Natural Language Processing
with Deep Learning

CS224N/Ling284

P

John Hewitt

Lecture 10: Pretraining

Lecture Plan

1. A brief note on subword modeling
2. Motivating model pretraining from word embeddings
3. Model pretraining three ways

1. Decoders

2. Encoders

3. Encoder-Decoders
4. Interlude: what do we think pretraining is teaching?
5. Very large models and in-context learning

Reminders:
Assignment 5 is out today! It covers lecture 9 (Tuesday) and lecture 10 (Today)!
It has ~“pedagogically relevant math™ so get started!

Word structure and subword models

Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.
All novel words seen at test time are mapped to a single UNK.

word vocab mapping embedding
Common { hat > pizza (index) I
words .
learn - tasty (index) [—
Variations { taaaaasty - UNK (index)]
misspellings laern > UNK (index)]
novel items Transformerify =2 UNK (index) [

Word structure and subword models

Finite vocabulary assumptions make even /ess sense in many languages.
* Many languages exhibit complex morphology, or word structure.
* The effect is more word types, each occurring fewer times.

NOI‘I-fInIte forms

Form Posi Negatlve
°1; Infinitive kuamb\a kutéambia
. | -
Example: Swahili verbs can have
Imperative ambia) ambieni
. . Habitual c lex finite huambia
omplex Tinite forms
hundreds of conjugations, each | Pareans)
Polarity 1st 2nd 3rd [M-wa M-mi Ma Ki-vi N U Ku Pa Mu
sg. PI. sg. Pl. Sg./1 PLI2 3 S 6 7 8 9 10 11714 15/17 16 “13 u
eSS

. . .
enCOdIng a Wlde Va rlety Of Positive ~ iiEmbia - tulambia - uliembia - mliambia ' afiambia | walimbia uliambia | iiambia liembia yaliambia kiiambia | viiambia ilambia ziiambia uliambia kuliambia paliambi liambi

Negative sikuambia hatukuambia hukuambia hamkuambia hakuambia "8WSKUSMbT haiyambia | haikuambia halikuambia "3Y2KY3MI hakikuambia havikuambia haikuambia hazikuambia haukuambia Makukuambi hapakuambi hamukuambi
1 m 1 , , Present [less Al
I n O r a I O n - e n S e l I I O O Positive nr:g:‘m?: tunaambia = unaambia mnaambia anaambia wanaambia unaambia inaambia linaambia bia ki bi i bi inaambia zinaambia = unaambia kunaambia panaambia munaambia
’ ’ Negative siambii hatuambii huambii hamambi haambii hawaambii = hauambii haiambii haliambii hayaambii hakiambii = haviambii haiambii haziambii hauambii h i | hap bii | h. bii
o Future [less A]

Positive nitaambia tutaambia i bi bi bi utaambia itaambia litaambia yataambia = kitaambia = vitaambia itaambia zitaambia ~ utaambia kutaambia = pataambia = mutaambia
e I n Ite n e SS’ n egat I O n ’ I n O rI I I at I O n Negative sitaambia hatutaambia hutaambia hamtaambia hataambia hawal:ambl hautaambia = haitaambia halif bia hay bia hakitaambia F bia | haitaambia hazitaambia hautaambia hakutaambia hapataambia hamu;aamhl
Subjunctive [less A]

Positive niambie tuambie uambie mambis aambie waambie uambig iambie liambie yaambie kiambie viambie iambie ziambie uambie kuambie paambie muambie

. Negative nisi; i iambi iambi iambis iambis wasiambi i i isiambie lisiambie = yasiambie kisiambie visiambie isiambie zisiambie usiambie kusiambie = pasiambie = musiambie
a O u e O e C + + Present Conditional [less 4]
’ Positive ningeambia tungeambia ungeambia mngeambia angeambia wangeambia ungeambia | ingeambia i bia ki bi i bia = ingeambia zingeambia ungeambia kungeambia pangeambia mungeambia
) nisingeambi luslngeamh\ usingeambia msmgeambl asingeambia wasinigeamh usingeambia isingsambia lisingeambia yasingeambi kisingeambi vising:ambi isingsambia zising:ambi usingeambia kusingeambi pasingeambi musinigeamb
Nagative sing:ambia hatun_geamb hungeambia hamngeamb\ hangeambia haweg]geam haun%eamhl haingeambia hahngeamb| hayangeamb haki bi havil bi hait bia hazingeambi haungaeamm hakungeamb hapal;jgeam hamubl:lgeam

ia ia a a ia ia ia

- Past Conditional S S| =AY
Positive liambia ur bia mngaliambia angaliambia wangihamlx jambia | ingaliambia lingaliambi yangallamhl i \nnga\lamh\a ingaliambia zingaliambia ungaliambia kungahambl pangahamm mungaahamb\

Ilsmgallambl ¥y

|smga||amb| usingaliambi kuslngaham pasmgallam musingaliam

’ ° nisingaliamb tusingaliamb usingaliambi msingaliamb asingaliambi wasirll)galiam usingaliambi |, ingaliambia .b |5mga||amb|a 192 e
e re S a SI I l a ra C IO n O e blegatve iy Sa i e hatunlaaliam hung.:liamhi hamnlaaliam t Siiambi | 1 ngalia Jal nb halngallamb\ haling allamh hayangaliam hakm aliam havmaallam halngallamb\ hazm aliam hau Saliamb hakungaliam h Pl hamu:galla
singaliambia h?a 5 b?a 7 g % Q 9 9 9 9 g 9 Hex i)
- COndltIOI’Ial Contrary to Fact o o [less A]
. . o Positive |ni i i liambia ungeliambia mngeliambia angeliambia wangeallambl hi yangellamhl kingeliambia vingeliambia ingeliambia zingeliambia ungeliambia kungea\lamhl pangi\lambl munge;hamb\
— =
conjugations for ambia — to tell.
Positive naambia twaambia waambia = mwaambia aambia waambia waambia yaambia laambia yaambia chaambia = vyaambia yaambia zaambia waambia kwaambia paambia | mwaambia
Perfect lless Al

4 [Wiktionary]

https://en.wiktionary.org/wiki/ambia

The byte-pair encoding algorithm

Subword modeling in NLP encompasses a wide range of methods for reasoning about
structure below the word level. (Parts of words, characters, bytes.)

 The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).
e At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.
3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained
models.

5 [Sennrich et al., 2016, Wu et al., 2016]

https://www.aclweb.org/anthology/P16-1162.pdf
https://arxiv.org/pdf/1609.08144.pdf

Word structure and subword models

Common words end up being a part of the subword vocabulary, while rarer words are split
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word vocab mapping embedding
Common hat - hat
words { learn > learn
Variations { taaaaasty - taa## aaa#H# sty
9
9

misspellings laern la#t#t ernt#t
novel items Transformerify Transformer## ify

Outline

1.
2. Motivating model pretraining from word embeddings
3.

Motivating word meaning and context

Recall the adage we mentioned at the beginning of the course:
“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
This quote is a summary of distributional semantics, and motivated word2vec. But:
“... the complete meaning of a word is always contextual,
and no study of meaning apart from a complete context
can be taken seriously.” (J. R. Firth 1935)

Consider | record the record: the two instances of record mean different things.

8 [Thanks to Yoav Goldberg on Twitter for pointing out the 1935 Firth quote.]

https://twitter.com/yoavgo/status/773276598053273600

Where we were: pretrained word embeddings

Circa 2017:
 Start with pretrained word embeddings (no y B
context!) g
* Learn how to incorporate context in an LSTM H*’I*’I*’I‘*I _ Not pretrained

or Transformer while training on the task.

Some issues to think about: i i i i i i } pretrained
(word embeddings)
*

* The training data we have for our
downstream task (like guestion answering)
must be sufficient to teach all contextual
aspects of language.

... the movie was ...

[Recall, movie gets the same word embedding,
no matter what sentence it shows up in]
* Most of the parameters in our network are

randomly initialized!

Where we’re going: pretraining whole models

In modern NLP:

e All (or almost all) parameters in NLP
networks are initialized via pretraining.

* Pretraining methods hide parts of the input
from the model, and train the model to
reconstruct those parts.

H

— Pretrained jointly
<>

£

* This has been exceptionally effective at i i i i i —
building strong: ... the movie was ...

* representations of language

* parameter initializations for strong NLP

[This model has learned how to represent
models.

entire sentences through pretraining]
* Probability distributions over language that
we can sample from

10

What can we learn from reconstructing the input?

Stanford University is located in , California.

What can we learn from reconstructing the input?

| put _ fork down on the table.

What can we learn from reconstructing the input?

The woman walked across the street,
checking for traffic over shoulder.

What can we learn from reconstructing the input?

| went to the ocean to see the fish, turtles, seals, and

What can we learn from reconstructing the input?

Overall, the value | got from the two hours watching
it was the sum total of the popcorn and the drink.

The movie was .

What can we learn from reconstructing the input?

Iroh went into the kitchen to make some tea.
Standing next to Iroh, Zuko pondered his destiny.
Zuko left the

What can we learn from reconstructing the input?

| was thinking about the sequence that goes
1,1, 2,3,5, 8, 13, 21,

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Looking back at the whole model, zooming in on an Encoder block:

[predictions!]

t
—‘§________* Transformer

Decoder
[decoder attends t

to encoder states] :

4
Transformer

Decoder

[output sequence]

+

[input sequence]
18

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Looking back at the whole model, zooming in on an Encoder block:

[predlctlonsl]
Tra nsformer

Decoder
Residual + LayerNorm [decoder attends
. I — 0 encoder states] :
°
Residual + LayerNorm t
| | Transformer
Multi-Head Attention Decoder

|

[input sequence]

[output sequence]

19

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder [Vaswani et al., 2017]

1 dictions!
Looking back at the whole model, [pre "; ionsl]
zooming in on a Decoder block: ., Transformer

Decoder
t

Residual + LayerNorm
T
Feed-Forward
t
Residual + LayerNorm
T
Multi-Head Cross-Attention
T

I

‘ Residual + LayerNorm
T
+ Masked Multi-Head Self-Attention

[input sequence]
20

[output sequence]

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder [Vaswani et al., 2017]

. . redictions!
The only new part is attention from decoder to encoder. lp R]
Like we saw last week! _, Transformer
Decoder
t
Residual + LayerNorm
T

21

Feed-Forward

Residual + LayerNorm

T

Multi-Head Cross-Attention ‘

Residual + LayerNorm

T
Masked Multi-Head Self-Attention

" eprsentoons
[input sequence] -

[output sequence]

https://arxiv.org/pdf/1706.03762.pdf

Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

* Model pg(W;|wy..—1), the probability
distribution over words given their past goes to make tasty tea END
contexts.

* There’s lots of data for this! (In English.)

Pretraining through language modeling:

e Train a neural network to perform language
modeling on a large amount of text. roh goes to make tasty tea

e Save the network parameters.

22

https://arxiv.org/pdf/1511.01432.pdf

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!
goes to make tasty tea END @/@

Iroh goes to make tasty tea ... the movie was ...

23

Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a “training neural nets” perspective?

* Consider, provides parameters 6 by approximating mein Lpretrain(e).

* (The pretraining loss.)

e Then, finetuning approximates mein Leinetune (8), starting at 6.

* (The finetuning loss)

* The pretraining may matter because stochastic gradient descent sticks (relatively)
close to @ during finetuning.

* So, maybe the finetuning local minima near 8 tend to generalize well!

« And/or, maybe the gradients of finetuning loss near 8 propagate nicely!

24

Lecture Plan

1.

2.

3. Model pretraining three ways
1. Decoders
2. Encoders
3. Encoder-Decoders

I 25

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

26

Decoders

Encoders

Encoder- .
Decoders °

Language models! What we’ve seen so far.

Nice to generate from; can’t condition on future words

Gets bidirectional context — can condition on future!
Wait, how do we pretrain them?

Good parts of decoders and encoders?
What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

e Language models! What we’ve seen so far.
I 222221 Decoders _ , .
* Nice to generate from; can’t condition on future words

27

Pretraining decoders

When using language model pretrained decoders, we can ignore

that they were trained to model p(wg|wq.t_1).

We can finetune them by training a classifier
on the last word’s hidden state.

hi{,...,hy = Decoder(wy, ..., wy)
y ~ AWT + b

Where A and b are randomly initialized and
specified by the downstream task.

Gradients backpropagate through the whole
network.

28

@/@?
Linear A4,D
|
hy, o by

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]

Pretraining decoders

It’s natural to pretrain decoders as language models and then
use them as generators, finetuning their pg(W;|wy.4—1)!

This is helpfgl in tasks where .the outputis a Wy Ws W, Ws Wg
sequence with a vocabulary like that at t t t et A b
pretraining time!

* Dialogue (context=dialogue history)

* Summarization (context=document) MT

h{,..,hr = Decoder(wy,...,wr)
we ~Awe_1 + b Wi Wy W3 Wy Ws

, _ [Note how the linear layer has been pretrained.]
Where A, b were pretrained in the language

model!
29

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

2018’s GPT was a big success in pretraining a decoder!

30

Transformer decoder with 12 layers.
768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
Byte-pair encoding with 40,000 merges
Trained on BooksCorpus: over 7000 unique books.
* Contains long spans of contiguous text, for learning long-distance dependencies.

The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

[Devlin et al., 2018]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://arxiv.org/pdf/1810.04805.pdf

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral
Premise: The man is in the doorway ,

_ _ entailment
Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.
Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

31

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

GPT results on various natural language inference datasets.

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE
ESIM + ELMo [44] (5x) - - 89.3 - - -
CAFE [58] (5x) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -
CAFE [58] 78.7 77.9 88.5 83.3

GenSen [64] 71.4 71.3 - - 823 59.2
Multi-task BiLSTM + Attn [64] 72.2 72.1 - - 82.1 61.7

Finetuned Transformer LM (ours) 82.1 814 89.9 88.3 88.1 56.0

32

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Increasingly convincing generations (GPT2) [Radford et al., 2018]

We mentioned how pretrained decoders can be used in their capacities as language models.

GPT-2, a larger version of GPT trained on more data, was shown to produce relatively
convincing samples of natural language.

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

MNow, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

* @Gets bidirectional context — can condition on future!

Encoders
 Wait, how do we pretrain them?

34

Pretraining encoders: what pretraining objective to use?

So far, we’ve looked at language model pretraining. But encoders get bidirectional
context, so we can’t do language modeling!

Idea: replace some fraction of words in the
input with a special [MASK] token; predict
these words. I

hi,...,hy = Encoder(wy, ..., wr)
yi ~ Aw; + b

Only add loss terms from words that are
“masked out.” If X is the masked version of x,
we’re learning pg (x|x). Called Masked LM.

| [M] to the [M]

[Devlin et al., 2018]

35

https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from Tranformers

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a
pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT:

* Predict a random 15% of (sub)word tokens. [Predict these!] went to store
* Replace input word with [MASK] 80% of the time ! ! !
* Replace input word with a random token 10% of Transformer
the time Encoder

* Leave input word unchanged 10% of the time (but
still predict it!) | | | | |
 Why? Doesn’t let the model get complacent and not I pizza to the [M]

build strong representations of non-masked words. / / I

(No masks are seen at fine-tuning time!)
[Replaced] [Notreplaced] [Masked]

36 [Devlin et al., 2018]

https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from Tranformers

* The pretraining input to BERT was two separate contiguous chunks of text:

s d ™ g
Input [CLS] 1 my dog is | cute | [SEP] he (likes ” play W ##ing] [SEP]
Token
Embeddings E[CLS] Emy Edog EIS Ecute E[SEP] Ehe Elikes Eplay EM'ing E[SEP]
-+ + -+ L + + + + + + =+
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
o= o= o= o= o L -+ -+ =+ o= L
Position
Embeddings E, E, E, E3 E, Es E6 E, Es E9 E10

e BERT was trained to predict whether one chunk follows the other or is randomly

sampled.
* Later work has argued this “next sentence prediction” is not necessary.

37 [Devlin et al., 2018, Liu et al., 2019]

https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/abs/1907.11692

BERT: Bidirectional Encoder Representations from Tranformers

Details about BERT

 Two models were released:
* BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
* BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.
* Trained on:
* BooksCorpus (800 million words)
* English Wikipedia (2,500 million words)
* Pretraining is expensive and impractical on a single GPU.
* BERT was pretrained with 64 TPU chips for a total of 4 days.
* (TPUs are special tensor operation acceleration hardware)
* Finetuning is practical and common on a single GPU

* “Pretrain once, finetune many times.”

38 [Devlin et al., 2018]

https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from Tranformers

BERT was massively popular and hugely versatile; finetuning BERT led to new state-of-
the-art results on a broad range of tasks.

 QQP: Quora Question Pairs (detect paraphrase * CoLA: corpus of linguistic acceptability (detect

questions) whether sentences are grammatical.)
* QNLI: natural language inference over questione STS-B: semantic textual similarity
answering data MRPC: microsoft paraphrase corpus
* SST-2: sentiment analysis « RTE: a small natural language inference corpus
System MNLI-m/mm) QQP QNLI SST2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 35k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 93.2 35.0 81.0 86.0 617 74.0
BiLSTM+ELMo+Attn 76.4/76.1 648 79.8 90.4 36.0 73.3 849 56.8 71.0
OpenAl GPT 82.1/81.4 703 874 91.3 454 80.0 823 56.0 75.1
BERTgAsE 84.6/83.4 712 905 93.5 52.1 85.8 889 66.4 79.6
BERT arGE 86.7/85.9 721 927 94.9 60.5 86.5 893 70.1 82.1

39 [Devlin et al., 2018]

https://arxiv.org/pdf/1810.04805.pdf

Limitations of pretrained encoders

Those results looked great! Why not used pretrained encoders for everything?

If your task involves generating sequences, consider using a pretrained decoder; BERT and other

pretrained encoders don’t naturally lead to nice autoregressive (1-word-at-a-time) generation
methods.

make/brew/craft goes to make tasty tea END

S Y S —

Pretrained Decoder

Iroh goes to [MASK] tasty tea Iroh goes make tasty tea

40

Extensions of BERT

You'll see a lot of BERT variants like RoBERTa, SpanBERT, +++

Some generally accepted improvements to the BERT pretraining formula:
 RoBERTa: mainly just train BERT for longer and remove next sentence prediction!

e SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

It’s bly irrd# esittt stit# bly
t t

BERT SpanBERT

- : It’

41

[Liu et al., 2019; Joshi et al., 2020]

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.10529

Extensions of BERT

A takeaway from the RoBERTa paper: more compute, more data can improve pretraining
even when not changing the underlying Transformer encoder.

SQuAD

Model data bsz steps v1.1/2.0)

MNLI-m SST-2

RoBERTa
with BOOKS + WIKI 16GB SK 100K 93.6/87.3 89.0 05.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 893 05.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT arce

with BOOKS + WIKI I13GB 256 IM 90.9/81.8 86.6 93.7

42 [Liu et al., 2019; Joshi et al., 2020]

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.10529

Pretraining for three types of architectures

—=D 1 Encoder- * Good parts of decoders and encoders?
>E Decoders * What's the best way to pretrain them?

43

Pretraining encoder-decoders: what pretraining objective to use?

For encoder-decoders, we could do something like language modeling, but where a
prefix of every input is provided to the encoder and is not predicted.

WT_|_2, “en

hi,...,hy = Encoder(wy, ..., wr)
hriq,...,hy = Decoder(wy, ...,Wwp, hq, ..., h1)
yi ~Aw; +b,i > T

The encoder portion benefits from @%

bidirectional context; the decoder portion is Wriq, ooy Wor
used to train the whole model through

language modeling.

W1, ..., Wt

[Raffel et al., 2018]

44

https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

Targets

: : <X> for inviting <v> last <z>
Replace different-length spans from the input

with unique placeholders; decode out the
spans that were removed!

Original text

Thank iti t rt K. [%]
ank you fef ij]?lﬁn’gf,me O your pa yl%siwee

This is implemented in text
preprocessing: it’s still an objective

that looks like language modeling at ~ '"°!® ¥ v
the decoder side. Thank you <x> me to your party <> week.

45

https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

Raffel et al., 2018 found encoder-decoders to work better than decoders for their tasks,

and span corruption (denoising) to work better than language modeling.

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
* Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 26.98 3982 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 3798 27.39
Encoder-decoder LM 2P M 79.56 18.59 76.02 64.29 26.27 39.17 26.86
Enc-dec, shared LM P M 79.60 18.13 76.35 63.50 26.62 39.17 27.05
Enc-dec, 6 layers LM P M/2 T8.67 18.26 75.32 64.06 26.13 38.42 26.89
Language model LM P M 73.78 17.54 53.81 56.51 25.23 34.31 25.38
Prefix LM LM P M 79.68 17.84 76.87 64.86 26.28 37.51 26.76

https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

A fascinating property
of T5: it can be
finetuned to answer a
wide range of
guestions, retrieving
knowledge from its
parameters.

NQ: Natural Questions
WQ: WebQuestions
TQA: Trivia QA

All “open-domain”
versions

Pre-training

Fine-tuning

When was Franklin D.
Roosevelt born?

President Franklin D.
Roosevelt was born
in January 1882.

1882 I

NQ WQ TQA
dev test

Karpukhin et al. (2020) 41.5 424 579 -
T5.1.1-Base 257 282 242 30.6 220millionparams
T5.1.1-Large 273 295 285 37.2 770 million params
T5.1.1-XL 295 324 36.0 45.1 3 billion params
T5.1.1-XXL 328 356 429 525 11billion params
T5.1.1-XXL + SSM 352 428 519 61.6

[Raffel et al., 2018]

https://arxiv.org/pdf/1910.10683.pdf

Outline

4. Interlude: what do we think pretraining is teaching?
5.

I 48

What kinds of things does pretraining learn?

There’s increasing evidence that pretrained models learn a wide variety of things about
the statistical properties of language. Taking our examples from the start of class:

49

Stanford University is located in , California. [Trivia]

| put __ fork down on the table. [syntax]
The woman walked across the street, checking for traffic over __ shoulder. [coreference]
| went to the ocean to see the fish, turtles, seals, and . [lexical semantics/topic]

Overall, the value | got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was ___. [sentiment]

Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his
destiny. Zuko left the . [some reasoning — this is harder]

| was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, [some basic
arithmetic; they don’t learn the Fibonnaci sequence]

Models also learn — and can exacerbate racism, sexism, all manner of bad biases.
More on all this in the interpretability lecture!

Outline

4,
5. Very large models and in-context learning

50

GPT-3, In-context learning, and very large models

So far, we’ve interacted with pretrained models in two ways:
e Sample from the distributions they define (maybe providing a prompt)
* Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.
GPT-3 has 175 billion parameters.

I 51

GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional

distribution mocks performing the task to a certain extent.
Input (prefix within a single Transformer decoder context):
“ thanks -> merci
hello -> bonjour
mint -> menthe
otter -> "

Output (conditional generations):

loutre...”

52

GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

Learning via SGD during unsupervised pre-training :-:

> 5 3
1

5 4« 8 13 0y gaot =» goat 'y] thanks => merci)
=] . g o . a
- = | b=
= — =

7 +2 =9 E sakne =»> snake E hello => bonjour E
i~ — -
3 m m

1+8 =1 o brid == bird W mint => menthe W
= -— =
= 3 =,
= 3 : =

3+ 4 7 o fsih == fish [T wall == mur [[=]

5+ 8 =14 douk == duck otter == loutre

9+« 8 =17 caihp => chimp bread == paln

N e N
saquence #1 seguance #2 saguence #3

53

Parting remarks

These models are still not well-understood.
“Small” models like BERT have become general tools in a wide range of settings.

More on this in later lectures!
Assignment 5 out today! Tuesday’s and today’s lectures in its subject matter.

54

