

A Survey on Data Augmentation for Text Classification1

Markus Bayer2

PEASEC2, Technical University of Darmstadt, bayer@peasec.tu-darmstadt.de

Marc-André Kaufhold

PEASEC, Technical University of Darmstadt, kaufhold@peasec.tu-darmstadt.de

Christian Reuter

PEASEC, Technical University of Darmstadt, reuter@peasec.tu-darmstadt.de

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across

machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other

challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data

used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing

works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and

comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12

different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research

perspectives that may constitute a building block for future work are given (C5).

• Computing methodologies ~ Machine learning ~ Machine learning algorithms ~ Regularization • Computing methodologies ~ Machine

learning ~ Machine learning approaches ~ Neural networks • Computing methodologies ~ Artificial intelligence ~ Natural language

processing

Additional Keywords and Phrases: Data Augmentation, Low Data Regimes, Small Data Analytics

1 INTRODUCTION

An increase in training data does not always result in a solution for the learning problem. Nevertheless, the data is still

decisive for the quality of a supervised classifier. Originating from the field of computer vision, there exist many different

methods to artificially create such data, which is called data augmentation. With regard to images, transformations such

as rotations or changes of the RGB channel are sensible, as for these the model should be invariant. Similar to computer

vision, speech recognition uses procedures that change, for example, the sound or speed. In contrast, research on data

augmentation in Natural Language Processing (NLP) has the difficulty of establishing universal rules for transformations

of textual data that can be executed automatically while the quality of labeling is also maintained [1], [2]. That is why the

research in this field before 2019 was much more limited, although there also exist extensive areas of application [3].

1 This work has been co-funded by the German Federal Ministry of Education and Research (BMBF) in the project CYWARN (13N15407) and by the

LOEWE initiative (Hesse, Germany) within the emergenCITY center.
2 Pankratiusstraße 2, 64289 Darmstadt, Germany

2

Nowadays, this challenge still remains but is being addressed by many scientists in different research directions. Within

these directions, various goals are followed, e.g., generating more data for low-data regimes, balancing imbalanced dataset

classes or security against adversarial examples. Thus, textual data augmentation comes in many contrasting forms that are

grouped and explained in this survey. We give an in-depth analysis and also try to relate the methods to the state-of-the-

art, as the methods face another challenge due to the rise of transfer learning. For example, Longpre et al. [4] show that

many data augmentation methods are not able to achieve gains when using large pre-trained language models, as they are

already invariant to various transformations by themselves. They hypothesize that data augmentation methods can only be

really beneficial if they are creating new linguistic patterns that have not been seen before. Keeping this in mind, the survey

is closed with a meta perspective on the methods. Thus, this survey pursues the following contributions:

• Goals and applications (C1). We highlight the goals and applications of data augmentation that we derive from the

comprehensive review. These have only been presented to a limited and incomplete extent in previous research

papers.

• Taxonomy and categorization (C2). The text classification data augmentation methods will be clustered according

to a high-level taxonomy and then subdivided into more fine-grained groups. This is also present in the surveys from

Shorten and Khoshgoftaar [5] and Wen et al. [6] and is now adapted for the text classification domain.

• Overview and in-depth details (C3). The textual data augmentation methods are explained in a clear form with the

details necessary for delimitation and comparison with each other. Contrasting other works, our extensive study

contains 12 groups with more than 100 different approaches.

• State of the art review (C4): Within the literature survey we try to examine latest state-of-the-art considerations, as,

for example, the limited benefit of textual data augmentation methods with large pre-trained models, that are often

neglected in current works.

• Future research perspectives (C5). We identify future research opportunities that are either necessary for a state-of-

the-art comparison or sensible to look into because of current challenges for textual data augmentation.

The survey paper is structured as follows: The paper introduces the foundations of data augmentation in Section 2. This

section is then broadened by the consideration of the goals and applications. Section 3 is subdivided into the various data

augmentation groups and contains the explanations as well as tabular overviews of the methods. In Section 4, an analysis

of the data augmentation methods from a more global perspective is given and various future research directions are

discussed. Section 5 outlines the limitations of data augmentation and concludes this survey.

2 BACKGROUND: FOUNDATIONS, GOALS, AND APPLICATIONS OF DATA AUGMENTATION

In many machine learning scenarios, not enough data is available to train a high-quality classifier. To address this problem,

data augmentation can be used. It artificially enlarges the amount of available training data by means of transformations

[7]. Already in the well-known LeNet by LeCun et al. [8], early versions of data augmentation can be observed. The notion

of data augmentation is broad and comprises various research in different sub-areas of machine learning. Many scientific

works merely relate data augmentation to deep learning, yet it is frequently applied in the entire context of machine

learning. Therefore, this paper adopts the notion of data augmentation as a broad concept, encompassing any method that

enables the transformation of training data. However, following common understanding in research, semi-supervised

learning is not regarded as a form of data augmentation and only thematized if sensible in the context of this survey.

When talking about data augmentation, an important term is label preservation, which describes transformations of

training data that preserve class information [9]. For example, in sentiment analysis, an entity replacement within a sentence

3

is often sufficient for label preservation but the random addition of words may result in an alteration of the sentiment (e.g.,

an additional “not” could invert the meaning of a sentence). In many research works, the term of label preservation is

adapted to cover also transformations changing the class information if the label is adjusted correctly. Additionally, many

transformations maintain the right class not in every case but with a high probability. Shorten and Khoshgoftaar [5] define

this probability as the safety of a data augmentation method. When this uncertainty is known, it could be directly integrated

in the label. Otherwise, methods like label smoothing [10] can model a general uncertainty.

The goals of data augmentation are manifold and encompass different aspects. As mentioned above, training data is

essential for the quality of a supervised machine learning process. Banko and Brill [11] show that only the creation of

additional data can improve the quality of a solution in the confusion set disambiguation problem, while the choice of the

classifier does not lead to a significant change. The model-selection and -development will remain a crucial aspect of

machine learning. Yet, scholars express the suggestion that in some situations the choice for higher investments in

algorithm-choice and -development instead of corpus-development should be carefully considered [11]. Closely connected

to this is the big data wall problem, which Coulombe [9] mentions in his work on data augmentation. It describes that big

companies benefit from the special advantage of having access to a big amount of training data. As a result, the already

large GAFAM-Companies (Google, Amazon, Facebook, Apple, and Microsoft) expand their predominance over smaller

businesses due to their data superiority. An ideal data augmentation method could approach these points and decrease the

dependency of training data even though full elimination is not likely.

Additionally, the creation of training data for various classification problems is accompanied by high labelling costs.

In many instances, assessment and labelling by experts is necessary to prevent incorrect training examples. This can, for

example, be especially stressed for the field of crisis informatics [12]. The creation of relevance classifiers for emergency

services and helpers is only possible during the occurrence of the crisis situations. It requires otherwise needed personal

resources and time, which can in the worst-case cost lives. In a similar way, training data for medical image processing is

very valuable. Due to the rareness of certain diseases, the privacy of patients, and the requirement of medical experts, it is

challenging to provide medical datasets [5]. With regard to classification problems of such kind, data augmentation could

help to minimize the required amount of data that needs to be labelled and to solve interlinked problems.

Especially in the area of deep learning, data augmentation methods play a special role. As Srivastava et al. [13]

demonstrated, deep neural networks are particularly powerful but they also encompass a tendency to overfit; faced with

unseen instances, they might generalize badly. This observation can be illustrated with help of the bias variance dilemma.

On the one hand, deep learning algorithms are, due to their deep and non-linear layers, very strong models with a lower

bias-error. On the other hand, they show a high variance for different subsets of training data [14]. This problem can be

solved by arranging the algorithm to prefer simple solutions or by providing a bigger amount of training data. The first

option is aimed at methods of regularization, such as dropout or the addition of a L2 norm via the model’s parameters in

the loss-function. The second option is frequently realized by means of data augmentation and could in this context also

be considered as a kind of regularization. According to Hernandez-Garcia and König [15], data augmentation is a favorable

method of regularization, as it achieves generalization without degrading the representational capacity of the model and

without re-tuning other hyperparameters. While the other methods reduce the bias error, data augmentation has the goal of

keeping it constant; it is used to solve the problem at the root [5]. Nonetheless, data augmentation is still dependent on the

underlying classification problem. Hence, it cannot be effectively applied under all circumstances.

Moreover, in context of deep learning models, so called adversarial examples/ attacks are generated more and more

frequently. These are little changes in the input data, almost unrecognizable to humans, that mislead the algorithms to

wrong predictions [16]. Figure 1 shows two different genuine examples in which smallest changes in the texts alter the

4

classification prediction. Alzantot et al. [17] also present an algorithm that generates semantically and syntactically similar

instances of the training data, successfully outwitting sentiment analysis and entailment models. With the help of

adversarial training, these automatic adversarial example generators can be used as data augmentation methods, as done,

for example, in [18], [7], [19], or [20], so that deep learning models are less susceptible to such easy alterations.

If the amount of data is taken into consideration, it stands out that certain classification problems are often heavily

unbalanced, for instance, only a small amount is relevant or positive while the irrelevant or negative data is prevalent [21].

For example, in an entire corpus available for topic classification or crisis identification, only few data actually relate to

the topics or the crisis in question. Zhong et al. [22] term a dataset as unbalanced if the distribution of classes within it is

not approximately equally balanced. Data augmentation may help to enhance the amount of data for a certain class so that

balanced class distribution is present and thus a classifier can be modelled more robustly [23], [24].

Data augmentation can also be helpful in sensitive domains. Dealing with confidential or privacy-related data, one can

lower the usage of real-world data by crafting artificial data. It is even possible to just train the algorithm on the newly

created data in order to prevent drawing any conclusions on non-artificial training data from a deployed model. For

example, Carlini et al. [25] showed a method for extracting training data from large language models that could contain

private information. For training such a privacy ensuring model, special data augmentation techniques that are able to

anonymize the data have to be used.

Original text Altered text

South Africa’s historic Soweto township marks its 100th

birthday on Tuesday in a mood of optimism.

57% World

South Africa’s historic Soweto township marks its 100th

birthday on Tuesday in a mooP of optimism.

95% Sci/Tech

Chancellor Gordon Brown has sought to quell speculation

over who should run the Labour Party and turned the

attack on the opposition Conservatives.

75% World

Chancellor Gordon Brown has sought to quell speculation

over who should run the Labour Party and turned the

attack on the oBposition Conservatives.

94% Business

Figure 1: Examples for Adversarial Attacks adapted from Ebrahimi et al. [16]

Data augmentation exists in different types and areas of application. A taxonomy of the types in the textual domain can

be seen in Figure 2. The augmentation methods can be divided into the transformation of raw data (data space) and

processed representations of data (feature space) [5]. These representations are transformed types of data, for example,

activation vectors of a neuronal network, the encoding of an Encoder Decoder Network, or LSTM hidden states,

respectively embeddings of the data. Abstracting from the textual realm, in many cases, data augmentation is dependent

on the underlying problem (text classification, image recognition, etc.); therefore, it is applied in different manners in

diverse areas. Procedures generic enough to be used across different areas are for the most part limited to the feature space.

The most substantial research on data augmentation exists in the field of computer vision. This is due to the intuitive

construction of simple label preserving transformations. Data augmentation methods in computer vision are, among other,

geometric transformations [7], [19], neural style transfers [26]–[28], interpolation of images [29], random partial deletions

[30], and generative adversarial network data generation [16]. Sophisticated techniques can additively improve the

accuracy baseline for different problems around 10 to 15 percent [30]. Another area of application for data augmentation

is speech processing. Researchers successfully used acoustic transformations of the input data. Ko et al. [31] achieved with

modification of the speed up to 4.3 % better accuracy values. Furthermore, interferences of the vocal tract length [30] or

5

the addition of noise [29] may also enhance the quality of the classifiers. The application of data augmentation in the textual

realm is considered a difficult task since textual transformations preserving the label are difficult to define [1], [2].

Nevertheless, several simple and sophisticated methods have been developed in this and adjacent research areas.

3 TEXTUAL DATA AUGMENTATION METHODS

In the following, different data augmentation methods for textual data are summarized, explained, and subdivided in

different groupings. Methods that focus on the application of text classification are mainly included, although augmentation

methods for other tasks in the textual realm are also mentioned if they fit the group. For a more general perspective on

NLP augmentations we advise the reader to look at the work from Feng et al. [32], which is not as detailed in text

classification as our work but has a broader task view. This way, the reader can get insights into how a data augmentation

technique might be adjusted so that it is fitting for a very specific problem.

In the next paragraph, data augmentation methods relevant in textual contexts are summarized and grouped. Generally,

the methods are described in a sensible order for the specific group. In groups with many similar approaches, we try to

summarize the most valuable information in form of tables. We also try to extract information about the improvements.

The improvement indications should give a quick overview how well a method can perform, while they are not in-depth

informative and comparable on their own. For a more detailed perspective, the models and datasets are also given. This

should provide a more holistic perspective, although in-depth information has to be extracted from the papers itself.

Figure 2: Taxonomy and grouping for different data augmentation methods

3.1 Data Space

Augmentation in the data space deals with the transformation of the input data in the raw form, which in the case of this

survey is the readable textual form of the data.

6

3.1.1 Character Level

3.1.1.1 Noise Induction

The addition of noise to the input data is one of the data augmentation methods with the smallest alterations, especially

when applied on a character level. As further described in this paper, the induction of noise can also be used at the word

level and in the feature space.

The basic idea of the method of Belinkov and Bisk [33] is to add artificial and natural noise to the source training data

so that in their case neural machine translation models (NMT) are less susceptible for adversarial examples. Belinkov and

Bisk [33] describe operations like the random switching of single letters (“cheese” -> “cehese”), the randomization of the

mid part of a word (“cheese” -> “ceehse”), the complete randomization of a word (“cheese”, “eseehc”), and the replacement

of one letter with a neighboring letter on the keyboard (“cheeae”) as artificial noise [33]. Similarly, Feng et al. [34]

randomly delete, swap, and insert characters of texts (the prompt portion) that are used for finetuning text generators. For

this, they also ignore the first and last character of a word. To measure the suitableness for text generators, they intrinsically

measure the diversity, fluency, semantic context preservation, and sentiment consistency. The used method beats the

baseline in every metric. These augmentations are also usable in the text classification domain. Ebrahimi et al. [16] used

an existing model, trained with the initial dataset, to generate adversarial examples. They used the direct input data to flip

a letter if the change enhances the loss of the existing model. If a new model is trained with the additional data once again,

the error rate is improved and the success of adversarial attacks is clearly mitigated. Furthermore, they compared their

approach with the adversarial method from the before mentioned work of Belinkov and Bisk [33] and the feature space

method from Miyato et al. [35] (see Section 3.2.1). Based on a CharCNN-LSTM on the AG News dataset, they achieve

the best improvement in the accuracy by gaining 0.62% additively. While the method of Miyato et al. [35] only improved

the score by 0.24% additively, it is interesting to see that the method of Belinkov and Bisk [33] even decreased the accuracy

by 0.33%. Coulombe [9] describes the injection of weak textual sounds as the before mentioned change, deletion, and

addition of letters in words as well as additionally the change of case and the modification of punctuation. With regard to

the best baseline (XGBoost), they get the best absolute accuracy improvement by 2.5%. However, the evaluation was

performed with very basic architectures and no embeddings, wherefore further studies need to be performed to validate the

usefulness in a current setting.

Natural noise, as defined by Belinkov and Bisk [33], covers spelling mistakes that are often occurring in the respective

language based on spelling mistake databases. Every word associated with a common mistake is replaced by the misspelled

word and if more than one exists the mistake is randomly sampled. Belinkov and Bisk [33] receive varying BLEU scores

with their artificial and natural noise methods; most noise operations made the model more robust against attacks with

similar operations. Most importantly, natural noise almost consistently worsens a translation model with regards to the

baseline. Analogous to the natural noise defined by Belinkov and Bisk [33], Coulombe [9] also adds common spelling

mistakes in the textual data and achieves good improvements when added to classifiers. The best baseline (XGBoost) was

improved by an additive of 1.5%. With such transformations, learners can cope with spelling mistakes in prospective texts

better, even though the mistakes were not present in the original training data set. This variant of data augmentation may,

for example, be of interest when dealing with texts originating from social networks

3.1.1.2 Rule-based Transformations

Coulombe [9] implements rule-based transformations with the usage of regular expressions. He describes that such rules

are not established easily, as many surface-level transformations necessitate deeper changes so that the grammar is

preserved and other transformations are dependent on the language. Valid transformations are, for example, the injection

7

of spelling mistakes, data alterations, entity names, and abbreviations. He concretely implements the transformation of

verbal short forms to their long forms and vice versa (“I am” <-> “I’m”). In English, this is semantically invariant if

ambiguities are preserved [9]. This form of data augmentation achieves very good results in the work of Coulombe [9].

The best baseline model (XGBoost) gained additively 0.5% in the accuracy.

3.1.2 Word Level

3.1.2.1 Noise Induction

Noise induction can also be applied on the word level. For example, the method of Xie et al. [30] encompasses two noise

patterns. With “unigram noising”, words in the input data get replaced by another word with a certain probability. With

“blank noising”, words get replaced with “_”. The adoption of both patterns led to improved results in the experiments.

Li et al. [36] are using syntactic and semantic methods as well as word dropout for the generation of noise. Syntactic

noise is realized via the shortening of sentences and methods like the switching of adjectives or the relativization of

modifiers. The authors generate semantic noise by the lexical substitution of word synonyms (see 3.1.2.2). In contrast to

both methods, word dropout is more clearly comparable to noise. Random input neurons or rather words get masked out

during the training of the network. The authors state that in general their proposed methods achieve an improvement.

Especially a combination of all methods could reach a relative improvement of up to 1,7% with regard to the accuracy.

Two of the four sub-methods of the EDA method by Wei and Zou [2], random swap and deletion, should also be

mentioned as methods of noise induction. A combination of both sub-methods led to an increase in performance of the

used classifier. EDA is very popular in the research and was used as a method and for comparisons in the works of Qiu et

al. [37], Huong and Hoang [38], Anaby-Tavor et al. [39], Kumar et al. [40], Feng et al. [34], Luu et al. [41], and Kashefi

and Hwa [42]. Wei and Zou [2] report that for a small dataset these two methods gain higher improvements than the other

two sub-methods that are based on synonym replacement and insertion (see Section 3.1.2). Nevertheless, Qiu et al. [37],

Anaby-Tavor et al. [39], Bayer et al. [43], and Luu et al. [41] also report some cases in which EDA as a whole data

augmentation method decreases the classification score. This behaviour can be expected, as the two methods are not label

preserving. For example, for sentiment classification: “I did not like the movie but the popcorn was good” -random_swap-

> “I did like the movie but the popcorn was not good”.

The training instances of one batch have to be of same length when being fed into a neural network. For this, the

sequences are often zero-padded on the left or right side. Rizos et al. [44] propose a specific noise induction method to

augment the training data by shifting the instances within the confines of their padding so that the padding is not solely on

one side. Evaluated on a hate speech detection dataset, the authors show that this method achieves additive performance

gains of more than 5.8% (Macro-F1). Sun and He [45] also translate the instances by adding either to the beginning or end

meaningless words. Unfortunately, they do not evaluate the impact of this method in isolation.

Xie et al. [46] propose a TF-IDF based replacement method in which they are replacing uninformative words of an

instance with other uninformative words. As the authors are combining this technique with round trip translation (see

Section 3.1.4) and unsupervised data augmentation, it is not clear to which degree it benefits the task.

More data augmentation methods related to other tasks can be found in the works of Cheng et al. [47], Li et al. [36],

Wang et al. [48], Andreas [49], Guo et al. [50], Kashefi and Hwa [42], Sun and He [43], and Kurata et al. [51].

3.1.2.2 Synonym Replacement

This very popular form of data augmentation describes the paraphrasing transformation of text instances through

replacements of synonyms of certain words. One of the first applications of this substitution in the data augmentation realm

8

was researched by Kolomiyets et al. [52] with regard to temporal expressions. They substituted temporal expressions with

potential synonyms from WordNet [53]. As the authors argue, the replacement of one original token in a sentence will

mostly preserve the semantics. Based on the time expression recognition task, the authors propose to replace the headword,

since temporal trigger words usually occur there. However, it showed no substantial improvements, but the authors also

proposed a language model replacement method that was more suited for the task at hand (see Section 3.1.2.4).

In later years, many researchers experimented with word replacements based on thesauri. The works of Li et al. [36],

Mosolova et al. [54], X. Wang et al. [55], and many more partially or primarily execute synonym substitution. They differ

with regard to the words that are getting substituted, the synonyms that come into question, and the utilization of different

databases. For example, X. Zhang et al. [56] and Marivate and Sefara [57] choose the synonyms for substitution on basis

of the geometric distribution by which choosing a more distant synonym becomes less probable. Furthermore, several

approaches exclude stop words or words with certain POS-tags from the set of words that would come into question for

replacement. Interesting is also the second sub-method of EDA from Wei and Zou [2], where the synonyms are not replaced

but randomly inserted into the instance. A summary of the replacement method, synonym selection, database, and

improvements of the various approaches is listed in Table 1.

Table 1: Overview of different approaches of the synonym replacement method.

 Synonym

Database

Replacement Method Synonym

Selection

Model

Base

Dataset Improvements

[52] WordNet Headword replacement Not stated Logistic

Regression

TempEval

Reuters (12)

Wikipedia (1)

-1 (F1)

-0.6

-0.1

[56],

[58]

mytheas

(LibreOffice)

WordNet-

based

Randomly choose number of

words based on geometric

distribution

Randomly based

on geometric

distribution

Character

CNN

AG News

DBP.

Yelp P.

Yelp F.

Yahoo A.

Amazon F.

Amazon P.

[56] / [58] (Acc.)

-0.38 / -0.57

+0.05 / +0.13

-0.03 /

+0.36

+0.22 / 0.65

+0.1 / 0.1

-0.17 / -0.17

[36] WordNet Substitutable words are

nouns, verbs, adjectives, or

adverbs and not part of a

named entity.

Each candidate is replaced

with a probability.

The remaining

probability of

substation is

shared among the

synonyms based

on a language

model score

CNN MR

CR

Subj

SST

MR/CR

CR/MR

+0.8 (Acc.)

+1.2

+0.5

+0.1

0.9

0.3

[9] WordNet Only adverbs and adjectives,

sometimes nouns, more

rarely verbs

Most similar

companion

information of the

synonym with the

context of the

chosen word.

XGBoost

MLP (2

hidden

layer)

IMDB +0.5 (Acc.)

+4.92

[54] WordNet No pronouns, conjunctions,

prepositions, and articles for

replacement.

Choosing uniform

randomly.

Uniform random CNN with

word

embeddings

Toxic Comment

Classification

-0.09/-0.21

(AUC)

9

[55] HIT IR-Lab

Tongyici

Cilin

(Extended)

(Chinese)

No time words, prepositions,

and mimetic words.

Chi-square statistics

method.

Chi-square

statistics method

Character

CNN-SVM

Hotel R.

Laptop R.

Book R.

~+1 (Acc.)

~+1

~+0.25

[57] WordNet Verbs, nouns, and the

combination of them.

Geometric distribution.

Geometric

distribution

DNN AG News

Sentiment

Hate Speech

~+0.4 (Acc.)

~+0

~-0.8

[59] WordNet &

Thesaurus.com

For Minibatch:

Augmentation with

probability.

Replacement of those words

that belong to certain POS-

tags.

One replacement of a word

per sentence that maximizes

loss.

Synonym that

maximizes the

loss.

Kim CNN TREC +1.2 (Acc.)

[2] WordNet No stop words.

Choosing n random words to

be replaced (SR) or from

which the synonyms are

insert at a random position

(RI)

Uniform random CNN 5 classification

tasks (500)

(2000)

(5000)

(full)

SR / RI (Acc.)

~+1.9 / ~+2.0

~+1.2 / ~+0.9

~+0.7 / ~+0.6

~+1.0 / ~+0.9

[1] WordNet Replacement of a word based

on a probability

Temperature

hyperparameter

learned while

training

CNN SST-5

SST-2

Subj

MPQA

RT

TREC

-0.6 (Acc.)

+0.5

+0

+0.2

+0.1

-0.4

[37] WordNet Replacement of a word based

on a probability

Temperature

hyperparameter

learned while

training

TextRCNN ICS

NEWS

-0.26 (Macro F1)

+1.63

[45] Not stated Filtering words according to

their POS-tag. Selecting a

fixed or variable number of

words

Specific or

variable number

of synonyms

LSTM-

CNN

Tan

NLPCC

Results only in

combination

with other

methods

[60] WordNet Not stated Not stated BERT SST-5 (40)

IMDB (40)

TREC (40)

-0.87 (Acc.)

-0.87

+0.01

[61] WordNet No Stopwords. 10% of

documents randomly selected

Not stated M-BERT CodiEsp-D

CodiEsp-P

+0.6 (F1)

-0.7 (F1)

[34] WordNet Keywords replaced are

ordered by their RAKE score

(e.g. the probability of being

a keyword).

Randomly

selected.

Replacement only

with same POS-

tag.

No model

(intrinsic

evaluation

with

different

metrics)

Yelp-LR (small

subset of Yelp

Reviews)

+0.015 (SBLEU)

-0.018 (UTR)

-0.02 (TTR)

-0.016 (RWords)

0 (SLOR)

-0.007 (BPRO)

+0.001 (SStd)

0 (SDiff)

10

[42] WordNet No stop words.

Uniform random until 20%

of the words in a sentence are

changed

Uniform random CNN Yelp P. Only against

other data

augmentation

methods

Interesting is also the more sophisticated integration into the learning process, as described by Jungiewicz and Pohl [59].

The authors only replace words with synonyms if the replacement and the chosen synonym maximize the loss of the current

state of the classifier model. There are also approaches that adapt the general idea of thesauri-based replacements to perform

augmentation on specific tasks, for example, in Kashefi and Hwa [42] and Feng et al. [34].

3.1.2.3 Embedding Replacement

Comparable to synonym substitution, embedding replacement methods search for words that fit as good as possible into

the textual context and additionally do not alter the basic substance of the text. To achieve this, the words of the instances

are translated into a latent representation space, where words of similar contexts are closer together. Thus, these latent

spaces are based on the distributional hypothesis, almost in every case now in the form of embedding models. Choosing

words that underlie this hypothesis and that are, thus, near in the representation space, implies that the newly created

instances maintain a grammatic coherence, as it can be seen in the example of Figure 3. Besides this advantage, Rizos et

al. [44] argue that the “method encourages the downstream task to place lower emphasis on associating single words with

a label and instead place higher emphasis on capturing similar sequential patterns, i.e., the context of hate speech”. Benefits

of this data augmentation technique in comparison to the synonym substitution method are that techniques based on the

distributional hypothesis are more general and the context of texts is taken into consideration. This means that substitutions

are not limited by a database, like WordNet, and that grammatically more correct sentences can be generated [62].

Furthermore, the general form of this approach can be beneficial for languages which have no large thesauri but a lot of

general text resources, on the basis of which the self-supervised embedding models can be easily trained [9].

Figure 3: Example of a sentence with predicted words that can be used to replace a word in the sentence [1]

Wang and Yang [63] use this kind of augmentation to better classify annoying tweets. They utilize k-nearest-neighbor

to identify the best embeddings as a substitution of the training data words. Compared to the baseline, they achieve an

additive improvement of up to 2.4% in the F1-Score with logistic regression. Marivate and Sefara [57], Rizos et al. [44],

Huong and Hoang [38], and others also utilize the embedding replacement in very similar ways. The strongest differences

with regard to the method stem from the selection of the words to be replaced (e.g., POS-tag based) and the selection of

the replacing words based on the embeddings. The differences can be found in Table 2.

11

Table 2: Overview of different approaches of the embedding replacement method

 Replacement

Selection

Embedding

Selection

Model Base* Dataset Embedding Model Improvements

[63] Not stated K-nearest-

neighbor and

cosine similarity

Logistic regression Petpeeve

dataset

UrbanDictionary W2V

Twitter W2V

GoogleNews W2V

+0.3 (F1)

+1.7

+2.4

[57] Random Random with

probability

proportional to

cosine similarity

DNN AG News

Sentiment

Hate

Speech

Wikipedia W2V

Wikipedia W2V

GloVe Twitter

~0 (Acc.)

~+0.5

~-0.3

[44] Every word Cosine similarity

threshold + POS-

tag matching

CNN+LSTM/GRU HON

RSN-1

RSN-2

Word2Vec Hate Speech

FastText Wikipedia

GoogleNews W2V

GloVe Common Crawl

GloVe Common Crawl

GloVe Common Crawl

-22.7 (Macro F1)

+1.0

-3.3

+0.3

-0.2

0

[45] 1. Method:

Filtering words

according to their

POS-tag.

Selecting a fixed

or variable

number of words.

2. Method:

Replacing

adverbial phrases

(Chinese related)

Own similarity

measure and

specific or

variable number

of replacements

LSTM-CNN Tan W2V self-pretrained Results only in

combination

with other

word level

augmentation

methods

[36] Substitutable

words are nouns,

verbs, adjectives,

or adverbs and

not part of a

named entity.

Each candidate is

replaced with a

probability.

Embeddings are

found with the

counter-fitting

method. Each

candidate is

replaced with a

probability. The

remaining

probability of

substation is

shared among the

embeddings based

on a language

model score

CNN MR

CR

Subj

SST

MR/CR

CR/MR

GoogleNews W2V -0.6/-4.2 (Acc)

+0.1/-3.7

+0.2/-1.4

-0.4/-4.2

+1.9/+0.4

+0.1/-3.0

[38] Not stated Cosine similarity Random Forest,

Naïve Bayes, SVM

Vietnamese

comments

W2V Vietnamese Results only in

combination

[17] Random sampling

with probabilities

proportional to

the neighbors

each word has

within the

counter-fitted

1. K-nearest-

neighbors with

Euclidean

distance +

counter-fitting

method

LSTM IMDB GloVe Adversarial

training: No

improvements

but safer model

12

embedding space

+ exclude

common articles

and prepositions

2. Google LM to

filter out words

3. Pick the one

word that will

maximize the

target label

prediction

probability

[64] Only for multi-

piece words.

Random

probability for

replacement.

Random

embedding of the

k nearest

Small transformer

model

Various

GLUE tasks

GloVe No

augmentation

baseline

comparisons

[65] No stop-words or

symbolic and

numerical data

Cosine similarity

threshold of 0.97

Manhattan LSTM

model

Thai text

similarity

task

Thai2fit (Thai

language)

+1.71

A major factor for bad results is that the embedding replacement does not necessarily guarantee that the meaning of the

instances will be preserved, which could in turn lead to distortions of the label, e.g., “the movie was fantastic” and “the

movie was horrible” are valid transformations but the sentiment is the opposite. A way to address this issue is the use of

the counter-fitting method of Mrkšić et al. [66] for synonym embedding substitution, as for example done by Li et al. [36].

Counter-fitting is an approach that depicts word embeddings on the basis of a target function in a way that similarities

between synonyms are rewarded and similarities between antonyms are sanctioned [66]. Li et al. [36] extend this approach

by selecting the most fitting words with a higher possibility for the replacement. This is done by leveraging a language

model that can give an indication how well a given word fits into the sequence. However, the authors achieve only mixed

results with this method. The counter-fitting method offers much less replacement possibilities due to the fact that the

embeddings have to be trained on the downstream task, leading to a smaller coverage of their corpora words. Alzantot et

al. [17] also use this method and a language model filtering in their adversarial example generator. They extend the

approach by only incorporating the words that are maximizing the target label prediction probability (label preservation)

of an already trained classifier. The authors report no improvements with regard to the task testing set, but they show that

the model is safer with respect to their adversarial attacks. Embedding replacement methods are also used in specific task-

dependent ways, as, for example, by Kashefi and Hwa [42].

3.1.2.4 Replacement by Language Models

Language models are able to represent language by predicting next or missing words given the previous or surrounding

context (classical and respectively masked language modelling). This way, the models can, for example, be used to filter

unfitting words, as already discussed in Section 3.1.2.3 with the work of Alzantot et al. [17]. The authors generate similar

words with GloVe embeddings and the counter-fitting method and utilize a language model to only choose words with a

high fitting probability. In contrast to embedding replacements by word embeddings that take in a global context, language

models enable a more localized replacement [57]. Utilizing the next word prediction, language models can also be used as

the main augmentation method. Kobayashi [1] is, for example, using an LSTM language model to identify substitution

words. However, language models do not only substitute words with similar meanings but also words that fit in principle

to the context [1]. This trait is encompassed with a greater risk of label distortion. To prevent the attachment of wrong

labels to the new training data due to the changed semantic, Kobayashi [1] modifies the language model so that it allows

13

the integration of the label in the model for the word prediction (label-conditional language model). Inspired by this

approach, Wu et al. [67] alter the architecture of the language model BERT [68] so that it is label conditional (c-BERT).

In an evaluation with different tasks the authors showed that in comparison to Kobayashi [1] and other approaches they

were able to increase the performance of a classifier the most (see Table 3). However, the c-BERT approach also has the

drawbacks that the language model is fixed when applied and in case of low-data regimes the augmentation might not be

label preserving anymore [60]. That is why Hu et al. [60] include the c-BERT method in a reinforcement learning scheme,

which learns the task in a normal supervised fashion but is also able to simultaneously fine-tune the c-BERT LM. With

this adaption, the authors significantly outperform the normal c-BERT approach in a low-data regime setting. The results

can be found in Table 3 together with the results of Anaby-Tavor et al. [39], who evaluated c-BERT as comparison, and

Qu et al. [69], who employed the c-BERT model with supervised consistency training (see 3.4) on the MLNI-m task.

Table 3: Evaluation results for the state-of-the-art language substition method c-BERT

Publication Method Dataset Improvements (Accuracy)

[67]

c-BERT SST-5

SST-2

Subj

MPQA

RT

TREC

+0.8 (CNN)/+1.3 (RNN)

+0.2 (CNN)/ +0.5 (RNN)

+0.5 (CNN)/ +0.4 (RNN)

+0.5 (CNN)/ +0.7 (RNN)

+0.8 (CNN)/ +0.6 (RNN)

+0.8 (CNN)/ +0.2 (RNN)

[69] c-BERT with consistency training MLNI-m +0.4 (RoBERTa-Base)

[39] c-BERT ATIS

TREC

WVA

-1.9 (BERT) / -0.8 (SVM) / -5.8 (LSTM)

+1.1 (BERT) / +1.1 (SVM) / +6.5 (LSTM)

+0.2 (BERT) / 0.5 (SVM) / +2.4 (LSTM)

[60] c-BERT integrated in reinforcement

learning scheme

SST-5 (42)

IMDB (45)

TREC (45)

+1.17 (BERT) / +2.19 (normal c-BERT)

+1.97 (BERT) / +1.97 (normal c-BERT)

+0.73 (BERT) / +0.87 (normal c-BERT)

[64] c-BERT and embedding substitution for

multiple-pieces words

MNLI-m

MNLI-mm

MRPC

CoLA

+2.3 (TinyBERT)

+1.9 (TinyBERT)

+3.4 (TinyBERT)

+21.0 (TinyBERT)

Jiao et al. [64] take the already improved method by Wu et al. [67] and adjusted it in their work on TinyBERT. The

scholars realized that the quality of the data generated with BERT is low if the words include many multiple-pieces words.

To mitigate this problem, they propose to perform a embedding substitution on the base of GloVe embeddings [70] for

such words. Further language model augmentations for different tasks are proposed by Gao et al. [71], Ratner et al. [72],

Fadaee et al. [73], and Kashefi and Hwa [42].

3.1.3 Phrase Level

3.1.3.1 Structure-based Transformation

Structure-based approaches of data augmentation may utilize certain features or components of a structure to generate

modified texts. Such structures can be based on grammatical formalisms, for example, dependency and constituent

grammars or POS-tags. They are naturally more limited to certain languages or tasks. Şahin and Steedman [74] are, for

example, concerned with the augmentation of datasets from low resource languages for POS-tagging. With “cropping”,

sentences get shortened by putting the focus on subjects and objects. With the “rotation” technique, flexible fragments get

14

rotated around the root. The authors state that this method is dependent on the language and may likely only generate noise

in the English language. Both methods are well suited to a multitude of low resource languages. The method was also

tested by Vania et al. [75] who are using it to augment the training data for dependency parsers for low-resource data.

Feng et al. [76] propose a method for changing the semantics of a text while trying to preserve the fluency and sentiment.

Given a set of phrases (replacement entities) to every instance, the Semantic Text Exchange method first identifies phrases

in the original text that can be replaced by a replacement entity based on the constituents. Then similar phrases to the

identified phrases are replaced by a masked token. This is then filled by an attention-based language model so that the

similar words better suit the replacement entity. Feng et al. [34] adapt this approach by automatically choosing the 150 of

the 200 most frequent nouns of the Semantic Text Exchange training set for the replacement entity candidates and breaking

their Yelp Review dataset into windows, as the method is only suited for short texts. In an analysis with this dataset Feng

et al. [34] report that the Semantic Text Exchange method decreases fluency, diversity, and semantic content preservation.

An important work was proposed by Min et al. [77] who show that inversion (swapping the subject and object part) and

passivation result in a higher generalization capability in natural language inference. In fact, preliminary work [78]–[80]

in combination with this work suggests that BERT is able to extract the relevant syntactic information from the instances

but is unable to use this information in the task, as there are too few examples in the MNLI dataset demonstrating the

necessity of syntax. Even a limited utilization of their data augmentation methods already helps to mitigate this problem.

3.1.3.2 Interpolation

In numerical analysis, interpolation is a procedure to construct new data points from existing points [81]. While the formal

interpolation versions are found in the feature space section, a sensible definition of interpolation in the data space of text

is hard to construct. However, the SUB² method by Shi et al. [82] is here regarded as one of them due to its resemblance

to the feature space methods. SUB² substitutes substructures (dependents, constituents, or POS-tag sequences) of the

training examples if they have the same tagged label (for example, “a [DT] cake [NN]” in an instance can be replaced with

“a [DT] dog [NN]” of another instance). The variant adapted for classification views all text spans of an instance as

structures and is constrained by replacement rules that can be combined or completely left out. The replacement rules are

only replacing (1) same lengths spans, (2) phrases with phrases, (3) phrases of the same constituency label, and (4) spans

that come from instances with the same class label. The authors show that their methods outperform the baseline when

applied to low resource tasks. Their classification variant is able to nearly double the accuracy on a subsample of the SST-

2 and AG News datasets. They also achieve better results than the language model augmentation c-BERT (Section 3.1.2.4).

3.1.4 Document Level

3.1.4.1 Round-trip Translation

Round-trip translation3 is an approach to get paraphrases with the help of translation models. A word, phrase, sentence or

document gets translated to another language (forward translation) and afterwards translated back to the source language

(back translation) [83]. The rationale behind this is that translations of texts are often not unique as of the complexity of

natural language [9], which leads to various possibilities. The process is depicted in Figure 4 by Yu et al. [84].

3 Even though Coulombe [9], Yu et al. [84], Xie et al. [46], Qu et al. [68], and more use the term backtranslation for their data augmentation works as

well, these approaches are assigned to the round-trip translation approaches because they execute forward and back translation.

15

Figure 4: Round-trip translation process [84]

The approach is promising because of its good inherent label preserving and highly valuable paraphrasing capabilities.

Translating instances retains the meaning of them but, for example, stylistic features based on the traits of the author are

excluded [85]. Some translation systems can propose several translation options; this is hinted in Figure 3. Yu et al. [84],

Aroyehun and Gelbukh [62], Coulombe [9], Kruspe et al. [86], and others use this technique to generate artificial training

data. Their works differ with regard to the used language and the subsequently applied filtering methods. These filtering

methods are important, as the process of the twofold translation may be faulty [62]. Furthermore, Xie et al. [46] as well as

Chen et al. [87] change the normal beam search generation strategy to random sampling with a temperature parameter to

ensure a greater diversity. The results of the round-trip translation applications are presented in Table 4.

Table 4: Overview of the round-trip translation approaches

 Translation

Model

Languages Filtering Model Dataset Improvements

[84] Google’s NMT

[88]

en -> fr -> en No filtering Convolution

and self-

attention model

SQuAD +1.5 (EM) / +1.1

(F1)

[9] Google

Translate API

Not stated Excluding identical

instances. Similarity

threshold based on lengths.

XGBoost

MLP 2 hidden

layer

IMDB +0 (Acc.)

+5.8

[62] Google

Translate API

en -> fr, es,

de, hi -> en

No filtering NBSVM

CNN

LSTM

BiLSTM

CNN-LSTM

LSTM-CNN

CNN-BiLSTM

BiLSTM-CNN

Aggression

Detection

+0.19 (Macro F1)

+5.31

+7.39

+5.6

+5.94

+19.45

+14.33

+6.87

[86] Google

Translate

Randomly

selected

No filtering Fusion CNN TREC Incident

Streams track

~-1.2 (F1)

[57] Google

Translate API

& Amazon

translate

en -> fr,

de -> en

“We ensured that the [..] texts

carry the same meaning as

the source text“

DNN AG News

Hate Speech

~+0.33 (Acc.)

~-2.3

[46] WMT’14

English-French

en -> fr -> en No filtering Randomly

initialized

transformer

Yelp-5 +1.65 (Acc.)

16

translation

model

[69] WMT19 and

released in

FairSeq

en -> de ->

en

No filtering RoBERTa MLNI-m +0.9 (Acc.)

[89]* Not stated Not stated No filtering Transformer

base with

consistency

training

MNLI

QNLI

QQP

RTE

SST-2

MRPC

CoLA

STS-B

+0.9 (Acc)

+0.6 (Acc)

-0.2 (Acc)

+5.1 (Acc)

+0.7 (Acc)

+2.6 (F1)

+1.4 (Mcc)

+0.4 (Corr)

[90] MarianMT en -> fr, de,

es -> en

Chained:

en -> es -> fr

-> en

(Word sense disambiguation)

Retaining those where the

target word occurs exactly

once (in both original and

augmented instance)

MT-DNN SemEval-2013 +

SemEval-2015 +

Senseval-2 +

Senseval-3

No baseline

comparisons

* trained with supervised consistency training

3.1.4.2 Generative Methods

Generative methods are becoming more and more interesting in recent data augmentation research. As the capabilities

of language generation increased significantly, the models are able to create very diverse texts and can thus incorporate

new information. For example, Qiu et al. [37] propose, besides noise generation techniques, a variational autoencoder

(VAE) based method that is used for text generation in their system. VAEs are probabilistic neural network structures that

consist of an encoder network, which transforms input data into a latent representation, and of a decoder-network, which

transforms the latent representations back. The authors differentiate between unconditional and conditional VAEs. With

unconditional VAEs, separate text generation models are trained for all classes, whereas with conditional VAEs, label

information is fed into the model as an additional input. Furthermore, they distinguish between sampling from the prior

distribution, leading to greatly diverse instances, and the posterior distribution, creating text that is semantically closer to

the training data. With the unconditional VAE and sampling from the prior distribution, they achieve the highest

improvements of up to 2 F1-points (see Table 5). Malandrakis et al. [91] make similar efforts by evaluating VAEs for

augmentation. While their objective is more narrowed, as they are interested in natural language understanding with limited

resources, they analyze a broader variety of VAE augmentation variants. They also propose augmentation by conditional

and unconditional VAEs with sampling from the posterior or prior distribution. Furthermore, they test two different

learning objectives, where in the first the VAEs try to reconstruct the input and in the second the VAEs take an instance

from a certain class and try to construct another instance from that class. They also experiment with the addition of a

discriminator network to the VAE that predicts from which class an output appears to be. In intrinsic and extrinsic

evaluations, the conditional VAEs with the reconstruction task are best performing. The discriminator variant achieves

poor results, which stem from the little amount of available training data for the many different classes. Contrary to the

improvements of Qiu et al. [37], the CVAEs outperform the VAE generation. An excerpt of the extrinsic evaluation results

is given in Table 5. However, one has to keep in mind that the task at hand is very specific (intent classification).

VEAs are also a main component in the NeuralEditor proposed by Guu et al. [92] that generates new texts based on

edition vectors. For the training of the generative model, they take pairs of instances x’ and x in the training data that are

17

lexically similar, encode the differences of them and noise into an edition vector z, and try to generate x based on x’ and

z. It should be noted that the lexical similarity is just a rough approximation of semantic similarity, which is the reason

why it could happen that instances are, for example, negated which in turn weakens the label preservation capabilities of

this approach. This suffices the purposes of the authors of the paper, as they only use the method for language modeling.

Specifically in this domain, they report improvements with regard to the generation quality and the perplexity. Raille et al.

[93] propose Edit-transformer, which is an adaptation of the NeuralEditor with the ability to function cross domain, so that

the learned edits of a large dataset can be transferred to a small dataset. Besides the improvements in speed and language

modeling, they also apply their method on three different classification tasks. The results are shown in Table 5.

Rizos et al. [44] create an RNN that, depending on a specific class, learns language modelling to generate training data

thereafter. The class specific RNN for augmentation is primed with a random start word from the class specific training

data. However, the authors state that this method achieves the worst results compared to embedding substitution and noise

generation. In a similar sense, Ollagnier and Williams [61] also perform text generation using a language model. Their

model is based on an LSTM-CNN architecture. In contrast, they split each document in a minibatch into sentences, then

generate new sentences for 30% of them and utilize 30% of the beginning of a given sentence as priming.

Sun and He [45] used the seqGAN architecture [94] to generate artificial data on basis of a generative adversarial

network (GAN). Comparable to computer vision, seqGAN consists of a generator network creating texts and a

discriminator network examining the authenticity of the generated texts next to the real instances. As the discriminator

network can only prove the authenticity after a sequence of words and thus gives delayed feedback to the generator, the

generator network is trained as a reinforcement learning agent. Utilizing the method as a data augmentation technique, the

authors only receive minor improvements of classification quality.

Wang and Lillis [95], Anaby-Tavor et al. [39], Abonizio and Junior [96], Bayer et al. [43], and Liu et al. [97] use the

GPT model of Radford et al. [98], which achieves very good results in text generation, to create new complete instances.

Concerning the adoption of the method, Wang and Lillis [95] only describe that they use rare instances as dependent

examples for the generation. Anaby-Tavor et al. [39], on the other hand, develop a method that increases the safety with

regard to label preservation. First, they further train the GPT-2 model with training data of a certain task (finetuning). In

the process, they concatenate the respective label to every instance in order to facilitate the generation of new data for the

respective class afterwards. Finally, a classifier determines which generated instances can actually be assigned to the class

stated. The authors manage to achieve significant improvements in the classification of sentences. They show that their

method outperforms conditional VAEs (unfortunately no sampling technique is described) and even EDA (Section 3.1.1.1)

and c-BERT (Section 3.1.2.4) when applied to a severe low data regime. The results of their LAMBADA approach and

CVEA implementation is given in Table 5. Abonizio and Junior [96] try to improve this approach by concatenating three

random samples for the priming of the generation. Furthermore, they are using DistilGPT2 by Sanh et al. [99], which is

substantially faster and smaller. As can be seen in Table 5, the method consistently outperforms the baseline. While

LAMBADA and PREDATOR are only applicable to short texts as instances, Bayer et al. [43] design a GPT-2 based

approach to augment short as well as long text tasks. They want to achieve a very high label preservation and diversity by

finetuning the language model on the class specific data, generating data primed with specialized training data tokens and

a document embedding based filtering method. They can achieve high improvements for constructed and real-world low

data regimes. However, they also discuss where their method is limited and for which datasets and tasks it may be especially

helpful. The results can also be seen in Table 5. Liu et al. [97] use a reinforcement learning component after the softmax

prediction of the GPT-2 model to be able to predict the tokens conditional on the class for that the instance should be

18

generated. The authors tested their method with many model architectures. It consistently improved all of them on all tasks,

especially the larger pre-trained models, like BERT and XLNet. The results for XLNet are shown in Table 5.

In the generative method proposed by Lee et al. [100], a first step is to subdivide the data into different slices (informed

or based on the labels). Then a generative model is trained on these slices that is supposed to predict an instance in the slice

based on a subsample of instances in this slice. This model is then used to generate new data for underrepresented slices

by priming it with data instances from it. This way, the authors can gain several improvements in text classification, intent

classification, and relation extraction task with new state-of-the-art results for the latter two. Furthermore, Ding et al. [101]

and Chang et al. [102] proposed methods using generative models for tasks other than text classification.

Table 5: Overview of the text generation methods

Publication Method Model Dataset Improvement

[37] VAE

CVAE + prior

sampling

CVAE + posterior

sampling

Ensemble of BiLSTM, TextCNN,

TextRCNN, and FastText with

XGBoost as top-level classifier

ICS (Zh)

News Category Dataset (EN)

ICS (Zh)

News Category Dataset (EN)

ICS (Zh)

News Category Dataset (EN)

+0.04 (F1)

+2.02

-0.13

+1.55

-0.06

+1.88

[91] VAE

CVAE + prior

sampling

CVAE + posterior

sampling

BiLSTM Movie

Movie + Live Entertainment

Movie

Movie + Live Entertainment

Movie

Movie + Live Entertainment

+4.0 (Macro F1)

-0.5

+5.9

+1.7

+5.6

+0.6

[103] CVAE BERT SNIPS (few shot)

SNIPS

FBDialog (few shot)

FBDialog

+8.00

+0.06 (Acc.)

+7.42

+0.0

[93] Transformer-based

sentence editor

CNN

CNN

CNN

CNN

LSTM

LSTM

Subj (20%)

Subj (100%)

SST-2 (20%)

SST-2 (100%)

Amazon Reviews (1%)

Amazon Reviews (4%)

+1.71 (Acc.)

+1.62

+0.87

-0.84

+1.12

+0.41

[44] RNN LM with random

start word priming

CNN+LSTM + GloVe++ HON

RSN-1

RSN-2

-1.8 (Micro-F1)

+8.2

-7.4

[61] CNN-LSTM LM with

30% of a given

sentence for priming

CNN-LSTM CodiEsp-P +3.1 (F1)

[45] GAN (seqGAN) LSTM + pretrained embeddings

CNN + pretrained embeddings

LSCNN + pretrained embeddings

Tan’s task +1.06 (F1)

+0.9

+0.8

[95] GPT-2 for rarer

instances without

filtering

Logistic regression/biLSTM/ Bi-

attentive classification+ELMo +

GloVe

Alerting

Information Feed

Prioritisation

No comparative

results

[39] CVAE BERT ATIS (5)

TREC (5)

WVA (5)

+7.3 (Acc.)

+0.8

-1.8

19

[39] LAMBADA – GPT-2

generation and

classifier filtering

BERT ATIS (5)

ATIS (20)

ATIS (50)

ATIS (100)

TREC (5)

WVA (5)

+22.4 (Acc.)

~0

~+2.0

~+0.5

+4.0

+1.4

[96] PREDATOR –

DistilGPT2 generation

and classifier filtering

BERT

CNN

BERT

AG-NEWS

CyberTrolls

SST-2

+0.61 (Acc.)

+0.45

+1.63

[43] GPT-2 with

conditional finetuning,

special priming and

document embedding

filtering

ULMFit SST-2 (100)

SST-2 (700)

Layoff

Management Change

Mergers & Acquisitions

Flood

Wildfire

Boston Bombings

Bohol Earthquake

West Texas Explosions

Dublin

New York

+15.53 (Acc.)

-0.19 (Acc.)

+4.84 (F1)

+3.42 (F1)

+1.42 (F1)

+0.25 (F1)

+0.44 (F1)

+2.44 (F1)

+2.05 (F1)

+3.81 (F1)

–2.54 (F1)

+0.44 (F1)

[97] GPT-2 with a

reinforcement learning

component for class

conditional

generation.

XLNet Offense Detection (20%)

Offense Detection (40%)

Sentiment Analysis (20%)

Sentiment Analysis (40%)

Irony Classification (20%)

Irony Classification (40%)

+1.3 (F1)

+4.3

+1.2

+1.4

+1.0

+2.3

3.2 Feature Space

Data augmentation in the feature space is concerned with the transformation of the feature representations of the input data.

3.2.1 Noise induction

As in the data space, noise can also be introduced in several variants in the feature space. For example, Kumar et al. [103]

employ four such techniques for the ultimate goal of intent classification. One of those methods applies random

multiplicative and additive noise to the feature representations, as is done in [51]. However, in contrast, they are not

transforming the created representations back into the data space. Another method called Linear Delta calculates the

difference between two instances and adds it to a third (all from the same class). The third method interpolates instances,

which fits to Section 3.2.2.2 (see Table 7). Furthermore, for their fourth method, they are adapting the Delta-Encoder by

Schwartz et al. [104] for textual data. There, an autoencoder model learns the deltas between instance pairs of the same

class, what is then utilized to generate instances of a new unseen class. In a normal testing setting, the augmentation

methods only slightly improve the classification results, while in a few-shot setting all methods are highly beneficial.

Several feature space data augmentation methods stem from the adversarial training research field. As explained in the

background section, the models are trained with adversarial examples, i.e., little perturbed training data instances that

would change the prediction or maximize the loss. This can be formally written as follows [105]:

min
𝛉

 𝔼(𝐙,y) ~ D [max
||𝜹||≤ 𝜖

L(f𝛉(𝐗 + 𝛅), y)] ,

20

where Θ are the model parameters and 𝛿 the perturbation noise added to the original instances (within a norm ball).

Further, 𝐷 is the data distribution, 𝑦 the label, and 𝐿 a loss function. The training of the network (outer minimization) can

still be solved by SGD, while the search for the right perturbations (i.e., inner maximization) is non-concave [105]. As

described by Zhu et al. [105], PGD [106], [107] can be used to solve this. Unfortunately, several steps (K) for converging

to a good result makes it computationally expensive [105]. Shafahi et al. [108] and Zhang et al. [109] proposed two methods

that use the idea to calculate the gradient with respect to the input (for PGD) on the same backward pass as the gradient

calculations with respect to the network parameters during a training step. This mitigates additional calculation overhead

of PGD. In detail, FreeAT by Shafahi et al. [108] trains the same batch of training examples K times so that several

adversarial updates can be performed. YOPO by Zhang et al. [109] accumulates the gradients with respect to the parameters

from the K steps and updates the parameters with them after the steps. Zhu et al. [105] also propose a method called

FreeLB, which is similar to YOPO, as it also accumulates the parameter gradients. On several tasks, this method

consistently exceeds the results of the baseline and the other two methods. The results of the GLUE dataset are given in

Table 6. Miyato et al. and Miyato et al. [35], [110] change the normal adversarial training rule so that no label information

is needed and call it virtual adversarial training. Without going into exact details, virtual adversarial training regularizes

the standard training loss with a KL divergence loss of the distribution of the predictions with and without perturbations,

where the perturbations are chosen to maximize the KL divergence. While the adversarial training method is suitable for

semi-supervised learning, we are particularly interested in the supervised setting. Their method improves the supervised

DBpedia topic classification task baseline classifier by 0.11 points of accuracy. Their method gains additively 0.03%

accuracy in comparison to the conventional adversarial training method. Jiang et al. [111] propose the adversarial method

SMART, which relies on the virtual adversarial training regularization. They introduce the utilization of the Bregman

proximal point optimization with momentum to solve the virtual adversarial training loss, which prevents the model from

aggressive updates [35]. The authors show in their experiments that the method significantly improves the baseline and is

also able to achieve better results than the other methods discussed in this paragraph (see Table 6). Furthermore, they

demonstrate the robustness enhancement and domain adaption capabilities in several evaluation applications.

Wang et al. [112] and Liu et al. [113] developed methods for enhancing the pre-training of language models with

adversarial training. Wang et al. [112] simply generate adversarial examples on the output embeddings in the softmax

function of the language models. The authors can reduce the perplexity of the AWD-LSTM and QRNN model on different

datasets; for example, a reduction by 2.29 points on the Penn Treebank dataset with the AWD-LSTM model. However, it

is not clear how the training of bigger pre-trained language models like BERT and RoBERTa would have been influenced

by the method. This is addressed in the work of Liu et al. [113] with their method called ALUM. ALUM introduces noise

to the input embeddings. The authors build their system upon the virtual adversarial training by Miyato et al. [35], as they

noticed that it is superior to conventional adversarial training for self-supervision. They also found out that they can omit

the Bregman proximate point method and the free adversarial training proposed by Jiang et al. [111] and Shafahi et al.

[108] when they are using curriculum learning, where the model is first trained with the standard objective and then with

virtual adversarial training. They report promising generalization and robustness improvements with the largest

transformer models. For example, RoBERTa models can be improved with the ALUM continual pretraining by +0.7%

(absolute) on the MNLI task, while standard continual pretraining does not introduce further gains. The results on the

GLUE dataset are given in Table 6. They also tested the robustness of the models with three different adversarial datasets.

ALUM achieves in all tasks significant improvements. In another evaluation setting they combined adversarial pretraining

with adversarial finetuning. ALUM improves all the evaluation scores of the standard pretrained models. This model

21

reaches the best performances and outperforms the other models substantially across the tested tasks, e.g., with an accuracy

of + 0.4% more than without fine-tuning the SNLI dataset. The improvement on the MNLI task is given in Table 6.

With regard to the generative adversarial training methods of the feature space, it is also of interest to investigate how

to transform the newly created examples to the data space to enable their inspection. This is done in the works of Liu et al.

and Wan et al. [114], [115]. Wan et al. try to improve the classification behavior of a grammatical error correction system

by training with adversarial examples. Such an example, made from applying loss increasing noise in the hidden

representation of a transformer encoder, is mapped to the data space by a transformer encoder that was trained

autoregressively. Then they use a similarity discriminator based on the model to filter instances that are not similar to their

initial counterparts. Liu et al. [114] also use a transformer autoencoder architecture to get data space instances. In contrast

to the work of Wan et al. [115], they generate the noisy instances from the input embeddings, filter instances based on

unigram word overlap and try to improve machine ready question generation and question answering tasks. Both methods

significantly improve the baselines and other augmentation methods.

Given the constraint that adversarial training can be computationally expensive, Shen et al. [89] propose three simple

and efficient data augmentation methods of the feature space (see Figure 5). Token cutoff sets a whole embedding of an

individual word to 0, while feature cutoff sets one embedding dimension of every word in the input to 0. The third method,

span cutoff, employs token cutoff across a coherent span of words. With every method, several different slightly changed

instances can be created, which the authors see as different perspectives/views that can be integrated in a multi-view

learning fashion through consistency training. This means that the model should predict similar outputs across different

views (details can be found in Section 3.4). The authors evaluate their model on the GLUE task and compare it with

adversarial training algorithms as well as round-trip translation. In three out of eight tasks, an improvement over all other

methods could be achieved (see Table 6). They extend the cutoff strategies to work with natural language generation, and

they significantly outperform the baseline as well as the adversarial training method of Wang et al. [112].

Figure 5: Visualization of the different cutoff methods [89]

Table 6: Comparison of different noise inducing methods on the GLUE task

 Model SST-2

Acc

STS-B

P/S Corr

MNLI-

m/mm-

Acc

QQP

Acc

RTE

Acc

QNLI

Acc

MRPC

F1

CoLA

Mcc

Baseline RoBERTa-L 96.4 92.4 90.2 92.2 86.6 94.7 90.9 68.0

Adversarial

Training

PGD 96.4 92.4 90.5 92.5 87.4 94.9 90.9 69.7

FreeAT 96.1 92.4 90.0 92.5 86.7 94.7 90.7 68.8

FreeLB 96.7 92.7 90.6 92.6 88.1 95.0 91.4 71.1

ALUM* 96.6 92.1 90.9 92.2 87.3 95.1 91.1 68.2

ALUM - - 91.4 - - - - -

SMART 96.9 92.8 91.1 92.4 92.0 95.6 92.1 70.6

Cutoff** Token 96.9 92.5 91.0 92.3 90.6 95.3 93.2 70.0

22

Feature 97.1 92.4 90.9 92.4 90.9 95.2 93.4 71.1

Span 96.9 92.8 91.1 92.4 91.0 95.3 93.8 71.5

*only adversarial pre-training

** supervised consistency training

3.2.2 Interpolation methods

For textual data, interpolation methods are mostly limited to the feature space since there is no intuitive way for combining

two different text instances. Nevertheless, the application in the feature space seems reasonable, as the interpolation of

hidden states of two sentences creates a new one with the meaning of both original sentences [87], [116]. Besides this,

interpolation methods have a high value for machine learning models from the learning-based perspective. Possible

explanations for the success of interpolation methods, which are described in the following, may stem from the balancing

of classes, the smoothening of the decision border (regularization) [117], and the improvement of the representations [118].

For example, the SMOTE approach in its original context was developed to oversample the minority class, which, as

described in the background section, inherently leads to better classification performances. In fact, a balancing of a class

can easily be achieved by simply copying the minority class. However, Chawla et al. [117] show that simple oversampling

leads to more specific decision boundaries than applying SMOTE for balancing the classes. Interpolation methods can

smoothen the boundary as it is shown in Figure 6. Smoothened and more general decision borders signify that an algorithm

can generalize better and, in relation to training data, is accompanied by less overfitting. Furthermore, when applying

interpolation methods to representations of the input data, Verma et al. [118] empirically and theoretically prove that the

representations are flattened with regard to the number of directions with significant variance. This is desirable since the

data representations capture less space, meaning that a classifier is more uncertain for randomly sampled representations

and a form of compression is achieved which leads to generalization [118]–[120].

3.2.2.1 SMOTE Interpolation

The Synthetic Minority Over-sampling Technique (SMOTE) is an interpolation method of feature space representations

of the input data. With SMOTE, various neighbors that are as close as possible to a specific instance are searched within

the feature space in order to be interpolated with the following formula:

�̃� = 𝑥𝑖 + 𝜆 ∗ 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗),

where (𝑥𝑖 , 𝑦𝑖) is the source instance and (𝑥𝑗 , 𝑦𝑖) is a close neighbour with the same class label. 𝑑𝑖𝑠𝑡(𝑎, 𝑏) is a distance

measure and 𝜆 ∈ [0,1]. Unlike with mixup, only instances of the same class get interpolated. The rationale behind the

calculation of neighbors with the same class labels is that the interpolations tend to be class preserving, leading to a higher

safety of the technique. However, this has the effect that the novelty and diversity of the created instances is limited.

SMOTE is rudimentarily illustrated in Figure 6. In the illustration, a binary classification problem in which a learning

algorithm has learned the specific decision border is shown. To achieve a balanced class distribution, a new instance is

added to the blue class by utilizing SMOTE. This addition achieves, apart from a balancing of the dataset, an adjustment

of the decision boundary. The new boundary is less specific and thus contributes to more general decisions.

SMOTE in combination with textual data augmentation is, for instance, applied in the work of Wang and Lillis [95].

Unfortunately, the authors do not describe how and on which point in the network the method is applied.

23

Figure 6: Illustration of the interpolation method SMOTE

3.2.2.2 Mixup Interpolation

Mixup by Zhang et al. [121] is an interpolation method similar to SMOTE. In the simplest adoption, the convex

interpolation is implemented with the following formulas:

�̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 , whereas 𝑥𝑖 , 𝑥𝑗 are input vectors

 �̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 , whereas 𝑦𝑖 , 𝑦𝑗 are one-hot-coded labels

(𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) randomly drawn from the training data and 𝜆 is either fixed in [0,1] or 𝜆 ∼ Beta(α, α), for α ∈ (0, ∞).

Mixup is a general technique that can be applied to all kinds of equal dimensional data. However, text cannot trivially

be represented in equal dimensions [122]. As a very general method, Verma et al. [118] propose the idea of applying mixup

within a randomly selected hidden layer of a neural network. Despite the fact that the authors only perform the tests on

image datasets, this approach paves the way for applying mixup for many textual related tasks. The results are very

promising, and for textual evaluations we advise the reader to look at the methods described in the following (Table 7),

which oftentimes can be seen as specializations of the approach by Verma et al. [118] for textual data. Marivate and Sefara

[57] state that they use mixup on representations of bag of word models, TF.IDF models, word embeddings, and language

models. Unfortunately, the authors do not explicitly describe how the interpolation is done. This raises questions about

how to interpolate instances of different sizes, when, for example, word embedding vectors are used. Marivate and Sefara

[57] report about 0.2, 0.4, and 0 points gain for the AG News, Sentiment 140, and Hate Speech detection task. In contrast

to this work, Qu et al. [69] describe how their interpolation is performed internally. For the interpolation, they draw two

instances from a mini-batch and linearly combine their input embedding matrices in the above described way. They

improve the baseline on the MNLI-m task additively by about 0.6% accuracy. Guo et al. [123] propose two variants,

wordMixup and senMixup, where the interpolation is applied in the word embedding space and on the final hidden layer

of the neural network before it is passed to a softmax layer. For wordMixup the sequences have to be zero padded so that

the dimensions are the same. For senMixup this is not necessary, as the hidden embeddings generated are of the same

length each. The improvement results of both methods with regard to the CNN model with pretrained GloVe embeddings

(trainable), which is the best baseline, is given in Table 7. In [124], Guo further advances the wordMixup approach by

using a nonlinear interpolation policy. The policy is constructed to mix every dimension of each of the word embeddings

separately in a given sentence. Furthermore, the labels are also nonlinearly interpolated while it is adaptively learned based

on the embeddings mixing. This way, a much larger variety of generated examples can be created. While this procedure

outperforms the other two variants in most tasks, it can also have a negative effect on the classification quality, as shown

in Table 7. Similar to the senMixup method, L. Sun et al. [122] apply mixup to the output of transformer models.

Furthermore, they only activate mixup in the last half of the training epochs to first learn good representations. The

improvements on the GLUE benchmark are listed in Table 7. In a very similar way, Chen et al. [87] propose TMix, which

is also able to interpolate the hidden representations of an encoder. Indeed, TMix is able to interpolate at every layer of the

24

encoder, similar to Verma et al. [118]. Based on the work of Jawahar et al. [125], who analyzed which types of information

is learned in the different layers of BERT, the authors narrowed their approach down and chose 7, 9, and 12 as interpolation

layers as they contain the syntactic and semantic information. The improvements of TMix are also shown in Table 7.

Table 7: Overview of different approaches of the replacement method "mixup interpolation"

Method Technique for textual application Model Datasets Improvements

mixup by Marivate

and Sefara [57]

Not stated DNN AG News

Sentiment 140

Hate Speech

+0.2 (Acc.)

+0.4

+0

[103] Interpolation of the BERT CLS output BERT-base-english-

uncased

SNIPS (few shot)

SNIPS

FBDialog (few shot)

FBDialog

+8.36 (Acc.)

+0.0

+7.92

+0.08

[69] Interpolation of the embedding matrices RoBERTa-base MNLI-m +0.6 (Acc.)

wordMixup by Guo

et al. [123]

Word embeddings that are zero-padded CNN Trec

SST-1

SST-2

Subj

MR

+1.6 (Acc.)

+1.9

+0.2

+0.3

+1.5

senMixup by Guo et

al. [123]

Interpolation on the final hidden layer CNN Trec

SST-1

SST-2

Subj

MR

+1.2 (Acc.)

+2.3

+0.3

+0.5

+0.8

Nonlinear Mixup by

Guo [124]

Padded word embeddings are

nonlinearly interpolated

CNN Trec

SST-1

SST-2

Subj

MR

+2.6 (Acc.)

+3.0

+2.3

-0.5

+3.6

Mixup-Transformer

by Sun et al. [122]

Interpolation after last layer of the

transformer

BERT-large CoLA

SST-2

MRPC

STS-B

QQP

MNLI-mm

QNLI

RTE

+2.68 (Corr.)

+0.81 (Acc.)

+1.72 (Acc.)

+0.89 (Corr.)

+0.42 (Acc.)

-0.01 (Acc.)

+0.13 (Acc.)

+0.37(Acc.)

TMix by Chen et al.

[87]

Interpolation of the m-th BERT layer (7,

9, and 12 randomly chosen per batch)

BERT-based-

uncased + d average

pooling + two-layer

MLP

AG News (10)

AG News (2500)

DBPedia (10)

DBPedia (2500)

Yahoo! (10)

Yahoo! (2500)

IMDB (10)

IMDB (2500)

+4.6 (Acc.)

+0.2

+1.6

+0.0

+2.4

+0.3

+1.8

+0.5

Intra-LADA [126] Interpolating an instance with a

randomly reordered version of itself

BERT-base-

multilingual-cased +

linear layer

CoNLL (5%)

CoNLL (100%)

GermEval (5%)

GermEval (100%)

+0.24 (F1)

+0.03 (*)

+0.29

+0.04 (*)

25

Inter-LADA [126] Interpolating nearest neighbors and

sometimes randomly selected instances.

BERT-base-

multilingual-cased +

linear layer

CoNLL (5%)

CoNLL (100%)

GermEval (5%)

GermEval (100%)

+1.32 (F1)

+0.64

+0.49

+0.33

Intra-Inter-LADA

[126]

Combination of Intra- and Inter-LADA BERT-base-

multilingual-cased +

linear layer

CoNLL (5%)

CoNLL (30%)

GermEval (5%)

GermEval (30%)

+1.57 (F1)

+0.59

+0.53

+0.78

* included in the pretraining

Chen et al. [126] similarly propose an interpolating augmentation method in which the hidden layer representations of

two samples are interpolated. However, they noticed that this method is not suitable for sequence tagging tasks. That is

why they propose Intra- and Inter-LADA. Intra-LADA aims to reduce noise from interpolating unrelated sentences by only

interpolating an instance with a randomly reordered version of itself. This way, they can increase the performance on every

tested task (see Table 7). However, Chen et al. [126] also hypothesize that their Intra-LADA algorithm is limited in

producing diverse examples. This limitation leads to Inter-LADA, which sets a trade-off between noise and regularization

by interpolating instances that are close together. The closeness is estimated through kNN based on sentence-BERT [127]

embeddings and widened through occasionally sampling two instances completely at random. As it can be seen in Table

7, Inter-LADA oftentimes performances better than Intra-LADA. The combination of both can further improve the results.

3.3 Combination of Augmentation Methods

In augmentation research, a common technique is to combine several data augmentation methods to get more diversified

instances [128]. The combination can either be several methods separately applied to the data or stacked onto each other.

For the first kind, Sun and He [45] propose word-level and phrase-level methods that they apply separately. While the

results of the word-level and phrase-level methods were insignificantly different, both groups of methods together produced

very good results. Similarly, Li et al. [36] combined their proposed methods, which led to better results for the in-domain

evaluations. The method of stacking methods, on the other hand, is not always feasible. It is, for example, in most cases

not possible to first apply a feature space method and then a data space method. Qu et al. [69] experimented this with

round-trip translation, cutoff and adversarial examples. Round-trip translation and the training with adversarial examples

produced the best results. Marivate and Sefara [57] stack round-trip translation, synonym and embedding replacement with

mixup. In two out of three evaluation settings, this procedure reduces the minimal error.

For the combination of augmentation methods, the meta-learning augmentation approach by Ratner et al. [72] is also

interesting. It describes the utilization of a neural network to learn data augmentation transformations [5]. Specifically,

Ratner et al. use a GAN to generate sensible sequences of transformations that were defined beforehand. This approach is

usable for image as well as text datasets and the authors show that it can achieve a significant improvement when applied

to a relation extraction task with augmentations based on language model replacements.

3.4 Training Strategies

While semi-supervision is not considered as data augmentation in this work, it can still be sensibly combined through

consistency training. In its origin, consistency training is used to make predictions of classifiers invariant to noise [46].

This can be enforced by minimizing the divergences between the output distributions of real and noised instances.

Additionally, because only the output distributions are included in the process, this consistency can be trained with

unlabeled data. Several authors analyze how consistency training behaves when data augmentation methods are used for

26

noise. This process can be illustrated as taking an instance from which the label is unknown, applying a label preserving

data augmentation method and then learning the model to predict the same label for both instances. This way, the model

can learn the invariances and is able to generalize better. Xie et al. [46] show that by employing consistency training with

round-trip translation and a TF-IDF based replacement method, they achieve very good results, with, for example, an

absolute improvement of 22.79% accuracy on an artificially created low-data regime based on the Amazon-2 dataset with

BERT base. They are also able to outperform the state of the art in the IMDb dataset with only 20 supervised instances.

Chen et al. [87] even extend this approach within their MixText (TMix) system. First of all, they generate new instances

with round-trip translation. Then, they are guessing the label of the original and augmented instances by taking a weighted

average of the predictions of all of them. In the training, they randomly sample two instances and mix them together with

TMix. If one of the two instances is from the original data, they are using the normal supervised loss, but if both instances

are from the unlabeled or augmented data, they use the consistency loss, like Xie et al. [46].

Consistency training can also be applied in a supervised fashion as an additional term in the training objective to enforce

the predictions to be equal. This is, for example, used in the cutoff method by Shen et al. [89]. They show in their ablation

studies that this consistency term improves the accuracy results additively by 0.15%. Qu et al. [69] combine this supervised

consistency training with contrastive training, which should bring the original and augmented instances closer together

relative to the other instances in the representation space. This contrastive term alone (without consistency) improves the

accuracy of a RoBERTa base classifier of the SST-2 and RTE dataset absolutely by 0.5% and 3.3%. Combined with

augmented data and consistency training, they achieve further improvements (e.g., +1% for SST-2 with RoBERTa large).

Other training strategies in which the order of how the training examples are presented to the learning algorithm is

altered are for example employed by Liu et al. [113] and Yang et al. [129]. Liu et al. [113] adopt a curriculum learning

approach, which means the algorithm should at first learn the less difficult instances. Transferred to the data augmentation

topic, the model is first trained with the original data and then with the augmented data. Yang et al. [129] reverse this step

and first train the model with the augmented data and then with the original data. This way, the model can correct

unfavorable behavior that it learned through noisy augmented data. They also tried an importance-weight loss in which the

weights of the synthetic instances are lower than the original but find that the other training method performs better.

3.5 Filtering Mechanisms

Mechanisms that filter the generated instances are especially important for methods that are not perfectly label-preserving.

A simple mechanism is, for example, employed by Liu et al. [114], who remove generated instances based on the unigram

word overlap to their original counterparts. Similarly, other metrics could also be used, e.g., Levenshtein distance, Jaccard

similarity coefficient, or Hamming distance. Wan et al. [115] use in their work a similarity discriminator (natural language

inference model) proposed by Parikh et al. [130], which also measures the similarity of two sentences.

The generative methods by Anaby-Tavor et al. [39] and Abonizio and Junior [96] filter instances based on a classifier that

was trained on the class data. This majorly reduces the diversity of the samples, and the classifier cannot really be improved

because it is already confident with those instances. Bayer et al. [43] improve this by using embeddings to measure the

quality of the generated instances with regard to the class and more importantly incorporating the human expert in the loop

who needs to determine the right threshold. However, Yang et al. [129] consider another filtering mechanism in their work

that does not need any human assistance and is sophisticated by incorporating two perspectives. Generally, Yang et al.

[129] propose a generative method that is suited for increasing the dataset size for question answering tasks. While they

propose to utilize language models for finetuning and generating questions and answers, their filtering methods can be

adapted for the other data augmentation methods as well. A first filtering mechanism determines whether a generated

27

instance is detrimental by measuring whether the validation loss increases when including the artificial instance. As this

would require retraining the model with every generated example, the authors propose to use influence functions [131],

[132] to approximate the validation loss change. Furthermore, they firstly train on the augmented instances and then on the

original training data so that the model can adjust itself when unfavorable noise is included in the augmented instances.

The other filtering mechanism tries to favor diversity by selecting examples that maximize the number of unique unigrams.

4 DISCUSSION: A RESEARCH AGENDA FOR TEXTUAL DATA AUGMENTATION

One has to keep in mind that the results reported by the authors of the approaches that are linked in this survey paper are

restricted in their expressiveness and only show one perspective. Many results are limited to special kinds of models and

datasets. However, based on our findings, we identified an agenda for future research on data augmentation as follows:

Developing evaluation criteria for data augmentation research. A general problem in data augmentation research

is that mostly only improvements with regard to the prediction performance on specific datasets are presented. While this

metric is probably the most important one, there are other metrics, like the time and resource usage, language variety, or

configurability, that are important for practitioners as well as researchers. For example, the generative approaches based

on GPT-2 seem to be very promising when considering the prediction performance gain. Nevertheless, the language variety

is narrowed down, as the model is mostly just trained on English data. Furthermore, only few authors discuss the time

required for the application of their data augmentation methods. The GPT-2 based method of Bayer et al. [43] takes up to

30 seconds for generating one example, leading to several computing days for a 10 times augmentation of a small dataset.

For instance, in the context of crisis informatics this might be too long, as the classifiers have to be created fast for quick

incident management. For this reason, we urge scientists developing data augmentation techniques to consistently describe

the limitations of their approaches.

Researching the merits of data augmentation in the light of large pre-trained language models. Generally, it is

not possible to determine which augmentation method works best for a given dataset, nor predict which research direction

will be the most appealing in the future. Nevertheless, there are some patterns in the current state of the approaches that

hint into the directions research can follow to overcome obstacles and challenges. One of the most important challenges,

formulated by Longpre et al. [4], is that the usage of large pre-trained language models makes the utilization of several

data augmentation methods obsolete. This is the reason why especially experiments with BERT or other bigger language

models are of interest. Concurring, several studies [39], [43], [60], [97], [114] show that methods transforming the instances

only slightly with random behavior, like synonym replacement (Section 3.1.2.2), EDA (synonym replacement, random

swap, deletion, and insertion in one) (Section 3.1.2.1), or spelling error insertion (Section 3.1.1.1), tend to be less beneficial

in this setting than more elaborate ones. Particularly adversarial training (Section 3.2.1), cutoff (Section 3.2.1),

interpolation (Section 3.1.3.2 and 3.2.2), and some generative methods (Section 3.1.4.2) show significant improvements

with large pre-trained language models. While the replacement methods based on embeddings (Section 3.1.2.3) and

especially language models (c-BERT) (Section 3.1.2.4) also can gain improvements in combination with those pre-trained

models, several studies [39], [57], [69], [97] show that the former mentioned methods can get better results in most cases.

This is also apparent when approaching the challenge of Longpre et al. [4] from an intuitive perspective. Large language

models map the data into a latent space with representations nearly invariant to some transformations. For example, the

synonym replacement methods only replace words that are by definition very close in the representation space, leading to

instances that are almost identical [54]. As Longpre et al. [4] hypothesize, data augmentation methods can only be helpful

if they are able to introduce new linguistic patterns. There, the mentioned methods and especially the usage of generative

methods might be sensible, as they are based on other large language models that can introduce a high novelty. However,

28

the challenge proposed by Longpre et al. [4] does not have to be universally true, as, for example, the SUB² by Shi et al.

[82] just interpolates phrases from the training data and thus does not include unseen linguistic patterns but also achieves

high gains with a pre-trained model.

Finetuning existing data augmentation approaches. In general, most of the promising data augmentation methods

have limits and challenges that may be overcome due to further research. The generative models or their output needs to

be conditioned on the specific class, otherwise the created instances might not preserve the label. This conditioning is

oftentimes reached through training a model, which in turn needs enough data to be consistent. Bayer et al. [43] show that

the conditional model can replicate the data class better if the problem definition and task data is relatively narrow. Tasks

with a broad variety of topics in the data seem to be less suitable. This problem might be mitigated by new conditioning

methods. Currently most approaches are extended by filter mechanisms. The existing mechanisms, detailed in Section 3.5,

have some drawbacks, which might be reduced in the future. Another obstacle is that the generative models can require

many resources and time to create new instances [43]. Therefore, lightweight alternatives need to be tested in this setting,

what might prevent a high dependence on resources, described as the high resource wall problem by Bayer et al. [43].

Furthermore, methods like round-trip translation are limited by the underlying model. For example, Marivate and Sefara

[57] hypothesize that they might not be good for social media data, where the error of the translations increases. This

problem will be addressed, as machine translation models get more capable in translating these difficult instances.

For adversarial examples, Liu et al. [113], hypothesize that the good generalizability performance stems from the

perturbation of the embedding space in contrast to the input space. However, the data space adversarial training methods

should not be disregarded too early, as, for example, Ebrahimi et al. [16] show that their data space method achieves better

results than the virtual adversarial training by Miyato et al. [35]. A general challenge with adversarial training is that they

can disturb the true label space in the training data. For example, adversarial example generators often rely on the belief

that close input data points tend to have the same labels [105]. Concerning the data space methods, this is often not true

for natural language tasks, where few words or even characters determine the class affiliation (e.g., sentiment classification:

“I can’t like the movie” -small_transformation-> “I can’ like the move”). Whether this applies to the adversarial example

generators in the feature space needs to be evaluated. If so, research needs to find a way to exclude the cases where small

transformations disturb the labels and at best include cases where stronger transformations still preserve the labels. For

this, the inspection of feature space methods would be helpful, which is difficult due to their high dimensional numerical

representation. The same applies to the interpolation methods of the feature space, where a back transformation to the data

space is not trivial. Nevertheless, there exist approaches such as those from Liu et al. and Wan et al. [114], [115], which

use encoder-decoder architectures that are able to transform the newly created instances to the data space. An inspection

of interpolated instances could lead to interesting insights. This opens another research direction where the interpolation

of instances in the data space could be further investigated. A method that initially implements this behavior is SUB²

(Section 3.1.3.2), which interpolates instances of the data space through sub-phrase substitutions. This, however, does not

result in a high diversity, which is particularly interesting. In this regard, a further analysis of the GPT-3 language model

by Brown et al. [133] could be valuable, as it shows very interesting interpolation capabilities in the data space.

However, even avoidably inferior methods can achieve better results if they are integrated sensibly. The work of

Jungiewicz and Pohl [59] can serve as an example. They perform synonym substitution only if it increases the loss of the

model. There we can see that some data augmentation techniques proposed in the different groups are advanced, sometimes

adopting existing methods and refining them. We try to highlight some of those works in Table 8 to show which research

directions can be considered in the future. We want to mention that these methods are not necessarily the best in their

groups. The selection is made by the author team on the basis of the information gathered during writing this survey.

29

Table 8: Collection of some of the most advanced data augmentation techniques for text classification

Space Group Work Method description Improvement

Data

Space

Character

Level Noise

[16] Flip a letter if it maximizes the loss +0.62 Acc. (LSTM)

Synonym

Replacement

[59] Only replace words with a synonym if it maximizes

the loss

+1.2 Acc. (Kim CNN)

Embedding

Replacement

[17] Choosing embeddings based on the counter-fitting

method

-0.6 – +1.9 Acc. (CNN)

[36] Counter-fitting, language model selection and

maximizing the prediction probability

Safer model (LSTM)

Language

Model

Replacement

[60] c-BERT integrated in reinforcement learning

scheme

+0.73 – +1.97 Acc. (BERT)

[64] c-BERT and embedding substitution for compound

words

+1.9 – +21.0 Acc. (TinyBERT)

Phrase Level

Interpolation

[82] Substitutes substructures +20.6 – +46.2 Acc. (XLM-R)*

Round-trip

Translation

[46] Random sampling with a temperature parameter +1.65 Acc.

Generative

Methods

[43] Conditional GPT-2 with human assisted filtering -2.54 F1 – +15.53 Acc. (ULMFit)*

[97] GPT-2 with a reinforcement learning component +1.0 – +4.3 F1 (XLNet)*

Feature

Space

Noise

[111] Virtual adversarial training with special

optimization

+0.5 – +5.4 Acc. (RoBERTa-l)

[113] Virtual adversarial training with curriculum learning -0.3 Corr. – +1.2 Acc. (RoBERTa-l)

[89] Embedding noising +0.0 Corr. – +4.4 Acc. (RoBERTa-l)

Interpolation

[122] Interpolation after last layer of the transformer -0.01 Acc. – +2.68 Corr. (BERT-l)

[87] Interpolation of a random BERT layer +0.0 – +4.6 Acc. (BERT-b)*

[126] Interpolating neighbors and reordered versions +0.53 – +1.57 F1 (BERT-b)*

* Results contain tests on low data regime datasets

5 CONCLUSION

This survey gives an overview over data augmentation approaches suited for the textual domain. Data augmentation is

helpful for reaching many goals, including regularization, minimizing label effort, lowering the usage of real-world data

in sensitive domains, balancing unbalanced datasets, and increasing robustness against adversarial attacks (see Section 2).

On a high level, the data augmentation methods are differentiated into methods applied in the feature and in the data space.

These methods are then subdivided into more fine-grained groups, from noise induction to the generation of completely

new instances. In addition, we propose several promising research directions that are relevant for future work. Especially

in this regard, a holistic view on the current state of the art necessary. For example, the increasing usage of transfer learning

methods make some of the data augmentation methods obsolete as they follow similar goals. Hence, there is a need for

more sophisticated approaches that, for example, are capable of introducing new linguistic patterns not seen during pre-

training, as suggested by Longpre et al. [4].

While data augmentation is increasingly researched and very promising, it also has several limitations. For instance,

many data augmentation methods can only create high quality augmented data if the original amount of data is large

enough. Furthermore, like Shorten and Khoshgoftaar [5] describe, data augmentation is not capable to cover all

transformation possibilities and to eliminate all kind of biases in the original data. Adopting the example of Shorten and

Khoshgoftaar [5], in a news classification task in which there are no articles containing sports, the standard data

30

augmentation methods will most certainly also not create sport articles, even though this would be necessary. In contrast,

data augmentation might induce new undesirable biases. For instance, language models like GPT-2 can contain biases that

are then propagated into the dataset [134]. The wide variety of techniques and some very sophisticated methods also bring

another layer of complexity that needs to be understood. Moreover, data augmentation can take a lot of time, making not

all methods feasible for time critical machine learning development domains, e.g., in some areas of crisis informatics. With

data augmentation, there also comes a demand for more resources, especially in the context of training generative models.

REFERENCES

[1] S. Kobayashi, “Contextual augmentation: Data augmentation bywords with paradigmatic relations,” in NAACL HLT 2018, 2018, vol. 2, pp.

452–457, doi: 10.18653/v1/n18-2072.

[2] J. Wei and K. Zou, “EDA: Easy data augmentation techniques for boosting performance on text classification tasks,” in EMNLP-IJCNLP 2019,

2020, pp. 6382–6388, doi: 10.18653/v1/d19-1670.

[3] K. Kafle, M. Yousefhussien, and C. Kanan, “Data augmentation for visual question answering,” in INLG 2017, 2017, pp. 198–202, doi:

10.18653/v1/w17-3529.

[4] S. Longpre, Y. Wang, and C. DuBois, “How Effective is Task-Agnostic Data Augmentation for Pretrained Transformers?,” in EMNLP 2020,

2020, pp. 4401–4411, doi: 10.18653/v1/2020.findings-emnlp.394.

[5] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, 2019, doi:

10.1186/s40537-019-0197-0.

[6] Q. Wen et al., “Time Series Data Augmentation for Deep Learning: A Survey,” 2020. [Online]. Available: http://arxiv.org/abs/2002.12478.

[7] L. Taylor and G. Nitschke, “Improving Deep Learning with Generic Data Augmentation,” in SSCI 2018, 2019, pp. 1542–1547, doi:

10.1109/SSCI.2018.8628742.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp.

2278–2323, 1998, doi: 10.1109/5.726791.

[9] C. Coulombe, “Text Data Augmentation Made Simple By Leveraging NLP Cloud APIs,” 2018, [Online]. Available:

http://arxiv.org/abs/1812.04718.

[10] R. Müller, S. Kornblith, and G. Hinton, “When does label smoothing help?,” Adv. Neural Inf. Process. Syst., vol. 32, no. NeurIPS, 2019,

[Online]. Available: http://arxiv.org/abs/1906.02629.

[11] M. Banko and E. Brill, “Scaling to very very large corpora for natural language disambiguation,” in ACL 2001, 2001, pp. 26–33, doi:

10.3115/1073012.1073017.

[12] L. Palen and K. M. Anderson, “Crisis informatics-new data for extraordinary times: Focus on behaviors, not on fetishizing social media tools,”

Science (80-.)., vol. 353, no. 6296, pp. 224–225, 2016, doi: 10.1126/science.aag2579.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from

overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[14] S. Geman, E. Bienenstock, and R. Doursat, “Neural Networks and the Bias/Variance Dilemma,” Neural Comput., vol. 4, no. 1, pp. 1–58, 1992,

doi: 10.1162/neco.1992.4.1.1.

[15] A. Hernández-García and P. König, “Data augmentation instead of explicit regularization,” 2018, [Online]. Available:

http://arxiv.org/abs/1806.03852.

[16] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “Hotflip: White-box adversarial examples for text classification,” in ACL 2018, 2018, vol. 2, pp. 31–

36, doi: 10.18653/v1/p18-2006.

[17] M. Alzantot, Y. Sharma, A. Elgohary, B. J. Ho, M. B. Srivastava, and K. W. Chang, “Generating natural language adversarial examples,” in

EMNLP 2018, 2020, pp. 2890–2896, doi: 10.18653/v1/d18-1316.

31

[18] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, “Understanding Data Augmentation for Classification: When to Warp?,” in DICTA

2016, 2016, p., doi: 10.1109/DICTA.2016.7797091.

[19] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural networks applied to visual document analysis,” in ICDAR,

2003, vol. 2003-Janua, pp. 958–963, doi: 10.1109/ICDAR.2003.1227801.

[20] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization for transferring deep neural networks from

simulation to the real world,” in IEEE IROS, 2017, vol. 2017-Septe, pp. 23–30, doi: 10.1109/IROS.2017.8202133.

[21] H. Inoue, “Data Augmentation by Pairing Samples for Images Classification,” 2018, [Online]. Available: http://arxiv.org/abs/1801.02929.

[22] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data augmentation,” AAAI 2020, pp. 13001–13008, 2020, doi:

10.1609/aaai.v34i07.7000.

[23] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Synthetic data augmentation using GAN for improved liver lesion

classification,” Proc. - Int. Symp. Biomed. Imaging, vol. 2018-April, pp. 289–293, 2018, doi: 10.1109/ISBI.2018.8363576.

[24] X. Zhu, Y. Liu, J. Li, T. Wan, and Z. Qin, “Emotion classification with data augmentation using generative adversarial networks,” in Lecture

Notes in Computer Science, 2018, vol. 10939 LNAI, pp. 349–360, doi: 10.1007/978-3-319-93040-4_28.

[25] N. Carlini et al., “Extracting Training Data from Large Language Models,” 2020, [Online]. Available: http://arxiv.org/abs/2012.07805.

[26] X. Cui, V. Goel, and B. Kingsbury, “Data Augmentation for deep neural network acoustic modeling,” in ICASSP, 2014, pp. 5582–5586, doi:

10.1109/ICASSP.2014.6854671.

[27] N. Jaitly and G. E. Hinton, “Vocal Tract Length Perturbation (VTLP) improves speech recognition,” Proc. 30 th Int. Conf. Mach. Learn., vol.

90, pp. 42–51, 2013, [Online]. Available: http://www.iarpa.gov/.

[28] A. Ragni, K. M. Knill, S. P. Rath, and M. J. F. Gales, “Data augmentation for low resource languages,” in INTERSPEECH, 2014, pp. 810–814.

[29] A. Hannun et al., “Deep Speech: Scaling up end-to-end speech recognition,” 2014, [Online]. Available: http://arxiv.org/abs/1412.5567.

[30] Z. Xie et al., “Data noising as smoothing in neural network language models,” in ICLR 2017, 2017, p.

[31] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for speech recognition,” in INTERSPEECH, 2015, pp. 3586–3589.

[32] S. Y. Feng et al., “A Survey of Data Augmentation Approaches for NLP,” ACL 2021, 2021, [Online]. Available:

http://arxiv.org/abs/2105.03075.

[33] Y. Belinkov and Y. Bisk, “Synthetic and natural noise both break neural machine translation,” in ICLR 2018, 2018, p.

[34] S. Y. Feng, V. Gangal, D. Kang, T. Mitamura, and E. Hovy, “GenAug: Data Augmentation for Finetuning Text Generators,” arXiv. pp. 29–42,

2020, doi: 10.18653/v1/2020.deelio-1.4.

[35] T. Miyato, A. M. Dai, and I. Goodfellow, “Adversarial training methods for semi-supervised text classification,” in ICLR 2017, 2017, p.

[36] Y. Li, T. Cohn, and T. Baldwin, “Robust training under linguistic adversity,” in EACL 2017, 2017, pp. 21–27, doi: 10.18653/v1/e17-2004.

[37] S. Qiu et al., “EasyAug: An Automatic Textual Data Augmentation Platform for Classification Tasks,” in WWW 2020, 2020, pp. 249–252, doi:

10.1145/3366424.3383552.

[38] T. H. Huong and V. T. Hoang, “A data augmentation technique based on text for Vietnamese sentiment analysis,” ACM Int. Conf. Proceeding

Ser., pp. 1–5, 2020, doi: 10.1145/3406601.3406618.

[39] A. A. Tavor et al., “Do not have enough data? Deep learning to the rescue!,” AAAI 2020 - 34th AAAI Conf. Artif. Intell., pp. 7383–7390, 2020,

doi: 10.1609/aaai.v34i05.6233.

[40] V. Kumar, A. Choudhary, and E. Cho, “Data Augmentation using Pre-trained Transformer Models,” arXiv. 2020, [Online]. Available:

http://arxiv.org/abs/2003.02245.

[41] S. T. Luu, K. Van Nguyen, and N. L.-T. Nguyen, “Empirical Study of Text Augmentation on Social Media Text in Vietnamese,” arXiv, 2020,

[Online]. Available: http://arxiv.org/abs/2009.12319.

[42] O. Kashefi and R. Hwa, “Quantifying the Evaluation of Heuristic Methods for Textual Data Augmentation,” 2020, pp. 200–208, doi:

32

10.18653/v1/2020.wnut-1.26.

[43] M. Bayer, M.-A. Kaufhold, B. Buchhold, M. Keller, J. Dallmeyer, and C. Reuter, “Data Augmentation in Natural Language Processing: A

Novel Text Generation Approach for Long and Short Text Classifiers,” Mar. 2021, [Online]. Available: http://arxiv.org/abs/2103.14453.

[44] G. Rizos, K. Hemker, and B. Schuller, “Augment to prevent: Short-text data augmentation in deep learning for hate-speech classification,” in

CIKM, 2019, pp. 991–1000, doi: 10.1145/3357384.3358040.

[45] X. Sun and J. He, “A novel approach to generate a large scale of supervised data for short text sentiment analysis,” Multimed. Tools Appl., vol.

79, no. 9–10, pp. 5439–5459, 2020, doi: 10.1007/s11042-018-5748-4.

[46] Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le, “Unsupervised Data Augmentation for Consistency Training,” arXiv. 2019, [Online].

Available: http://arxiv.org/abs/1904.12848.

[47] Y. Cheng, L. Jiang, and W. Macherey, “Robust neural machine translation with doubly adversarial inputs,” in ACL 2019, 2020, pp. 4324–4333,

doi: 10.18653/v1/p19-1425.

[48] X. Wang, H. Pham, Z. Dai, and G. Neubig, “Switchout: An efficient data augmentation algorithm for neural machine translation,” in EMNLP

2018, 2020, pp. 856–861, doi: 10.18653/v1/d18-1100.

[49] J. Andreas, “Good-Enough Compositional Data Augmentation,” in ACL 2020, 2020, pp. 7556–7566, doi: 10.18653/v1/2020.acl-main.676.

[50] D. Guo, Y. Kim, and A. Rush, “Sequence-Level Mixed Sample Data Augmentation,” in EMNLP 2020, 2020, pp. 5547–5552, doi:

10.18653/v1/2020.emnlp-main.447.

[51] G. Kurata, B. Xiang, and B. Zhou, “Labeled data generation with encoder-decoder LSTM for semantic slot filling,” INTERSPEECH, vol. 08-12-

Sept, pp. 725–729, 2016, doi: 10.21437/Interspeech.2016-727.

[52] O. Kolomiyets, S. Bethard, and M. F. Moens, “Model-portability experiments for textual temporal analysis,” in ACL-HLT, 2011, pp. 271–276.

[53] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller, “Introduction to wordnet: An on-line lexical database,” Int. J. Lexicogr., vol.

3, no. 4, pp. 235–244, 1990, doi: 10.1093/ijl/3.4.235.

[54] A. V. Mosolova, V. V. Fomin, and I. Y. Bondarenko, “Text augmentation for neural networks,” CEUR Workshop Proc., pp. 104–109, 2018.

[55] X. Wang, Y. Sheng, H. Deng, and Z. Zhao, “Charcnn-svm for chinese text datasets sentiment classification with data augmentation,” Int. J.

Innov. Comput. Inf. Control, vol. 15, no. 1, pp. 227–246, 2019, doi: 10.24507/ijicic.15.01.227.

[56] X. Zhang, J. Zhao, and Y. Lecun, “Character-level convolutional networks for text classification,” in NeurIPS, 2015, pp. 649–657.

[57] V. Marivate and T. Sefara, “Improving Short Text Classification Through Global Augmentation Methods,” Lect. Notes Comput. Sci., vol. 12279

LNCS, pp. 385–399, 2020, doi: 10.1007/978-3-030-57321-8_21.

[58] X. Zhang and Y. LeCun, “Text Understanding from Scratch,” arXiv, 2015, [Online]. Available: http://arxiv.org/abs/1502.01710.

[59] M. Jungiewicz and A. Smywiński-Pohl, “Towards textual data augmentation for neural networks: Synonyms and maximum loss,” Comput. Sci.,

vol. 20, no. 1, pp. 57–84, 2019, doi: 10.7494/csci.2019.20.1.3023.

[60] Z. Hu, B. Tan, R. Salakhutdinov, T. Mitchell, and E. P. Xing, “Learning data manipulation for augmentation and weighting,” NeurIPS. 2019.

[61] A. Ollagnier and H. Williams, “Text Augmentation Techniques for Clinical Case Classification,” in CLEF, 2020, no. June, pp. 22–25, [Online].

Available: https://temu.bsc.es/codiesp/index.php/2019/09/19/resources/.

[62] S. T. Aroyehun and A. Gelbukh, “Aggression Detection in Social Media: Using Deep Neural Networks, Data Augmentation, and Pseudo

Labeling,” Proc. First Work. Trolling, Aggress. Cyberbullying, pp. 90–97, 2018.

[63] W. Y. Wang and D. Yang, “That’s so annoying!!!: A lexical and frame-semantic embedding based data augmentation approach to automatic

categorization of annoying behaviors using #petpeeve tweets,” in EMNLP 2015, 2015, pp. 2557–2563, doi: 10.18653/v1/d15-1306.

[64] X. Jiao et al., “TinyBERT: Distilling BERT for Natural Language Understanding,” in EMNLP 2020, 2020, pp. 4163–4174, doi:

10.18653/v1/2020.findings-emnlp.372.

[65] T. Phreeraphattanakarn and B. Kijsirikul, “Text data-augmentation using Text Similarity with Manhattan Siamese long short-term memory for

Thai language,” J. Phys. Conf. Ser., vol. 1780, no. 1, p. 12018, 2021, doi: 10.1088/1742-6596/1780/1/012018.

33

[66] N. Mrkšić et al., “Counter-fitting word vectors to linguistic constraints,” in NAACL HLT 2016, 2016, pp. 142–148, doi: 10.18653/v1/n16-1018.

[67] X. Wu, S. Lv, L. Zang, J. Han, and S. Hu, “Conditional BERT Contextual Augmentation,” in Lecture Notes in Computer Science, 2019, vol.

11539 LNCS, pp. 84–95, doi: 10.1007/978-3-030-22747-0_7.

[68] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,”

NAACL HLT 2019, vol. 1, no. Mlm, pp. 4171–4186, 2019, [Online]. Available: http://arxiv.org/abs/1810.04805.

[69] Y. Qu, D. Shen, Y. Shen, S. Sajeev, J. Han, and W. Chen, “CoDA: Contrast-enhanced and Diversity-promoting Data Augmentation for Natural

Language Understanding,” arXiv, vol. 5, pp. 1–14, 2020, [Online]. Available: http://arxiv.org/abs/2010.08670.

[70] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word representation,” in EMNLP 2014, 2014, pp. 1532–1543, doi:

10.3115/v1/d14-1162.

[71] F. Gao et al., “Soft contextual data augmentation for neural machine translation,” in ACL, 2020, pp. 5539–5544, doi: 10.18653/v1/p19-1555.

[72] A. J. Ratner, H. R. Ehrenberg, Z. Hussain, J. Dunnmon, and C. Ré, “Learning to compose domain-specific transformations for data

augmentation,” in NeurIPS, 2017, vol. 2017-Decem, pp. 3237–3247, [Online]. Available: https://github.com/HazyResearch/tanda.

[73] M. Fadaee, A. Bisazza, and C. Monz, “Data augmentation for low-Resource neural machine translation,” in ACL 2017, 2017, vol. 2, pp. 567–

573, doi: 10.18653/v1/P17-2090.

[74] G. G. Şahin and M. Steedman, “Data augmentation via dependency tree morphing for low-resource languages,” in EMNLP 2018, 2020, pp.

5004–5009, doi: 10.18653/v1/d18-1545.

[75] C. Vania, Y. Kementchedjhieva, A. Søgaard, and A. Lopez, “A systematic comparison of methods for low-resource dependency parsing on

genuinely low-resource languages,” in EMNLP-IJCNLP 2019, 2020, pp. 1105–1116, doi: 10.18653/v1/d19-1102.

[76] S. Y. Feng, A. W. Li, and J. Hoey, “Keep calm and switch on! Preserving sentiment and fluency in semantic text exchange,” 2020. doi:

10.18653/v1/d19-1272.

[77] J. Min, R. T. McCoy, D. Das, E. Pitler, and T. Linzen, “Syntactic Data Augmentation Increases Robustness to Inference Heuristics,” in ACL

2020, 2020, pp. 2339–2352, doi: 10.18653/v1/2020.acl-main.212.

[78] R. Thomas McCoy, E. Pavlick, and T. Linzen, “Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference,” in

ACL 2019, 2020, pp. 3428–3448, doi: 10.18653/v1/p19-1334.

[79] Y. Goldberg, “Assessing BERT’s Syntactic Abilities,” 2019. [Online]. Available: http://arxiv.org/abs/1901.05287.

[80] I. Tenney et al., “What do you learn from context? Probing for sentence structure in contextualized word representations,” Sep. 2019, [Online].

Available: https://github.com/jsalt18-sentence-repl/jiant.

[81] J. F. Steffensen, Interpolation. Courier Corporation, 2006.

[82] H. Shi, K. Livescu, and K. Gimpel, “Substructure Substitution: Structured Data Augmentation for NLP,” 2021, Accessed: May 20, 2021.

[Online]. Available: http://arxiv.org/abs/2101.00411.

[83] M. Aiken and M. Park, “The efficacy of round-trip translation for MT evaluation,” Transl. J., vol. 14, no. 1, 2010.

[84] A. W. Yu et al., “QaNet: Combining local convolution with global self-attention for reading comprehension,” in ICLR 2018, 2018, p.

[85] E. Rabinovich, S. Mirkin, R. N. Patel, L. Specia, and S. Wintner, “Personalized machine translation: Preserving original author traits,” in EACL

2017, 2017, vol. 1, pp. 1074–1084, doi: 10.18653/v1/e17-1101.

[86] A. Kruspe, J. Kersten, M. Wiegmann, B. Stein, and F. Klan, “Classification of Incident-related Tweets : Tackling Imbalanced Training Data

using Hybrid CNNs and Translation-based Data Augmentation,” in TREC 2018, 2018, p.

[87] J. Chen, Z. Yang, and D. Yang, “MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification,”

arXiv. pp. 2147–2157, 2020, doi: 10.18653/v1/2020.acl-main.194.

[88] Y. Wu et al., “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation,” arXiv, pp. 1–23,

2016, [Online]. Available: http://arxiv.org/abs/1609.08144.

[89] D. Shen, M. Zheng, Y. Shen, Y. Qu, and W. Chen, “A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language

34

Understanding and Generation,” arXiv. 2020, [Online]. Available: http://arxiv.org/abs/2009.13818.

[90] H. Kohli, “Transfer Learning and Augmentation for Word Sense Disambiguation,” in Lecture Notes in Computer Science, 2021, vol. 12657

LNCS, pp. 303–311, doi: 10.1007/978-3-030-72240-1_29.

[91] N. Malandrakis, M. Shen, A. Goyal, S. Gao, A. Sethi, and A. Metallinou, “Controlled Text Generation for Data Augmentation in Intelligent

Artificial Agents,” arXiv. pp. 90–98, 2019, doi: 10.18653/v1/d19-5609.

[92] K. Guu, T. B. Hashimoto, Y. Oren, and P. Liang, “Generating Sentences by Editing Prototypes,” in ACL 2018, 2018, vol. 6, pp. 437–450, doi:

10.1162/tacl_a_00030.

[93] G. Raille, S. Djambazovska, and C. Musat, “Fast Cross-domain Data Augmentation through Neural Sentence Editing,” 2020, [Online].

Available: http://arxiv.org/abs/2003.10254.

[94] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence generative adversarial nets with policy gradient,” in AAAI, 2017, pp. 2852–2858.

[95] C. Wang and D. Lillis, “Classification for Crisis-Related Tweets Leveraging Word Embeddings and Data Augmentation,” in TREC 2019, 2020,

p. 8, [Online]. Available: https://trec.nist.gov/.

[96] H. Queiroz Abonizio and S. Barbon Junior, “Pre-trained Data Augmentation for Text Classification,” in Lecture Notes in Computer Science,

2020, vol. 12319 LNAI, pp. 551–565, doi: 10.1007/978-3-030-61377-8_38.

[97] R. Liu, G. Xu, C. Jia, W. Ma, L. Wang, and S. Vosoughi, “Data Boost: Text Data Augmentation Through Reinforcement Learning Guided

Conditional Generation,” in EMNLP 2020, 2020, pp. 9031–9041, doi: 10.18653/v1/2020.emnlp-main.726.

[98] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language Models are Unsupervised Multitask Learners,” Accessed: Aug.

27, 2021. [Online]. Available: https://github.com/codelucas/newspaper.

[99] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter,” 2019, [Online].

Available: http://arxiv.org/abs/1910.01108.

[100] K. Lee, K. Guu, L. He, T. Dozat, and H. W. Chung, “Neural Data Augmentation via Example Extrapolation,” 2021, [Online]. Available:

http://arxiv.org/abs/2102.01335.

[101] B. Ding et al., “DAGA: Data Augmentation with a Generation Approach for Low-resource Tagging Tasks,” in EMNLP 2020, 2020, pp. 6045–

6057, doi: 10.18653/v1/2020.emnlp-main.488.

[102] E. Chang, X. Shen, D. Zhu, V. Demberg, and H. Su, “Neural data-to-text generation with LM-based text augmentation,” in EACL 2021, 2021,

pp. 758–768.

[103] V. Kumar, H. Glaude, C. de Lichy, and W. Campbell, “A Closer Look At Feature Space Data Augmentation For Few-Shot Intent

Classification,” in DeepLo@EMNLP-IJCNLP 2019, 2019, pp. 1–10, doi: 10.18653/v1/d19-6101.

[104] E. Schwartz et al., “Delta-encoder: an effective sample synthesis method for few-shot object recognition,” 2018, [Online]. Available:

http://arxiv.org/abs/1806.04734.

[105] C. Zhu, Y. Cheng, Z. Gan, S. Sun, T. Goldstein, and J. Liu, “FreeLB: Enhanced Adversarial Training for Natural Language Understanding,”

arXiv, 2019, [Online]. Available: http://arxiv.org/abs/1909.11764.

[106] P. L. Combettes and J. C. Pesquet, “Proximal splitting methods in signal processing,” Springer Optim. Its Appl., vol. 49, pp. 185–212, 2011, doi:

10.1007/978-1-4419-9569-8_10.

[107] T. Goldstein, C. Studer, and R. Baraniuk, “A Field Guide to Forward-Backward Splitting with a FASTA Implementation,” arXiv, 2014,

[Online]. Available: http://arxiv.org/abs/1411.3406.

[108] A. Shafahi et al., “Adversarial training for free!,” in NeurIPS, 2019, vol. 32.

[109] D. Zhang, T. Zhang, Y. Lu, Z. Zhu, and B. Dong, “You only propagate once: Accelerating adversarial training via maximal principle,” in

NeurIPS, 2019, vol. 32, [Online]. Available: https://github.com/a1600012888/YOPO-You-Only-Propagate-Once.

[110] T. Miyato, S. I. Maeda, M. Koyama, K. Nakae, and S. Ishii, “Distributional smoothing with virtual adversarial training,” in ICLR 2016, 2016, p.

[111] H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and T. Zhao, “SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models

35

through Principled Regularized Optimization,” in ACL 2020, 2020, pp. 2177–2190, doi: 10.18653/v1/2020.acl-main.197.

[112] D. Wang, C. Gong, and Q. Liu, “Improving neural language modeling via adversarial training,” in ICML 2019, 2019, pp. 11387–11397.

[113] X. Liu et al., “Adversarial Training for Large Neural Language Models,” 2020, [Online]. Available: http://arxiv.org/abs/2004.08994.

[114] D. Liu et al., “Tell Me How to Ask Again: Question Data Augmentation with Controllable Rewriting in Continuous Space,” in EMNLP 2020,

2020, pp. 5798–5810, doi: 10.18653/v1/2020.emnlp-main.467.

[115] Z. Wan, X. Wan, and W. Wang, “Improving Grammatical Error Correction with Data Augmentation by Editing Latent Representation,” in

COLING 2020, 2021, pp. 2202–2212, doi: 10.18653/v1/2020.coling-main.200.

[116] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio, “Generating sentences from a continuous space,” in CoNLL

2016, 2016, pp. 10–21, doi: 10.18653/v1/k16-1002.

[117] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell. Res.,

vol. 16, pp. 321–357, 2002, doi: 10.1613/jair.953.

[118] V. Verma et al., “Manifold mixup: Better representations by interpolating hidden states,” in ICML, 2019, pp. 11196–11205.

[119] N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck principle,” in ITW 2015, 2015, p., doi: 10.1109/ITW.2015.7133169.

[120] R. Shwartz-Ziv and N. Tishby, “Opening the Black Box of Deep Neural Networks via Information,” arXiv. 2017, [Online]. Available:

http://arxiv.org/abs/1703.00810.

[121] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “MixUp: Beyond empirical risk minimization,” in ICLR 2018, 2018, p.

[122] L. Sun, C. Xia, W. Yin, T. Liang, P. Yu, and L. He, “Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks,” arXiv. pp. 3436–3440,

2021, doi: 10.18653/v1/2020.coling-main.305.

[123] H. Guo, Y. Mao, and R. Zhang, “Augmenting Data with Mixup for Sentence Classification: An Empirical Study,” arXiv. 2019, [Online].

Available: http://arxiv.org/abs/1905.08941.

[124] H. Guo, “Nonlinear mixup: Out-of-manifold data augmentation for text classification,” AAAI 2020 - 34th AAAI Conf. Artif. Intell., vol. 34, no.

04, pp. 4044–4051, 2020, doi: 10.1609/aaai.v34i04.5822.

[125] G. Jawahar, B. Sagot, and D. Seddah, “What does BERT learn about the structure of language?,” in ACL 2019, 2020, pp. 3651–3657, doi:

10.18653/v1/p19-1356.

[126] J. Chen, Z. Wang, R. Tian, Z. Yang, and D. Yang, “Local Additivity Based Data Augmentation for Semi-supervised NER,” in ACL 2020, 2020,

pp. 1241–1251, doi: 10.18653/v1/2020.emnlp-main.95.

[127] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using siamese BERT-networks,” in EMNLP-IJCNLP 2019, 2020, pp.

3982–3992, doi: 10.18653/v1/d19-1410.

[128] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan, “AugMix: A Simple Data Processing Method to Improve

Robustness and Uncertainty,” arXiv, 2019, [Online]. Available: http://arxiv.org/abs/1912.02781.

[129] Y. Yang et al., “Generative Data Augmentation for Commonsense Reasoning,” 2020, pp. 1008–1025, doi: 10.18653/v1/2020.findings-

emnlp.90.

[130] A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit, “A decomposable attention model for natural language inference,” EMNLP 2016, pp.

2249–2255, Jun. 2016, doi: 10.18653/v1/d16-1244.

[131] A. Robinson, R. D. Cook, and S. Weisberg, “Residuals and Influence in Regression.,” J. R. Stat. Soc. Ser. A, vol. 147, no. 1, p. 108, 1984, doi:

10.2307/2981746.

[132] P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,” in 34th International Conference on Machine

Learning, ICML 2017, 2017, vol. 4, pp. 2976–2987.

[133] T. B. Brown et al., “Language Models are Few-Shot Learners,” arXiv, 2020, [Online]. Available: http://arxiv.org/abs/2005.14165.

[134] I. Solaiman et al., “Release Strategies and the Social Impacts of Language Models,” arXiv. 2019.

	1 Introduction
	2 Background: Foundations, Goals, and Applications of Data Augmentation
	3 Textual Data Augmentation Methods
	3.1 Data Space
	3.1.1 Character Level
	3.1.2 Word Level
	3.1.3 Phrase Level
	3.1.4 Document Level

	3.2 Feature Space
	3.2.1 Noise induction
	3.2.2 Interpolation methods

	3.3 Combination of Augmentation Methods
	3.4 Training Strategies
	3.5 Filtering Mechanisms

	4 Discussion: A Research Agenda for Textual Data Augmentation
	5 Conclusion

