
10. Recurrent Neural Networks – Modeling Sequences and Stacks

When dealing with language data, it is very common to work with sequences, such as words
(sequences of letters), sentences (sequences of words) and documents. We saw how feed-
forward networks can accommodate arbitrary feature functions over sequences through the
use of vector concatenation and vector addition (CBOW). In particular, the CBOW rep-
resentations allows to encode arbitrary length sequences as fixed sized vectors. However,
the CBOW representation is quite limited, and forces one to disregard the order of fea-
tures. The convolutional networks also allow encoding a sequence into a fixed size vector.
While representations derived from convolutional networks are an improvement above the
CBOW representation as they o↵er some sensitivity to word order, their order sensitivity is
restricted to mostly local patterns, and disregards the order of patterns that are far apart
in the sequence.

Recurrent neural networks (RNNs) (Elman, 1990) allow representing arbitrarily sized
structured inputs in a fixed-size vector, while paying attention to the structured properties
of the input.

10.1 The RNN Abstraction

We use xi:j to denote the sequence of vectors xi, . . . ,xj. The RNN abstraction takes as
input an ordered list of input vectors x1, ...,xn together with an initial state vector s0,
and returns an ordered list of state vectors s1, ..., sn, as well as an ordered list of output
vectors y1, ...,yn. An output vector yi is a function of the corresponding state vector
si. The input vectors xi are presented to the RNN in a sequential fashion, and the state
vector si and output vector yi represent the state of the RNN after observing the inputs
x1:i. The output vector yi is then used for further prediction. For example, a model for
predicting the conditional probability of an event e given the sequence m1:i can be defined
as p(e = j|x1:i) = softmax(yiW + b)[j]. The RNN model provides a framework for
conditioning on the entire history x1, . . . ,xi without resorting to the Markov assumption
which is traditionally used for modeling sequences. Indeed, RNN-based language models
result in very good perplexity scores when compared to n-gram based models.

Mathematically, we have a recursively defined function R that takes as input a state
vector si and an input vector xi+1, and results in a new state vector si+1. An additional
function O is used to map a state vector si to an output vector yi. When constructing an
RNN, much like when constructing a feed-forward network, one has to specify the dimension
of the inputs xi as well as the dimensions of the outputs yi. The dimensions of the states
si are a function of the output dimension.26

26. While RNN architectures in which the state dimension is independent of the output dimension are
possible, the current popular architectures, including the Simple RNN, the LSTM and the GRU do not
follow this flexibility.

46

RNN(s0,x1:n) =s1:n, y1:n

si = R(si�1,xi)

yi = O(si)

xi 2 Rdin , yi 2 Rdout , si 2 Rf(dout)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

xi

yi

sisi�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s0 R,O

x1

y1

R,O

x2

y2

s1
R,O

x3

y3

s2

✓

R,O

x4

y4

s3
R,O

x5

y5

s4
s5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

instantiations of R and O will result in di↵erent network structures, and will exhibit di↵erent
properties in terms of their running times and their ability to be trained e↵ectively using
gradient-based methods. However, they all adhere to the same abstract interface. We will
provide details of concrete instantiations of R and O – the Simple RNN, the LSTM and the
GRU – in Section 11. Before that, let’s consider modeling with the RNN abstraction.

First, we note that the value of si is based on the entire input x1, ...,xi. For example,
by expanding the recursion for i = 4 we get:

s4 =R(s3,x4)

=R(

s3z }| {
R(s2,x3),x4)

=R(R(

s2z }| {
R(s1,x2),x3),x4)

=R(R(R(

s1z }| {
R(s0,x1),x2),x3),x4)

Thus, sn (as well as yn) could be thought of as encoding the entire input sequence.27 Is
the encoding useful? This depends on our definition of usefulness. The job of the network
training is to set the parameters of R and O such that the state conveys useful information
for the task we are tying to solve.

10.2 RNN Training

Viewed as in Figure 6 it is easy to see that an unrolled RNN is just a very deep neural
network (or rather, a very large computation graph with somewhat complex nodes), in
which the same parameters are shared across many parts of the computation. To train an
RNN network, then, all we need to do is to create the unrolled computation graph for a
given input sequence, add a loss node to the unrolled graph, and then use the backward
(backpropagation) algorithm to compute the gradients with respect to that loss. This
procedure is referred to in the RNN literature as backpropagation through time, or BPTT
(Werbos, 1990).28 There are various ways in which the supervision signal can be applied.

Acceptor One option is to base the supervision signal only on the final output vector,
yn. Viewed this way, the RNN is an acceptor. We observe the final state, and then decide

27. Note that, unless R is specifically designed against this, it is likely that the later elements of the input
sequence have stronger e↵ect on sn than earlier ones.

28. Variants of the BPTT algorithm include unrolling the RNN only for a fixed number of input symbols at
each time: first unroll the RNN for inputs x1:k, resulting in s1:k. Compute a loss, and backpropagate
the error through the network (k steps back). Then, unroll the inputs xk+1:2k, this time using sk as the
initial state, and again backpropagate the error for k steps, and so on. This strategy is based on the
observations that for the Simple-RNN variant, the gradients after k steps tend to vanish (for large enough
k), and so omitting them is negligible. This procedure allows training of arbitrarily long sequences. For
RNN variants such as the LSTM or the GRU that are designed specifically to mitigate the vanishing
gradients problem, this fixed size unrolling is less motivated, yet it is still being used, for example when
doing language modeling over a book without breaking it into sentences.

48

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of yn = O(sn), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.

R,O

x1

s0
R,O

x2

s1
R,O

x3

s2
R,O

x4

s3
R,O

x5

s4

predict &
calc loss

y5

loss

Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, yn. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector yn summarizing the entire document. Then, yn will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L(ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

RE,OE

x1

s
e
0

RE,OE

x2

s
e
1

RE,OE

x3

s
e
2

RE,OE

x4

s
e
3

RE,OE

x5

s
e
4 s

e
5

RD,OD

x1

s
d
0

predict &
calc loss

y1

RD,OD

x2

s
d
1

predict &
calc loss

y2

RD,OD

x3

s
d
2

predict &
calc loss

y3

RD,OD

x4

s
d
3

predict &
calc loss

y4

RD,OD

x5

s
d
4

predict &
calc loss

y5

sum

loss

Figure 9: Encoder-Decoder RNN Training Graph.

was used in (Filippova, Alfonseca, Colmenares, Kaiser, & Vinyals, 2015) to model sentence
compression by deletion.

10.3 Multi-layer (stacked) RNNs

RNNs can be stacked in layers, forming a grid (Hihi & Bengio, 1996). Consider k RNNs,

RNN1, . . . , RNNk, where the jth RNN has states sj1:n and outputs yj
1:n. The input for the

first RNN are x1:n, while the input of the jth RNN (j � 2) are the outputs of the RNN

below it, yj�1
1:n . The output of the entire formation is the output of the last RNN, yk

1:n.
Such layered architectures are often called deep RNNs. A visual representation of a 3-layer
RNN is given in Figure 10.

While it is not theoretically clear what is the additional power gained by the deeper
architecture, it was observed empirically that deep RNNs work better than shallower ones
on some tasks. In particular, Sutskever et al (2014) report that a 4-layers deep architec-
ture was crucial in achieving good machine-translation performance in an encoder-decoder
framework. Irsoy and Cardie (2014) also report improved results from moving from a one-
layer BI-RNN to an architecture with several layers. Many other works report result using
layered RNN architectures, but do not explicitly compare to 1-layer RNNs.

51

R1,O1

R2,O2

y
1
1

s
1
0

R3,O3

y
2
1

s
2
0

s
3
0

x1

y1

y
3
1

R1,O1

R2,O2

y
1
2

s
1
1

R3,O3

y
2
2

s
2
1

s
3
1

x2

y2

y
3
2

R1,O1

R2,O2

y
1
3

s
1
2

R3,O3

y
2
3

s
2
2

s
3
2

x3

y3

y
3
3

R1,O1

R2,O2

y
1
4

s
1
3

R3,O3

y
2
4

s
2
3

s
3
3

x4

y4

y
3
4

R1,O1

R2,O2

y
1
5

s
1
4

R3,O3

y
2
5

s
2
4

s
3
4

x5

y5

y
3
5

s
1
5

s
2
5

s
3
5

Figure 10: A 3-layer (“deep”) RNN architecture.

10.4 BI-RNN

A useful elaboration of an RNN is a bidirectional-RNN (BI-RNN) (Schuster & Paliwal, 1997;
Graves, 2008).31 Consider the task of sequence tagging over a sentence x1, . . . , xn. An RNN
allows us to compute a function of the ith word xi based on the past – the words x1:i up
to and including it. However, the following words xi:n may also be useful for prediction, as
is evident by the common sliding-window approach in which the focus word is categorized
based on a window of k words surrounding it. Much like the RNN relaxes the Markov
assumption and allows looking arbitrarily back into the past, the BI-RNN relaxes the fixed
window size assumption, allowing to look arbitrarily far at both the past and the future.

Consider an input sequence x1:n. The BI-RNN works by maintaining two separate
states, sfi and sbi for each input position i. The forward state sfi is based on x1,x2, . . . ,xi,
while the backward state sbi is based on xn,xn�1, . . . ,xi. The forward and backward states
are generated by two di↵erent RNNs. The first RNN (Rf , Of) is fed the input sequence
x1:n as is, while the second RNN (Rb, Ob) is fed the input sequence in reverse. The state
representation si is then composed of both the forward and backward states.

The output at position i is based on the concatenation of the two output vectors
yi = [yf

i ;y
b
i] = [Of (sfi);O

b(sbi)], taking into account both the past and the future. The
vector yi can then be used directly for prediction, or fed as part of the input to a more
complex network. While the two RNNs are run independently of each other, the error gra-
dients at position i will flow both forward and backward through the two RNNs. A visual
representation of the BI-RNN architecture is given in Figure 11.

The use of BI-RNNs for sequence tagging was introduced to the NLP community by
Irsoy and Cardie (2014).

10.5 RNNs for Representing Stacks

Some algorithms in language processing, including those for transition-based parsing (Nivre,
2008), require performing feature extraction over a stack. Instead of being confined to

31. When used with a specific RNN architecture such as an LSTM, the model is called BI-LSTM.

52

R
f
,O

f

xthe

concat

y
f
1

s
f
0

R
f
,O

f

xbrown

concat

y
f
2

s
f
1

R
f
,O

f

xfox

concat

y
f
3

s
f
2

R
f
,O

f

xjumped

concat

y
f
4

s
f
3

R
f
,O

f

x⇤

concat

y
f
5

s
f
4 s

f
5

R
b
,O

b
s0s
b
0

y
b
1

R
b
,O

b
s1s
b
1

y
b
2

R
b
,O

b
s2s
b
2

y
b
3

R
b
,O

b
s3s
b
3

y
b
4

R
b
,O

b
s4s
b
4

y
b
5

s
b
5

ythe ybrown yfox yjumped y⇤

Figure 11: BI-RNN over the sentence “the brown fox jumped .”.

looking at the k top-most elements of the stack, the RNN framework can be used to provide
a fixed-sized vector encoding of the entire stack.

The main intuition is that a stack is essentially a sequence, and so the stack state can be
represented by taking the stack elements and feeding them in order into an RNN, resulting
in a final encoding of the entire stack. In order to do this computation e�ciently (without
performing an O(n) stack encoding operation each time the stack changes), the RNN state
is maintained together with the stack state. If the stack was push-only, this would be
trivial: whenever a new element x is pushed into the stack, the corresponding vector x
will be used together with the RNN state si in order to obtain a new state si+1. Dealing
with pop operation is more challenging, but can be solved by using the persistent-stack
data-structure (Okasaki, 1999; Goldberg, Zhao, & Huang, 2013). Persistent, or immutable,
data-structures keep old versions of themselves intact when modified. The persistent stack
construction represents a stack as a pointer to the head of a linked list. An empty stack is
the empty list. The push operation appends an element to the list, returning the new head.
The pop operation then returns the parent of the head, but keeping the original list intact.
From the point of view of someone who held a pointer to the previous head, the stack did
not change. A subsequent push operation will add a new child to the same node. Applying
this procedure throughout the lifetime of the stack results in a tree, where the root is an
empty stack and each path from a node to the root represents an intermediary stack state.
Figure 12 provides an example of such a tree. The same process can be applied in the
computation graph construction, creating an RNN with a tree structure instead of a chain
structure. Backpropagating the error from a given node will then a↵ect all the elements
that participated in the stack when the node was created, in order. Figure 13 shows the
computation graph for the stack-RNN corresponding to the last state in Figure 12. This
modeling approach was proposed independently by Dyer et al and Watanabe et al (Dyer
et al., 2015; Watanabe & Sumita, 2015) for transition-based dependency parsing.

53

? a

head

(1) push a

? a b

head

(2) push b

? a b c

head

(3) push c

? a b

head

c

(4) pop

? a b c

d

head

(5) push d

? a b

head

c

d

(6) pop

? a

head

b c

d

(7) pop

? a b c

d

e

head

(8) push e

? a b c

d

e f

head

(9) push f

Figure 12: An immutable stack construction for the sequence of operations push a; push b;
push c; pop; push d; pop; pop; push e; push f.

so R,O

ya

xa

R,O
sa

ya:b

xb

R,O
sa:b

ya:c

xc

sa:c

R,O

sa:b

ya,b,d

xd

sa,b,d

R,O

sa

ya,e

xe

R,O
sa,e

ya,e,f

xf

sa,e,f

Figure 13: The stack-RNN corresponding to the final state in Figure 12.

10.6 A Note on Reading the Literature

Unfortunately, it is often the case that inferring the exact model form from reading its
description in a research paper can be quite challenging. Many aspects of the models

54

are not yet standardized, and di↵erent researchers use the same terms to refer to slightly
di↵erent things. To list a few examples, the inputs to the RNN can be either one-hot vectors
(in which case the embedding matrix is internal to the RNN) or embedded representations;
The input sequence can be padded with start-of-sequence and/or end-of-sequence symbols,
or not; While the output of an RNN is usually assumed to be a vector which is expected
to be fed to additional layers followed by a softmax for prediction (as is the case in the
presentation in this tutorial), some papers assume the softmax to be part of the RNN itself;
In multi-layer RNN, the “state vector” can be either the output of the top-most layer, or a
concatenation of the outputs from all layers; When using the encoder-decoder framework,
conditioning on the output of the encoder can be interpreted in various di↵erent ways; and
so on. On top of that, the LSTM architecture described in the next section has many small
variants, which are all referred to under the common name LSTM. Some of these choices
are made explicit in the papers, other require careful reading, and others still are not even
mentioned, or are hidden behind ambiguous figures or phrasing.

As a reader, be aware of these issues when reading and interpret model descriptions. As
a writer, be aware of these issues as well: either fully specify your model in mathematical
notation, or refer to a di↵erent source in which the model is fully specified, if such a source
is available. If using the default implementation from a software package without knowing
the details, be explicit of that fact and specify the software package you use. In any case,
don’t rely solely on figures or natural language text when describing your model, as these
are often ambiguous.

55

11. Concrete RNN Architectures

We now turn to present three di↵erent instantiations of the abstract RNN architecture
discussed in the previous section, providing concrete definitions of the functions R and O.
These are the Simple RNN (SRNN), the Long Short-Term Memory (LSTM) and the Gated
Recurrent Unit (GRU).

11.1 Simple RNN

The simplest RNN formulation, known as an Elman Network or Simple-RNN (S-RNN), was
proposed by Elman (1990) and explored for use in language modeling by Mikolov (2012).
The S-RNN takes the following form:

si =RSRNN (si�1,xi) = g(xiW
x + si�1W

s + b)

yi =OSRNN (si) = si

si,yi 2 Rds , xi 2 Rdx , Wx 2 Rdx⇥ds , Ws 2 Rds⇥ds , b 2 Rds

That is, the state at position i is a linear combination of the input at position i and
the previous state, passed through a non-linear activation (commonly tanh or ReLU). The
output at position i is the same as the hidden state in that position.32

In spite of its simplicity, the Simple RNN provides strong results for sequence tagging
(Xu et al., 2015) as well as language modeling. For comprehensive discussion on using
Simple RNNs for language modeling, see the PhD thesis by Mikolov (2012).

11.2 LSTM

The S-RNN is hard to train e↵ectively because of the vanishing gradients problem. Error
signals (gradients) in later steps in the sequence diminish quickly in the back-propagation
process, and do not reach earlier input signals, making it hard for the S-RNN to capture
long-range dependencies. The Long Short-Term Memory (LSTM) architecture (Hochreiter
& Schmidhuber, 1997) was designed to solve the vanishing gradients problem. The main
idea behind the LSTM is to introduce as part of the state representation also “memory
cells” (a vector) that can preserve gradients across time. Access to the memory cells is
controlled by gating components – smooth mathematical functions that simulate logical
gates. At each input state, a gate is used to decide how much of the new input should be
written to the memory cell, and how much of the current content of the memory cell should
be forgotten. Concretely, a gate g 2 [0, 1]n is a vector of values in the range [0, 1] that is
multiplied component-wise with another vector v 2 Rn, and the result is then added to
another vector. The values of g are designed to be close to either 0 or 1, i.e. by using a
sigmoid function. Indices in v corresponding to near-one values in g are allowed to pass,
while those corresponding to near-zero values are blocked.

32. Some authors treat the output at position i as a more complicated function of the state. In our presen-
tation, such further transformation of the output are not considered part of the RNN, but as separate
computations that are applied to the RNNs output. The distinction between the state and the output
are needed for the LSTM architecture, in which not all of the state is observed outside of the RNN.

56

Mathematically, the LSTM architecture is defined as:33

sj = RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(xjW
xi + hj�1W

hi)

f =�(xjW
xf + hj�1W

hf)

o =�(xjW
xo + hj�1W

ho)

g =tanh(xjW
xg + hj�1W

hg)

yj = OLSTM (sj) =hj

sj 2 R2·dh , xi 2 Rdx , cj,hj, i, f ,o,g 2 Rdh , Wx� 2 Rdx⇥dh , Wh� 2 Rdh⇥dh ,

The symbol � is used to denote component-wise product. The state at time j is com-
posed of two vectors, cj and hj, where cj is the memory component and hj is the output,
or state, component. There are three gates, i, f and o, controlling for input, forget and
output. The gate values are computed based on linear combinations of the current input
xj and the previous state hj�1, passed through a sigmoid activation function. An update
candidate g is computed as a linear combination of xj and hj�1, passed through a tanh
activation function. The memory cj is then updated: the forget gate controls how much
of the previous memory to keep (cj�1 � f), and the input gate controls how much of the
proposed update to keep (g � i). Finally, the value of hj (which is also the output yj) is
determined based on the content of the memory cj, passed through a tanh non-linearity
and controlled by the output gate. The gating mechanisms allow for gradients related to
the memory part cj to stay high across very long time ranges.

For further discussion on the LSTM architecture see the PhD thesis by Alex Graves
(2008), as well as Chris Olah’s description.34 For an analysis of the behavior of an LSTM
when used as a character-level language model, see (Karpathy et al., 2015).

LSTMs are currently the most successful type of RNN architecture, and they are re-
sponsible for many state-of-the-art sequence modeling results. The main competitor of the
LSTM-RNN is the GRU, to be discussed next.

Practical Considerations When training LSTM networks, Jozefowicz et al (2015) strongly
recommend to always initialize the bias term of the forget gate to be close to one. When
applying dropout to an RNN with an LSTM, Zaremba et al (2014) found out that it is

33. There are many variants on the LSTM architecture presented here. For example, forget gates were not
part of the original proposal in (Hochreiter & Schmidhuber, 1997), but are shown to be an important
part of the architecture. Other variants include peephole connections and gate-tying. For an overview
and comprehensive empirical comparison of various LSTM architectures see (Gre↵, Srivastava, Koutńık,
Steunebrink, & Schmidhuber, 2015).

34. http://colah.github.io/posts/2015-08-Understanding-LSTMs/

57

crucial to apply dropout only on the non-recurrent connection, i.e. only to apply it between
layers and not between sequence positions.

11.3 GRU

The LSTM architecture is very e↵ective, but also quite complicated. The complexity of the
system makes it hard to analyze, and also computationally expensive to work with. The
gated recurrent unit (GRU) was recently introduced by Cho et al (2014b) as an alternative
to the LSTM. It was subsequently shown by Chung et al (2014) to perform comparably to
the LSTM on several (non textual) datasets.

Like the LSTM, the GRU is also based on a gating mechanism, but with substantially
fewer gates and without a separate memory component.

sj = RGRU (sj�1,xj) =(1� z)� sj�1 + z� h

z =�(xjW
xz + hj�1W

hz)

r =�(xjW
xr + hj�1W

hr)

h =tanh(xjW
xh + (hj�1 � r)Whg)

yj = OLSTM (sj) =sj

sj 2 Rdh , xi 2 Rdx , z, r,h 2 Rdh , Wx� 2 Rdx⇥dh , Wh� 2 Rdh⇥dh ,

One gate (r) is used to control access to the previous state sj�1 and compute a proposed
update h. The updated state sj (which also serves as the output yj) is then determined based
on an interpolation of the previous state sj�1 and the proposal h, where the proportions of
the interpolation are controlled using the gate z.

The GRU was shown to be e↵ective in language modeling and machine translation.
However, the jury between the GRU, the LSTM and possible alternative RNN architectures
is still out, and the subject is actively researched. For an empirical exploration of the GRU
and the LSTM architectures, see (Jozefowicz et al., 2015).

11.4 Other Variants

The gated architectures of the LSTM and the GRU help in alleviating the vanishing gradi-
ents problem of the Simple RNN, and allow these RNNs to capture dependencies that span
long time ranges. Some researchers explore simpler architectures than the LSTM and the
GRU for achieving similar benefits.

Mikolov et al (2014) observed that the matrix multiplication si�1Ws coupled with the
nonlinearity g in the update rule R of the Simple RNN causes the state vector si to undergo
large changes at each time step, prohibiting it from remembering information over long
time periods. They propose to split the state vector si into a slow changing component ci
(“context units”) and a fast changing component hi.35 The slow changing component ci is

35. We depart from the notation in (Mikolov et al., 2014) and reuse the symbols used in the LSTM descrip-
tion.

58

updated according to a linear interpolation of the input and the previous component: ci =
(1� ↵)xiWx1 + ↵ci�1, where ↵ 2 (0, 1). This update allows ci to accumulate the previous
inputs. The fast changing component hi is updated similarly to the Simple RNN update
rule, but changed to take ci into account as well:36 hi = �(xiWx2 + hi�1Wh + ciWc).
Finally, the output yi is the concatenation of the slow and the fast changing parts of the
state: yi = [ci;hi]. Mikolov et al demonstrate that this architecture provides competitive
perplexities to the much more complex LSTM on language modeling tasks.

The approach of Mikolov et al can be interpreted as constraining the block of the matrix
Ws in the S-RNN corresponding to ci to be a multiply of the identity matrix (see Mikolov
et al (2014) for the details). Le et al (Le, Jaitly, & Hinton, 2015) propose an even simpler
approach: set the activation function of the S-RNN to a ReLU, and initialize the biases b
as zeroes and the matrix Ws as the identify matrix. This causes an untrained RNN to copy
the previous state to the current state, add the e↵ect of the current input xi and set the
negative values to zero. After setting this initial bias towards state copying, the training
procedure allows Ws to change freely. Le et al demonstrate that this simple modification
makes the S-RNN comparable to an LSTM with the same number of parameters on several
tasks, including language modeling.

36. The update rule diverges from the S-RNN update rule also by fixing the non-linearity to be a sigmoid
function, and by not using a bias term. However, these changes are not discussed as central to the
proposal.

59

