entire corpus is too 
expensive!

• In practice, consider                       as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small 
chunk of data, and update.

• Compute loss          for a sentence (actually, a batch of sentences), compute gradients 
and update weights. Repeat.
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Training the parameters of RNNs: Backpropagation for RNNs
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……

Question: What’s the derivative of              w.r.t. the repeated weight matrix         ?

Answer:
“The gradient w.r.t. a repeated weight 

is the sum of the gradient 
w.r.t. each time it appears”

Why?



Multivariable Chain Rule
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Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Gradients sum at 
outward branches! 

(lecture 3)

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version


Backpropagation for RNNs: Proof sketch
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…

In our example:

equalsequals

equals

Apply the multivariable chain rule:
= 1

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version


Backpropagation for RNNs

……

Question: How do we 
calculate this?

Answer: Backpropagate over timesteps 
i=t,…,0, summing gradients as you go.
This algorithm is called “backpropagation 
through time” [Werbos, P.G., 1988, Neural 
Networks 1, and others]
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Generating text with a RNN Language Model
Just like a n-gram Language Model, you can use an RNN Language Model to 
generate text by repeated sampling. Sampled output becomes next step’s input.

my favorite season is

…

sample

favorite
sample

season
sample

is
sample

spring

spring16



Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Harry Potter:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
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https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6


Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on recipes:

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc
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https://gist.github.com/nylki/1efbaa36635956d35bcc


Evaluating Language Models

• The standard evaluation metric for Language Models is perplexity.

• This is equal to the exponential of the cross-entropy loss          :
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Inverse probability of corpus, according to Language Model

Normalized by 
number of words

Lower perplexity is better!



RNNs have greatly improved perplexity

n-gram model

Increasingly 
complex RNNs

Perplexity improves 
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/
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https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/


Why should we care about Language Modeling?
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• Language Modeling is a benchmark task that helps us 
measure our progress on understanding language

• Language Modeling is a subcomponent of many NLP tasks, especially those involving 
generating text or estimating the probability of text:

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.



Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks that:
• Take sequential input of any length 
• Apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model 

• We’ve shown that RNNs are a great way to build a LM

• But RNNs are useful for much more!
22



2. Other RNN uses: RNNs can be used for sequence tagging
e.g., part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT JJ NN
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RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

e.g., sentiment classification
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RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

equals

How to compute 
sentence encoding?

Basic way: 
Use final hidden 

state

e.g., sentiment classification
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RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

Usually better: 
Take element-wise 
max or mean of all 

hidden states

e.g., sentiment classification
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RNNs can be used as a language encoder module
e.g., question answering, machine translation, many other tasks!

Context: Ludwig 
van Beethoven was 
a German 
composer and 
pianist. A crucial 
figure …

Beethoven ?what nationality wasQuestion:

Here the RNN acts as an 
encoder for the Question (the 
hidden states represent the 
Question). The encoder is part 
of a larger neural system.

Answer: German

lots o
f n

eural 

arch
ite

ctu
re

lots of neural 

architecture
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RNN-LMs can be used to generate text
e.g., speech recognition, machine translation, summarization

what’s the

weatherthewhat’s

This is an example of a conditional language model.
We’ll see Machine Translation in much more detail next class.
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Input (audio)

<START>

conditioning

RNN-LM



3. Problems with Vanishing and Exploding Gradients
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Vanishing gradient intuition

30

?



Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem: 
When these are small, the gradient 
signal gets smaller and smaller as it 

backpropagates further
34



Vanishing gradient proof sketch (linear case)

• Recall: 
• What if      were the identity function,                   ? 

• Consider the gradient of the loss              on step , with respect 
to the hidden state         on some previous step  . Let
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(chain rule)

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(chain rule)

If Wh is “small”, then this term gets 
exponentially problematic as    becomes large

(value of               )

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf


Vanishing gradient proof sketch (linear case)

• What’s wrong with        ? 
• Consider if the eigenvalues of        are all less than 1:

• We can write                  using the eigenvectors of        as a basis:

• What about nonlinear activations    (i.e., what we use?)
• Pretty much the same thing, except the proof requires            
for some     dependent on dimensionality and 

36 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(eigenvectors)

Approaches 0 as    grows, so gradient vanishes 

sufficient but 
not necessary

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf


Why is vanishing gradient a problem?

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.
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Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the printer was out of toner. 
She went to the stationery store to buy more toner. It was very overpriced. After 
installing the toner into the printer, she finally printed her ________

• To learn from this training example, the RNN-LM needs to model the dependency 
between “tickets” on the 7th step and the target word “tickets” at the end.

• But if gradient is small, the model can’t learn this dependency
• So, the model is unable to predict similar long-distance dependencies at test time
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Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step becomes too big:

• This can cause bad updates: we take too large a step and reach a weird and bad 
parameter configuration (with large loss)
• You think you’ve found a hill to climb, but suddenly you’re in Iowa

• In the worst case, this will result in Inf or NaN in your network 
(then you have to restart training from an earlier checkpoint)

39

learning rate

gradient



Gradient clipping: solution for exploding gradient
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• Gradient clipping: if the norm of the gradient is greater than some threshold, scale it 
down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

• In practice, remembering to clip gradients is important, but exploding gradients are an 
easy problem to solve

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf


How to fix the vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to preserve information 
over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• How about a RNN with separate memory?

41



4. Long Short-Term Memory RNNs (LSTMs)

• A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the vanishing gradients 
problem.

• Everyone cites that paper but really a crucial part of the modern LSTM is from Gers et al. (2000) 💜

• On step t, there is a hidden state         and a cell state 
• Both are vectors length n
• The cell stores long-term information
• The LSTM can read, erase, and write information from the cell

• The cell becomes conceptually rather like RAM in a computer

• The selection of which information is erased/written/read is controlled by three corresponding gates
• The gates are also vectors length n
• On each timestep, each element of the gates can be open (1), closed (0), or somewhere in-between
• The gates are dynamic: their value is computed based on the current context 

42

“Long short-term memory”, Hochreiter and Schmidhuber, 1997. https://www.bioinf.jku.at/publications/older/2604.pdf
“Learning to Forget: Continual Prediction with LSTM”, Gers, Schmidhuber, and Cummins, 2000. https://dl.acm.org/doi/10.1162/089976600300015015

https://www.bioinf.jku.at/publications/older/2604.pdf
https://dl.acm.org/doi/10.1162/089976600300015015


We have a sequence of inputs 𝑥("), and we will compute a sequence of hidden states ℎ(") and cell states 
𝑐(").  On timestep t:

Long Short-Term Memory (LSTM)

Al
l t

he
se

 a
re

 v
ec

to
rs

 o
f s

am
e 

le
ng

th
 n

Forget gate: controls what is kept vs 
forgotten, from previous cell state

Input gate: controls what parts of the 
new cell content are written to cell

Output gate: controls what parts of 
cell are output to hidden state

New cell content: this is the new 
content to be written to the cell

Cell state: erase (“forget”) some 
content from last cell state, and write 
(“input”) some new cell content

Hidden state: read (“output”) some 
content from the cell

Sigmoid function: all gate 
values are between 0 and 1

43
Gates are applied using element-wise 

(or Hadamard) product: ⊙



Long Short-Term Memory (LSTM)
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You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


ct-1

ht-1

ct
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it ot
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ct~

Long Short-Term Memory (LSTM)
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You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Compute the 
forget gate

Forget some 
cell content

Compute the 
input gate

Compute the 
new cell content

Compute the 
output gate

Write some new cell content

Output some cell content 
to the hidden state

The + sign is the secret!

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


How does LSTM solve vanishing gradients?

• The LSTM architecture makes it easier for the RNN to 
preserve information over many timesteps
• e.g., if the forget gate is set to 1 for a cell dimension and the input 

gate set to 0, then the information of that cell is preserved 
indefinitely.

• In contrast, it’s harder for a vanilla RNN to learn a recurrent 
weight matrix Wh that preserves info in the hidden state 

• In practice, you get about 100 timesteps rather than about 7

• LSTM doesn’t guarantee that there is no vanishing/exploding 
gradient, but it does provide an easier way for the model to learn 
long-distance dependencies
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LSTMs: real-world success

• In 2013–2015, LSTMs started achieving state-of-the-art results
• Successful tasks include handwriting recognition, speech recognition, machine 

translation, parsing, and image captioning, as well as language models
• LSTMs became the dominant approach for most NLP tasks

• Now (2021), other approaches (e.g., Transformers) have become dominant for many 
tasks
• For example, in WMT (a Machine Translation conference + competition):
• In WMT 2016, the summary report contains “RNN” 44 times
• In WMT 2019: “RNN” 7 times, ”Transformer” 105 times

47

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf
Source: "Findings of the 2019Conference on Machine Translation (WMT19)", Barrault et al. 2019, http://www.statmt.org/wmt18/pdf/WMT028.pdf

http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf


Is vanishing/exploding gradient just a RNN problem?
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• No! It can be a problem for all neural architectures (including feed-forward and 
convolutional), especially very deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it 

backpropagates
• Thus, lower layers are learned very slowly (hard to train)

• Solution: lots of new deep feedforward/convolutional architectures that add more 
direct connections (thus allowing the gradient to flow) 

For example:
• Residual connections aka “ResNet”
• Also known as skip-connections
• The identity connection 

preserves information by default
• This makes deep networks much 

easier to train
"Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf


Is vanishing/exploding gradient just a RNN problem?
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• Solution: lots of new deep feedforward/convolutional architectures that add more 
direct connections (thus allowing the gradient to flow) 

Other methods:
• Dense connections aka “DenseNet”
• Directly connect each layer to all future layers!

”Densely Connected Convolutional Networks", Huang et al, 2017. https://arxiv.org/pdf/1608.06993.pdf

• Highway connections aka “HighwayNet”
• Similar to residual connections, but the identity 

connection vs the transformation layer is 
controlled by a dynamic gate

• Inspired by LSTMs, but applied to deep 
feedforward/convolutional networks

”Highway Networks", Srivastava et al, 2015. https://arxiv.org/pdf/1505.00387.pdf

https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1505.00387.pdf


Is vanishing/exploding gradient just a RNN problem?
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• No! It can be a problem for all neural architectures (including feed-forward and 
convolutional), especially very deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it 

backpropagates
• Thus, lower layers are learned very slowly (hard to train)

• Solution: lots of new deep feedforward/convolutional architectures that add more 
direct connections (thus allowing the gradient to flow) 

• Conclusion: Though vanishing/exploding gradients are a general problem, RNNs are 
particularly unstable due to the repeated multiplication by the same weight matrix 
[Bengio et al, 1994]

”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf

http://ai.dinfo.unifi.it/paolo/ps/tnn-94-gradient.pdf


5. Bidirectional and Multi-layer RNNs: motivation
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terribly exciting !the movie was

positive

Sentence 
encoding

element-wise mean/max element-wise mean/max

We can regard this hidden state as a 
representation of the word “terribly” in the 
context of this sentence. We call this a 
contextual representation.

These contextual 
representations only 
contain information 
about the left context 
(e.g. “the movie 
was”). 

What about right
context?

In this example, 
“exciting” is in the 
right context and this 
modifies the meaning 
of “terribly” (from 
negative to positive)

Task: Sentiment Classification



Bidirectional RNNs

52
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated 
hidden states

This contextual representation of “terribly” 
has both left and right context!



Bidirectional RNNs
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Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean 
“compute one forward step of the 
RNN” – it could be a vanilla, LSTM 
or GRU computation.

We regard this as “the hidden 
state” of a bidirectional RNN. 
This is what we pass on to the 
next parts of the network.

Generally, these 
two RNNs have 
separate weights

On timestep t:



Bidirectional RNNs: simplified diagram
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terribly exciting !the movie was

The two-way arrows indicate bidirectionality and 
the depicted hidden states are assumed to be the 

concatenated forwards+backwards states



Bidirectional RNNs

• Note: bidirectional RNNs are only applicable if you have access to the entire input 
sequence
• They are not applicable to Language Modeling, because in LM you only have left 

context available.

• If you do have entire input sequence (e.g., any kind of encoding), bidirectionality is 
powerful (you should use it by default).

• For example, BERT (Bidirectional Encoder Representations from Transformers) is a 
powerful pretrained contextual representation system built on bidirectionality.
• You will learn more about transformers include BERT in a couple of weeks!
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Multi-layer RNNs

• RNNs are already “deep” on one dimension (they unroll over many timesteps)

• We can also make them “deep” in another dimension by 
applying multiple RNNs – this is a multi-layer RNN.

• This allows the network to compute more complex representations
• The lower RNNs should compute lower-level features and the higher RNNs should 

compute higher-level features. 

• Multi-layer RNNs are also called stacked RNNs.
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Multi-layer RNNs
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terribly exciting !the movie was

RNN layer 1

RNN layer 2

RNN layer 3

The hidden states from RNN layer i
are the inputs to RNN layer i+1



Multi-layer RNNs in practice

• High-performing RNNs are often multi-layer (but aren’t as deep as convolutional or 
feed-forward networks)

• For example: In a 2017 paper, Britz et al find that for Neural Machine Translation, 2 to 4 
layers is best for the encoder RNN, and 4 layers is best for the decoder RNN
• Usually, skip-connections/dense-connections are needed to train deeper RNNs (e.g., 8 layers)

• Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.
• You will learn about Transformers later; they have a lot of 

skipping-like connections

58 “Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906.pdf

https://arxiv.org/pdf/1703.03906.pdf


In summary
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Lots of new information today! What are some of the practical takeaways?

1. LSTMs are powerful 2. Clip your gradients

3. Use bidirectionality 
when possible

4. Multi-layer RNNs are more powerful, but 
you might need skip connections if it’s deep


