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12   Diagnostic of the digital systems 
 

Origination of the failures is characteristic feature of the electronic systems. Therefore, testing of ones 

is frequency start task for determination state of the digital system hardware. There are group of 

possibilities how check state of the digital system. List of check method is next: 

● program testing, 

● microprogram testing, 

● hardware test circuits. 

 

Program test is possible separate into: 

● developmental testing, 

● manufacturing testing, 

● user testing. 

 

From point of start time can define: 

● prophylactic testing, 

● start testing, 

● through (nonstop) testing. 

 

For provision of maximum probability failure-free state is optimal implement through test 

components into digital systems. Through tests are running continuously - against a background of 

the operation system and user tasks. For its function the through testing needs hardware check circuits. 

In next chapter is discussed hardware support of the through testing - checking circuits. 

12.1   Checking circuits 

 

There are group of method used for non-stop testing of the digital system hardware: 

● redundancy: 

oinformation redundancy, 

ohardware redundancy, 

● prediction, 

● checking of the time sequences. 

 

For explanation of principle will use electric scheme and shot comment. 

12.1.1   Information redundancy 

 

Numbers and data transmitted, processed and stored in individual modules, design of digital systems 

may be all sorts of influences amended. Improved or less complete protection against these adverse 

effects of providing information to enable redundancy and to detect adverse changes in advanced 

implementations as possible to repair. In subsequent chapters, the question of security code, namely 

the issue of detection and correction of faults and errors in the transmitted data discussed in more 

detail. 

12.1.1.1   Theory of information redundancy operation 

 

Information required adding add redundancy data bits, bearing on the control bits. This means that 

the input data into the system is installed generator control bits are added to information bits. The 

whole system is transmitted (including the entries in the memory system) and at designated sites to 

check its accuracy. Control is performed so that the transmitted data bits to generate control bits and 
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these are compared with devolved control bits or the rules of correct shape-secure code, see the 

following chart. 

Figure 12.1: Working principle of data protection information redundancy 

 

Indications violation of the correctness of data is a logic level (electrical signal), which indicates its 

level of integrity of the data at the controls. This signal is used most often interrupt system that runs 

sub-treatment of this indication. The specific response depends on the spot verification of data in the 

system development phase of the order during which the indication of the accuracy of the data breach 

and the configuration of the operating system. 

 

Kinds of information redundancy for system security against failures are show below: 

Figure 12.2: Classification of information redundancy methods for detection and repair 

information damage 

information redundancy 

special codes parity check codes 
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Note: 

It should consider the fact that the disorder may be in the control circuit and indication of the accuracy of the data 

breach is issued false or not licensed at all. 

12.1.1.2   Parity information security 

 

This principle uses the redundancy of information often within a single byte. Redundancy bit informs 

the system whether a selected number of bits preserve the original number. If the controlled words 

invert two bits, the parity does not indicate adverse condition. It is thus obvious that parity data 

protection applications are very limited. 

 

Parity is used both for creating security bits of information transmitted and stored in digital systems, 

as well as for checking secure information. Parity is an additional bit, which complements the 

information bits even or odd number of ones. Most often generates parity for byte and odd parity is 

used when a binary zero in the parity bit is 1 and it is clear that the data source is working (if it had 

been disconnected, they will have all the bits including the parity value 0), see next picture. 
                             

b0 b1 b2 b3 b4 b5 b6 b7 P  0 0 1 1 0 1 0 1 1  0 0 1 1 0 1 0 1 0 

                             
Figure 12.3: Principle and example of parity security implementation 

a) principle of redundancy security, 

b) example of odd parity security, 

c) example of event parity security. 

 

The above diagram represents a linear parity word (here byte), the change is detected by only one bit. 

This means that a simple inversion of two bits of parity already detect. 

 

This gap partly eliminates another independent parity bit words - every independent parity bit 

increases the distance of the so-called code value of 1. Independence of the parity bit means that it is 

generated over another set of data bits than any previous parity bits. A characteristic example is the 

so-called cross-parity - see next tables: 
             

even parity 8 4 2 1 P1  odd parity 8 4 2 1 P1 

 0 1 1 1 1   0 1 1 1 0 

 0 1 1 0 0   0 1 1 0 1 

 1 0 0 0 1   1 0 0 0 0 

 0 1 0 0 1   0 1 0 0 0 

P2 1 1 0 1 1  P2 0 0 1 0 0 
 

Table 12.1: Principle of cross-parity mechanism 

 
even parity 8 4 2 1 P1  odd parity 8 4 2 1 P1 

 0 1 1 1 1   0 1 1 1 0 

 0 1 1 0 0   0 1 1 0 1 

 1 0 1 0 1   1 0 1 0 0 

 0 1 0 0 1   0 1 0 0 0 

P2 1 1 0 1 1  P2 0 0 1 0 0 
 

Table 12.2: Indication of failure by cross-parity mechanism 

Note: 

Cross-parity allows correcting an error in the four tetrad inversion at the intersection of fields with the wrongly 

generated parity. 
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Parity bit can be generated serially or in parallel. Role serial parity generator successfully performs a 

synchronous flip-flop type T, whose data input data are introduced in serial form. Direct output 

generates even number parity and odd parity inversion output. 

 

Serial parity checks this, the input generator will take both the meaning and the redundant bits and 

check whether the unit was controlled by some odd digits of 1 (odd parity) or even digits of 1 (even 

parity). 

 

The following figure shows the scheme of the parity bit generating for serial transmitted byte (eight-

bit word). 

Figure 12.4: Principle of design and example of parity serial generator 

 

The construction of parallel parity generator and also to build a control circuit parity can be used the 

XOR circuits. These circuits are often available with direct and inverse output (so-called M2 circuit) 

and allow the generator and the control circuit to draw in the so-called two-wire logic (it will be the 

discussion in the chapter on peripheral redundancy). 

Figure 12.5: Schematic symbol of the M2 circuit - standardized sum modulo 2 

 

Because the logical XOR function does not fully functional system, it not be used for systematic 

process their applications. Was made a number methods and rules for transcription of Boolean 

functions in form witch are applicable for XOR circuits (Zegalkin algebra). 

 

Standardized circuit M2 has a direct and inverse output, and therefore can be used to generate an even 

and odd parity bit. In the absence of XOR circuits can be applied more frequently offered AND-OR-

INVERT ones. These circuits can easily build a universal two-bit parity generator that also generates 

two types of parity in the form of so-called two-wire logic. Scheme of this is displayed in the 

following figure. 

Figure 12.6: Elementary cell of the parity generator based on AND-OR-INVERT circuit 

 

For further interpretation, we will use for this cell pattern as shown - see Figure 12.7 

b0 b1 b2 b3 b4 b5 b6 b7 

b0 b1 b2 b3 b4 b5 b6 b7 
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P = a0a1 + a0a1  - odd parity 
& 1 
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& 1 
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Figure 12.7: Schematic symbol of the parity generator elementary cell 

 

If we want to establish multi-bit parity circuit, offering to apply the method of substitution and the 

parity generator has the shape of the tree (pyramid). The principle of substitution is the use of the 

method outlined in the following Table 12.3 
            

b0 b1 L1  L1 L2 LP  LP LQ Lα generation of odd parity 

0 0 1  0 0 1  0 0 1 enter even number of 1 

0 1 0  0 1 0  0 1 0 enter odd number of 1 

1 0 0  1 0 0  1 0 0 enter odd number of 1 

1 1 1  1 1 1  1 1 1 enter even number of 1 

            
Table 12.3: To explain of the substitution principle used for generating the parity bit 

 

The corresponding eight-bit odd parity generator (compiled on the basis of the application of 

substitution method) is shown in Figure 12.8 

Figure 12.8: Principle and example of parallel parity generator 

 

Parity is often generated within a byte. The choice of odd or even parity is depending on the specific 

characteristics of the controlled circuit. Very common is the protection of data in memory odd parity. 

If the memory is disconnected or the read address is outside the memory capacity, then read byte 

parity bit has zero value and the error is indicated. Indication of the violation of parity is carrier of 

this information (other than information about the read error information). 

Figure 12.9: The complete schema of the parity generator with checking circuits 

b0 

b1 

b2 

b3 

b4 

b5 
 
b6 

b7 

P 

L1 

L2 

LP 

  

L3 L4 

LQ 

Lα 

  

  

  

  

  

  

P = a0a1 + a0a1  - odd parity 

P = a0a1 + a0a1  - even parity 

a0 
a1 
a0 
a1 

& 1 

& 

P(0-7) even 

a0 
a1 
a0 
a1 
a2 
a3 
a2 
a3 
a4 
a5 
a4 
a5 
a6 
a7 
a6 
a7 

& 1 

& 

& 1 

& 

& 1 

& 

& 1 

& 

ap 
ap 

P(0-7) odd 

Parity error 

 
Failure of parity generator 

& 1 

& 

& 1 

& 

& 1 

& 

& 1 

& 

Correct parity 



7 
file 

12.1.1.3   N/M code information security 

 

For these codes applies rule that every valid character is shown as a group of N bits with value log.1 

from M bits. It diminishes the capacity of the code, although it did in comparison with the classical 

binary code, but increases the distance code, which allows you to detect single or multiple errors of 

the same type (log.0 or log.1). It is this feature codes N/M is very advantageous, because the current 

electronic systems malfunctions arise situations where accruing log.0 incorrect or defective log.1. 

 

A number of conceivable combinations expressed by N/M code can be calculated as the combination 

of N elements from set M elements with repeating, see 12.1: 

)!MN(!M

!N
D

−
=           12.1 

 

If this code is used is to attempt to assign to numbers a combination, when the numbers assigned to 

each combination of near certain weighted code (see the following sample code 2/5 code very 

analogous to 01247 weighted code). 
   

Decimal 

form 

2/5 2/7 

0 1 2 4 7 5 0 4 3 2 1 0 

0 0 0 0 1 1 0 1 0 0 0 0 1 

1 1 1 0 0 0 0 1 0 0 0 1 0 

2 1 0 1 0 0 0 1 0 0 1 0 0 

3 0 1 1 0 0 0 1 0 1 0 0 0 

4 1 0 0 1 0 0 1 1 0 0 0 0 

5 0 1 0 1 0 1 0 0 0 0 0 1 

6 0 0 1 1 0 1 0 0 0 0 1 0 

7 1 0 0 0 1 1 0 0 0 1 0 0 

8 0 1 0 0 1 1 0 0 1 0 0 0 

9 0 0 1 0 1 1 0 1 0 0 0 0 
 

Table 12.4: Examples of the 2/5 and 2/7 codes 

 

Check the correctness of the code can be done by combination circuit or by a simple analog summing 

circuit. Karnaugh map for the establishment of the combinations circuit for checking code 2/5 is given 

in the following table. 
 

  3   1  2 

 5  6 4    

0        

7 8  9     

 

Table 12.5: Karnaugh map for the control circuit of the 2/5 code (for convenience, valid 

fields are represented by values of the numbers) 

 

The table shows that the logical formula can be substantially minimized and, therefore, that the 

realization of a control circuit to be somewhat cumbersome. 

 

The second option is an analogue adder, which counted the input voltage level. Analog comparators 

detect on the adders output permitted level of the total voltage sum of two log.1 and three log.0. 

 

Although it is possible to replace comparators by transistors, realization of the resistance in a structure 

of the integrated circuit is more than debatable (although here depends on the ratio of resistors and 

4 7 

0 1 2 
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not on their absolute value). Analog circuit is not an appropriate subject for the implementation of 

the current structure of digital circuits, and therefore this possibility given the full picture of the 

possible solutions. 

Figure 12.10: Block diagram of the 2/5 code analog control circuit 

12.1.1.4   Hamming codes 

 

This is a special group of linear binary (n, k) codes with code distance 3 or 4, which enable indication 

of the double-failures and simple-failures correction. Adding a few bits of meaningful bits into 

protected words increases the code distance of the resulting code. Hamming code can describe the 

control matrix, whose columns are all the nonzero words of length n - k = r which no one repeat. 

12.1.1.4.1   Hamming code generation algorithm 

 

The unsecured m bits ai of the word A with a code distance 1 is join on k other bits p1, p2, ….... pk 

of the control word P, which consists from unique, non-repeat subsets bits ai. Secured word B formed 

by bits b1, b2, ...…..... bm+k we get by the appropriate grouping of bits ai and pi. Above is secured 

word B is possible form a number S consisting from bits s1, s2, ..…….. sk (error of syndrome), whose 

numerical value directly indicate the order of bit errors in the secure word B. 

Note: 

Syndrome gives the position of all the wrong bits secured word and of the parity bits of course.  

 

Syndrome reflects the position of bit error with a faulty value, and therefore value 0 corresponds to 

flawless code and the values from 1 to m + k corresponds to locate bad words. Because it is necessary 

to cover a total of m + k +1 option, the number of bits of security to meet the inequality 12.2: 

1km2
k ++           12.2 

To ensure four-bit word is k= 3. Number of control bits we get as the solution equation 12.2, 

a quantification of the following relationship: 

1k42
k ++  which is fulfilled for 3k   

The procedure of generating control bits can be described as follows: 

• position of equal power of the resulting code used for the unique parity bits pi, where i takes 

values (1, 2, 4, 8, 16, 32, ...) 

• other positions are allocated bits unsecured words ai, where i takes values (3, 5, 6, 7, 9, 10, 

11, 12, 13, 14, 15, 17, ...) 

UCC 

- 
 

+ 

- 
 

+ 

& 

2/5 code error 
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 1 
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 4 

 5 
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• each parity bit is calculated from a unique combination of bits of the insecure word. Location 

of the parity bit clearly specifies which sequence of bits is used for generating the parity bit. 

 

Parity bit p1 (first position) belongs to all the odd bits from the information bit a1 of the secure word, 

so the 3rd bit of the secured word. Parity bit p2 (second position) is the security bit of each odd pair 

bits from the secured word starting with 2nd and 3rd bits of the secured word. Parity bit p3 (fourth 

position) provides each odd four bits of the secured word starting with bits 4, 5, 6 and 7 of the secured 

words. For additional parity bits are proceeding by analogy. 

 

The previous interpretation that four-bit binary code is necessary to ensure a minimum of 3 bits, the 

resulting word has the following format: 

6543210 2

4

2

3

2

2

2

3

2

1

2

2

2

1 a,a,a,p,a,p,p  

The individual bits of security code pi (generated as even parity bits) are generated by creating the 

following equations: 

4211 aaap =  

4312 aaap =  

4323 aaap =  

Is clear thus satisfy the following equation: 

0aaap 4211 =  - left site of the equation is the syndrome bit s3 (positon b1, b3, b5, b7 of secured word) 

0aaap 4312 =  - left site of the equation is the syndrome bit s2 (positon b2, b3, b6, b7 of secured word) 

0aaap 4323 =  - left site of the equation is the syndrome bit s1 (position b4, b5, b6, b7 of secured word) 

From the generating equations is clear that every bit of the security code is generated from another 

set of data bits. Each syndrome bit in generating equations of the syndrome bits is repeating in the 

binary expression of their position in the secured word. If one of the secure bits inverts the words, 

equation syndrome bits take the values that correspond to the position of the changed bit (in binary). 

 

Generating individual bits of Hamming code and its properties demonstrates the following example. 

 

Example: 

Build single-fault correcting Hamming code for the BCD 8421 and check its properties. 

Solution: 

For BCD code is m = 4. To meet the expression 1.14 must be k  3. If we choose the shortest 

code, the Hamming code BCD words will have a length of 7 bits, and its shape is as follows: 

b1,  b2,  b3,  b4,  b5,  b6,  b7 

Whereas the importance and weight of the individual bits in a safe word is as follows: 

6543210 2
4

2
3

2
2

2
3

2
1

2
2

2
1 a,a,a,p,a,p,p  

Syndrome individual bits are generated as follows (see the rules in the preceding text): 

• bit s1 is generated from bits b4, b5, b6, b7 

• bit s2 is created from bits b2, b3, b6, b7 

• bit s3 is the result of the evaluation of bits b1, b3, b5, b7. 
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failure position 
syndrome 

s3 s2 s1 

0 0 0 0 

1 0 0 1 

2 0 1 0 

3 0 1 1 

4 1 0 0 

5 1 0 1 

6 1 1 0 

7 1 1 1 

Each additional parity bit is generated from another set of bits of the original (source) words. 

Because syndrome bits are generated from each different (unique) bit sets of the source words, 

each error accompanied by another syndrome - see next table. Syndrome S, quantified bits (s1 s2 

s3), expresses the position of erroneous bit in the secured word expressed in binary code. The 

syndrome bits are thus generated in the previous table. In each column is highlighted by gray 

color fields involved in generating syndrome bits. Yellow highlighted fields are positions 

(additional, parity) bits of security. 

It is evident that the position expressed syndrome erroneous bits in the secured word. It is 

necessary to set up your error bit s1 in positions 1, 3, 5 and 7, s2 bit to set up your error in positions 

2, 3, 6 and 7 and bit error s3 positions 4, 5, 6 and 7. Syndrome consists from the parity bits values 

of each group position errors (see previous table). 

Now the task is to assign position of the Hamming code bits and the BCD code bits into secured 

word. In essence, additional parity bits can be placed in any secure word position. However, to 

uniquely identify the error position, the weight of the syndrome bit must be uniquely related to the 

position of the parity bit of the error position group. Because of the easy location of the wrong bit, 

it is preferable to place the additional parity bits at positions with the weight corresponding to the 

weight of these bits in the syndrome. In general, the parity bits are at positions 1, 2, 4, 8, ....2k-1. 

Security bits located in positions 1, 2 and 4. Bit p1 is located at bit position 4, bit p2 at bit 

position 2 and bit p3 in position 1 (see following table with blue highlighted syndrome bit value). 

Example of generating Hamming code word by entering the number 4 for example is shown 

in the table below. 
position 1 2 3 4 5 6 7 

 p1 p2 m1 p3 m2 m3 m4 

BCD = 4   0  1 0 0 

p1 (3,5,7) =1 1  0  1 0 0 

p2 (3,6,7) =0  0 0  1 0 0 

p3 (5,6,7) =1   0 1 1 0 0 

secured word 1 0 0 1 1 0 0 

To illustrate the indications and the possibility of correcting an error is in the next table shown 

generation of the syndrome for both words - with inverted 7th bit secured word, and then for the 

same word with intact 7th bit. Syndrome error code for a broken word is equal to the value of 7 - 

it shows an error in the 7th secure bit words. 
        
failed word 1 0 0 1 1 0 1 

s1 (1,3,5,7) =1 1 0 0 1 1 0 1 

s2 (2,3,6,7) =1 1 0 0 1 1 0 1 

s3 (4,5,6,7) =1 1 0 0 1 1 0 1 

        
non failed word 1 0 0 1 1 0 0 

s1 (1,3,5,7) =0 1 0 0 1 1 0 0 

s2 (2,3,6,7) =0 1 0 0 1 1 0 0 
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s3 (4,5,6,7) =0 1 0 0 1 1 0 0 

Syndrome error code intact word is equal to the value of 0 - it reports on the accuracy of 

secure code words. 
        

decimal 

number 

1 2 3 4 5 6 7 
p1 p2 m1 p3 m2 m3 m4 

0 0 0 0 0 0 0 0 

1 1 1 0 1 0 0 1 

2 0 1 0 1 0 1 0 

3 1 0 0 0 0 1 1 

4 1 0 0 1 1 0 0 

5 0 1 0 0 1 0 1 

6 1 1 0 0 1 1 0 

7 0 0 0 1 1 1 1 

8 1 1 1 0 0 0 0 

9 0 0 1 1 0 0 1 

        

Table 12.6: List of BCD 8421 code digits secured by the Hamming code. 

 

The example demonstrates that generate secure bits, indications of the single-fault and its correction 

by Hamming code is the combination logic circuit resolved. Complete list of the BCD 8421 digits 

secured by the Hamming code is in Table 12.6. 

 

The amount of generated code is the code distance 3rd. Every bit of the BCD digits in the code is 

checked at least two additional parity bits. 

Note: 

Each independent additional parity bit of the Hamming code increases the code distance of the resulting code of 

value 1. 

 

The whole process of generating Hamming code can be precisely expressed using a generator matrix 

GH. For four-bit code constructs it so that it progressively encodes sequences 10001, 01002, 00103 

and 00014 (so that the rows are linearly independent and formed the basis of space). 























=























=

1001011

0101010

0011001

0000111

100p0pp

010p0pp

001p0pp

000p1pp

G

4

3

2

1

7654321

3214

3213

3212

3211

7654321

H

444

333

222

111

 

Similarly, it is possible to derive the control matrix Hamming code called HH. Bits b3, b5, b6, b7 

contain bits ai of information and even parity bits b1, b2, b4 are unique sets of data bits ai. Quantifying 

rates of all the unique sets getting syndrome s1, s2, s4 secured word, see the following relations: 





















=

==

==

==

1010101

1100110

1111000
H

0bbbbs

0bbbbs

0bbbbs
7654321

H

75313

76322

76541

 

12.1.1.4.2   Enhanced Hamming code 

 

To increase the effectiveness of Hamming code was created so-called extension of the binary 

Hamming code, which is based on adding additional symbol p0 to the beginning of each coded word. 
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This additional bit is used for control of the word parity. Bit p0 is chosen so that all bits bi secured 

word is formed as the even parity, see below: 

0bbbbbbbp 76543210 =  

The extended code allows correct the single-error and detects the double-error in the word. Generator 

matrix 
/

HG of the extended Hamming code construct as is the case otherwise of the basic Hamming 

code so that gradually encoding the sequences 10001, 01002, 00103, 00014. 























=























=

10010110

01010101

00110011

00001111

100p0ppp

010p0ppp

001p0ppp

000p1ppp

G

4

3

2

1

76543210

32104

32103

32102

32101

76543210

/

H

4444

3333

2222

1111

 

12.1.1.4.3   Decoding and check of the reading words by Hamming code 

 

First after receipting of the secured word B is quantifying syndrome bits S. Is possible use the matrix 

operation S = HH * B. The procedure is demonstrated by the following example. 

Example: 

Determine syndrome of the received word B = 1010111 secured by Hamming code using the 

control matrix HH: 

















=














































==

0

1

1

1

1

1

0

1

0

1

1010101

1100110

1111000

BHS H  

Syndrome S is equal to the number 6, which means that during a write or read data has 

appeared an error sixth bit of the secured word B. Flawless word has the form B = 101,010,101 - 

compared with the adopted by the inverted bit b6. Checking of this word is given below: 
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12.1.1.5   Check number 

 

Control numbers are a simple means of security information. They are an appropriate means for 

checking of the information block. May take the form of a checksum or add a checksum to the pre-
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selected values. 

 

Checksum is different from the arithmetic sum transfers to neglect higher order, is actually the lowest 

order of the arithmetic sum, or add it to the selected value. 

 

Simple checksum error can be clearly detected. In addition, the checksum can also detect multiple 

faults and clusters of errors. Can prove in theory there are clusters of errors that the checksum cannot 

be detected, because the individual errors offset each other. The probability of such errors in the real 

transmission channel is negligible, because in these conditions occurs, the increased sensitivity to 

noise log.1 or log.0 and not complementary sensitivity (this phenomenon can use intruders of the 

communication channels, but there are other factors than the subject of our research). 

Example: 

Build a checksum for twelve BCD code number and check its properties. 
             
1 2 4 5 8 6 0 0 0 0 0 0 6 

1 2 4 5 8 6 0 0 0 0 0 0 4 

 

If we do not only error detect, but also require the error correction must be the check digit combine 

with other security mechanisms to enable error correction to make, see the following example. 

Example: 

Display the corrective mechanism for a number secured by checksum. 
             
1 2 4 5 X 6 0 0 0 0 0 0 6 

1 2 4 5 X 6 0 0 0 0 0 0 4 

Please enter a numeric check on the correctness of the code and then we can uniquely 

reconstruct the wrong number. If as the check digit is used a complement to 10, then summing all 

valid digits beyond the disturbed digit we get value to the number 10 represents impaired digit 

(see the second line). If as the check digit is use direct value, the reconstruction of broken digits is 

more complicated (see first line). 

12.1.1.6   Polynomial codes 

 

Polynomial codes use again the principle of complementarity of control codes to the original 

information. Creation of additional bits is based on algebraic principles. Selecting generating 

polynomial properties of the resulting code can be adapted to the nature of errors occurring in the 

transmission channel or in write and control data on magnetic or optical storage media. 

 

To ensure appropriate polynomial block code we see the data as a polynomial with k members, where 

individual bits represent a block of coefficients and are marked with symbols in the range of ak-1, 

……., a1, a0. The value of the polynomial is expressed by relation: 

A(x) = ak-1* xk-1 + ……. + a1* x1 + a0* x0 

where value (k-1) is a polynomial degree. 

 

Security bits are the remainder of the integer division modulo 2 [from a theoretical point of view is 

1+2+4+5+8+0 ........ +0=26 → check sum = 6, complement to 10 = 4 

1+2+4+5+6+0 ........ +0=18 → complement to 10 = 2, lost number = (2+6)without carry= 8 

1+2+4+5+6+0 ........ +0+4=22 → value of lost number is complement to 10 = 8 
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the division in finite field GF(2) of polynomials over the integers] generating polynomial P(x) 

according to the formula 12.3, where Q(x) is the integer quotient and R(x) the integer remainder from 

integer division. Generating polynomial P(x) is the polynomial of degree r, which must be less than 

the value of k at the same time greater than the number 0, i.e. the coefficient a0 must be 1. 

)x(P

)x(R
)x(Q

)x(P

)x(Ax
r

=


        12.3 

Division modulo 2 by the generating polynomial expressed by relationship 12.3 can be modified, see 

link 12.4: 

)x(R)x(P)x(Q)x(Ax
r =  

)x(P)x(Q)x(R)x(Ax
r =        12.4 

Note: 

Operation in the second row can be made on the basis of equivalence summation and subtraction modulo 2 

 

The left side of equation 12.4 represents a block of data T(x) secured by polynomial code. The right 

side of the equation indicates that it is fully divisible by generating polynomial P(x). This feature 

allows you to check the integrity of transmitted or read information. On the receiving side is the 

secured information divided modulo 2 generating polynomial and if the rest is equal to 0, the 

information is flawless. The procedure of generating security bits: 

• polynomial A(x) multiplying by the value xr, where r is the degree of generating 

polynomial. Practically, this means the polynomial A(x) connect r right-hand zeros, 

• resulting polynomial divided modulo 2 with polynomial P(x) 

• prepare a secure polynomial T(x) - the remainder R(x) to connect to the polynomial A(x). 

Example: 

Demonstration of the properties sum and the product modulo 2 

1x1x2x)1x()xx(
222 +++=+++  

xxxx2x)1x()xx(
3232 +++=++  

Likewise the multiplication, where the x2 takes after sum modulo 2 in the binary scale the 

value 0 

1x

1
1x

1x

xxx 2
23

+
−+=

+

++
 

Division modulo 2 can be modified into a (x3 + x2 + x) = (x2 + 1)*(x + 1) − 1. The rest of the 

division in this case is value 1. 

The interpretation for quotient in that division is x2 + x + 1 are input data 111, x + 1 is the 

generating polynomial and the rest 1 is security polynomial. Security level shall be 1. Digit 0 is 

added into secured input data and thus obtain a secure polynomial x3 + x2 + x. 

 

The procedure will demonstrate the following example. 

Example: 

Deduce the secure bits for polynomial A(x) b with the use of a generating polynomial P(x). 

 

A(x) = 1010001101 = x9 + x7 + x3 + x2 + 1 

P(x) = x5 + x4 + x2 + 1 

A(x) * x5 = x14 + x12 + x8 + x7 + x5 = 101000110100000 
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A(x) * x5/P(x) = x14 + x12 + x8 + x7 + x5/ x5 + x4 + x2 + 1 = 101000110100000/110101 
 

A(x) - no secured data 

block 
checking bits 

Quotient – Q(x) 
1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 

1 0 1 0 0 0                    
1 1 0 1 0 1                    

0 1 1 1 0 1 1         1          

 1 1 0 1 0 1                   

 0 0 1 1 1 0 1        1 1         

  1 1 0 1 0 1                  

  1             1 1 0        

   1 1 1 0 1 0                 

   1 1 0 1 0 1                 

   0 0 1 1 1 1 1      1 1 0 1       

    1 1 0 1 0 1                

    1           1 1 0 1 0      

     1 1 1 1 1 0               

     1 1 0 1 0 1               

     0 0 1 0 1 1 0    1 1 0 1 0 1     

      1 1 0 1 0 1              

      1         1 1 0 1 0 1 0    

       1 0 1 1 0 0             

       1 1 0 1 0 1             

       0 1 1 0 0 1 0  1 1 0 1 0 1 0 1   

        1 1 0 1 0 1            

        0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1  

         1 1 0 1 0 1           

         1      1 1 0 1 0 1 0 1 1 0 

       R(x)   0 1 1 1 0           

Result: 

A(x) = x9 + x8 + x6 + x4 + x2 + x1 = 1101010110, R(x) = x3 + x2 + x1 = 01110 

Secured polynomial T(x) = 101000110101110 

12.1.1.1.1 Failure detection by the polynomial code 

 

Let the combination of bad bits is a polynomial E(x). Instead the transmitting secure polynomial T(x) 

is in fact received message T(x)  E(x). If this polynomial is flawed fully divisible generating 

polynomial P(x), then such mistake could not be detected. 

 

If you know the character of possible errors, you can find such a generating polynomial P(x) that the 

probability detection of the selected character error was maximizes. 

 

The following rules apply: 

• generating polynomial (at least first-order) provides detects all single-errors 

• generating polynomial of the second-order provides detection of all single and double-errors 

• when generating polynomial contains a factor (x +1), then provides detection of errors with 

odd multiplicity. These include polynomial shape xc +1 - one is always broken down into a 

product of the members (x +1) * (xc-1 + ... +1). 

• Generating polynomial of degree r detects all clusters of errors of length r-1. 

Note: 

Cluster of errors is a group of b bits error polynomial, of which at least the first and last bit is incorrect. 

 

If the error polynomial is represented by a sequence 0000010100110000, then the cluster contains 
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errors of length b = 7 and the error polynomial can be divided into factors: 

E(x) = xi * E1(x) 

In this example, is as follows: 

x10 + x8 + x5 + x4 = x4 * ( x6 + x4 + x1 + 1) 

It is clear that the shape factor xi cannot be divisible by generating polynomial, which of course 

applies to the polynomial x4 from the above example. 

 

Example of data transfer without fault: 

The polynomial T(x) = 101000110101110 is the result of the transmission of the polynomial 

T(x) – see previous example – through the transmission line. The integrity check of the received 

data block V(x) is done by dividing the modulo 2 with the same generating polynomial P(x). The 

value of the integer residue (syndrome) S(x) after division is an indicator of the accuracy of the 

content. 

 

T(x) = 101000110101110 = x14 + x12 + x8 + x7 + x5 + x3 + x2 + x 

P(x) = x5 + x4 + x2 + 1 

 

T(x) Quotient – Q(x) 
1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 

1 0 1 0 0 0                    
1 1 0 1 0 1                    

0 1 1 1 0 1 1         1          

 1 1 0 1 0 1                   

 0 0 1 1 1 0 1        1 1         

  1 1 0 1 0 1                  

  1             1 1 0        

   1 1 1 0 1 0                 

   1 1 0 1 0 1                 

   0 0 1 1 1 1 1      1 1 0 1       

    1 1 0 1 0 1                

    1           1 1 0 1 0      

     1 1 1 1 1 0               

     1 1 0 1 0 1               

     0 0 1 0 1 1 1    1 1 0 1 0 1     

      1 1 0 1 0 1              

      1         1 1 0 1 0 1 0    

       1 0 1 1 1 1             

       1 1 0 1 0 1             

       0 1 1 0 1 0 1  1 1 0 1 0 1 0 1   

        1 1 0 1 0 1            

        0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1  

         1 1 0 1 0 1           

         1      1 1 0 1 0 1 0 1 1 0 

       S(x)   0 0 0 0 0           

The integer residue (syndrome) of modulo 2 division is S(x) = 00000 

Result: 

The remainder (syndrome) of S(x) of the polynomial T(x) is zero. The polynomial T(x) is very 

likely to match the polynomial V(x). Polynomial V(x) was unlikely to be intact. 

 

Example of data transfer with fault: 
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The polynomial T(x) = 101001110101110 is the result of the transmission of the polynomial 

T(x) – see previous example – through the transmission line. The integrity check of the received 

data block V(x) is done by dividing the modulo 2 with the same generating polynomial P(x). The 

value of the integer residue (syndrome) S(x) after division is an indicator of the accuracy of the 

content. 

 

T(x) = 101001110101110 = x14 + x12 + x9 + x8 + x7 + x5 + x3 + x2 + x 

P(x) = x5 + x4 + x2 + 1 

 
T(x) 

Quotient – Q(x) 
1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 

1 0 1 0 0 1                    
1 1 0 1 0 1                    

0 1 1 1 0 0 1         1          

 1 1 0 1 0 1                   

 0 0 1 1 0 0 1        1 1         

  1 1 0 1 0 1                  

  1             1 1 0        

   1 1 0 0 1 0                 

   1 1 0 1 0 1                 

   0 0 0 1 1 1 1      1 1 0 1       

    1 1 0 1 0 1                

    1           1 1 0 1 0      

     0 1 1 1 1 0               

     1 1 0 1 0 1               

     1          1 1 0 1 0 0     

      1 1 1 1 0 1              

      1 1 0 1 0 1              

      0 0 1 0 0 0 1   1 1 0 1 0 0 1    

       1 1 0 1 0 1             

       1        1 1 0 1 0 0 1 0   

        1 0 0 0 1 1            

        1 1 0 1 0 1            

        0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1  

         1 1 0 1 0 1           

         0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 1 

       S(x)  0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 

The integer residue (syndrome) of modulo 2 division is S(x) = 11011 

Result: 

The remainder (syndrome) of S(x) of the polynomial T(x) is not zero, the content of the 

transmitted secure polynomial V(x) is violated. 

12.1.1.7   Cyclic redundancy checking - CRC 

 

Cyclic redundancy checks, known as CRC (Cyclic redundancy check in) is used for protecting data 

recorded on magnetic and optical media. CRC is version of polynomial codes. The difference lies in 

the use of special polynomial generating types. This is a special case of the hashing function. 

 

CRC is calculated before the registration of data and is stored along with data. After reading the data 

is again CRC independently derived and compared with the stored CRC. If the value of generated 

CRC is different, is marked as erroneous reading. 

Note: 

It some cases it is possible to correct errors using CRC. 
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12.1.2   Hardware redundancy 

 

The working principle of the hardware redundancy is similar information redundancy. As pointed out 

previously, the principle activities of redundancy are to allow the creation of additional symptoms or 

fail to recognize the correct operation of the reference functional block (not only the electronic 

equipment). Additional symptoms may be generated by different mechanisms resulting from the 

nature of the functions carried out in controlled facilities. 

 

For implantation redundancy circuit there are two principles - redundancy (duplication) functional 

blocks (circuits) and the prediction of important properties of the outcome. Both principles are very 

often used to control the activities of the basic functional blocks as the digital systems as a whole, as 

well as structures within the integrated circuits and microprocessors. 

12.1.2.1   Doubling of functional blocks with comparing of the outputs 

 

Doubling of functional blocks is based on inspection results or input variables implemented 

independent of each circuit. Checking the results of two independent realization of a functional block 

is very dynamic, but because of the circuit performance is used only for the most important functional 

parts of digital systems. 

Figure 12.11: Check the correct block operation by the method of comparing the output 

values 

12.1.1.2 Implementation of the inverse function and compare on inputs 

 

 

Application of duplication method is associated with a significant increase of the technical equipment 

size. When the realization of the inverse function is much simpler is effective to apply the duplication 

of functional blocks with control on inputs. This approach is seemingly illogical, but for some 

applications it is economically and operationally feasible than the standard duplication. Principal 

block scheme see Figure 12.12. 

12.1.2.2   Two-wired logic 

 

This is again a doubling of technical equipment. There are realized direct and inverse functions and 

the outputs are checked whether both circuits generate mutually inverse values. If the values of both 

outputs are inverted each other, controlled part works without fault. Checking of the correctness can 

be realized by nonequivalence circuit that controls the mutual inversion of each functions output. 

Functional block 
1st realization 

Functional block 
2nd realization 

Comparator 

Data input 

Result Indication of the error 
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Figure 12.12: Check the correct block operation by the method of comparing the input 

values 

 

 

Figure 12.13: Check the correct function by two-wired logic 

 

 

This design has interesting behaviors. Some logical function can be realized by crossing of the wires. 

List of basic logical function follow in next picture. 

Realization of direct 
function 

Realization of indirect 
function 

Sum modulo 2 

Data input in direct form 

Direct value of result Error indication 

data input in inverse form 

Indirect value of result 

Realization of the function Realization of the inverse 
function 

Comparator 

Data input 

Result Indication of the error 
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Figure 12.14: Examples of basic logic modules of two-wire logic 

12.1.2.3   Four-wired logic (fourfold logic) 

 

This principle of circuit redundancy provides possibility of single-failure self-correction inside in 

a four-wired logic (hence the name is deriving of this solution verifying the correct functioning by 

circuit redundancy). This option is given by an extreme size increase of technical equipment. In this 

solution, each logic signal carried four times and in another layer of logic circuits enters in the same 

order of replacements. It can be graphically described on the example of bus drivers. There are two 

basic solutions - two layers of AND and OR circuits driver with two layers of NOR circuits. These 

two layers represent a fourfold logic gate. 

Figure 12.15: Suppression of speech disorders in bus drivers fourfold logic element 

AND-OR type: 

a) for t1 error type 

b) for t0 error type 

 

From the diagram it is clear that the failure t1 is already filtered out in the first layer of logic, but the 

failure of the type t0 in the second layer. In this case, the quadruple logic can correct one failure in a 
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single logical element. 

Figure 12.16: Suppression of speech disorders in bus drivers fourfold logic element 

NOR-NOR and NAND-NOR types: 

a) for t1 error type 

b) for t0 error type 

 

The fourfold logic NOR-NOR and NAND-NOR types disorders filters out in reverse order - 

disorders of the type t1 are filtered in a second layer of logic and fault type t0 in the first layer of the 

logical element. 

Figure 12.17: Schematic mark of the certain fourfold logic gates 

Figure 12.18: Example of the logic circuit realized by the fourfold logic 

 

Similar manner each gate can be realized. Schematic symbol must also include information on the 
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order of confusion within the implementation logic elements. It is important to enable the compilation 

of logical network elements with homothetic commutations of all logic signals within each layer of 

the network. 

12.1.2.4   Checking the correct operation of the decoders 

 

In this case, actually is a control code. A typical decoder converts the binary number of length n bits 

code 1/N, where N is 2n. To checking of the decoder error-free operation can be used the odd parity 

check circuit or combinational circuit with the function similar to the 2/N code check circuit -see 

chapter "Data Coding" of the Design Digital Systems course. 

Figure 12.19: The principle of the address decoder valid operation checking by the odd 

parity circuit 

 

More rigorous checking of the decoder operation is to check the correctness of its output functions. 

The control circuit is bulky and its dimension is comparable to a simple duplication decoder circuit - 

see the following example. 

Example: 

Design checking circuit witch check failure-free operation of the four-bit decoder. 

Solution: 

Karnaugh map failure-free operation of the address decoder is shown at Table 12.7 

 

0 1 0 1 

1 0 0 0 

0 0 0 0 

1 0 0 0 

 

Table 12.7: Karnaugh map of the four-bit decoder valid operation 

 

Logical equation correct functioning four-bit decoder is as follows: 

E = x1 x2 x3 x4 + x1 x2 x3 x4 + x1 x2 x3 x4 + x1 x2 x3 x4 

Relationship to check of decoder has more log.0 than log.1 which implies that the control 

circuit thought log.0 could be more efficient - see the following relationship. 

E = x1 x2 + x3 x4 + x1 x3 + x1 x4 +  x2 x3 +  x2 x4 + x1 x2 x3 x4 

The shape of the two equations suggests that it is not. The equation for the correct operation 

has four implicants with four variables, while equation malfunction has seven implicants of witch 

only one is composed of four variables and the other two variables in the direct form. 

To test the four-bit decoder is advantageous in terms first equation: 

E = x1 x2 x3 x4 + x1 x2 x3 x4 + x1 x2 x3 x4 + x1 x2 x3 x4 
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Figure 12.20: Diagram of control circuit for checking four-bit decoder output code 

12.1.2.5   Control of register correct operation 

 

In some applications it is necessary to ensure control of fixation important symptom (often realized 

as a short pulse) in the registry and passed for further processing. Valid values of symptoms is usually 

limited to frequency stabilize the output signals in the aftermath of the transitional phenomena. These 

impulses must be safely secured to fix the register. 

 

Checking the entry in the registry uses the principle of similar two-wire logic. Register is to control 

the registration flags and control the correct functioning of the registry is divided into several sectors 

of length n bits. Each sector is completed by the redundant bit prescribers that the sector does not 

have a bit, so that each sector of the secured register has n +1 bits. The result is a situation where in 

each sector of the secured register is set always at least one bit. If even one bit is not set, it is a failure 

of logic input register or malfunction of the register. Diagram of the secured register is mentioned in 

the following figure. 

 

A typical example of a secured register is errors register of the digital systems equipped with recovery 

block from error. The following example shows the securing procedure of the parity errors 

registration into the fault register. 

Example: 

To the error register are written indications of the structural modules control circuit. Valid 

values of the output signals of the control circuits are time limited to stabilizing the output signals 

of functional blocks in the aftermath of the transitional phenomena. These impulses must fix into 

error register. Later is from the contents of the error register shaped the interrupt requests signal 

from the control circuits and also the so-called code of failure. Formation of fault code is 

complicated by fact that fault indication is often indicated from several check circuits and is 

necessary to found the primary indication of the failure. 

If we consider the content control of the 32-bits register RX (this may be the input register of 

the adder) is obvious, that consists of 4 Bytes, each of which is protected by an odd parity bit. 

However, when an error changes one Byte, the parity circuit sets the failure signal of the 

consonant Byte and also resets the accuracy signal of the consonant Byte (see Picture 12.9). At 

the same time is generated the parity error signal of the register RX, which is the summation of 

Byte failure signals and the accuracy signal of the register RX contents (the summation of the 

accuracy signal of all Bytes content). Signals Byte accuracy parity and the signal accuracy of the 

register RX content are fed to the input logic of the error register. Here are generated adjustment 

functions Bytes error in the relevant error register bits, which are next functions: 
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• error RXi * error RX 

• error RXi * error RX 

• error RXi * error RX 

• error RXi * error RX (function of the register RX content correctness) 

• indication of the write error into error register. 

Diagram of the error register input circuits and its security is shown in the picture – see Figure 

12.21. 

Figure 12.21: Funkcion principle of the checking operation write into the register 

Note: 

In both diagrams of this chapter is highlighted in green forming part of the information absence in the register 

and blue circuit forming the register write error. 

12.1.3   Prediction 

 

This is another continuous diagnostics method of the digital system operability. This method uses a 

prediction of characteristic symptom of result on the basis of some properties of input variables. It is 

possible to predict the outcome of parity or parity inversion results. With this procedure can be found 

at the testing of the binary counter, or testing of the arithmetic circuits. 

12.1.3.1   Checking of the binary counters operation 

 

For the binary counters are characteristic, that the parity of the result is inverted when the carry or 

loan ends on an even rank of the counter. This feature applies to both binary counters - forward and 

back. This feature is demonstrated in the following table for odd parity. 

 

From Table 12.9 can be derived logical equations for predicting the inversion parity resulting plus or 
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minus of value 1. 

 
            

Forvard counter y4 y3 y2 y1 P  y4 y3 y2 y1 P 

 1 1 0 1 0  1 0 1 1 0 

    +1      +1  

 1 1 1 0 0  1 1 0 0 1 

            

 
Back counter y4 y3 y2 y1 P  y4 y3 y2 y1 P 

 1 1 1 1 1  1 0 0 0 0 

    -1      -1  

 1 1 1 0 0  0 1 1 1 0 

Table 12.8: Principle of the parity inversion prediction 

 
       

y4 y3 y2 y1 P Parity inversion - forward counter Parity inversion - back counter 

0 0 0 0 1 *  
0 0 0 1 0  * 
0 0 1 0 0 *  
0 0 1 1 1 * * 
0 1 0 0 0 * * 
0 1 0 1 1  * 
0 1 1 0 1 *  
0 1 1 1 0  * 
1 0 0 0 0 *  
1 0 0 1 1  * 
1 0 1 0 1 *  
1 0 1 1 0 * * 
1 1 0 0 1 * * 
1 1 0 1 0  * 
1 1 1 0 0 *  
1 1 1 1 1  * 
       

Table 12.9: The logic derivation of equations for predicting parity inversion in 

dependence on carry or loan bits 

 

 
Forward counter 1 0 1 1  Back counter 0 1 1 0 

 1 0 0 1   1 1 1 0 

 1 0 0 1   1 1 1 0 

 1 0 1 1   0 1 1 0 

 

Table 12.10: Karnaugh maps of the functions for result parity inversion prediction 

Even bit 
 parity is constant 

Odd bit 
 parity is inverted 

Odd bit 
 inverted parity 

Even bit 
 constant parity 

y3 y4 

y1 

y2 

y3 y4 

y1 
y2 



26 
file 

 

For binary forward counter is valid the following equation of the prediction: 

• result parity is inverted y1 + y2 y3 

• result parity is constant y1 y2 + y1 y3 

For binary back counter is valid the following equation of the prediction: 

• result parity is inverted y1 + y2 y3 

• result parity is constant y1 y2 + y1 y3 

 

Check the correct function of the binary counter is based on comparing the predicted parity of content 

in the current step corresponds with parity of result in the next step. Predicted parity is derived from 

parity of counter content in the current step and the value of prediction function. If the predictive 

value of the function becomes log.1, the parity of the counter content in the next step will invert in 

compare with parity of the counter content in the current state. If the predictive value of the function 

becomes log.0, the parity of the counters content in the next step will be the same as parity of the 

counter content in the current state. Predicted parity of the counter content is stored in the flip-flop 

and in the next step is compared with the actual parity of the counters content. Diagram of control 

circuit working on this principle is shown in the picture below. 

Figure 12.22: Diagram of bidirectional binary counter control circuit based on prediction 

of parity content in the following step 

Note: 

In addition, you can deduce the other rules - see below: 

• for forward counter - the parity bit inverts if odd bit is equal to log.0 and all lower bits are log.1, 

• for back counter - the parity bit inverts if even bit is equal to log.1 and all lower bits are log.0. 

12.1.3.2   Adder activity checking 

 

Prediction mechanism for checking the correct operation can be applied also in adder. The basic 

principle of control is the fact that if add two even or two odd numbers the result is an even number. 

If add even and odd number, we get an odd number. 

 

Applying this principle of control is to ensure parity of both operands. The classic parallel adder 

works with words containing several bytes secured by parity. It causes partial complication in 
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predicting process. 

 

Generated parity of result contains parity bits of result bytes. Prediction parity of result consists of 

prediction parity bits of input bytes. Checking of the valid operation is based on comparing of the 

prediction parity bits and generated parity bits of the result. 

 

In the final in parity bit of byte prediction entering homothetic low significant bits of bytes and the 

carry bit of the sum of lower homothetic meaningful input bytes. Prediction of carry bits over a group 

of adder ranks - see chapter devoted to adder design (Design of the Digital System course). 

 

The equation for generating of the predicted parity bit for one result byte of the adder is as follows: 

1i0i0ii carrybap −=  

Scheme of the predictor is very simple and follows on next picture. 

Figure 12.23: Diagram of adder parity predictor 

 

Correct adder operation is indicated by matching of all bytes of result parity bits with all predicated 

parity bits of the bytes of result. 

 
0 0 1 1 0 1 0 1 1  0 0 0 1 0 1 0 1 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 1 0 0 1 0 1 0 0 

 

Figure 12.24: Scheme of the adder check circuit 

12.1.4   Checking of the time sequences 

 

This principle is based on monitoring of the requirement for two parameters. First is a defined period 

of maximum response from addressed subsystem. Second is the defined period of repeated operation 
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within a beforehand defined "time window". Among the frequently used methods include the so-

called counter-TIME OUT and counter-WATCH DOG. 

 

To implement the above functions is used universal counter, which is part of the auxiliary circuits 

most commonly manufactured microprocessors. These processors are usually equipped with multi-

purpose counters are used for different purposes. The universal counter can be filled by optional initial 

value and you can select the frequency of synchronization pulses. Most universal counter is equipped 

with an indication of zero content, and this indication can be used to activate of an interrupt system. 

12.1.4.1   Watch-dog mechanism 

 

The universal counter can be used in WATCH-DOG function. Some microcontrollers are equipped 

with single-function counter WATCH-DOG. The principle of operation counters WATCH-DOG is 

based on measuring of the maximum permitted duration of selected activities. For an implementation 

of WATCH-DOG is a control of universal counter adjusted so that the initial content of the counter 

and its frequency synchronization is setup so that the time needed to reach zero is longer than the 

maximum period for re-repetition of selected activities. This time is chosen margin longer than 

duration of selected activity. 

 

Content of the universal counter is by start indication of selected activities constantly put into default 

status. If the observed activity starts late or not at all content of the counter reaches zero and initializes 

an interrupt system that can restart the reported activity and possibly send an error report about the 

non-standard reference activity. Described above story is captured following time chart. 

Figure 12.25: Time diagram of the WATCH-DOG operation 

a) proper function of the monitored process 

b) malfunction of the monitored process 

12.1.4.2   Time-out mechanism 

 

Feature of counter-OUT TIME is measuring the maximum time of an observed operation. The 

operation is running START command issuing by MASTER process of the operation (mostly 

program started in processor). Carrying out an operation then announces SLAVE operation (caused 

by SLAVE process) by signal STOP. Time between the START command and STOP signal from 

a properly functioning system, it is reasonably accurately estimated. If the process SLAVE does not 

emit signal STOP in a predetermined time, it is clear that the running process is not proceeding 

according to the assumptions and needs to be stopped by intervention of the MASTER process. The 

process of measuring the duration of SLAVE process can efficiently use one of the currently unused 

universal counters in timer mode. 

 

For implementation of TIME-OUT function is the control of a universal counter adjusted so that the 

reported activity flag 
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a)          a)        a)    b) 
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initial content of the counter and its synchronization frequency is setup so that the time needed to 

reach zero is margin longer than the maximum length of a SLAVE process. Universal counter in the 

function TIME-OUT works so that the initial content is set by the START command and 

synchronization is pulled by STOP command. If the STOP command is late or not at all generated, 

the contents of the counters reaches zero and as a result of which is initialized interrupt system. The 

interrupt process stops waiting for end of SLAVE process and issues an error message about non-

standard termination of the SLAVE process. Described above story is captured following time chart. 

 

Figure 12.26: Time diagram of the TIME-OUT timer operation 

a) correct function of the SLAVE process 

b) malfunctions of the SLAVE process 

Note: 

Typical example of the counter TIME-OUT implementation is the driver of the parallel port printer of classic PC. 

START signal of operation constitutes a signal STROBE OUT and signal to stop operation is a signal ACK of a 

printer. If the printer is turned off, or is unable to print a variety of reasons, omit to send the signal ACK and if interrupt 

system is activated is on the LCD screen given an error message (depending on your operating system, usually in the 

form of an information window). 
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