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Abstract
Deep Convolutional Neural Network (CNN) is a special type of Neural Networks, which 
has shown exemplary performance on several competitions related to Computer Vision and 
Image Processing. Some of the exciting application areas of CNN include Image Classifi-
cation and Segmentation, Object Detection, Video Processing, Natural Language Process-
ing, and Speech Recognition. The powerful learning ability of deep CNN is primarily due 
to the use of multiple feature extraction stages that can automatically learn representations 
from the data. The availability of a large amount of data and improvement in the hardware 
technology has accelerated the research in CNNs, and recently interesting deep CNN archi-
tectures have been reported. Several inspiring ideas to bring advancements in CNNs have 
been explored, such as the use of different activation and loss functions, parameter optimi-
zation, regularization, and architectural innovations. However, the significant improvement 
in the representational capacity of the deep CNN is achieved through architectural innova-
tions. Notably, the ideas of exploiting spatial and channel information, depth and width of 
architecture, and multi-path information processing have gained substantial attention. Sim-
ilarly, the idea of using a block of layers as a structural unit is also gaining popularity. This 
survey thus focuses on the intrinsic taxonomy present in the recently reported deep CNN 
architectures and, consequently, classifies the recent innovations in CNN architectures into 
seven different categories. These seven categories are based on spatial exploitation, depth, 
multi-path, width, feature-map exploitation, channel boosting, and attention. Additionally, 
the elementary understanding of CNN components, current challenges, and applications of 
CNN are also provided.
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1 Introduction

Machine Learning (ML) algorithms are known to learn the underlying relationship in data 
and thus make decisions without requiring explicit instructions. In literature, various excit-
ing works have been reported to understand and/or emulate the  human sensory responses 
such as speech and vision (Hubel and Wiesel 1962, 1968; Ojala et al. 1996; Chapelle 1998; 
Lowe 1999; Dalal and Triggs 2004; Bay et al. 2008; Heikkilä et al. 2009). In 1989, a new 
class of Neural Networks (NN), called Convolutional Neural Network (CNN) (LeCun et al. 
1989) was reported, which has shown enormous potential in Machine Vision (MV) related 
tasks.

CNNs are one of the best learning algorithms for understanding image content and 
have shown exemplary performance in image segmentation, classification, detection, and 
retrieval related tasks (Cireşan et al. 2012a, b; Liu et al. 2019). The success of CNNs has 
captured attention beyond academia. In industry, companies such as Google, Microsoft, 
AT&T, NEC, and Facebook have developed active research groups for exploring new 
architectures of CNN (Deng et al. 2013). At present, most of the frontrunners of image pro-
cessing and computer vision (CV) competitions are employing deep CNN based models.

The attractive feature of CNN is its ability to exploit spatial or temporal correlation in 
data. The topology of CNN is divided into multiple learning stages composed of a com-
bination of the convolutional layers, non-linear processing units, and subsampling layers 
(Jarrett et al. 2009). CNN is a feedforward multilayered hierarchical network, where each 
layer, using a bank of convolutional kernels, performs multiple transformations (LeCun 
et al. 2010). Convolution operation helps in the extraction of useful features from locally 
correlated data points. The output of the convolutional kernels is then assigned to the non-
linear processing unit (activation function), which not only helps in learning abstractions 
but also embeds non-linearity in the feature space. This non-linearity generates different 
patterns of activations for different responses and thus facilitates in learning of seman-
tic differences in images. The output of the non-linear activation function is usually fol-
lowed by subsampling, which helps in summarizing the results and also makes the input 
invariant to geometrical distortions (Scherer et  al. 2010; LeCun et al. 2010). CNN, with 
the automatic feature extraction ability, reduces the need for a separate feature extractor 
(Najafabadi et al. 2015). Thus, CNN without exhaustive processing can learn good inter-
nal representation from raw pixels. Notable attributes of CNN are hierarchical learning, 
automatic feature extraction, multi-tasking, and weight sharing (Guo et al. 2016; Liu et al. 
2017; Abbas et al. 2019).

CNN first came to limelight through the work of LeCuN in 1989 for processing of grid-
like topological data (images and time series data) (LeCun et  al. 1989; Ian Goodfellow 
et al. 2017). The architectural design of CNN was inspired by Hubel and Wiesel’s work 
and thus mostly follows the basic structure of primate’s visual cortex (Hubel and Wiesel 
1962, 1968). Different stages of the learning process in CNN show quite a resemblance 
to the primate’s ventral pathway of the visual cortex (V1–V2–V3–V4–IT/VTC) (Laskar 
et  al. 2018). The visual cortex of primates first receives input from the retinotopic area. 
Whereby, the lateral geniculate nucleus performs multi-scale highpass filtering and con-
trast normalization. After this, detection is performed by different regions of the visual cor-
tex categorized as V1, V2, V3, and V4. In fact, V1 and V2 regions of the visual cortex are 
similar to convolutional and subsampling layers. In contrast, the inferior temporal region 
resembles the higher layers of CNN, which makes an inference about the image (Grill-
Spector et al. 2018).
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During training, CNN learns through backpropagation algorithm, by regulating the 
change in weights according to the target. Optimization of an objective function using a 
backpropagation algorithm is similar to the response based learning of the human brain. 
The multilayered, hierarchical structure of deep CNN, gives it the ability to extract low, 
mid, and high-level features. High-level features (more abstract features) are a combina-
tion of lower and mid-level features. The hierarchical feature extraction ability of CNN 
emulates the deep and layered learning process of the Neocortex in the human brain, which 
dynamically learns features from the raw data (Bengio 2009). The popularity of CNN is 
primarily due to its hierarchical feature extraction ability.

Deep architectures often have an advantage over shallow architectures when dealing 
with complex learning problems. The stacking of multiple linear and non-linear process-
ing units in a layer-wise fashion provides the ability to learn complex representations at 
different levels of abstraction. Consequently, in recognition tasks consisting of hundreds 
of image categories, deep CNNs have shown substantial performance improvement over 
conventional vision-based models (Ojala et al. 2002; Dalal and Triggs 2004; Lowe 2004). 
The observation that the deep architectures can improve the representational capacity of 
a CNN heightened the use of CNN in image classification and segmentation tasks (Kriz-
hevsky et al. 2012). The availability of big data and advancements in hardware are also the 
main reasons for the recent success of deep CNNs. Empirical studies showed that if given 
enough training data, deep CNNs can learn the invariant representations and may achieve 
human-level performance. In addition to its use as a supervised learning mechanism, the 
potential of deep CNNs can also be exploited to extract useful representations from a large 
scale of unlabeled data. Recently, it is shown that different levels of features, including 
both low and high-level, can be transferred to a generic recognition task by exploiting the 
concept of Transfer Learning (TL) (Qiang Yang et al. 2008; Qureshi et al. 2017; Qureshi 
and Khan 2018).

From the late 1990s up to 2000, various improvements in CNN learning methodol-
ogy and architecture were performed to make CNN scalable to large, heterogeneous, 
complex, and multiclass problems. Innovations in CNNs include different aspects such 
as modification of processing units, parameter and hyper-parameter optimization strat-
egies, design patterns and connectivity of layers, etc. CNN based applications became 
prevalent after the exemplary performance of AlexNet on the ImageNet dataset in 2012 
(Krizhevsky et  al. 2012). Significant innovations in CNN have been proposed since 
then and are largely attributed to the restructuring of processing units and designing of 
new blocks. Zeiler and Fergus (Zeiler and Fergus 2013) gave the concept of layer-wise 
visualization of CNN to improve the understanding of feature extraction stages, which 
shifted the trend towards extraction of features at low spatial resolution in deep archi-
tecture as performed in VGG (Simonyan and Zisserman 2015). Nowadays, most of the 
new architectures are built upon the principle of simple and homogenous topology, as 
introduced in VGG. Google deep learning group introduced an innovative idea of a 
split, transform and merge, with the corresponding block known as inception block. 
The inception block for the very first time gave the concept of branching within a layer, 
which allows abstraction of features at different spatial scales (Szegedy et al. 2015). In 
2015, the concept of skip connections introduced by ResNet (He et al. 2015a) for the 
training of deep CNNs gained popularity. Afterward, this concept was used by most 
of the succeeding networks, such as Inception-ResNet, Wide ResNet, ResNeXt, etc., 
(Szegedy et al. 2016a; Zagoruyko and Komodakis 2016; Xie et al. 2017).

Different architectural designs such as Wide ResNet, ResNeXt, Pyramidal Net, Xcep-
tion, PolyNet, and many others explore the effect of multilevel transformations on CNNs 
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learning capacity by introducing cardinality or increasing the width (Zagoruyko and 
Komodakis 2016; Zhang et al. 2017; Han et al. 2017; Xie et al. 2017). Therefore, the focus 
of research shifted from parameter optimization and connections readjustment towards the 
improved architectural design of the network. This shift resulted in many new architectural 
ideas such as channel boosting, spatial and feature-map wise exploitation and attention-
based information processing etc., (Wang et al. 2017a; Woo et al. 2018; Khan et al. 2018a).

In the past few years, different interesting surveys are conducted on deep CNNs 
that elaborate on the essential components of CNN and their alternatives. The sur-
vey reported in (Gu et al. 2018) reviewed the famous architectures from 2012 to 2015 
along with their basic components. Similarly, there are prominent surveys that discuss 
different algorithms and applications of CNN (LeCun et  al. 2010; Najafabadi et  al. 
2015; Guo et al. 2016; Srinivas et al. 2016; Liu et al. 2017). Likewise, the survey pre-
sented in (Zhang et al. 2019) discusses the taxonomy of CNNs based on acceleration 
techniques. On the other hand, in this survey, we discuss the intrinsic taxonomy pre-
sent in the recent and prominent CNN architectures reported from 2012 to 2020. The 
various CNN architectures discussed in this survey are broadly classified into seven 
main categories, namely; spatial exploitation, depth, multi-path, width, feature-map 
exploitation, channel boosting, and attention-based CNNs.

This survey also gives an insight into the basic structure of CNN as well as its his-
torical perspective, presenting different eras of CNN that trace back from its origin to 
its latest developments and achievements. This survey will help the readers to develop 
the theoretical insight into the design principles of CNN and thus may further acceler-
ate the architectural innovations in CNN.

The rest of the paper is organized in the following order (shown in Fig.  1): Sect.  1 
develops the systematic understanding of CNN, discusses its resemblance with primate’s 
visual cortex, as well as its contribution to MV. In this regard, Sect. 2 provides an over-
view of essential CNN components, and Sect.  3 discusses the architectural evolution of 
deep CNNs. Whereas, Sect. 4 discusses the recent innovations in CNN architectures and 
categorizes CNNs into seven broad classes. Sects. 5 and 6 shed light on applications of 
CNNs and current challenges, whereas Sect. 7 discusses future work. Finally, the last sec-
tion concludes.

2  Basic CNN components

Nowadays, CNN is considered as one of the most widely used ML technique, espe-
cially in vision-related applications. CNN can learn representations from the grid-like 
data, and recently it has shown substantial performance improvement in various ML 
applications. A typical block diagram of an ML system is shown in Fig. 2. Since CNN 
possesses both good feature generation and discrimination ability, therefore in a typical 
ML system, CNN capabilities are exploited for feature generation and classification.

A typical CNN architecture generally comprises alternate layers of convolution and 
pooling followed by one or more fully connected layers at the end. In some cases, 
a fully connected layer is replaced with a global average pooling layer. In addition 
to different mapping functions, different regulatory units such as batch normaliza-
tion and dropout are also incorporated to optimize CNN performance (Bouvrie 2006). 
The arrangement of CNN components plays a fundamental role in designing new 



5459A survey of the recent architectures of deep convolutional neural…

1 3

architectures and thus achieving enhanced performance. This section briefly discusses 
the role of these components in a CNN architecture.

2.1  Convolutional layer

The convolutional layer is composed of a set of convolutional kernels where each neu-
ron acts as a kernel. However, if the kernel is symmetric, the convolution operation 
becomes a correlation operation (Ian Goodfellow et  al. 2017). Convolutional kernel 
works by dividing the image into small slices, commonly known as receptive fields. The 
division of an image into small blocks helps in extracting feature motifs. Kernel con-
volves with the images using a specific set of weights by multiplying its elements with 
the corresponding elements of the receptive field (Bouvrie 2006). Convolution opera-
tion can be expressed as follows:

Fig. 1  Organization of the survey paper showing different sections
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where ic(x, y) is an element of the input image tensor IC , which is element wise 
multiplied by ek

l
(u, v) index of the kth convolutional kernel kl of the lth layer. 

Whereas output feature-map of the kth convolutional operation can be expressed as 
�
k
l
=
[

f k
l
(1, 1),… , f k

l
(p, q),… , f k

l
(P,Q)

]

 . The different mathematical symbols used are 
defined in Table 1.

Due to weight sharing ability of convolutional operation, different sets of features 
within an image can be extracted by sliding kernel with the same set of weights on 
the image and thus makes CNN parameter efficient as compared to the fully connected 
networks. Convolution operation may further be categorized into different types based 
on the type and size of filters, type of padding, and the direction of convolution (LeCun 
et al. 2015).

(1)f k
l
(p, q) =

∑

c

∑

x,y

ic(x, y).e
k
l
(u, v)

Fig. 2  Basic layout of a typical ML system having several stages



5461A survey of the recent architectures of deep convolutional neural…

1 3

2.2  Pooling layer

Feature motifs, which result as an output of convolution operation, can occur at differ-
ent locations in the image. Once features are extracted, its exact location becomes less 
important as long as its approximate position relative to others is preserved. Pooling or 
down-sampling is an interesting local operation. It sums up similar information in the 

Table 1  Definition of mathematical symbols

Symbol Description

X Total x coordinates of an image
x xth coordinate under consideration of an image
Y Total y coordinates of an image
y yth coordinate under consideration of an image
c Channel index
ic(x, y) (x, y ) element of cth channel of an image
L Total number of layers
l Layer number
Kl Total number of kernels of lth layer
kl Kernel number of lth layer
U Total number of rows of kth kernel
u uth row under consideration
V Total number of columns of kth kernel
v vth column under consideration
ek
l
(u, v) (u, v) element of kth kernel of lth layer

�
k
l

Input feature matrix for lth layer and kth neuron
P Total number of rows of feature matrix
p pth row under consideration
Q Total number of columns of feature matrix
q qth column under consideration
f k
l
(p, q) (p, q) element of feature matrix

gc(.) Convolution operation
gp(.) Pooling operation
ga(.) Activation function
gk(.) Concatenation operation
gtg Transformation gate
gcg Carry gate
gsq(.) Squeeze operation
gex(.) Excitation operation
�

K
l+1

Weight vector showing feature-maps importance learned using SE 
operation

gt Transformation function for two layer NN implemented by SE block
gsg Sigmoid gate implemented by SE block
gsm Soft mask
gtm Trunk mask
�B Channel boosted input tensor
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neighborhood of the receptive field and outputs the dominant response within this local 
region (Lee et al. 2016).

Equation  (2) shows the pooling operation in which �k
l
 represents the pooled feature-

map of lth layer for kth input feature-map �k
l
 , whereas gp(.) defines the type of pooling 

operation.
The use of pooling operation helps to extract a combination of features, which are invar-

iant to translational shifts and small distortions (Huang et al. 2007; Scherer et al. 2010). 
Reduction in the size of feature-map to invariant feature set not only regulates the com-
plexity of the network but also helps in increasing the generalization by reducing overfit-
ting. Different types of pooling formulations such as max, average, L2, overlapping, spatial 
pyramid pooling, etc. are used in CNN (Boureau 2009; Wang et al. 2012; He et al. 2015b).

2.3  Activation function

Activation function serves as a decision function and helps in learning of intricate patterns. 
The selection of an appropriate activation function can accelerate the learning process. The 
activation function for a convolved feature-map is defined in Eq. (3).

In the above equation, �k
l
 is an output of a convolution, which is assigned to activation 

function ga(.) that adds non-linearity and returns a transformed output �k
l
 for lth layer. In 

literature, different activation functions such as sigmoid, tanh, maxout, SWISH, ReLU, and 
variants of ReLU, such as leaky ReLU, ELU, and PReLU are used to inculcate non-linear 
combination of features (LeCun 2007; Wang et al. 2012; Xu et al. 2015a; Ramachandran 
et al. 2017; Gu et al. 2018). However, ReLU and its variants are preferred as they help in 
overcoming the vanishing gradient problem (Hochreiter 1998; Nwankpa et al. 2018). One 
of the recently proposed activation function is MISH, which has shown better performance 
than ReLU in most of the recently proposed deep networks on benchmark datasets (Misra 
2019).

2.4  Batch normalization

Batch normalization is used to address the issues related to the internal covariance shift 
within feature-maps. The internal covariance shift is a change in the distribution of hidden 
units’ values, which slows down the convergence (by forcing learning rate to small value) 
and requires careful initialization of parameters. Batch normalization for a transformed fea-
ture-map �k

l
 is shown in Eq. (4).

In Eq.  (4), �k
l
 represents normalized feature-map, �k

l
 is the input feature-map, �B and 

�2

B
 depict mean and variance of a feature-map for a mini batch respectively. In order to 

avoid division by zero, � is added for numerical stability. Batch normalization unifies the 

(2)�
k
l
= gp(�

k
l
)

(3)�
k
l
= ga(�

k
l
)

(4)�
k
l
=

�
k
l
− �B

√

�2

B
+ �
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distribution of feature-map values by setting them to zero mean and unit variance (Ioffe 
and Szegedy 2015). Furthermore, it smoothens the flow of gradient and acts as a regulating 
factor, which thus helps in improving the generalization of the network.

2.5  Dropout

Dropout introduces regularization within the network, which ultimately improves gener-
alization by randomly skipping some units or connections with a certain probability. In 
NNs, multiple connections that learn a non-linear relation are sometimes co-adapted, 
which causes overfitting (Hinton et al. 2012b). This random dropping of some connections 
or units produces several thinned network architectures, and finally, one representative net-
work is selected with small weights. This selected architecture is then considered as an 
approximation of all of the proposed networks (Srivastava et al. 2014).

2.6  Fully connected layer

Fully connected layer is mostly used at the end of the network for classification. Unlike 
pooling and convolution, it is a global operation. It takes input from feature extraction 
stages and globally analyses the output of all the preceding layers (Lin et al. 2013). Con-
sequently, it makes a non-linear combination of selected features, which are used for the 
classification of data (Rawat and Wang 2016).

3  Architectural evolution of deep CNNs

Nowadays, CNNs are considered as the most widely used algorithms among biologically 
inspired Artificial Intelligence (AI) techniques. CNN history begins with the neurobiologi-
cal experiments conducted by Hubel and Wiesel (1959, 1962) (Hubel and Wiesel 1959, 
1962). Their work provided a platform for many cognitive models, and CNN replaced 
almost all of these. Over the decades, different efforts have been carried out to improve the 
performance of CNNs. The evolutionary history of deep CNN architectures is pictorially 
represented in Fig. 3. Improvements in CNN architectures can be categorized into five dif-
ferent eras that are discussed below.

3.1  Origin of CNN: late 1980s–1999

CNNs have been applied to visual tasks since the late 1980s. In 1989, LeCuN et al. pro-
posed the first multilayered CNN named ConvNet, whose origin rooted in Fukushima’s 
Neocognitron (Fukushima and Miyake 1982; Fukushima 1988). LeCuN proposed a super-
vised training of ConvNet using the backpropagation algorithm, in comparison to the unsu-
pervised reinforcement learning scheme used by its predecessor Neocognitron (Linnain-
maa 1970; LeCun et al. 1989). LeCuN’s work thus made a foundation for the modern 2D 
CNNs. This ConvNet showed successful results for handwritten digit and zip code recogni-
tion related problems (Zhang and LeCun 2015). In 1998, LeCuN proposed an improved 
version of ConvNet, which was famously known as LeNet-5, and it started the use of CNN 
in classifying characters in a document recognition related applications (LeCun et al. 1995, 
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1998). Due to the good performance of CNN in optical character and fingerprint recogni-
tion, its commercial use in ATM and Banks started in 1993 and 1996, respectively. In this 
era, LeNet-5 achieved many successful milestones for optical character recognition tasks, 
but it didn’t perform well on other image recognition problems.

3.2  Stagnation of CNN: early 2000

In the late 1990s and early 2000, researchers had little insight into the internal working of 
CNN, and it was considered as a black box. Complicated architecture design and heavy 
processing made it hard to train CNN. It was widely presumed in early 2000 that the back-
propagation algorithm used for training of CNN was not effective in converging to the 
global minima of the error surface. Thus, CNN was considered as a less effective feature 
extractor compared to handcrafted features (Schmidhuber 2007). Moreover, no comprehen-
sive dataset of diverse categories of images was available at that time. Therefore, because 
of the insignificant improvement in CNN performance at the cost of high computational 
time, little attention was given to explore its role in different applications such as object 

Fig. 3  Evolutionary history of deep CNNs showing architectural innovations from ConvNet till to date 
architectures
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detection, video surveillance, etc. At that time, other statistical methods and in particular, 
SVM became more popular than CNN due to their relatively high performance (Joachims 
1998; Decoste and Schölkopf 2002; Liu et al. 2003).

Meanwhile, a few research groups kept on working with CNNs and tried to optimize its 
performance. In 2003, Simard et al. improved CNN architecture and showed good results 
compared to SVM on a hand digit benchmark dataset; MNIST (LeCun et al. 1998; Liu et al. 
2003; Simard et al. 2003; Chellapilla et al. 2006; Deng 2012). This improvement in per-
formance expedited the research in CNNs by extending their application’s beyond optical 
character recognition to other script’s character recognition, deployment in image sensors 
for face detection in video conferencing, and regulation of street crimes, etc. (Abdulkader 
2006; Chellapilla et  al. 2006; Cireşan et  al. 2010). Likewise, CNN based systems were 
industrialized in markets for customers’ tracking (Garcia and Delakis 2004; Frome et al. 
2009; LeCun et al. 2010). Moreover, CNN’s potential in other applications such as medical 
image segmentation, anomaly detection, and robot vision was also explored (Fasel 2002; 
Matsugu et al. 2002; Chen et al. 2006).

3.3  Revival of CNN: 2006–2011

Deep CNNs generally have complex architecture and time-intensive training phase that 
sometimes may span over weeks. In early 2000, there were a few parallel processing tech-
niques and limited hardware resources for the training of deep Networks. Training of a 
deep CNNs with a typical activation function such as sigmoid may suffer from exponential 
decay and explosion of a gradient. Since 2006, significant efforts have been made to tackle 
the CNN optimization problem. In this regard, several interesting initialization and training 
strategies were reported to overcome the difficulties encountered in the training of deep 
CNNs and the learning of invariant features. Hinton reported the concept of greedy layer-
wise pre-training in 2006, which revived the research in deep learning (Hinton et al. 2006; 
Khan et al. 2018b). Experimental studies showed that both supervised and unsupervised 
pre-training could initialize a network in a better way than random initialization. Bengio 
and other researchers proposed that the sigmoid activation function is not suitable for 
the training of deep architectures with random initialization of weights. This observation 
started the use of activation functions other than sigmoid such as ReLU, tanh etc., (Glorot 
and Bengio 2010). The revival of deep learning was one of the factors, which brought deep 
CNNs into limelight (Bengio et al. 2007, 2013).

Ranzato et  al. (2007) used max-pooling instead of subsampling, which showed good 
results by learning invariant features (Ranzato et al. 2007; Giusti et al. 2013). In late 2006, 
researchers started using graphics processing units (GPUs) to accelerate the training of 
deep NN and CNN architectures (Oh and Jung 2004; Strigl et al. 2010; Cireşan et al. 2011; 
Nguyen et al. 2019). In 2007, NVIDIA launched the CUDA programming platform, which 
allows exploitation of parallel processing capabilities of GPU with a greater degree (Nick-
olls et al. 2008; Lindholm et al. 2008). In essence, the use of GPUs for NN and CNN train-
ing and other hardware improvements were the main factors, which revived the research 
in CNN (Oh and Jung 2004; Cireşan et al. 2018). In 2010, Fei–Fei Li’s group at Stanford, 
established a large database of images known as ImageNet, containing millions of anno-
tated images belonging to a large number of classes (Russakovsky et al. 2015). This data-
base was coupled with the annual ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC), where the performances of various models have been evaluated and scored 
(Berg et  al. 2010). Similarly, in the same year, Stanford released PASCAL 2010 VOC 
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dataset for object detection. ILSVRC and Neural Information Processing Systems Confer-
ence (NIPS) are the two platforms that play a dominant role in strengthening research and 
increasing the use of CNN and thus making it popular.

3.4  Rise of CNN: 2012–2014

The availability of extensive training data and hardware advancements are the factors that 
contributed to the advancement in CNN research. But the main driving forces that have 
accelerated the research and give rise to the use of CNNs in image classification and rec-
ognition tasks are parameter optimization strategies and new architectural ideas (Gu et al. 
2018; Sinha et al. 2018; Zhang et al. 2019). The main breakthrough in CNN performance 
was brought by AlexNet, which showed exemplary performance in 2012-ILSVRC (reduced 
error rate from 25.8 to 16.4) as compared to conventional CV techniques (Krizhevsky et al. 
2012).

In this era, several attempts were made to improve the performance of CNN; depth and 
parameter optimization strategies were explored with a significant reduction in compu-
tational cost. Similarly, different architectural designs were proposed, whereby each new 
architecture tried to overcome the shortcomings of previously proposed architectures in 
combination with new structural reformulations. With the trend of designing very deep 
CNNs, it generally becomes difficult to independently determine filter dimensions, stride, 
padding, and other hyper-parameters for each layer. This problem is resolved by design-
ing convolutional layers with a fixed topology that can be repeated multiple times. This 
shifted the trend from custom layer design towards modular and uniform layer design. The 
concept of modularity in CNNs made it easy to tailor them for different tasks effortlessly 
(Simonyan and Zisserman 2015; Amer and Maul 2019). In this connection, a different idea 
of branching and block within a layer was introduced by the Google group (Szegedy et al. 
2015). It should be noted that in this era, two different types of architectures, deep and nar-
row, as well as deep and wide, were in use.

3.5  Rapid increase in architectural innovations and applications of CNN: 
2015‑present

The research in CNN is still going on and has a significant potential for improvement. It is 
generally observed that the significant improvements in CNN performance occurred from 
2015 to 2019. The representational capacity of a CNN usually depends on its depth, and 
in a sense, an enriched feature set ranging from simple to complex abstractions can help 
in learning complex problems. However, the main challenge faced by deep architectures is 
that of the diminishing gradient. Initially, researchers tried to subside this problem by con-
necting intermediate layers to auxiliary learners (Szegedy et al. 2015). In 2015, the emerg-
ing area of research was mainly the development of new connections to improve the con-
vergence rate of deep CNN architectures. In this regard, different ideas such as information 
gating mechanism across multiple layers, skip connections, and cross-layer channel con-
nectivity was introduced (Srivastava et al. 2015a; He et al. 2015a; Huang et al. 2017). Dif-
ferent experimental studies showed that state-of-the-art deep architectures such as VGG, 
ResNet, ResNext, etc. also showed good results for challenging recognition and localiza-
tion problems like semantic and instance-based object segmentation, scene parsing, scene 
location, etc. Most of the famous object detection and segmentation architectures such 
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as Single Shot Multibox Detector (SSD), Region-based CNN (R-CNN), Faster R-CNN, 
Mask R-CNN and Fully Convolutional Neural Network (FCN) are built on the lines of 
ResNet, VGG, Inception, etc. Similarly, many interesting detection algorithms such as Fea-
ture Pyramid Networks, Cascade R-CNN, Libra R-CNN, etc., modified the architectures as 
mentioned earlier to improve the performance (Lin et al. 2017; Cai and Vasconcelos 2019; 
Pang et al. 2020). Applications of deep CNN were also extended to image captioning by 
combining these networks with recurrent neural network (RNN) and thus showed state-of-
the-art results on MS COCO-2015 image captioning challenge (Girshick 2015; Long et al. 
2015; Ren et al. 2015; He et al. 2017; Vinyals et al. 2017).

Similarly, in 2016, it was observed that the stacking of multiple transformations not 
only depth-wise but also in parallel fashion showed good learning for complex problems 
(Zagoruyko and Komodakis 2016; Han et al. 2017). Different researchers used a hybrid of 
the already proposed architectures to improve deep CNN performance (Huang et al. 2016a; 
Szegedy et  al. 2016a; Targ et  al. 2016; Yamada et  al. 2016; Kuen et  al. 2017; Lv et  al. 
2019). In 2017, the focus of researchers was mainly on designing of generic blocks that can 
be inserted at any learning stage in CNN architecture to improve the network representa-
tion (Hu et al. 2018a). Designing of new blocks is one of the growing areas of research in 
CNN, where generic blocks are used to assign attention to spatial and feature-map (chan-
nel) information (Wang et al. 2017a; Roy et al. 2018; Woo et al. 2018). In 2018, a new idea 
of channel boosting was introduced by Khan et al. (2018a) to boost the performance of a 
CNN by learning distinct features as well as exploiting the already learned features through 
the concept of TL.

However, two main concerns observed with deep and wide architectures are the high 
computational cost and memory requirement. As a result, it is very challenging to deploy 
state-of-the-art wide and deep CNN models in resource-constrained environments. Con-
ventional convolution operation requires a huge number of multiplications, which increases 
the inference time and restricts the applicability of CNN to low memory and time con-
straint applications (Shakeel et  al. 2019). Many real-world applications, such as autono-
mous vehicles, robotics, healthcare, and mobile applications, perform the tasks that need 
to be carried on computationally limited platforms in a timely manner. Therefore, different 
modifications in CNN are performed to make them appropriate for resource-constrained 
environments. Prominent modifications are knowledge distillation, training of small net-
works, or squeezing of pre-trained networks (such as pruning, quantization, hashing, Huff-
man coding, etc.) (Chen et al. 2015; Han et al. 2016; Wu et al. 2016; Frosst and Hinton 
2018). GoogleNet exploited the idea of small networks, which replaces the conventional 
convolution with point-wise group convolution operation to make it computationally effi-
cient. Similarly, ShuffleNet used point-wise group convolution but with a new idea of 
channel shuffle that significantly reduces the number of operations without affecting the 
accuracy. In the same way, ANTNet proposed a novel architectural block known as ANT-
Block, which at low computational cost, achieved good performance on benchmark data-
sets (Howard et al. 2017; Zhang et al. 2018a; Xiong et al. 2019).

From 2012 up till now, many improvements have been reported in CNN architectures. 
As regards the architectural advancement of CNNs, recently, the focus of research has been 
on designing of new blocks that can boost network representation by exploiting feature-
maps or manipulating input representation by adding artificial channels. Moreover, along 
with this, the trend is towards the design of lightweight architectures without compromis-
ing the performance to make CNN applicable for resource constraint hardware.
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4  Architectural innovations in CNN

Different improvements in CNN architecture have been made from 1989 to date. These 
improvements can be categorized as parameter optimization, regularization, structural 
reformulation, etc. However, it is observed that the main thrust in CNN performance 
improvement came from the restructuring of processing units and the designing of new 
blocks. Most of the innovations in CNN architectures have been made in relation to depth 
and spatial exploitation. Depending upon the type of architectural modifications, CNNs 
can be broadly categorized into seven different classes, namely; spatial exploitation, depth, 
multi-path, width, feature-map exploitation, channel boosting, and attention-based CNNs. 
The taxonomy of CNN architectures is pictorially represented in Fig.  4. Architectural 
details of the state-of-the-art CNN models, their parameters, and performance on bench-
mark datasets are summarized in Table  2. On the other hand, different online resources 
on deep CNN architectures, vision-related dataset, and their implementation platforms are 
mentioned in Table 3. In addition to this, the strengths and weaknesses of various architec-
tures based on their category are presented in Tables 5, 6, 7, 8, 9, 10, 11.   

4.1  Spatial exploitation based CNNs

CNNs have a large number of parameters and hyper-parameters, such as weights, biases, 
number of layers, and processing units (neurons), filter size, stride, activation function, 
learning rate, etc. (Kafi et al. 2015; Shin et al. 2016). As convolutional operation considers 
the neighborhood (locality) of input pixels, therefore different levels of correlation can be 
explored by using different filter sizes. Different sizes of filters encapsulate different levels 
of granularity; usually, small size filters extract fine-grained and large size extract coarse-
grained information. Consequently, in early 2000, researchers exploited spatial filters to 
improve performance and explored the relation of a spatial filter with the learning of the 
network. Different studies conducted in this era suggested that by the adjustment of filters, 
CNN can perform well both on coarse and fine-grained details.

Fig. 4  Taxonomy of deep CNN architectures showing seven different categories
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4.1.1  LeNet

LeNet was proposed by LeCuN in 1998 (LeCun et  al. 1995). It is famous due to its 
historical importance as it was the first CNN, which showed state-of-the-art perfor-
mance on hand digit recognition tasks. It has the ability to classify digits without being 
affected by small distortions, rotation, and variation of position and scale. LeNet is a 
feed-forward NN that constitutes of five alternating layers of convolutional and pooling, 
followed by two fully connected layers. In early 2000, GPU was not commonly used 
to speed up training, and even CPUs were slow (Potluri et al. 2011). The main limita-
tion of traditional multilayered fully connected NN was that it considers each pixel as 
separate input and applies a transformation on it, which was a substantial computational 
burden, specifically at that time (Gardner and Dorling 1998). LeNet exploited the under-
lying basis of the image that the neighboring pixels are correlated to each other and 
feature motifs are distributed across the entire image. Therefore, convolution with learn-
able parameters is an effective way to extract similar features at multiple locations with 
few parameters. Learning with sharable parameters changed the conventional view of 
training where each pixel was considered as a separate input feature from its neighbor-
hood and ignored the correlation among them. LeNet was the first CNN architecture, 
which not only reduced the number of parameters but was able to learn features from 
raw pixels automatically.

Fig. 5  Basic layout of AlexNet 
architecture showing its five 
convolution and three fully con-
nected layers
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4.1.2  AlexNet

LeNet (LeCun et  al. 1995) though, begin the history of deep CNNs, but at that time, 
CNN was limited to hand digit recognition tasks and didn’t perform well to all classes 
of images. AlexNet (Krizhevsky et al. 2012) is considered as the first deep CNN archi-
tecture, which showed groundbreaking results for image classification and recognition 
tasks. AlexNet was proposed by Krizhevsky et al. (2012) which enhanced the learning 
capacity of the CNN by making it deeper and by applying several parameter optimiza-
tions strategies. The basic architectural design of AlexNet is shown in Fig. 5. In early 
2000, hardware limitations curtailed the learning capacity of deep CNN architectures by 
restricting them to small size. In order to get the benefit of the representational capacity 
of deep CNNs, Alexnet was trained in parallel on two NVIDIA GTX 580 GPUs to over-
come shortcomings of the hardware.

In AlexNet, depth was extended from 5 (LeNet) to 8 layers to make CNN applicable for 
diverse categories of images. Despite the fact that generally, depth improves generaliza-
tion for different resolutions of images but, the main drawback associated with an increase 
in depth is overfitting. To address this challenge, Krizhevesky et al. (2012) exploited the 
idea of Hinton (Dahl et  al. 2013; Srivastava et  al. 2014), whereby their algorithm ran-
domly skips some transformational units during training to enforce the model to learn more 
robust features. In addition to this, ReLU was employed as a non-saturating activation 
function to improve the convergence rate by alleviating the problem of vanishing gradient 
to some extent (Hochreiter 1998; Nair and Hinton 2010). Overlapping subsampling and 
local response normalization were also applied to improve the generalization by reducing 
overfitting. Other adjustments made were the use of large size filters (11 × 11 and 5 × 5) at 
the initial layers, compared to previously proposed networks. Due to the efficient learning 
approach of AlexNet, it has significant importance in the new generation of CNNs and has 
started a new era of research in the architectural advancements of CNNs.

4.1.3  ZfNet

The learning mechanism of CNN, before 2013, was based mainly on hit-and-trial, with-
out knowing the exact reason behind the improvement. This lack of understanding limited 
the performance of deep CNNs on complex images. In 2013, Zeiler and Fergus proposed 
an interesting multilayer Deconvolutional NN (DeconvNet), which got famous as ZfNet 
(Zeiler and Fergus 2013). ZfNet was developed to visualize network performance quantita-
tively. The idea of the visualization of network activity was to monitor CNN performance 
by interpreting neuron’s activation. In one of the previous studies, Erhan et  al. (2009) 
exploited the same idea and optimized the performance of Deep Belief Networks (DBNs) 
by visualizing the hidden layers’ feature (Erhan et  al. 2009). Similarly, Le et  al. (2011) 
evaluated the learning of deep unsupervised autoencoder (AE) by visualizing the image 
classes generated by the neurons of last layer. DeconvNet works in the same manner as 
the forward pass CNN but reverses the order of convolutional and pooling operation. This 
reverse mapping projects the output of the convolutional layer back to visually perceptible 
image patterns, consequently gives the neuron-level interpretation of the internal feature 
representation learned at each layer (Simonyan et al. 2013; Grün et al. 2016).

The idea of feature visualization proposed by ZfNet was experimentally validated on 
AlexNet using DeconvNet, which showed that only a few neurons were active. In contrast, 
other neurons were dead (inactive) in the first and second layers of the network. Moreover, 
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it showed that the features extracted by the second layer exhibited aliasing artifacts. Based 
on these findings, Zeiler and Fergus adjusted CNN topology and performed parameter 
optimization. Zeiler and Fergus maximized the learning of CNN by reducing both the filter 
size and stride to retain the maximum number of features in the first two convolutional lay-
ers. This readjustment in CNN topology resulted in performance improvement, which sug-
gested that features visualization can be used for the identification of design shortcomings 
and for timely adjustment of parameters.

4.1.4  VGG

The successful use of CNNs in image recognition tasks has accelerated the research in 
architectural design. In this regard, Simonyan et al. proposed a simple and effective design 
principle for CNN architectures. Their architecture, named as VGG, was modular in lay-
ers pattern (Simonyan and Zisserman 2015). VGG was made 19 layers deep compared to 
AlexNet and ZfNet to simulate the relation of depth with the representational capacity of 
the network (Krizhevsky et al. 2012; Zeiler and Fergus 2013). ZfNet, which was a frontline 
network of 2013-ILSVRC competition, suggested that small size filters can improve the 
performance of the CNNs. Based on these findings, VGG replaced the 11 × 11 and 5 × 5 
filters with a stack of 3 × 3 filters layer and experimentally demonstrated that concurrent 
placement of small size (3 × 3) filters could induce the effect of the large size filter (5 × 5 
and 7 × 7). The use of the small size filters provides an additional benefit of low computa-
tional complexity by reducing the number of parameters. These findings set a new trend 
in research to work with smaller size filters in CNN. VGG regulates the complexity of a 
network by placing 1 × 1 convolutions in between the convolutional layers, which, besides, 
learn a linear combination of the resultant feature-maps. For the tuning of the network, 
max-pooling is placed after the convolutional layer, while padding was performed to main-
tain the spatial resolution (Huang et al. 2007). VGG showed good results both for image 
classification and localization problems. VGG was at 2nd place in the 2014-ILSVRC com-
petition but, got fame due to its simplicity, homogenous topology, and increased depth. The 
main limitation associated with VGG was the use of 138 million parameters, which make it 
computationally expensive and difficult to deploy it on low resource systems.

Fig. 6  Basic architecture of the inception block showing the split, transform, and merge concept
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4.1.5  GoogleNet

GoogleNet was the winner of the 2014-ILSVRC competition and is also known as Incep-
tion-V1. The main objective of the GoogleNet architecture was to achieve high accuracy 
with a reduced computational cost (Szegedy et al. 2015). It introduced the new concept of 
inception block in CNN, whereby it incorporates multi-scale convolutional transformations 
using split, transform and merge idea. The architecture of the inception block is shown 
in Fig.  6. In GoogleNet, conventional convolutional layers are replaced in small blocks 
similar to the idea of substituting each layer with micro NN as proposed in Network in 
Network (NIN) architecture (Lin et al. 2013). This block encapsulates filters of different 
sizes (1 × 1, 3 × 3, and 5 × 5) to capture spatial information at different scales, including 
both fine and coarse grain level. The exploitation of the idea of split, transform, and merge 
by GoogleNet, helped in addressing a problem related to the learning of diverse types of 
variations present in the same category of images having different resolutions. GoogleNet 
regulates the computations by adding a bottleneck layer of 1 × 1 convolutional filter, before 
employing large size kernels. In addition to it, it used sparse connections (not all the out-
put feature-maps are connected to all the input feature-maps), to overcome the problem of 
redundant information and reduced cost by omitting feature-maps that were not relevant. 
Furthermore, connection’s density was reduced by using global average pooling at the last 
layer, instead of using a fully connected layer. These parameter tunings caused a significant 
decrease in the number of parameters from 138 million to 4 million parameters. Other reg-
ulatory factors applied were batch normalization and the use of RmsProp as an optimizer 
(Dauphin et al. 2015). GoogleNet also introduced the concept of auxiliary learners to speed 
up the convergence rate. However, the main drawback of the GoogleNet was its heteroge-
neous topology that needs to be customized from module to module. Another limitation of 
GoogleNet was a representation bottleneck that drastically reduces the feature space in the 
next layer and thus sometimes may lead to loss of useful information.

4.2  Depth based CNNs

Deep CNN architectures are based on the assumption that with the increase in depth, the 
network can better approximate the target function with a number of nonlinear mappings 
and more enriched feature hierarchies (Bengio 2013). Network depth has played an essen-
tial role in the success of supervised training. Theoretical studies have shown that deep 
networks can represent certain classes of function more efficiently than shallow architec-
tures (Montufar et al. 2014). Csáji represented a universal approximation theorem in 2001, 
which states that a single hidden layer is sufficient to approximate any function. However, 
this comes at the cost of exponentially many neurons; thus, it often makes it computation-
ally non-realistic (Csáji 2001). In this regard, Bengio and Delalleau (Delalleau and Bengio 
2011) suggested that deeper networks can maintain the expressive power of the network at 
a reduced cost (Wang and Raj 2017). In 2013, Bengio et al. empirically showed that deep 
networks are computationally more efficient for complex tasks (Bengio et al. 2013; Nguyen 
et  al. 2018). Inception and VGG, which showed the best performance in 2014-ILSVRC 
competition, further strengthen the idea that the depth is an essential dimension in regulat-
ing learning capacity of the networks (Simonyan and Zisserman 2015; Szegedy et al. 2015, 
2016a, b).
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4.2.1  Highway networks

Based on the intuition that the learning capacity can be improved by increasing the net-
work depth, Srivastava et al. (2015a), proposed a deep CNN, named as Highway Networks. 
The main problem concerned with deep networks is slow training and convergence speed 
(Huang et  al. 2016b). Highway Networks exploited depth for learning enriched feature 
representation and introducing a new cross-layer connectivity mechanism (discussed in 
Sect. 4.3.1) for the successful training of the deep networks. Therefore, Highway Networks 
are also categorized as multi-path based CNN architectures. Highway Networks with 
50-layers showed a better convergence rate than thin but deep architectures (Berg et  al. 
2010; Morar et al. 2012). Srivastava et al. experimentally showed that the performance of 
a plain network decreases after adding hidden units beyond 10 layers (Glorot and Bengio 
2010). Highway Networks, on the other hand, was shown to converge significantly faster 
than the plain ones, even with the depth of 900 layers.

4.2.2  ResNet

ResNet was proposed by He et al. (2015a) which is considered as a continuation of deep 
networks. ResNet revolutionized the CNN architectural race by introducing the con-
cept of residual learning in CNNs and devised an efficient methodology for the training 
of deep networks. Similar to Highway Networks, it is also placed under the Multi-Path 
based CNNs; thus, its learning methodology is discussed in Sect. 4.3.2. ResNet proposed 
152-layers deep CNN, which won the 2015-ILSVRC competition. The architecture of the 

Fig. 7  Residual block as a basic 
structural unit of ResNet
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residual block of ResNet is shown in Fig. 7. ResNet, which was 20 and 8 times deeper than 
AlexNet and VGG, respectively, showed less computational complexity than previously 
proposed networks (Krizhevsky et  al. 2012; Simonyan and Zisserman 2015). He et  al. 
empirically showed that ResNet with 50/101/152 layers has less error on image classifica-
tion task than 34 layers plain Net. Moreover, ResNet gained a 28% improvement on the 
famous image recognition benchmark dataset named COCO (Lin et al. 2014). Good perfor-
mance of ResNet on image recognition and localization tasks showed that representational 
depth is of central importance for many visual recognition tasks.

4.2.3  Inception‑V3, V4 and Inception‑ResNet

Inception-V3, V4 and Inception-ResNet, are improved versions of Inception-V1 and V2 
(Szegedy et al. 2015, 2016a, b). The idea of Inception-V3 was to reduce the computational 
cost of deep networks without affecting the generalization. For this purpose, Szegedy et al. 
(2016b) replaced large size filters (5 × 5 and 7 × 7) with small and asymmetric filters (1 × 7 
and 1 × 5) and used 1 × 1 convolution as a bottleneck before the large filters. Concurrent 
placement of 1 × 1 convolution with a large size filter makes the traditional convolution 
operation more like a cross-channel correlation. In one of the previous works, Lin et  al. 
exploited the potential of 1 × 1 filters in NIN architecture (Lin et al. 2013). Szegedy et al. 
(2016b) intelligently used the same concept. In Inception-V3, 1 × 1 convolutional operation 
was used, which maps the input data into 3 or 4 separate spaces that are smaller than the 
original input space, and then maps all correlations in these smaller 3D spaces, via regular 
(3 × 3 or 5 × 5) convolutions. In Inception-ResNet, Szegedy et al. combined the power of 
residual learning and inception block (He et  al. 2015a; Szegedy et  al. 2016a). In doing 
so, filter concatenation was replaced by the residual connection. Moreover, Szegedy et al. 
experimentally showed that Inception-V4 with residual connections (Inception-ResNet) has 
the same generalization power as plain Inception-V4 but with increased depth and width. 
However, they observed that Inception-ResNet converges more quickly than Inception-V4, 
which depicts that training with residual connections accelerates the training of Inception 
networks significantly.

4.3  Multi‑path based CNNs

Training of deep networks is a challenging task, and this has been the subject of recent 
research on deep networks. Deep CNNs generally perform well on complex tasks. How-
ever, they may suffer from performance degradation, gradient vanishing, or explosion 
problems, which are not caused by overfitting but instead by an increase in the depth 
(Hochreiter 1998; Dong et al. 2016). Vanishing gradient problem not only results in higher 
test error but also higher training error (Pascanu et al. 2012; Dong et al. 2016; Dauphin 
et al. 2017). For training deep networks, the concept of multi-path or cross-layer connec-
tivity was proposed (Srivastava et al. 2015a; Larsson et al. 2016; Huang et al. 2017; Kuen 
et al. 2018). Multiple paths or shortcut connections can systematically connect one layer to 
another by skipping some intermediate layers to allow the specialized flow of information 
across the layers (Mao et al. 2016; Tong et al. 2017). Cross-layer connectivity partitions the 
network into several blocks. These paths also try to solve the vanishing gradient problem 
by making gradient accessible to lower layers. For this purpose, different types of shortcut 
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connections are used, such as zero-padded, projection-based, dropout, skip connections, 
and 1 × 1 connections, etc.

4.3.1  Highway networks

The increase in depth of a network improves performance mostly for complex problems, 
but it also makes training of the network difficult. In deep networks, due to a large number 
of layers, the backpropagation of error may result in small gradient values at lower layers. 
To solve this problem, in 2015, a new CNN architecture named Highway Networks was 
proposed based on the idea of cross-layer connectivity (Srivastava et al. 2015a). In High-
way Networks, the unimpeded flow of information across layers is enabled by imparting 
two gating units within a layer (Eq. 5). The idea of a gating mechanism was inspired by 
Long Short Term Memory (LSTM) based on Recurrent Neural Networks (RNN) (Mikolov 
et al. 2010; Sundermeyer et al. 2012). The aggregation of information by combining the lth 
layer and previous l − j layers information creates a regularizing effect, making gradient-
based training of very deep networks easy. This cross-layer connectivity enables the train-
ing of a network with more than 100 layers, even as deep as 900 layers with a stochastic 
gradient descent algorithm. Cross-layer connectivity for Highway Network is defined in 
Eqs. (5 and 6).

In Eq. (5), gc(�k
l
, �l) represents the working of the lth hidden layer, whereas tg and cg are 

two gates that decide the flow of information across the layers. When tg gate is open, tg = 1 
then transformed input is assigned to the next layer. Whereas, when the value of tg = 0 then cg 
gate establishes an effect of information highway and input �k

l
 of lth layer is directly assigned 

to the next layer l + 1 without any transformation.

4.3.2  ResNet

In order to address the problems faced during training of deep networks, ResNet exploited the 
idea of bypass pathways used in Highway Networks (He et al. 2015a). Mathematical formula-
tion of ResNet is expressed in Eqs. (7, 8 and 9).

where gc(�k
l→m

, �l→m) is a transformed signal, and �k
l
 is an input of lth layer. In Eq.  (7), 

�l→m shows the kth processing unit (kernel), whereas l → m suggests that the residual 
block can be consists of one or more than one hidden layers. Original input �k

l
 is added to 

transformed signal ( gc(�k
l→m

, �l→m) ) through bypass pathway (Eq. 7) and thus results in an 
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aggregated output �k
�

m+1
 , which is assigned to the next layer after applying activation func-

tion ga(.) . Whereas, (�k
�

m+1
− �

k
l
) , returns a residual information, which is used to perform 

reference based optimization of weights. The distinct feature of ResNet is reference based 
residual learning framework. ResNet suggested that residual functions are easy to optimize 
and can gain accuracy for considerably increased depth.

ResNet introduced shortcut connections within layers to enable cross-layer connectivity; 
however, these connections are data-independent and parameter-free in comparison to the 
gates of Highway Networks. In Highway Networks, when a gated shortcut is closed, the layers 
represent non-residual functions. However, in ResNet, residual information is always passed, 
and identity shortcuts are never closed. Residual links (shortcut connections) speed up the 
convergence of deep networks, thus giving ResNet the ability to avoid gradient diminishing 
problems.

4.3.3  DenseNet

Similar to Highway Networks and ResNet, DenseNet was proposed to solve the vanishing gra-
dient problem (Srivastava et al. 2015a; He et al. 2015a; Huang et al. 2017). The problem with 
ResNet was that it explicitly preserves information through additive identity transformations 
due to which many layers may contribute very little or no information. To address this problem, 
DenseNet used cross-layer connectivity but, in a modified fashion. DenseNet connected each 
preceding layer to the next coming layer in a feed-forward fashion; thus, feature-maps of all 
previous layers were used as inputs into all subsequent layers as expressed in Eqs. (10 and 11).

where �k
2
 and �k

l
 are the resultant feature-maps of 1st and l-1th transformation layers and 

gk(.) is a function, which enables cross-layer connectivity by concatenating proceeding lay-
ers information before assigning to new transformation layer l. This establishes l(l+1)

2
 direct 

connections in DenseNet, as compared to l connections between a layer and its preced-
ing layer in the traditional CNNs. It imprints the effect of cross-layer depthwise convolu-
tions. As DenseNet concatenates the features of the previous layer instead of adding them, 
thus, the network may gain the ability to explicitly differentiate between information that 
is added to the network and information that is preserved. DenseNet has a narrow layer 
structure; however, it becomes parametrically expensive with an increase in a number of 
feature-maps. Information flow in the network improves by providing each layer direct 
access to the gradients through the loss function. Direct admittance to gradient incorpo-
rates a regularizing effect, which reduces overfitting on tasks with smaller training sets.

4.4  Width based multi‑connection CNNs

During 2012–2015, the focus was mainly on exploiting the power of depth, along with the 
effectiveness of multi-pass regulatory connections in network regularization (Srivastava 
et al. 2015a; He et al. 2015a). However, Kawaguchi et al. (2019) reported that the width 
of the network is also important. Multilayer perceptron gained the advantage of mapping 
complex functions over perceptron by making parallel use of multiple processing units 
within a layer. This suggests that width is an essential parameter in defining principles of 

(10)�
k
2
= gc(IC, �1)

(11)�
k
l
= gk(�

k
1
,… ,�k

l−1
)
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learning along with depth. Lu et al. (2017a, b), and Hanin and Sellke (2017) have recently 
shown that NNs with ReLU activation function have to be wide enough to hold universal 
approximation property along with an increase in depth (Hanin and Sellke 2017). Moreo-
ver, a class of continuous functions on a compact set cannot be arbitrarily well approxi-
mated by an arbitrarily deep network, if the maximum width of the network is not larger 
than the input dimension (Lu et al. 2017b; Nguyen et al. 2018). Although, stacking of mul-
tiple layers (increasing depth) may learn diverse feature representations, but may not neces-
sarily increase the learning power of the NN. One major problem linked with deep archi-
tectures is that some layers or processing units may not learn useful features. To tackle this 
problem, the focus of research shifted from deep and narrow architecture towards thin and 
wide architectures.

4.4.1  Wide ResNet

It is concerned that the main drawback associated with deep residual networks is the fea-
ture reuse problem in which some feature transformations or blocks may contribute very 
little to learning (Srivastava et al. 2015b). This problem was addressed by Wide ResNet 
(Zagoruyko and Komodakis 2016). Zagoruyko and Komodakis suggested that the main 
learning potential of deep residual networks is due to the residual units, whereas depth has 
a supplementary effect. Wide ResNet exploited the power of the residual blocks by mak-
ing ResNet wide rather than deep (He et al. 2015a). Wide ResNet increased the width by 
introducing an additional factor k, which controls the width of the network. Wide ResNet 
showed that the widening of the layers might provide a more effective way of a perfor-
mance improvement than by making the residual networks deep.

Deep networks improved representational capacity, but they have some demerits such as 
time-intensive training, feature reuse, and gradient vanishing and exploding problem. He 
et al. (2015a) addressed feature reuse problem by incorporating dropout in residual blocks 
to regularize network effectively. Similarly, Huang et  al. (2016a) introduced the concept 
of stochastic depth by exploiting dropouts to solve vanishing gradient and slow learning 
problems. It was observed that even fraction improvement in performance might require 
the addition of many new layers. However, Zagoruyko and Komodakis (2016), empiri-
cally showed that though Wide ResNet was twice in a number of parameters as compared 
to ResNet, but can be trained in a better way than the deep networks (Zagoruyko and 
Komodakis 2016). Wide ResNet was based on the observation that almost all architectures 
before residual networks, including the most successful Inception and VGG, were wide as 
compared to ResNet. In Wide ResNet, learning is made effective by adding a dropout in 
between the convolutional layers rather than inside a residual block.

4.4.2  Pyramidal net

In earlier deep CNN architectures such as AlexNet, VGG, and ResNet, due to the deep 
stacking of multiple convolutional layers, depth of feature-maps increases in subsequent 
layers. However, the spatial dimension decreases, as each convolutional layer or block is 
followed by a sub-sampling layer (Krizhevsky et al. 2012; Simonyan and Zisserman 2015; 
He et al. 2015a). Therefore, Han et al. (2017) argued that in deep CNNs, a drastic increase 
in the feature-map depth and, at the same time, the loss of spatial information limits the 
learning ability of CNN. ResNet has shown remarkable results for image classification 
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problems. However, in ResNet, the deletion of a residual block, where the dimension of 
both spatial and feature-map (channel) varies (feature-map depth increases, while spatial 
dimension decreases), generally deteriorates performance. In this regard, stochastic ResNet 
improved the performance by reducing information loss associated with the dropping of 
the residual unit (Huang et al. 2016a). To increase the learning ability of ResNet, Han et al. 
(2017) proposed the Pyramidal Net. In contrast to drastic decrease in spatial width with 
an increase in depth by ResNet, Pyramidal Net increases the width gradually per residual 
unit. This strategy enables pyramidal Net to cover all possible locations instead of main-
taining the same spatial dimension within each residual block until down-sampling occurs. 
Because of a gradual increase in the depth of features map in a top-down fashion, it was 
named as pyramidal Net. In pyramidal network, depth of feature-maps is regulated by fac-
tor l , and is computed using Eq. (12).

where dl denotes the dimensions of lth residual block and n describes the number of the 
residual block, whereas � is a step size and �

n
 regulates the increase in depth. The depth reg-

ulating factor tries to distribute the burden of increase in depth of feature-maps. Residual 
connections were inserted in between the layers by using zero-padded identity mapping. 
The advantage of zero-padded identity mapping is that it needs less number of parameters 
as compared to the projection-based shortcut connection, hence may result in better gener-
alization (Wang et al. 2019). Pyramidal Net uses two different approaches for the widen-
ing of the network, including addition and multiplication based widening. The difference 
between the two types of widening is that additive pyramidal structure increases linearly, 
whereas multiplicative one increases geometrically (Ioffe and Szegedy 2015; Xu et  al. 

(12)dl =

{

16 if l = 1,
⌊

dl−1 +
�

n

⌋

if2 ≤ l ≤ n + 1

Fig. 8  Xception building block and its n sets of transformation
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2015a). However, a major problem with Pyramidal Net is that with the increase in width, a 
quadratic times increase in both space and time occurs.

4.4.3  Xception

Xception can be considered as an extreme Inception architecture, which exploits the idea 
of depthwise separable convolution (Chollet 2017). Xception modified the original incep-
tion block by making it wider and replacing the different spatial dimensions (1 × 1, 5 × 5, 
3 × 3) with a single dimension (3 × 3) followed by a 1 × 1 convolution to regulate computa-
tional complexity.

The Architecture of the Xception block is shown in Fig.  8. Xception makes the net-
work computationally efficient by decoupling spatial and feature-map (channel) correla-
tion, which is mathematically expressed in Eqs. (13 and 14). It works by first mapping the 
convolved output to low dimensional embeddings using 1 × 1 convolutions. It then spatially 
transforms it n times, where n is a width defining cardinality, which determines the number 
of transformations.

In Eq. (14), �l is a kth kernel of lth layer having depth one, which is spatially convolved 
across kth feature-map �k

l
 , where (x, y) and (u, v) show the spatial indices of feature-map 

and kernel respectively. In depthwise separable convolution, it is to be noted that number of 
kernels K is equal to number of input feature-maps contrary to conventional convolutional 
layer where number of kernels are independent of previous layer feature-maps. Whereas 
�l+1 is kth kernel of (1 × 1) spatial dimension for l + 1th layer, which performs depthwise 
convolution across output feature-maps [�1

l+1
,… ,�k

l+1
,… ,�K

l+1
] of lth layer, used as input 

of l + 1th layer.
Xception makes computation easy by separately convolving each feature-map across 

spatial axes, which is followed by pointwise convolution (1 × 1 convolutions) to perform 
cross-channel correlation. In conventional CNN architectures; convolutional operation 
uses only one transformation segment, inception block uses three transformation segments, 
whereas in Xception number of transformation segments is equal to the number of feature-
maps. Although the transformation strategy adopted by Xception does not reduce the num-
ber of parameters, it makes learning more efficient and results in improved performance.

4.4.4  ResNeXt

ResNeXt, also known as Aggregated Residual Transform Network, is an improvement over 
the Inception Network (Xie et al. 2017). Xie et al. exploited the concept of the split, trans-
form, and merge in a powerful but simple way by introducing a new term; cardinality (Sze-
gedy et al. 2015). Cardinality is an additional dimension, which refers to the size of the 
set of transformations (Han et al. 2018; Sharma and Muttoo 2018). The Inception network 

(13)f k
l+1

(p, q) =
∑

x,y

f k
l
(x, y).ek

l
(u, v)

(14)�
k
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has not only improved the learning capability of conventional CNNs, but it also makes a 
network resource-efficient. However, due to the use of diverse spatial embedding’s (such as 
the use of 3 × 3, 5 × 5, and 1 × 1 filter) in the transformation branch, each layer needs to be 
customized separately. ResNeXt utilized the deep homogenous topology of VGG and sim-
plified GoogleNet architecture by fixing spatial resolution to 3 × 3 filters within the split, 
transform, and merge block. Whereas, it used residual learning to improve the convergence 
of deep and wide network (Simonyan and Zisserman 2015; Szegedy et al. 2015; He et al. 
2015a). The building block for ResNeXt is shown in Fig. 9. ResNeXt used multiple trans-
formations within a split, transform and merge block and defined these transformations in 
terms of cardinality. Xie et al. (2017) showed that an increase in cardinality significantly 
improves performance. The complexity of ResNeXt was regulated by applying low embed-
ding’s (1 × 1 filters) before 3 × 3 convolution, whereas training was optimized by using skip 
connections (Larsson et al. 2016).

4.4.5  Inception family

Inception family of CNNs also comes under the class of width based methods (Szegedy 
et  al. 2015, 2016a, b). In Inception networks, within a layer, varying sizes of the filters 
were used, which increased the output of the intermediate layers. The use of the different 
sizes of filters helps capture the diversity in high-level features. Salient characteristics of 
the Inception family are discussed in Sects. 4.1.5 and 4.2.3.

Fig. 9  ResNeXt building block showing the different paths of transformation
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4.5  Feature‑Map  (ChannelFMap) Exploitation based CNNs

CNN became popular for MV tasks because of its hierarchical learning and automatic fea-
ture extraction ability (LeCun et al. 2010). Feature selection plays a vital role in determin-
ing the performance of classification, segmentation, and detection modules. In CNN, fea-
tures are dynamically selected by tuning the weights associated with a kernel also known 
as  mask. Also, multiple stages of feature extraction are used, which can extract diverse 
types of features (known as feature-maps or channels in CNN). However, some of the fea-
ture-maps impart little or no role in object discrimination (Hu et  al. 2018a). Enormous 
feature sets may create an effect of noise and thus lead to over-fitting of the network. This 
suggests that apart from network engineering, selection of feature-maps can play an impor-
tant role in improving the generalization of the network. In this section, feature-maps and 
channels will be interchangeably used as many researchers have used the word channels for 
the feature-maps.

4.5.1  Squeeze and excitation network

Squeeze and Excitation Network (SE-Network) was reported by Hu et al. (2018a). They 
proposed a new block for the selection of feature-maps (commonly known as channels) rel-
evant to object discrimination. This new block was named as SE-block (shown in Fig. 10), 
which suppresses the less important feature-maps, but gives high weightage to the class 
specifying feature-maps. SE-Network reported a record decrease in error on the ImageNet 
dataset. SE-block is a processing unit that is designed generically and therefore, can be 
added in any CNN architecture before the convolution layer. The working of this block 
consists of two operations; squeeze and excitation. Convolution kernel captures informa-
tion locally, but it ignores the contextual relation of features (correlation) that are outside 
of this receptive field (LeCun et al. 2015). Squeeze operation is performed to get a global 
view of feature-maps. The squeeze block generates feature-map wise statistics (also known 
as feature-map motifs or descriptors) by suppressing spatial information of the convolved 
input. As global average pooling has the potential to learn the extent of target object effec-
tively (Lin et al. 2013; Zhou et al. 2016), therefore, it is employed by the squeeze operation 
gsq(.) using the following Eq. (15):

(15)sk
l
= gsq(�

k
l
) =

1

P × Q

∑

p,q

f k
l
(p, q)

Fig. 10  Squeeze and Excitation block showing the computation of masks for the recalibration of feature-
maps that are commonly known as channels in literature
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where sk
l
 represents a feature descriptor for kth feature-map of lth layer, and P × Q 

defines the spatial dimension of feature-map �k
l
 . Whereas output of squeeze operation 

�
K
l
=
[

s1
l
,… , sK

l

]

 for K number of convolved feature-maps for lth layer is assigned to the 
excitation operation gex(.) , which models motif-wise interdependencies by exploiting gat-
ing mechanism. Excitation operation assigns weights to feature-maps using two layer feed 
forward NN, which is mathematically expressed in Eq. (16).

In Eq. (16), yk
l+1

 denotes weightage for input feature-map �k
l+1

 of next layer (l +1), where 
gt(.) and gsg (.) apply the ReLU based non-linear transformation and sigmoid gate, respec-
tively. Similarly, �K

l+1
=
[

y1
l+1

,… , yK
l+1

]

 shows the weightage for K number of convolved 
feature-maps that are used to rescale them before assigning to the l + 1th layer. In excitation 
operation, �1 and �2 both are used as transformation weight vectors and regulating factors 
to limit the model complexity and aid the generalization (LeCun 2007; Xu et al. 2015a). 
The output of the first hidden transformation in NN is preceded by the ReLU activation 
function, which inculcates non-linearity in motif responses. The gating mechanism is 
exploited in SE-block using the sigmoid activation function, which models the non-linear 
responses of the feature-maps and assigns a weight based on feature-map relevance (Zheng 
et al. 2017). SE-block adaptively recalibrates the feature-maps of each layer by multiplying 
convolved input with the motif responses.

4.5.2  Competitive squeeze and excitation networks

Competitive Inner-Imaging Squeeze and Excitation for Residual Network also known as 
CMPE-SE Network was proposed by Hu et al. (2018b). Hu et al. (2018a) used the idea of 
SE-block to improve the learning of deep residual networks. SE-Network recalibrates the fea-
ture-maps based upon their contribution in class discrimination. However, the main concern 
with SE-Net is that in ResNet, it only considers the residual information for determining the 
weight of each feature-map (Hu et  al. 2018a). This minimizes the impact of SE-block and 
makes ResNet information redundant. Hu et al. addressed this problem by generating feature-
map wise motifs (statistics) from both residual and identity mapping based feature-maps. In 
this regard, global representation of feature-maps is generated using global average pooling 
operation (Eq. 17), whereas relevance of feature-maps is estimated by establishing competi-
tion between feature descriptors of residual and identity mappings. This phenomena is termed 
as inner imaging (Hu et al. 2018b). CMPE-SE block not only models the relationship between 
residual feature-maps but also maps their relation with identity feature-map. The mathematical 
expression for CMPE-SE block is represented using the following equation:
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where �K
l

 and �K
�

m+1
 are the identity and residual mapping of input �K

l
 respectively. SE block 

is implemented by applying squeeze operation gsq(.) both on residual and the identity fea-
ture-maps and their receptive output is used as joint input of excitation operation gex(.) . 
Whereas gk(.) represents the concatenation operation. The output masks of excitation oper-
ation (Eq. 18) are multiplied with residual information (Eq. 19) to rebuild each feature-map 
importance. The backpropagation algorithm thus tries to optimize the competition between 
identity and residual feature-maps and the relationship between all feature-maps in the 
residual block.

4.6  Channel(Input) exploitation based CNNs

Image representation plays an important role in determining the performance of the image 
processing algorithms, including both conventional and deep learning algorithms. A good rep-
resentation of the image is one that can define the salient features of an image from a compact 
code. In MV tasks, various types of conventional filters are applied to extract different levels 
of information for a single type of image (Lowe 2004; Dollár et al. 2009). These diverse rep-
resentations are then used as an input of the model to improve performance (Do and Vetterli 
2005; Oquab et al. 2014). Now CNN is a compelling feature learner that can automatically 
extract discriminating features depending upon the problem (Yang et al. 2019). However, the 
learning of CNN relies on input representation. The lack of diversity and the absence of class 
discernable information in the input may affect CNN’s performance as a discriminator. For 
this purpose, the concept of channel boosting (input channel dimension) using auxiliary learn-
ers is introduced in CNNs to boost the representation of the network (Khan et al. 2018a).

4.6.1  Channel boosted CNN using TL

Khan et al. (2018a) proposed a new CNN architecture named as Channel boosted CNN (CB-
CNN) based on the idea of boosting the number of input channels for improving the represen-
tational capacity of the network. The Block diagram of CB-CNN is shown in Fig. 11. Chan-
nel boosting is performed by artificially creating extra channels (known as auxiliary channels) 
through auxiliary deep generative models and then exploiting it through the deep discrimina-
tive models. CB-CNN is mathematically expressed in Eqs. (20 and 21).

 
In Eq.  (20), �C represents the original input channels, where �M is an artificial chan-

nel generated by Mth auxiliary learner. Whereas gk(.) is used as a combiner function that 
concatenates the original input channels with auxiliary channels to generates the channel 
boosted input �B for the discriminator. Equation (21) shows the kth resultant feature-map 
�
k
l
 , which is generated by convolving the boosted input �B with kernel �l of lth layer.
Bengio et  al. (2013), empirically showed that data representation plays an important 

role in determining the performance of a classifier, as different representations may present 
different aspects of information. For improving the representation of the data, Khan et al. 
exploited the power of TL and deep generative learners (Qiang Yang et al. 2008; Vincent 
et  al. 2008; Hamel and Eck 2010). Generative learners attempt to characterize the data 

(20)�B = gk
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generating distribution during the learning phase. In CB-CNN, AEs are used as the gen-
erative learners to learn explanatory factors of variation behind the data. The concept of 
inductive TL is used in a novel way to build a boosted input representation by augmenting 
learned distribution of the input data with the original channel space (input channels). CB-
CNN encodes channel-boosting phase into a generic block, which is inserted at the start of 
a deep network. CB-CNN provides the concept that TL can be used at both generation and 
discrimination stages. The significance of the study is that multi-deep learners are used, 
where generative learning models are used as auxiliary learners. These leaners enhance the 
representational capacity of deep CNN based discriminator. Although the potential of the 
channel boosting was only evaluated by inserting a boosting block at the start, however, 
Khan et al. suggested that this idea can be extended by providing auxiliary channels at any 
layer in the deep architecture. CB-CNN has also been evaluated on the medical image data-
set (Aziz et al. 2020), where it has shown improved results, as shown in Table 4.

4.7  Attention based CNNs

Different levels of abstractions have an important role in defining the discrimination power 
of the NN. In addition to learning of multiple hierarchies of abstractions, focusing on fea-
tures relevant to the context also plays a significant role in image localization and recogni-
tion. In the human visual system, this phenomenon is referred to as attention. Humans view 
the scene in a succession of partial glimpses and pay attention to context-relevant parts. 
This process not only serves to focus selected regions but also deduces different interpreta-
tions of objects at that location and thus helps in capturing visual structure in a better way. 

Fig. 11  Basic architecture of CB-CNN showing the deep auxiliary learners for creating artificial channels

Table 4  Results of CNN and 
CB-CNN on mitosis dataset

CNN architecture F-score

26 layers deep CNN 0.47
26 layers deep CB-CNN 0.53
VGG 0.55
CB-VGG 0.71
ResNet 0.44
CB-ResNet 0.54
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A more or less similar kind of interpretability is added into RNN and LSTM (Mikolov 
et al. 2010; Sundermeyer et al. 2012). RNN and LSTM networks exploit attention modules 
for the generation of sequential data, and the new samples are weighted based on their 
occurrence in previous iterations. The concept of attention was incorporated into CNN, by 
various researchers to improve representation and overcome the computational limits. This 
idea of attention also helps in making CNN intelligent enough to recognize objects even 
from cluttered backgrounds and complex scenes.

4.7.1  Residual attention neural network

Wang et  al. (2017a) proposed a Residual Attention Network (RAN) to improve the fea-
ture representation of the network. The motivation behind the incorporation of attention in 
CNN was to make a network capable of learning object aware features. RAN is a feed-for-
ward CNN, which was built by stacking residual blocks with attention module. The atten-
tion module is branched off into trunk and mask branches that adopt bottom-up, top-down 
learning strategy. The assembly of two different learning strategies into the attention mod-
ule enables fast feed-forward processing and top-down attention feedback in a single feed-
forward process. The bottom-up feed-forward structure produces low-resolution feature-
maps with strong semantic information. Whereas, top-down architecture produces dense 
features to make an inference of each pixel.

In the previously proposed studies, a top-down, bottom-up learning strategy was 
used by Restricted Boltzmann Machines (Salakhutdinov and Larochelle 2010). Simi-
larly, Goh et  al. exploited the top-down attention mechanism as a regularizing factor 
in Deep Boltzmann Machine during the reconstruction phase of the training. The top-
down learning strategy globally optimizes the network in such a way that it gradually 
output the maps to input during the learning process (Hinton et al. 2006; Salakhutdinov 
and Larochelle 2010; Goh et al. 2013). The attention module in RAN generates object 
aware soft mask gsm(.) at each layer for input feature-map �K

l
 (Xu et  al. 2015b). Soft 

mask gsm(.) assigns attention towards object using Eq. (22) by recalibrating trunk branch 
gtm(�

K
l
) output and thus, behaves like a control gate for every neuron output.

In one of the previous studies, Transformation network (Jaderberg et al. 2015; Li et al. 
2018) also exploited the idea of attention in a simple way by incorporating it with convolu-
tion block, but the main problem was that attention modules in Transformation network are 
fixed and cannot adapt to changing circumstances. RAN was made efficient towards rec-
ognition of cluttered, complex, and noisy images by stacking multiple attention modules. 
Hierarchical organization of RAN endowed the ability to adaptively assign weight to each 
feature-map based on their relevance in the layers (Wang et al. 2017a). Learning of deep 
hierarchical structure was supported through residual units. Moreover, three different levels 
of attention: mixed, channel, and spatial attention were incorporated, thus leveraging the 
capability to capture object-aware features at different levels (Wang et al. 2017a).

(22)gam(�
K
l
) = gsm(�

K
l
).gtm(�

K
l
)
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4.7.2  Convolutional block attention module

The significance of attention mechanism and feature-map exploitation is validated 
through RAN and SE-Network (Wang et al. 2017a; Hu et al. 2018a). In this regard, Woo 
et  al. (2018) came up with new attention-based CNN, named as Convolutional Block 
Attention Module (CBAM). CBAM is simple in design and similar to SE-Network. SE-
Network only considers the contribution of feature-maps in image classification, but it 
ignores the spatial locality of the object in images. The spatial location of the object has 
a vital role in object detection.

CBAM infers attention maps sequentially by first applying feature-map (channel) atten-
tion and then spatial attention, to find the refined feature-maps. In literature, generally, 
1 × 1 convolution and pooling operations are used for spatial attention. Woo et al. showed 
that the pooling of features along the spatial axis generates an efficient feature descrip-
tor. CBAM concatenates average pooling operation with max-pooling, which generates a 
strong spatial attention map. Likewise, feature-map statistics were modeled using a com-
bination of max-pooling and global average-pooling operation. Woo et  al. showed that 
max-pooling could provide the clue about distinctive object features, whereas the use of 
global average pooling returns suboptimal inference of feature-map attention. The exploita-
tion of both average-pooling and max-pooling improves the representational power of the 
network. These refined feature-maps not only focus on the important part but also increase 
the representational power of the selected feature-maps. Woo et al. empirically showed that 
the formulation of a 3D attention map via the serial learning process helps in the reduction 
of the parameters as well as computational cost. Due to the simplicity of CBAM, it can be 
integrated easily with any CNN architecture.

4.7.3  Concurrent spatial and channel excitation mechanism

Roy et al. (2018) extended the work of Hu et al. (2018a) by incorporating the effect of spa-
tial information in combination with feature-map (channel) information to make it applica-
ble to segmentation tasks. They introduced three different modules: (1) squeezing spatially 
and exciting feature-map information (cSE), (2) squeezing feature-map and exciting spatial 
information (sSE), and (3) concurrent squeeze and excitation of spatial and feature-map 
information (scSE). In this work, AE based convolutional NN was used for segmentation, 
whereas proposed modules were inserted after the encoder and decoder layers. In the cSE 
module, the same concept as that of SE-block is exploited. In this module, the scaling fac-
tor is derived based on the combination of feature-maps used for object detection. As spa-
tial information has an important role in segmentation, therefore in the sSE module, the 
spatial locality has been given more importance than feature-map information. For this 
purpose, different combinations of feature-maps are selected and exploited spatially to use 
them for segmentation. In the last module, scSE, attention to each feature-map, is assigned 
by deriving scaling factor both from spatial and feature-map information and thus to high-
light the object-specific feature-maps [117] selectively (Roy et al. 2018).
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5  Applications of CNNs

CNNs have been successfully applied to different ML related tasks, namely object detec-
tion, recognition, classification, regression, segmentation, etc., (Batmaz et al. 2019; Chou-
han and Khan 2019; Wahab et al. 2019). However, CNN generally needs a large amount of 
data for learning. All of the areas mentioned earlier in which CNN has shown tremendous 
success have relatively sufficient labeled data, such as traffic sign recognition, segmenta-
tion of medical images, and the detection of faces, text, pedestrians, and humans in natural 
images. Some of the interesting applications of CNN are discussed below.

5.1  CNN based computer vision and related applications

Computer vision (CV) focuses on developing an artificial system that can process visual 
data, including images and videos and can effectively understand, and extract useful infor-
mation from it. CV encompasses a number of application areas such as face recognition, 
pose estimation, activity recognition, etc.

Face recognition is one of the difficult tasks in the CV. Face recognition systems have 
to cope with variations such as caused by illumination, change in pose, and different facial 
expressions. Farfade et al. (2015) proposed deep CNN for detecting faces from different 
poses as well as from occluded faces (Farfade et al. 2015). In another work, Zhang et al. 
(2016) performed face detection using a new type of multitasking cascaded CNN. Zhang’s 
technique showed good results when compared to state-of-the-art techniques (Li et  al. 
2015; Ranjan et al. 2015; Yang et al. 2015).

Human pose estimation is one of the challenging tasks related to CV because of the 
high variability in body pose. Li et al. (2014) proposed a heterogeneous deep CNN based 
pose estimation related technique. In Li’s technique, empirical results have shown that the 
hidden neurons can learn the localized part of the body. Similarly, another cascade based 
CNN technique is proposed by Bulat and Tzimiropoulos (2016). In their cascaded architec-
ture, first heat maps are detected, whereas, in the second phase, regression is performed on 
the detected heat maps.

Action recognition is one of the important areas of activity recognition. The difficulties 
in developing an action recognition system are to solve the translations and distortions of 
features in different patterns, which belong to the same action class. Earlier approaches 
involved the construction of motion history images, the use of Hidden Markov Models, 
action sketch generation, etc. Recently, Wang et al. (2017b) proposed a three dimensional 
CNN architecture in combination with LSTM for recognizing different actions from video 
frames. Experimental results have shown that Wang’s technique outperforms other activity 
recognition based techniques (Wang and Schmid 2013; Simonyan and Zisserman 2014; 
Donahue et  al. 2015; Sun et  al. 2015; Tran et  al. 2015). Similarly, another three dimen-
sional CNN based action recognition system is proposed by Ji et al. (2010). In Ji’s work, 
three-dimensional CNN is used to extract features from multiple channels of input frames. 
The final action recognition based model is developed on combined extracted feature 
space. The proposed three dimensional CNN model is trained in a supervised way and can 
perform activity recognition in real-world applications.
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5.2  CNN based natural language processing

Natural Language Processing (NLP) converts language into a presentation that can eas-
ily be exploited by any computer. Although RNNs are very suitable for NLP applica-
tions, however, CNNs have also been utilized in NLP based applications such as lan-
guage modeling, and analysis, etc. Especially, language modeling or sentence molding 
has taken a twist after the introduction of CNN as a new representation learning algo-
rithm. Sentence modeling is performed to know semantics of the sentences and thus 
offer new and appealing applications according to customer requirements. Traditional 
methods of information retrieval analyze data, based on words or features, but ignore the 
core of the sentence. Kalchbrenner et al. (2014) proposed a dynamic CNN and dynamic 
k-max pooling during training. This approach finds the relations between words without 
taking into account any external source like parser or vocabulary (Kalchbrenner et al. 
2014). In a similar way, Collobert and Weston (2008) proposed CNN based architecture 
that can perform various MLP related tasks at the same time as chunking, language 
modeling, recognizing name-entity, and role modeling related to semantics. In another 
work, Hu et al. (2011) proposed a generic CNN based architecture that performs match-
ing between two sentences and thus can be applied to different languages.

5.3  CNN based object detection and segmentation

Object detection focuses on identifying different objects in images. Recently, R-CNN 
has been widely used for object detection. Ren et al. (2015) proposed an improvement 
over R-CNN named as fast R-CNN for object detection. In their work, a fully connected 
convolutional neural network is used to extract feature space that can simultaneously 
detect the boundary and score of objects located at different positions. Similarly, Dai 
et  al. (2016) proposed region-based object detection using fully connected CNN. In 
Dai’s work, results are reported on the PASCAL VOC image dataset. Another object 
detection technique is reported by Gidaris and Komodakis (2015), which is based on 
multi-region based deep CNN that helps to learn the semantic aware features. In Gidar-
is’s approach, objects are detected with high accuracy on PASCAL VOC 2007 and 2012 
dataset. Recently, AE based CNN architectures have shown success in segmentation 
tasks. In this regard, various interesting CNN architectures have been reported for both 
semantic and instance-based segmentation tasks such as FCN, SegNet, Mask R-CNN, 
U-Net etc., (Ronneberger et al. 2015; Badrinarayanan et al. 2017; He et al. 2017; Zhang 
et al. 2018b).

5.4  CNN based image classification

CNN has been widely used for image classification (Levi and Hassner 2009; Long et al. 
2012; Sermanet et  al. 2012). One of the primary applications of CNN is in medical 
images, especially for the diagnosis of cancer using histopathological images (Cireşan 
et al. 2013). Recently, Spanhol et al. (2016a, b) used CNN for the diagnosis of breast 
cancer images, and results are compared against a network trained on a dataset contain-
ing handcrafted descriptors. Another recently proposed CNN based technique for breast 
cancer diagnosis is developed by Wahab et  al. (2017). In Wahab’s work, two phases 
are involved. In the first phase, hard non-mitosis examples are identified. In the second 
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phase, data augmentation is performed to cope with the class skewness problem. Simi-
larly, Cireşan et  al. (2012a, b) used the German benchmark dataset related to a traffic 
sign signal. They designed CNN based architecture that performed traffic sign classifi-
cation related task with a good recognition rate.

5.5  CNN based speech recognition

Deep CNN is mostly considered as the best option to deal with image processing applica-
tions, however; recent studies have shown that it also performs well on speech recognition 
tasks. Abdel-Hamid et al. (2012) reported a CNN based speaker-independent speech recogni-
tion system. Experimental results showed a ten percent reduction in error rate in comparison 
to the earlier reported methods (Dahl et  al. 2010; Mohamed et  al. 2012). In another work, 
various CNN architectures, which are either based on the full or limited number of weight 
sharing within the convolution layer, are explored (Abdel-Hamid et al. 2013). Furthermore, 
the performance of CNN is also evaluated after the initialization of the network using the 
pre-training phase (Mohamed et al. 2012). Experimental results showed that almost all of the 
explored architectures yield good performance on phone and vocabulary recognition related 
tasks. Nowadays, the utilization of CNNs for speech emotion recognition is also gaining atten-
tion. Huang et al. used CNN in combination with LSTM for recognizing emotions of speech. 
In Huang’s approach, CNN was trained both on verbal and nonverbal segments of speech, 
and CNN learned features were used by LSTM for recognizing speech emotions (Huang et al. 
2019).

5.6  CNN based video processing

In video processing techniques, temporal and spatial information from videos is exploited. 
Many researchers have used CNN to solve various video processing-related problems (Tong 
et al. 2015; Frizzi et al. 2016; Shi et al. 2017; Ullah et al. 2017; Wang et al. 2017b). Tong et al. 
proposed CNN based short boundary detection system. In Tong’s approach, TAGs are gener-
ated using CNN (Tong et al. 2015). During the experiment, the merging of TAGs against one-
shot is performed to annotate video against that shot. Similarly, Wang et al. (2017b) used 3-D 
CNN along with LSTM to recognize action within the video. In another technique, Frizzi et al. 
(2016) used CNN for detecting smoke and fire within the video. In Frizzi’s approach, CNN 
architecture not only extracts salient features but also performs the classification task. In the 
field of action recognition, the gathering of spatial and temporal information is considered as a 
tedious task. In order to overcome the deficiencies of traditional feature descriptors, Shi et al. 
(2017) proposed a three stream-based structure, which is capable of extracting spatial–tem-
poral features along with short and long term motion within the video. Similarly, in another 
technique, CNN, in combination with bi-directional LSTM, is used for recognizing action 
from the video (Ullah et al. 2017). Their approach comprises of two phases. In the first phase, 
features are extracted from the sixth frame of the videos. In the second phase, sequential infor-
mation between features of the frame is exploited using the bi-directional LSTM framework.

5.7  CNN for low resolution images

In the field of ML, different researchers have used CNN based image enhancement tech-
niques for enhancing the resolution of the images (Kawashima et al. 2017; Chevalier et al. 
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2015; Peng et al. 2016). Peng et al. (2016) used deep CNN based approach, which catego-
rizes the objects in images having low resolution. Similarly, Chevalier et al. (2015) intro-
duced LR-CNN for low-resolution image classification. Another, the deep learning based 
technique is reported by Kawashima et  al. (2017), in which convolutional layers, along 
with a layer of LSTM is used to recognize action from thermal images of low resolution.

5.8  CNN for resource limited systems

Despite CNN’s high computational cost, it has been successfully utilized in developing 
different ML based embedded systems (Bettoni et  al. 2017; Lee et  al. 2017; Xie et  al. 
2018). Lee et al. (2017) developed the number plate recognition system, which is capable 
of quickly recognizing the number on the license plate. In Lee’s technique, the deep learn-
ing based embedded recognition system comprises of simple AlexNet architecture. In order 
to address power efficiency and portability for embedded platforms, Bettoni et al. (2017) 
implemented CNN on the FPGA platform. In another technique, the FPGA embedded plat-
form is used for efficiently performing different CNN based ML tasks (Xie et al. 2018). 
Similarly, resource-limited CNN architectures such as MobileNet, ShuffleNet, ANTNets, 
etc. are highly applicable for mobile devices (Howard et  al. 2017; Zhang et  al. 2018a; 
Xiong et al. 2019). Shakeel et al. developed a real-time based driver drowsiness detection 
application for smart devices such as android phones. They used MobileNet architecture in 
combination with SSD to exploit the benefit of the lightweight architecture of MobileNet 
that can be easily deployed on resource-constrained hardware and can learn enriched repre-
sentation from the incoming video (Shakeel et al. 2019).

5.9  CNN for 1D‑data

CNN has not only shown good performance on images but also on 1D-data. The use of 
1D-CNN as compared to other ML methods is becoming popular because of its good fea-
ture extraction ability. Vinayakumar et al. (2017) used 1D-CNN in combination with RNN, 
LSTM, and gated recurrent units for intrusion detection in network traffic. They evaluated 
the performance of the proposed models on the KDDCup 99 dataset consisting of network 
traffic of TCP/IP packets and showed that CNN significantly surpasses the performance 
of classical ML models. Abdeljaber et al. (2017) showed that 1D-CNN could be used for 
real-time structural damage detection problem. They developed an end-to-end system that 
can automatically extract damage-sensitive features from accelerated signals for detection 
purposes. Similarly, Yildirim et al. showed the successful use of CNN for the 1D biomedi-
cal dataset. Yildirim et al. developed 16 layers deep 1D-CNN based application for mobile 
devices and a cloud-based environment for detecting cardiac irregularity in ECG signals. 
They achieved 91.33% accuracy on the MIT-BIH Arrhythmia database (Yıldırım et  al. 
2018).

6  CNN challenges

Deep CNNs have achieved good performance on data that either is of the time series nature 
or follows a grid-like topology. However, there are also some other challenges, where deep 
CNN architectures have been put to tasks. Major challenges associated with different CNN 
architectures are mentioned in Tables 5, 6, 7, 8, 9, 10, 11. The different researchers related 
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to the performance of CNN on different ML tasks have interesting discussions. Some of 
the challenges faced during the training of deep CNN models are given below:

• Deep CNNs are generally like a black box and thus may lack in interpretation and 
explanation. Therefore, sometimes it is difficult to verify them.

• Szegedy et al. (2014) showed that training of CNN on noisy image data could cause an 
increase of misclassification error. The addition of the small quantity of random noise 
in the input image is capable of fooling the network in such a way that the model will 
classify the original and its slightly perturbed version differently.

• Each layer of CNN automatically tries to extract better and problem-specific features 
related to the task. However, for some tasks, it is imperative to know the nature of fea-
tures extracted by the deep CNNs before classification. The idea of feature visualiza-
tion in CNNs can help in this direction. Similarly, Hinton reported that lower layers 
should handover their knowledge only to the relevant neurons of the next layer. In this 
regard, Hinton proposed an interesting Capsule Network approach (de Vries et al. 2016; 
Hinton et al. 2018).

• Deep CNNs are based on supervised learning mechanisms, and therefore, the availabil-
ity of large and annotated data is required for its proper learning. In contrast, humans 
can learn and generalize from a few examples.

• Hyper-parameter selection highly influences the performance of CNN. A little change 
in the hyper-parameter values can affect the overall performance of a CNN. That is why 
careful selection of hyper-parameters is a major design issue that needs to be addressed 
through some suitable optimization strategy.

• The efficient training of CNN demands powerful hardware resources such as GPUs. 
However, it is still needed to employ CNNs in embedded and smart devices efficiently. 
A few applications of deep learning in embedded systems are wound intensity correc-
tion, law enforcement in smart cities, etc., (Hinton et al. 2011, 2012a; Lu et al. 2017a).

• In vision-related tasks, one shortcoming of CNN is that it is generally unable to show 
good performance when used to estimate the pose, orientation, and location of an 
object. In 2012, AlexNet solved this problem to some extent by introducing the concept 
of data augmentation. Data augmentation can help CNN in learning diverse internal 
representations, which ultimately may lead to improved performance.

7  Future directions

The exploitation of different innovative ideas in CNN architectural design has changed the 
direction of research, especially in image processing and CV. Good performance of CNN 
on a grid-like topological data presents it as a powerful representational model for images. 
Architectural design of CNN is a promising research field and in future, it is likely to be 
one of the most widely used AI techniques.

• Ensemble learning is one of the prospective areas of research in CNNs (Marmanis 
et al. 2016; Ahmed et al. 2019). The combination of multiple and diverse architectures 
can aid the model in improving generalization and robustness on diverse categories of 
images by extracting different levels of semantic representations. Similarly, concepts 
such as batch normalization, dropout, and new activation functions are also worth men-
tioning.
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• The potential of a CNN as a generative learner is exploited in image segmentation 
tasks, where it has shown good results (Kahng et al. 2019). The exploitation of genera-
tive learning capabilities of CNNs at feature extraction stages can boost the represen-
tational power of the model. Similarly, new paradigms are needed that can enhance 
the learning capacity of CNN by incorporating informative feature-maps that can be 
learned using auxiliary learners at the intermediate stages of CNN (Khan et al. 2018a).

• In the human visual system, attention is one of the important mechanisms in capturing 
information from images. The attention mechanism operates in such a way that it not 
only extracts the essential information from image but also stores its contextual rela-
tion with other components of image (Bhunia et al. 2019). In the future, research may 
be carried out in the direction that preserves the spatial relevance of objects along with 
their discriminating features at later stages of learning.

• The learning capacity of CNN is generally enhanced by increasing the size of the net-
work, and it can be done in a reasonable time with the help of the current advanced 
hardware technology such as Nvidia DGX-2 supercomputer. However, the training of 
deep and high capacity architectures is still a significant overhead on memory usage and 
computational resources (Lacey et al. 2016; Sze et al. 2017; Justus et al. 2019). Con-
sequently, we still require many improvements in hardware technology that can accel-
erate research in CNNs. The main concern with CNNs is the run-time applicability. 
Moreover, the use of CNN is hindered in small hardware, especially in mobile devices, 
because of its high computational cost. In this regard, different hardware accelera-
tors are needed for reducing both execution time and power consumption (Geng et al. 
2019). Some of the very interesting accelerators are already proposed. For example, 
Application Specific Integrated Circuits, FPGA, and Eyeriss are well known (Moons 
and Verhelst 2017). Moreover, different operations have been performed to minimize 
the hardware resources in terms of chip area and energy requirement, by reducing float-
ing-point precision of operands and ternary quantization or minimizing the number of 
matrix operations. Now it is also time to redirect research towards hardware-oriented 
approximation models (Geng et al. 2019).

• Deep CNN has a large number of hyper-parameters such as activation function, ker-
nel size, number of neurons per layers, and arrangement of layers, etc. The selection 
of hyper-parameters and the evaluation time of a deep network, make parameter tun-
ing quite a difficult job. Hyper-parameter tuning is a tedious and intuition driven task, 
which cannot be defined via explicit formulation. In this regard, Genetic algorithms can 
also be used to automatically optimize the hyper-parameters by performing searches 
both in a random fashion as well as by directing search by utilizing previous results 
(Young et al. 2015; Suganuma et al. 2017; Khan et al. 2019).

• In order to overcome hardware limitations, the concept of pipeline parallelism can be 
exploited to scale up deep CNN training. Google group has proposed a distributed ML 
library GPipe (Huang et al. 2018) that offers a model parallelism option for training. In 
the future, the concept of pipelining can be used to accelerate the training of large mod-
els and to scale the performance without tuning hyper-parameters.

• In the future, it is expected that the potential of cloud-based platforms will be exploited 
for the development of computationally intensive CNN applications (Akar et al. 2019; 
Stefanini et al. 2019). Deep and wide CNNs present a critical challenge in implement-
ing and executing them on resource-limited devices. Cloud computing not only allows 
dealing with a massive amount of data but also leverages the benefit of high computa-
tional efficiency at a negligible cost. World-leading companies such as Amazon, Micro-
soft, Google, and IBM offer the public cloud computing facilities at high scalability, 
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speed, and flexibility to train resource-hungry CNN architectures. Moreover, the cloud 
environment makes it easy to configure libraries both for researchers and new practi-
tioners.

• CNNs are mostly used for image processing applications, and therefore, the implemen-
tation of the state-of-the-art CNN architectures on sequential data requires the conver-
sion of 1D-data into 2D-data. Due to the good feature extraction ability and efficient 
computations with the limited number of parameters, the trend of using 1D-CNNs is 
being promoted for sequential data (Vinayakumar et al. 2017; Madrazo et al. 2019).

• Recently high energy physicists at CERN have also been utilizing the learning capabil-
ity of CNN for the analysis of particle collisions. It is expected that the use of ML and 
specifically that of deep CNN in high energy physics will grow (Aurisano et al. 2016; 
Madrazo et al. 2019).

8  Conclusion

CNN has made remarkable progress, especially in image processing and vision-related 
tasks, and has thus revived the interest of researchers in ANNs. In this context, several 
research works have been carried out to improve CNN’s performance on such tasks. The 
advancements in CNNs can be categorized in different ways, including activation, loss 
function, optimization, regularization, learning algorithms, and innovations in architecture. 
This paper reviews advancement in the CNN architectures, especially based on the design 
patterns of the processing units and thus has proposed the taxonomy for recent CNN archi-
tectures. In addition to the categorization of CNNs into different classes, this paper also 
covers the history of CNNs, its applications, challenges, and future directions.

The learning capacity of CNN is significantly improved over the years by exploiting 
depth and other structural modifications. It is observed in recent literature that the main 
boost in CNN performance has been achieved by replacing the conventional layer struc-
ture with blocks. Nowadays, one of the paradigms of research in CNN architectures is the 
development of new and effective block architectures. The role of a block in a network can 
be that of an auxiliary learner. These auxiliary learners either exploit spatial or feature-map 
information or even boost input channels to improve performance. These blocks play a sig-
nificant role in boosting CNN performance by making problem-aware learning.

Moreover, the block-based architecture of CNN encourages learning in a modular fash-
ion and thereby, making architecture simpler and more understandable. The concept of the 
block being a structural unit is going to persist and further enhance CNN performance. 
Additionally, the idea of attention and exploitation of channel information, in addition to 
spatial information, is expected to gain more importance.

Acknowledgements The authors would like to thank Pattern Recognition lab at DCIS, and PIEAS for pro-
viding them computational facilities. The authors express their gratitude to M. Waleed Khan of PIEAS for 
the detailed discussion related to the Mathematical description of the different CNN architectures.

References

Abbas Q, Ibrahim MEA, Jaffar MA (2019) A comprehensive review of recent advances on deep vision sys-
tems. Artif Intell Rev 52:39–76. https ://doi.org/10.1007/s1046 2-018-9633-3

https://doi.org/10.1007/s10462-018-9633-3


5507A survey of the recent architectures of deep convolutional neural…

1 3

Abdel-Hamid O, Mohamed AR, Jiang H, Penn G (2012) Applying convolutional neural networks concepts 
to hybrid NN-HMM model for speech recognition. In: ICASSP, IEEE international conference on 
acoustics speech and signal processing, pp 4277–4280. https ://doi.org/10.1007/978-3-319-96145 -3_2

Abdel-Hamid O, Deng L, Yu D (2013) Exploring convolutional neural network structures and optimiza-
tion techniques for speech recognition. In: Interspeech, pp 1173–1175

Abdeljaber O, Avci O, Kiranyaz S et  al (2017) Real-time vibration-based structural damage detection 
using one-dimensional convolutional neural networks. J Sound Vib. https ://doi.org/10.1016/j.
jsv.2016.10.043

Abdulkader A (2006) Two-tier approach for Arabic offline handwriting recognition. In: Tenth interna-
tional workshop on frontiers in handwriting recognition

Ahmed U, Khan A, Khan SH et  al (2019) Transfer learning and meta classification based deep churn 
prediction system for telecom industry, pp 1–10

Akar E, Marques O, Andrews WA, Furht B (2019) Cloud-based skin lesion diagnosis system using con-
volutional neural networks. In: Intelligent computing-proceedings of the computing conference, 
pp 982–1000

Amer M, Maul T (2019) A review of modularization techniques in artificial neural networks. Artif Intell 
Rev 52:527–561. https ://doi.org/10.1007/s1046 2-019-09706 -7

Aurisano A, Radovic A, Rocco D et al (2016) A convolutional neural network neutrino event classifier. J 
Instrum. https ://doi.org/10.1088/1748-0221/11/09/P0900 1

Aziz A, Sohail A, Fahad L, et al (2020) Channel Boosted Convolutional Neural Network for Classification 
of Mitotic Nuclei using Histopathological Images. In: 2020 17th International Bhurban Conference 
on Applied Sciences and Technology (IBCAST). pp 277–284

Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a Deep convolutional encoder-decoder archi-
tecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. https ://doi.org/10.1109/
TPAMI .2016.26446 15

Batmaz Z, Yurekli A, Bilge A, Kaleli C (2019) A review on deep learning for recommender systems: 
challenges and remedies. Artif Intell Rev 52:1–37. https ://doi.org/10.1007/s1046 2-018-9654-y

Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image 
Underst 110:346–359. https ://doi.org/10.1016/j.cviu.2007.09.014

Bengio Y (2009) Learning deep architectures for AI. Found Trends® Mach Learn 2:1–127. https ://doi.
org/10.1561/22000 00006 

Bengio Y (2013) Deep learning of representations: looking forward. In: International conference on sta-
tistical language and speech processing. Springer, pp 1–37

Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: 
Advances in neural information processing systems. The MIT Press, pp 153–160

Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE 
Trans Pattern Anal Mach Intell 35:1798–1828. https ://doi.org/10.1109/TPAMI .2013.50

Berg A, Deng J, Fei-Fei L (2010) Large scale visual recognition challenge 2010
Bettoni M, Urgese G, Kobayashi Y, et al (2017) A convolutional neural network fully implemented on 

FPGA for embedded platforms. IEEE, pp 49–52. https ://doi.org/10.1109/ngcas .2017.16
Bhunia AK, Konwer A, Bhunia AK et al (2019) Script identification in natural scene image and video 

frames using an attention based Convolutional-LSTM network. Pattern Recognit 85:172–184
Boureau Y (2009) Icml2010B.Pdf. doi: citeulike-article-id:8496352
Bouvrie J (2006) 1 Introduction Notes on Convolutional Neural Networks. doi: http://dx.doi.

org/10.1016/j.protc y.2014.09.007
Bulat A, Tzimiropoulos G (2016) Human pose estimation via convolutional part heatmap regression 

BT. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision—ECCV. Springer, Cham, pp 
717–732

Cai Z, Vasconcelos N (2019) Cascade R-CNN: high quality object detection and instance segmentation. 
IEEE Trans Pattern Anal Mach Intell. https ://doi.org/10.1109/tpami .2019.29565 16

Chapelle O (1998) Support vector machines for image classification. Stage deuxième année magistère 
d’informatique l’École Norm Supérieur Lyon 10:1055–1064. https ://doi.org/10.1109/72.78864 6

Chellapilla K, Puri S, Simard P (2006) High performance convolutional neural networks for document 
processing. In: Tenth international workshop on frontiers in handwriting recognition

Chen Y-N, Han C-C, Wang C-T et al (2006) The application of a convolution neural network on face and 
license plate detection. In: 18th international conference on pattern recognition, 2006. ICPR 2006, 
pp 552–555

Chen W, Wilson JT, Tyree S et al (2015) Compressing neural networks with the hashing trick. In: 32nd 
international conference on machine learning, ICML 2015

https://doi.org/10.1007/978-3-319-96145-3_2
https://doi.org/10.1016/j.jsv.2016.10.043
https://doi.org/10.1016/j.jsv.2016.10.043
https://doi.org/10.1007/s10462-019-09706-7
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1007/s10462-018-9654-y
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/ngcas.2017.16
http://dx.doi.org/10.1016/j.protcy.2014.09.007
http://dx.doi.org/10.1016/j.protcy.2014.09.007
https://doi.org/10.1109/tpami.2019.2956516
https://doi.org/10.1109/72.788646


5508 A. Khan et al.

1 3

Chevalier M, Thome N, Cord M et al (2015) LR-CNN for fine-grained classification with varying resolu-
tion. In: 2015 IEEE international conference on image processing (ICIP). IEEE, pp 3101–3105

Chollet F (2017) Xception: deep learning with depthwise separable convolutions. arXiv :1610.02357 
Chouhan N, Khan A (2019) Network anomaly detection using channel boosted and residual learning 

based deep convolutional neural network. Appl Soft Comput 83:105612
Cireşan DC, Meier U, Gambardella LM, Schmidhuber J (2010) Deep, big, simple neural nets for hand-

written. Neural Comput 22:3207–3220
Cireşan DC, Meier U, Masci J et al (2011) High-performance neural networks for visual object classifica-

tion. Preprint arXiv :1102.0183
Cireşan D, Meier U, Masci J, Schmidhuber J (2012a) Multi-column deep neural network for traffic sign clas-

sification. Neural Netw 32:333–338. https ://doi.org/10.1016/j.neune t.2012.02.023
Cireşan D, Giusti A, Gambardella LM, Schmidhuber J (2012b) Deep neural networks segment neuronal 

membranes in electron microscopy images. In: Advances in neural information processing systems, 
pp 2843–2851

Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology 
images with deep neural networks BT. In: Proceedings of medical image computing and computer-
assisted intervention, MICCAI 2013, pp 411–418

Cireşan DC, Cireşan DC, Meier U, Schmidhuber J (2018) Multi-column deep neural networks for image 
classification. In: IEEE conference on computer vision and pattern recognition

Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural networks 
with multitask learning. In: Proceedings of the 25th international conference on Machine learning. 
ACM, pp 160–167

Csáji B (2001) Approximation with artificial neural networks. M.Sc. Thesis 45
Dahl G, Mohamed A, Hinton GE (2010) Phone recognition with the mean-covariance restricted Boltzmann 

machine. In: Advances in neural information processing systems, pp 469–477
Dahl GE, Sainath TN, Hinton GE (2013) Improving deep neural networks for LVCSR using rectified linear 

units and dropout. In: 2013 IEEE international conference on acoustics, speech and signal processing 
(ICASSP). IEEE, pp 8609–8613

Dai J, Li Y, He K, Sun J (2016) R-FCN: object detection via region-based fully convolutional networks. J 
Power Sources. https ://doi.org/10.1016/j.jpows our.2007.02.075

Dalal N, Triggs W (2004) Histograms of oriented gradients for human detection. In: IEEE computer soci-
ety conference on computer vision and pattern recognition CVPR05, vol. 1, pp 886–893. https ://doi.
org/10.1109/cvpr.2005.177

Dauphin YN, De Vries H, Bengio Y (2015) Equilibrated adaptive learning rates for non-convex optimiza-
tion. In: Advances in neural information processing system 2015, January, pp 1504–1512

Dauphin YN, Fan A, Auli M, Grangier D (2017) Language modeling with gated convolutional networks. In: 
Proceedings of the 34th international conference on machine learning, vol 70, pp 933–941

de Vries H, Memisevic R, Courville A (2016) Deep learning vector quantization. In: European symposium 
on artificial neural networks, computational intelligence and machine learning

Decoste D, Schölkopf B (2002) Training invariant support vector machines. Mach Learn 46:161–190
Delalleau O, Bengio Y (2011) Shallow versus deep sum-product networks. In: Advances in neural informa-

tion processing systems, pp 666–674
Deng L (2012) The MNIST database of handwritten digit images for machine learning research [best of the 

web]. IEEE Signal Process Mag 29:141–142
Deng L, Yu D, Delft B (2013) Deep learning: methods and applications foundations and trends R in signal 

processing. Sig Process 7:3–4. https ://doi.org/10.1561/20000 00039 
Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image represen-

tation. IEEE Trans Image Process 14:2091–2106
Dollár P, Tu Z, Perona P, Belongie S (2009) Integral channel features
Donahue J, Anne Hendricks L, Guadarrama S et al (2015) Long-term recurrent convolutional networks for 

visual recognition and description. In: Proceedings of the IEEE conference on computer vision and 
pattern recognition, pp 2625–2634

Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE 
Trans Pattern Anal Mach Intell 38:295–307

Erhan D, Bengio Y, Courville A, Vincent P (2009) Visualizing higher-layer features of a deep network. 
Univ Montr 1341:1

Farfade SS, Saberian MJ, Li L-J (2015) Multi-view face detection using deep convolutional neural networks. 
In: Proceedings of the 5th ACM on international conference on multimedia retrieval—ICMR’15. 
ACM Press, New York, USA, pp 643–650

http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1102.0183
https://doi.org/10.1016/j.neunet.2012.02.023
https://doi.org/10.1016/j.jpowsour.2007.02.075
https://doi.org/10.1109/cvpr.2005.177
https://doi.org/10.1109/cvpr.2005.177
https://doi.org/10.1561/2000000039


5509A survey of the recent architectures of deep convolutional neural…

1 3

Fasel B (2002) Facial expression analysis using shape and motion information extracted by convolutional 
neural networks. In: Proceedings of the 2002 12th IEEE workshop on neural networks for signal pro-
cessing, 2002, pp 607–616

Frizzi S, Kaabi R, Bouchouicha M et  al (2016) Convolutional neural network for video fire and smoke 
detection. In: IECON 2016-42nd annual conference of the IEEE industrial electronics society. IEEE, 
pp 877–882

Frome A, Cheung G, Abdulkader A, et al (2009) Large-scale privacy protection in Google Street View. In: 
Proceedings of the IEEE international conference on computer vision

Frosst N, Hinton G (2018) Distilling a neural network into a soft decision tree. In: CEUR workshop 
proceedings

Fukushima K (1988) Neocognitron: a hierarchical neural network capable of visual pattern recognition. 
Neural Netw 1:119–130

Fukushima K, Miyake S (1982) Neocognitron: a self-organizing neural network model for a mecha-
nism of visual pattern recognition. In: Competition and cooperation in neural nets. Springer, pp 
267–285

Garcia C, Delakis M (2004) Convolutional face finder: a neural architecture for fast and robust face 
detection. IEEE Trans Pattern Anal Mach Intell. https ://doi.org/10.1109/TPAMI .2004.97

Gardner MW, Dorling SR (1998) Artificial neural networks (the multilayer perceptron)—a review of 
applications in the atmospheric sciences. Atmos Environ 32:2627–2636

Geng X, Lin J, Zhao B et al (2019) Hardware-aware softmax approximation for deep neural networks. 
In: Lecture notes in computer science. Lecture notes in artificial intelligence, Lecture notes in 
bioinformatics. pp 107–122

Gidaris S, Komodakis N (2015) Object detection via a multi-region and semantic segmentation-aware U 
model. In: Proceedings of IEEE international conference on computer vision 2015, pp 1134–1142. 
https ://doi.org/10.1109/iccv.2015.135

Girshick R (2015) Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision
Giusti A, Cireşan DC, Masci J et  al (2013) Fast image scanning with deep max-pooling convolu-

tional neural networks. In: 2013 IEEE international conference on image processing. IEEE, pp 
4034–4038

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. 
In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, 
pp 249–256

Goh H, Thome N, Cord M, Lim J-H (2013) Top-down regularization of deep belief networks. In: 
Advances in neural information processing systems (NIPS). pp 1878–1886

Goodfellow I, Bengio Y, Courville A (2017) Deep learning. Nat Methods 13:35. https ://doi.org/10.1038/
nmeth .3707

Grill-Spector K, Weiner KS, Gomez J et al (2018) The functional neuroanatomy of face perception: from 
brain measurements to deep neural networks. Interface Focus 8:20180013. https ://doi.org/10.1098/
rsfs.2018.0013

Grün F, Rupprecht C, Navab N, Tombari F (2016) A taxonomy and library for visualizing learned fea-
tures in convolutional neural networks. https ://doi.org/10.1080/10962 247.2014.94822 9

Gu J, Wang Z, Kuen J et al (2018) Recent advances in convolutional neural networks. Pattern Recognit 
77:354–377. https ://doi.org/10.1016/j.patco g.2017.10.013

Guo Y, Liu Y, Oerlemans A et al (2016) Deep learning for visual understanding: a review. Neurocom-
puting 187:27–48. https ://doi.org/10.1016/j.neuco m.2015.09.116

Hamel P, Eck D (2010) Learning features from music audio with deep belief networks. In: ISMIR, Utre-
cht, The Netherlands, pp 339–344

Han S, Mao H, Dally WJ (2016) Deep compression: compressing deep neural networks with pruning, 
trained quantization and Huffman coding. In: 4th international conference on learning representa-
tions, ICLR 2016—conference track proceedings

Han D, Kim J, Kim J (2017) Deep pyramidal residual networks. In: 2017 IEEE conference on computer 
vision and pattern recognition (CVPR). IEEE, pp 6307–6315

Han W, Feng R, Wang L, Gao L (2018) Adaptive spatial-scale-aware deep convolutional neural network 
for high-resolution remote sensing imagery scene classification. In: IGARSS 2018–2018 IEEE 
international geoscience and remote sensing symposium, pp 4736–4739. https ://doi.org/10.1109/
igars s.2018.85182 90

Hanin B, Sellke M (2017) Approximating continuous functions by ReLU Nets of minimal width. Pre-
print. arXiv :1710.11278 

He K, Zhang X, Ren S, Sun J (2015a) Deep residual learning for image recognition. Multimed Tools 
Appl 77:10437–10453. https ://doi.org/10.1007/s1104 2-017-4440-4

https://doi.org/10.1109/TPAMI.2004.97
https://doi.org/10.1109/iccv.2015.135
https://doi.org/10.1038/nmeth.3707
https://doi.org/10.1038/nmeth.3707
https://doi.org/10.1098/rsfs.2018.0013
https://doi.org/10.1098/rsfs.2018.0013
https://doi.org/10.1080/10962247.2014.948229
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1109/igarss.2018.8518290
https://doi.org/10.1109/igarss.2018.8518290
http://arxiv.org/abs/1710.11278
https://doi.org/10.1007/s11042-017-4440-4


5510 A. Khan et al.

1 3

He K, Zhang X, Ren S, Sun J (2015b) Spatial pyramid pooling in deep convolutional networks for visual 
recognition. IEEE Trans Pattern Anal Mach Intell 37:1904–1916

He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE international 
conference on computer vision

Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. 
Pattern Recognit 42:425–436. https ://doi.org/10.1016/j.patco g.2008.08.014

Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 
18:1527–1554

Hinton GE, Krizhevsky A, Wang SD (2011) Transforming auto-encoders. In: International conference 
on artificial neural networks. Springer, pp 44–51

Hinton G, Deng L, Yu D et al (2012a) Deep neural networks for acoustic modeling in speech recognition: 
the shared views of four research groups. IEEE Signal Process Mag 29:82–97

Hinton GE, Srivastava N, Krizhevsky A, et al (2012b) Improving neural networks by preventing co-adapta-
tion of feature detectors. pp 1–18. arXiv :12070 580

Hinton G, Sabour S, Frosst N (2018) Matrix capsules with EM routing. In: 6th international conference on 
learning representations, ICLR 2018 - conference track proceedings

Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and problem 
solutions. Int J Uncertain Fuzziness Knowl-Based Syst 6:107–116

Howard AG, Zhu M, Chen B, et al (2017) MobileNets: Efficient Convolutional Neural Networks for Mobile 
Vision Applications. arXiv :17040 4861

Hu B, Lu Z, Li H, Chen Q (2011) Topic modeling for named entity queries. In: Proceedings of the 20th 
ACM international conference on Information and knowledge management—CIKM’11. ACM Press, 
New York, New York, USA, 2009

Hu J, Shen L, Sun G (2018a) Squeeze-and-excitation networks. In: 2018 IEEE/CVF conference on com-
puter vision and pattern recognition. IEEE, pp 7132–7141

Hu Y, Wen G, Luo M, et al (2018b) Competitive inner-imaging squeeze and excitation for residual network. 
arXiv :1807.08920 v3

Huang G, Sun Y, Liu Z et al (2016a) Deep networks with stochastic depth. In: European conference on com-
puter vision. Springer, pp 646–661

Huang G, Sun Y, Liu Z et al (2016b) Deep networks with stochastic depth BT. In: European conference on 
computer vision ECCV 2016. Springer, pp 646–661

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: 
Proceedings of 30th IEEE conference on computer vision and pattern recognition, CVPR 2017, pp 
2261–2269. https ://doi.org/10.1109/cvpr.2017.243

Huang Y, Cheng Y, Chen D et al (2018) GPipe: efficient training of giant neural networks using pipeline 
parallelism. arXiv :1811.06965 v3

Huang KY, Wu CH, Hong QB et al (2019) Speech emotion recognition using deep neural network consider-
ing verbal and nonverbal speech sounds. In: Proceedings of IEEE international conference on acous-
tics, speech and signal processing ICASSP

Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol. https 
://doi.org/10.1113/jphys iol.1959.sp006 308

Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s 
visual cortex. J Physiol 160:106–154. https ://doi.org/10.1113/jphys iol.1962.sp006 837

Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Phys-
iol 195:215–243. https ://doi.org/10.1113/jphys iol.1968.sp008 455

Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal 
covariate shift. J Mol Struct. https ://doi.org/10.1016/j.molst ruc.2016.12.061

Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K (2015) Spatial transformer networks. Nature. https 
://doi.org/10.1038/nbt.3343

Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is the best multi-stage architecture for object 
recognition? In: IEEE 12th international conference on comput vision, 2009, pp 2146–2153

Ji S, Yang M, Yu K, Xu W (2010) 3D convolutional neural networks for human action recognition. Int Conf 
Mach Learn 35:221–231. https ://doi.org/10.1109/TPAMI .2012.59

Joachims T (1998) Text categorization with support vector machines: Learning with many relevant features. 
In: European conference on machine learning. pp 137–142

Justus D, Brennan J, Bonner S, McGough AS (2019) Predicting the computational cost of deep learning 
models. In: Proceedings of 2018 IEEE international conference on big data, Big Data 2018

Kafi M, Maleki M, Davoodian N (2015) Functional histology of the ovarian follicles as determined by folli-
cular fluid concentrations of steroids and IGF-1 in Camelus dromedarius. Res Vet Sci 99:37–40. https 
://doi.org/10.1016/j.rvsc.2015.01.001

https://doi.org/10.1016/j.patcog.2008.08.014
http://arxiv.org/abs/12070580
http://arxiv.org/abs/170404861
http://arxiv.org/abs/1807.08920v3
https://doi.org/10.1109/cvpr.2017.243
http://arxiv.org/abs/1811.06965v3
https://doi.org/10.1113/jphysiol.1959.sp006308
https://doi.org/10.1113/jphysiol.1959.sp006308
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1113/jphysiol.1968.sp008455
https://doi.org/10.1016/j.molstruc.2016.12.061
https://doi.org/10.1038/nbt.3343
https://doi.org/10.1038/nbt.3343
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1016/j.rvsc.2015.01.001
https://doi.org/10.1016/j.rvsc.2015.01.001


5511A survey of the recent architectures of deep convolutional neural…

1 3

Kahng M, Thorat N, Chau DHP et  al (2019) GAN Lab: understanding complex deep generative models 
using interactive visual experimentation. IEEE Trans Vis Comput Graph 25:310–320

Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network for modelling sentences. 
Preprint arXiv :1404.2188

Kawashima T, Kawanishi Y, Ide I et al (2017) Action recognition from extremely low-resolution thermal 
image sequence. In: 2017 14th IEEE international conference on advanced video and signal based 
surveillance, AVSS 2017. IEEE, pp 1–6

Kawaguchi K, Huang J, Kaelbling LP (2019) Effect of depth and width on local minima in deep learning. 
Neural Comput 31:1462–1498. https ://doi.org/10.1162/neco_a_01195 

Khan A, Sohail A, Ali A (2018a) A New channel boosted convolutional neural network using transfer 
learning. Preprint arXiv :1804.08528 

Khan A, Zameer A, Jamal T, Raza A (2018b) Deep belief networks based feature generation and regres-
sion for predicting wind power. Preprint arXiv :1807.11682 

Khan A, Qureshi AS, Hussain M et al (2019) A recent survey on the applications of genetic program-
ming in image processing. Preprint arXiv :1901.07387 

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural 
networks. Adv Neural Inf Process Syst. https ://doi.org/10.1061/(ASCE)GT.1943-5606.00012 84

Kuen J, Kong X, Wang G et  al (2017) DelugeNets: deep networks with efficient and flexible cross-
layer information inflows. In: 2017 IEEE international conference on computer vision workshop 
(ICCVW), pp 958–966

Kuen J, Kong X, Wang G, Tan YP (2018) DelugeNets: deep networks with efficient and flexible cross-
layer information inflows. In: Proceedings of IEEE international conference on computer vision 
work ICCVW 2017, pp 958–966. https ://doi.org/10.1109/iccvw .2017.117

Lacey G, Taylor GW, Areibi S (2016) Deep learning on FPGAs: past, present, and future. arXiv :16020 
4283

Larsson G, Maire M, Shakhnarovich G (2016) Fractalnet: ultra-deep neural networks without residuals. 
Preprint 1605.07648, pp 1–11

Laskar MNU, Giraldo LGS, Schwartz O (2018) Correspondence of deep neural networks and the brain 
for visual textures, pp 1–17

Le QV, Ranzato M, Monga R et al (2011) Building high-level features using large scale unsupervised 
learning. In: IEEE International conference on acoustics speech and signal processing ICASSP, pp 
8595–8598. https ://doi.org/10.1109/icass p.2013.66393 43

LeCun Y (2007) Effcient BackPrp. J Exp Psychol Gen 136:23–42
LeCun Y, Boser B, Denker JS et al (1989) Backpropagation applied to handwritten zip code recognition. 

Neural Comput 1:541–551
LeCun Y, Jackel LD, Bottou L et  al (1995) Learning algorithms for classification: a comparison on 

handwritten digit recognition. Neural Netw Stat Mech Perspect 261:276
LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recogni-

tion. Proc IEEE 86:2278–2324
LeCun Y, Kavukcuoglu K, Farabet CC et al (2010) Convolutional networks and applications in vision. 

In: ISCAS. IEEE, pp 253–256
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https ://doi.org/10.1038/natur 

e1453 9
Lee C-Y, Gallagher PW, Tu Z (2016) Generalizing pooling functions in convolutional neural networks: 

mixed, gated, and tree. In: Artificial intelligence and statistics, pp 464–472
Lee S, Son K, Kim H, Park J (2017) Car plate recognition based on CNN using embedded system with 

GPU, pp 239–241
Levi G, Hassner T (2009) Sicherheit und Medien. Sicherheit und Medien. https ://doi.org/10.1109/

CVPRW .2015.73013 52
Li S, Liu Z-Q, Chan AB (2014) Heterogeneous multi-task learning for human pose estimation with deep 

convolutional neural network. In: 2014 IEEE conference on computer vision and pattern recogni-
tion workshops. IEEE, pp 488–495

Li H, Lin Z, Shen X et al (2015) A convolutional neural network cascade for face detection. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp 5325–5334

Li X, Bing L, Lam W, Shi B (2018) Transformation networks for target-oriented sentiment classification, 
pp 946–956

Lin M, Chen Q, Yan S (2013) Network in network, pp 1–10. https ://doi.org/10.1109/asru.2015.74048 28
Lin T-Y, Maire M, Belongie S et  al (2014) Microsoft coco: common objects in context. In: European 

conference on computer vision. Springer, pp 740–755

http://arxiv.org/abs/1404.2188
https://doi.org/10.1162/neco_a_01195
http://arxiv.org/abs/1804.08528
http://arxiv.org/abs/1807.11682
http://arxiv.org/abs/1901.07387
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001284
https://doi.org/10.1109/iccvw.2017.117
http://arxiv.org/abs/160204283
http://arxiv.org/abs/160204283
https://doi.org/10.1109/icassp.2013.6639343
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/CVPRW.2015.7301352
https://doi.org/10.1109/CVPRW.2015.7301352
https://doi.org/10.1109/asru.2015.7404828


5512 A. Khan et al.

1 3

Lin TY, Dollár P, Girshick R et al (2017) Feature pyramid networks for object detection. In: Proceedings 
of 30th IEEE conference on computer vision and pattern recognition, CVPR 2017

Lindholm E, Nickolls J, Oberman S, Montrym J (2008) NVIDIA TESLA: a unified graphics and com-
puting architecture. IEEE Micro 28:39–55. https ://doi.org/10.1109/MM.2008.31

Linnainmaa S (1970) The representation of the cumulative rounding error of an algorithm as a Taylor 
expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ Helsinki 6–7

Liu C-L, Nakashima K, Sako H, Fujisawa H (2003) Handwritten digit recognition: benchmarking of 
state-of-the-art techniques. Pattern Recognit 36:2271–2285

Liu W, Wang Z, Liu X et al (2017) A survey of deep neural network architectures and their applications. 
Neurocomputing 234:11–26. https ://doi.org/10.1016/j.neuco m.2016.12.038

Liu X, Deng Z, Yang Y (2019) Recent progress in semantic image segmentation. Artif Intell Rev 52:1089–
1106. https ://doi.org/10.1007/s1046 2-018-9641-3

Long ZM, Guo SQ, Chen GJ, Yin BL (2012) Modeling and simulation for the articulated robotic arm 
test system of the combination drive. In: 2011 international conference on mechatronics and mate-
rials engineering ICMME 2011, pp 151:480–483. https ://doi.org/10.4028/www.scien tific .net/
AMM.151.480

Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 
IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3431–3440

Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of Seventh 
IEEE International Conference on Computer Vision, vol 2, pp 1150–1157. https ://doi.org/10.1109/
iccv.1999.79041 0

Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110
Lu H, Li B, Zhu J et al (2017a) Wound intensity correction and segmentation with convolutional neural net-

works. Concurr Comput Pract Exp 29:e3927
Lu Z, Pu H, Wang F et al (2017b) The expressive power of neural networks: a view from the width. In: 

Advances in neural information processing systems, pp 6231–6239
Lv E, Wang X, Cheng Y, Yu Q (2019) Deep ensemble network based on multi-path fusion. Artif Intell Rev 

52:151–168. https ://doi.org/10.1007/s1046 2-019-09708 -5
Madrazo CF, Heredia I, Lloret L, Marco de Lucas J (2019) Application of a convolutional neural network 

for image classification for the analysis of collisions in high energy physics. EPJ Web Conf. https ://
doi.org/10.1051/epjco nf/20192 14060 17

Mao X, Shen C, Yang Y-B (2016) Image restoration using very deep convolutional encoder-decoder net-
works with symmetric skip connections. In: Advances in neural information processing systems, pp 
2802–2810

Marmanis D, Wegner JD, Galliani S et al (2016) Semantic segmentation of aerial images with an ensemble 
of CNNs. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:473

Matsugu M, Mori K, Ishii M, Mitarai Y (2002) Convolutional spiking neural network model for robust face 
detection. In: Proceedings of the 9th international conference on neural information processing, 2002. 
ICONIP’02, pp 660–664

Mikolov T, Karafiát M, Burget L et al (2010) Recurrent neural network based language model. In: Eleventh 
annual conference of the international speech communication association

Misra D (2019) Mish: a self regularized non-monotonic neural activation function. arXiv :19080 8681
Mohamed A, Dahl GE, Hinton G (2012) Acoustic modeling using deep belief networks. IEEE Trans Audio 

Speech Lang Process 20:14–22
Montufar GF, Pascanu R, Cho K, Bengio Y (2014) On the number of linear regions of deep neural net-

works. In: Advances in neural information processing systems, pp 2924–2932
Moons B, Verhelst M (2017) An energy-efficient precision-scalable ConvNet processor in 40-nm CMOS. 

IEEE J Solid-State Circuits 52:903–914
Morar A, Moldoveanu F, Gröller E (2012) Image segmentation based on active contours without edges. In: 

IEEE 8th international conference on intelligent computer communication processing ICCP 2012, pp 
213–220. https ://doi.org/10.1109/iccp.2012.63561 88

Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: ICML 27th 
international conference on machine learning

Najafabadi MM, Villanustre F, Khoshgoftaar TM et al (2015) Deep learning applications and challenges in 
big data analytics. J Big Data 2:1–21. https ://doi.org/10.1186/s4053 7-014-0007-7

Nguyen Q, Mukkamala M, Hein M (2018) Neural networks should be wide enough to learn disconnected 
decision regions. Preprint arXiv :1803.00094 

Nguyen G, Dlugolinsky S, Bobák M et  al (2019) Machine learning and deep learning frameworks and 
libraries for large-scale data mining: a survey. Artif Intell Rev 52:77–124. https ://doi.org/10.1007/
s1046 2-018-09679 -z

https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1007/s10462-018-9641-3
https://doi.org/10.4028/www.scientific.net/AMM.151.480
https://doi.org/10.4028/www.scientific.net/AMM.151.480
https://doi.org/10.1109/iccv.1999.790410
https://doi.org/10.1109/iccv.1999.790410
https://doi.org/10.1007/s10462-019-09708-5
https://doi.org/10.1051/epjconf/201921406017
https://doi.org/10.1051/epjconf/201921406017
http://arxiv.org/abs/190808681
https://doi.org/10.1109/iccp.2012.6356188
https://doi.org/10.1186/s40537-014-0007-7
http://arxiv.org/abs/1803.00094
https://doi.org/10.1007/s10462-018-09679-z
https://doi.org/10.1007/s10462-018-09679-z


5513A survey of the recent architectures of deep convolutional neural…

1 3

Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with CUDA. In: ACM 
SIGGRAPH 2008 classes on SIGGRAPH’08. ACM Press, New York, New York, USA, p 1

Nwankpa C, Ijomah W, Gachagan A, Marshall S (2018) Activation functions: comparison of trends in prac-
tice and research for deep learning. Preprint arXiv :1811.03378 

Oh K-S, Jung K (2004) GPU implementation of neural networks. Pattern Recognit 37:1311–1314
Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classifica-

tion based on feature distributions. Pattern Recognit 29:51–59. https ://doi.org/10.1016/0031-
3203(95)00067 -4

Ojala T, PeitiKainen M, Maenpã T (2002) Multiresolution gray-scale and rotation invariant texture classifi-
cation with local binary patterns. IEEE Trans Pattern Anal Mach Intell 247:971–987

Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and transferring mid-level image representations 
using convolutional neural networks. In: Proceedings of the IEEE computer society conference on 
computer vision and pattern recognition. IEEE, pp 1717–1724

Pang J, Chen K, Shi J et al (2020) Libra R-CNN: towards balanced learning for object detection
Pascanu R, Mikolov T, Bengio Y (2012) Understanding the exploding gradient problem. arXiv 

:1211.5063
Peng X, Hoffman J, Yu SX, Saenko K (2016) Fine-to-coarse knowledge transfer for low-res image classi-

fication. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 3683–3687
Potluri S, Fasih A, Vutukuru LK et  al (2011) CNN based high performance computing for real time 

image processing on GPU. In: Proceedings of the joint INDS’11 & ISTET’11, pp 1–7
Qureshi AS, Khan A (2018) Adaptive transfer learning in deep neural networks: wind power prediction 

using knowledge transfer from region to region and between different task domains. Preprint arXiv 
:1810.12611 

Qureshi AS, Khan A, Zameer A, Usman A (2017) Wind power prediction using deep neural net-
work based meta regression and transfer learning. Appl Soft Comput J 58:742–755. https ://doi.
org/10.1016/j.asoc.2017.05.031

Ramachandran P, Zoph B, Le QV (2017) Swish: a self-gated activation function
Ranjan R, Patel VM, Chellappa R (2015) A deep pyramid deformable part model for face detection. 

Preprint arXiv :1508.04389 
Ranzato M, Huang FJ, Boureau YL, LeCun Y (2007) Unsupervised learning of invariant feature hierarchies 

with applications to object recognition. In: Proceedings of the IEEE computer society conference on 
computer vision and pattern recognition. IEEE, pp 1–8

Rawat W, Wang Z (2016) Deep convolutional neural networks for image classification: a comprehensive 
review. Neural Comput 61:1120–1132. https ://doi.org/10.1162/NECO

Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region 
proposal networks. Adv Neural Inf Process Syst. https ://doi.org/10.1109/tpami .2016.25770 31

Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmenta-
tion. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics)

Roy AG, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation’ in fully 
convolutional networks. Lecture Notes in Computer Science (including Subser Lectue Notes 
in Artificial Intelligence Lecture Notes in Bioinformatics) 11070 LNCS:421–429. https ://doi.
org/10.1007/978-3-030-00928 -1_48

Russakovsky O, Deng J, Su H et al (2015) imagenet large scale visual recognition challenge. Int J Com-
put Vis. https ://doi.org/10.1007/s1126 3-015-0816-y

Salakhutdinov R, Larochelle H (2010) Efficient learning of deep Boltzmann machines. In: Proceedings 
of the thirteenth international conference on artificial intelligence and statistics, pp 693–700

Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional architectures 
for object recognition. In: Artificial neural networks–ICANN 2010. Springer, pp 92–101

Schmidhuber J (2007) New millennium AI and the convergence of history. In: Challenges for computa-
tional intelligence. Springer, pp 15–35

Sermanet P, Chintala S, Lecun Y (2012) Convolutional neural networks applied to house numbers 
digit classification. In: Proceedings of the 21st international conference on pattern recognition 
(ICPR2012), Tsukuba. IEEE, pp 3288–3291

Shakeel MF, Bajwa NA, Anwaar AM et al (2019) Detecting driver drowsiness in real time through deep 
learning based object detection. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Sharma A, Muttoo SK (2018) Spatial image steganalysis based on ResNeXt. In: 2018 IEEE 18th Inter-
national conference on communication technology, pp 1213–1216. https ://doi.org/10.1109/
icct.2018.86001 32

http://arxiv.org/abs/1811.03378
https://doi.org/10.1016/0031-3203(95)00067-4
https://doi.org/10.1016/0031-3203(95)00067-4
http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1810.12611
http://arxiv.org/abs/1810.12611
https://doi.org/10.1016/j.asoc.2017.05.031
https://doi.org/10.1016/j.asoc.2017.05.031
http://arxiv.org/abs/1508.04389
https://doi.org/10.1162/NECO
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1007/978-3-030-00928-1_48
https://doi.org/10.1007/978-3-030-00928-1_48
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/icct.2018.8600132
https://doi.org/10.1109/icct.2018.8600132


5514 A. Khan et al.

1 3

Shi Y, Tian Y, Wang Y, Huang T (2017) Sequential deep trajectory descriptor for action recognition with 
three-stream CNN. IEEE Trans Multimed 19:1510–1520

Shin H-CC, Roth HR, Gao M et al (2016) Deep convolutional neural networks for computer-aided detec-
tion: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 
35:1285–1298. https ://doi.org/10.1109/TMI.2016.25281 62

Simard PY, Steinkraus D, Platt JC (2003) Best practices for convolutional neural networks applied to 
visual document analysis, p 958

Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. 
In: Advances in neural information processing systems, pp 568–576

Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. 
ICLR 75:398–406. https ://doi.org/10.2146/ajhp1 70251 

Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: visualising image classifica-
tion models and saliency maps, pp 1–8. https ://doi.org/10.1080/00994 480.2000.10748 487

Sinha T, Verma B, Haidar A (2018) Optimization of convolutional neural network parameters for image clas-
sification. In: 2017 IEEE symposium series on computational intelligence SSCI 2017, pp 1–7. https ://doi.
org/10.1109/ssci.2017.82853 38

Spanhol FA, Oliveira LS, Petitjean C, Heutte L (2016a) A dataset for breast cancer histopathological image 
classification. IEEE Trans Biomed Eng 63:1455–1462

Spanhol FA, Oliveira LS, Petitjean C, Heutte L (2016b) Breast cancer histopathological image classification 
using convolutional neural networks. In: 2016 international joint conference on neural networks (IJCNN). 
IEEE, pp 2560–2567

Srinivas S, Sarvadevabhatla RK, Mopuri KR et al (2016) A taxonomy of deep convolutional neural nets for 
computer vision. Front Robot AI 2:1–13. https ://doi.org/10.3389/frobt .2015.00036 

Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from over-
fittin. J Mach Learn Res 1:11. https ://doi.org/10.1016/j.micro meso.2003.09.025

Srivastava RK, Greff K, Schmidhuber J (2015a) Highway networks. https ://doi.org/10.1002/esp.3417
Srivastava RK, Greff K, Schmidhuber J (2015b) Training very deep networks. In: Advances in neural informa-

tion processing systems
Stefanini M, Lancellotti R, Baraldi L, Calderara S (2019) A deep-learning-based approach to vm behavior iden-

tification in cloud systems. In: Proceedings of the 9th international conference on cloud computing and 
services science. SCITEPRESS—Science and Technology Publications, pp 308–315

Strigl D, Kofler K, Podlipnig S (2010) Performance and scalability of GPU-based convolutional neural net-
works. In: 2010 18th Euromicro international conference on parallel, distributed and network-based pro-
cessing (PDP), pp 317–324

Suganuma M, Shirakawa S, Nagao T (2017) A genetic programming approach to designing convolutional neu-
ral network architectures. In: Proceedings of the genetic and evolutionary computation conference. ACM, 
pp 497–504

Sun L, Jia K, Yeung D-Y, Shi BE (2015) Human action recognition using factorized spatio-temporal convolu-
tional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4597–4605

Sundermeyer M, Schlüter R, Ney H (2012) LSTM neural networks for language modeling. In: Thirteenth 
annual conference of the international speech communication association

Sze V, Chen YH, Yang TJ, Emer JS (2017) Efficient processing of deep neural networks: a tutorial and survey. 
In: Proceedings of IEEE

Szegedy C, Zaremba W, Sutskever I et al (2014) Intriguing properties of neural networks. In: 2nd international 
conference on learning Representations, ICLR 2014 - conference track proceedings

Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer 
vision and pattern recognition (CVPR). IEEE, pp 1–9

Szegedy C, Ioffe S, Vanhoucke V (2016a) Inception-v4, Inception-ResNet and the impact of residual con-
nections on learning. Preprint arXiv :1602.07261 v2 131:262–263. https ://doi.org/10.1007/s1023 
6-015-0809-y

Szegedy C, Vanhoucke V, Ioffe S et al (2016b) Rethinking the inception architecture for computer vision. In: 
Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition. 
IEEE, pp 2818–2826

Targ S, Almeida D, Lyman K (2016) Resnet in Resnet: generalizing residual architectures. Preprint arXiv 
:1603.08029 

Tong W, Song L, Yang X, et al (2015) CNN-based shot boundary detection and video annotation. In: 2015 
IEEE international symposium on broadband multimedia systems and broadcasting. IEEE, pp 1–5

Tong T, Li G, Liu X, Gao Q (2017) Image super-resolution using dense skip connections. In: 2017 IEEE inter-
national conference on computer vision (ICCV), pp 4809–4817

Tran D, Bourdev L, Fergus R, et al (2015) Learning spatiotemporal features with 3D convolutional networks. 
In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497

https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.2146/ajhp170251
https://doi.org/10.1080/00994480.2000.10748487
https://doi.org/10.1109/ssci.2017.8285338
https://doi.org/10.1109/ssci.2017.8285338
https://doi.org/10.3389/frobt.2015.00036
https://doi.org/10.1016/j.micromeso.2003.09.025
https://doi.org/10.1002/esp.3417
http://arxiv.org/abs/1602.07261v2
https://doi.org/10.1007/s10236-015-0809-y
https://doi.org/10.1007/s10236-015-0809-y
http://arxiv.org/abs/1603.08029
http://arxiv.org/abs/1603.08029


5515A survey of the recent architectures of deep convolutional neural…

1 3

Ullah A, Ahmad J, Muhammad K et al (2017) Action recognition in video sequences using deep bi-directional 
LSTM with CNN features. IEEE Access 6:1155–1166

Vinayakumar R, Soman KP, Poornachandrany P (2017) Applying convolutional neural network for network 
intrusion detection. In: 2017 International conference on advances in computing, communications and 
informatics, ICACCI 2017

Vincent P, Larochelle H, Bengio Y, Manzagol P-A (2008) Extracting and composing robust features with denois-
ing autoencoders. In: Proceedings of the 25th international conference on machine learning. ACM, pp 
1096–1103

Vinyals O, Toshev A, Bengio S, Erhan D (2017) Show and tell: lessons learned from the 2015 MSCOCO image 
captioning challenge. IEEE Trans Pattern Anal Mach Intell. https ://doi.org/10.1109/TPAMI .2016.25876 40

Wahab N, Khan A, Lee YS (2017) Two-phase deep convolutional neural network for reducing class skew-
ness in histopathological images based breast cancer detection. Comput Biol Med 85:86–97. https ://doi.
org/10.1016/j.compb iomed .2017.04.012

Wahab N, Khan A, Lee YS (2019) Transfer learning based deep CNN for segmentation and detection of mitoses 
in breast cancer histopathological images. Microscopy 68:216–233. https ://doi.org/10.1093/jmicr o/dfz00 2

Wang H, Raj B (2017) On the origin of deep learning, pp 1–72. https ://doi.org/10.1016/0014-5793(91)81229 -2
Wang H, Schmid C (2013) Action recognition with improved trajectories. In: Proceedings of the IEEE interna-

tional conference on computer vision, pp 3551–3558
Wang T, Wu DJDJ, Coates A, Ng AY (2012) End-to-end text recognition with convolutional neural networks. 

In: International Conference on Pattern Recognition ICPR, pp 3304–3308
Wang F, Jiang M, Qian C et al (2017a) Residual attention network for image classification. In: 2017 IEEE con-

ference on computer vision and pattern recognition (CVPR). IEEE, pp 6450–6458
Wang X, Gao L, Song J, Shen H (2017b) Beyond frame-level CNN: saliency-aware 3-D CNN With LSTM for 

video action recognition. IEEE Signal Process Lett 24:510–514. https ://doi.org/10.1109/LSP.2016.26114 85
Wang Y, Wang L, Wang H, Li P (2019) End-to-end image super-resolution via deep and shallow convolutional 

networks. IEEE Access 7:31959–31970. https ://doi.org/10.1109/ACCES S.2019.29035 82
Woo S, Park J, Lee JY, Kweon IS (2018) CBAM: Convolutional block attention module. Lect Notes Comput 

Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11211 LNCS:3–19. https ://doi.
org/10.1007/978-3-030-01234 -2_1

Wu J, Leng C, Wang Y, et al (2016) Quantized convolutional neural networks for mobile devices. In: Proceed-
ings of the IEEE computer society conference on computer vision and pattern recognition

Xie S, Girshick R, Dollar P et al (2017) Aggregated residual transformations for deep neural networks. In: 2017 
IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 5987–5995

Xie W, Zhang C, Zhang Y et al (2018) An energy-efficient FPGA-based embedded system for CNN application. 
In: 2018 IEEE international conference on electron devices and solid state circuits (EDSSC). IEEE, pp 
1–2

Xiong Y, Kim HJ, Hedau V (2019) ANTNets: mobile convolutional neural networks for resource efficient 
image classification. arXiv :19040 3775

Xu B, Wang N, Chen T, Li M (2015a) Empirical evaluation of rectified activations in convolutional network. J 
Foot Ankle Res 1:O22. https ://doi.org/10.1186/1757-1146-1-S1-O22

Xu K, Ba J, Kiros R et al (2015b) Show, attend and tell: neural image caption generation with visual attention. 
In: International conference on machine learning, pp 2048–2057

Yamada Y, Iwamura M, Kise K (2016) Deep pyramidal residual networks with separated stochastic depth. Pre-
print arXiv :1612.01230 

Yang Q, Pan SJ, Yang Q, Fellow QY (2008) A survey on transfer learning. IEEE Trans Knowl Data Eng 1:1–
15. https ://doi.org/10.1109/TKDE.2009.191

Yang S, Luo P, Loy C-C, Tang X (2015) From facial parts responses to face detection: a deep learning approach. 
In: Proceedings of the IEEE international conference on computer visio, pp 3676–3684

Yang J, Xiong W, Li S, Xu C (2019) Learning structured and non-redundant representations with deep neural 
networks. Pattern Recognit 86:224–235

Yıldırım Ö, Pławiak P, Tan RS, Acharya UR (2018) Arrhythmia detection using deep convolutional neu-
ral network with long duration ECG signals. Comput Biol Med. https ://doi.org/10.1016/j.compb iomed 
.2018.09.009

Young SR, Rose DC, Karnowski TP et al (2015) Optimizing deep learning hyper-parameters through an evolu-
tionary algorithm. In: Proceedings of the workshop on machine learning in high-performance computing 
environments. ACM, p 4

Zagoruyko S, Komodakis N (2016) Wide residual networks. Proc Br Mach Vis Conf 87(1-87):12. https ://doi.
org/10.5244/C.30.87

https://doi.org/10.1109/TPAMI.2016.2587640
https://doi.org/10.1016/j.compbiomed.2017.04.012
https://doi.org/10.1016/j.compbiomed.2017.04.012
https://doi.org/10.1093/jmicro/dfz002
https://doi.org/10.1016/0014-5793(91)81229-2
https://doi.org/10.1109/LSP.2016.2611485
https://doi.org/10.1109/ACCESS.2019.2903582
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
http://arxiv.org/abs/190403775
https://doi.org/10.1186/1757-1146-1-S1-O22
http://arxiv.org/abs/1612.01230
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1016/j.compbiomed.2018.09.009
https://doi.org/10.1016/j.compbiomed.2018.09.009
https://doi.org/10.5244/C.30.87
https://doi.org/10.5244/C.30.87


5516 A. Khan et al.

1 3

Zeiler MD, Fergus R (2013) Visualizing and understanding convolutional networks. Preprint arXiv :1311.2901v 
3, vol 30, pp 225–231. https ://doi.org/10.1111/j.1475-4932.1954.tb030 86.x

Zhang X, LeCun Y (2015) Text understanding from scratch. Preprint arXiv :1502.01710 
Zhang K, Zhang Z, Li Z et al (2016) Joint face detection and alignment using multitask cascaded convolutional 

networks. IEEE Signal Process Lett 23:1499–1503
Zhang X, Li Z, Loy CC, Lin D (2017) PolyNet: a pursuit of structural diversity in very deep networks. In: 

Proceedings of 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp 
3900–3908. https ://doi.org/10.1109/cvpr.2017.415

Zhang X, Zhou X, Lin M, Sun J (2018a) ShuffleNet: an extremely efficient convolutional neural network for 
mobile devices. In: Proceedings of the IEEE computer society conference on computer vision and pattern 
recognition

Zhang Y, Qiu Z, Yao T, et al (2018b) Fully convolutional adaptation networks for semantic segmentation. 
In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition

Zhang Q, Zhang M, Chen T et  al (2019) Recent advances in convolutional neural network acceleration. 
Neurocomputing 323:37–51. https ://doi.org/10.1016/j.neuco m.2018.09.038

Zheng H, Fu J, Mei T, Luo J (2017) Learning multi-attention convolutional neural network for fine-
grained image recognition. In: 2017 IEEE international conference on computer vision (ICCV), pp 
5219–5227

Zhou B, Khosla A, Lapedriza A et al (2016) Learning deep features for discriminative localization. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp 2921–2929

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/1311.2901v3
http://arxiv.org/abs/1311.2901v3
https://doi.org/10.1111/j.1475-4932.1954.tb03086.x
http://arxiv.org/abs/1502.01710
https://doi.org/10.1109/cvpr.2017.415
https://doi.org/10.1016/j.neucom.2018.09.038

	A survey of the recent architectures of deep convolutional neural networks
	Abstract
	1 Introduction
	2 Basic CNN components
	2.1 Convolutional layer
	2.2 Pooling layer
	2.3 Activation function
	2.4 Batch normalization
	2.5 Dropout
	2.6 Fully connected layer

	3 Architectural evolution of deep CNNs
	3.1 Origin of CNN: late 1980s–1999
	3.2 Stagnation of CNN: early 2000
	3.3 Revival of CNN: 2006–2011
	3.4 Rise of CNN: 2012–2014
	3.5 Rapid increase in architectural innovations and applications of CNN: 2015-present

	4 Architectural innovations in CNN
	4.1 Spatial exploitation based CNNs
	4.1.1 LeNet
	4.1.2 AlexNet
	4.1.3 ZfNet
	4.1.4 VGG
	4.1.5 GoogleNet

	4.2 Depth based CNNs
	4.2.1 Highway networks
	4.2.2 ResNet
	4.2.3 Inception-V3, V4 and Inception-ResNet

	4.3 Multi-path based CNNs
	4.3.1 Highway networks
	4.3.2 ResNet
	4.3.3 DenseNet

	4.4 Width based multi-connection CNNs
	4.4.1 Wide ResNet
	4.4.2 Pyramidal net
	4.4.3 Xception
	4.4.4 ResNeXt
	4.4.5 Inception family

	4.5 Feature-Map (ChannelFMap) Exploitation based CNNs
	4.5.1 Squeeze and excitation network
	4.5.2 Competitive squeeze and excitation networks

	4.6 Channel(Input) exploitation based CNNs
	4.6.1 Channel boosted CNN using TL

	4.7 Attention based CNNs
	4.7.1 Residual attention neural network
	4.7.2 Convolutional block attention module
	4.7.3 Concurrent spatial and channel excitation mechanism


	5 Applications of CNNs
	5.1 CNN based computer vision and related applications
	5.2 CNN based natural language processing
	5.3 CNN based object detection and segmentation
	5.4 CNN based image classification
	5.5 CNN based speech recognition
	5.6 CNN based video processing
	5.7 CNN for low resolution images
	5.8 CNN for resource limited systems
	5.9 CNN for 1D-data

	6 CNN challenges
	7 Future directions
	8 Conclusion
	Acknowledgements 
	References




