
file 1

Reliability of digital systems

Autonomous testing

Lecture notes for course PA192/12

Content

15 Autonomous tests generated in real time ... 2

15.1 Cyclic codes ... 2
15.1.1 Finite body GF(2) ... 2

15.1.2 Non decomposable polynomial in the infinite body GF(2) 3
15.1.3 Primitive polynomial .. 3

15.2 Signature analysis ... 4

15.3 Basis of a Signature Analysis ... 4

15.3.1 Linear Feedback Shift Register - LFSR ... 6
15.3.2 Generating test sequences .. 11

15.4 Systems BILBO - Built-In Logic Observer .. 12

15.5 System HILDO - Highly Integrated Logic Design Observer 15

List of figures ... 16

List of tables ... 16

file 2

15 Autonomous tests generated in real time

These types of tests allow significant savings hardware of built-in diagnostic tools. The test is

generated according to implemented algorithm in real time only during testing.

At the test unit is inserted only algorithm according to which the test is generated. These

methods generate test is sometimes referred to as algorithmic.

Generating tests are used mainly in cases where the test unit has a regular structure. It is mainly

used for memories, PLA circuits and structured designed sequential circuits.

Real-time tests can be generated by program or by HW. Test samples for RAM are primarily

generated by programs. Generators built into the structure of the test circuit are used for other

types of circuits.

15.1 Cyclic codes

Cyclic codes are linear codes that have the property that if V = (vn-1, vn-2,..., v0) is code-vector,

is code-vector also vector V’ = (vn-2, vn-3,..., v0, v-1).

Most of cyclic codes properties can be illustratively described in the representations of these

codes as polynomials. There is unambiguous assignment between code-vectors of the cyclic

code (n, k) with the coordinates of a finite body GF(q) and the polynomials with the coefficients

of GF(q) of degree less than n. These polynomials are called code polynomials.

If V = (vn-1, vn-2,..., v0) is code-vector cyclic code (n, k), so it has a corresponding polynomial

shape v(x) = v n-1xn-1 q...q v1x1qv0x0, where character "q" indicates add modulo q.

15.1.1 Finite body GF(2)

Coordinates (resp. coefficients) vi of the binary cyclic code of the infinite body GF(2) can take

the values 0 and 1 only. Their sum is performed by functions mod 2. Their product is identical

to the conventional algebraic and logical multiplication.

Note:

In the arithmetic of the residual classes, the modulo 2 polynomials are added, subtracted, divided and

multiplied as common polynomials, but above the resulting coefficients we perform the modulo 2 operations

(the remainder after division by two). For example:

• −2 modulo 2 is 0,

• −1 modulo 2 is 1,

• 0 modulo 2 is 0,

• + 1 modulo 2 is 1,

• + 2 modulo 2 is 0,

• + 3 modulo 2 is 1,

• + 4 modulo 2 is 0,

• atd.

The method of counting the elements of congruence classes linear algebra of polynomials over

GF(2) is for Q(x) = x2 + x + 1 and P (x) = x3 + x2 + 1 following:

• P(x) + Q(x) = x3 + 2x 2 + x + 2 = x3 + x

 P(x) + Q(x) = (x3 + x2 + 1) + (x2 + x + 1) = x 3 + 2x 2 + x + 2

 (P(x) + Q(x)) 2 = x 3 + x

file 3

• P(x) - Q(x) = x3 - x = x3 + x

 P(x) - Q(x) = (x3 + x2 + 1) - (x2 + x + 1) = x3 - x

 (P(x) - Q(x)) 2 = x3 + x

• P(x)* Q(x) = x5 + x + 1

 P(x) * Q(x) = (x3 + x2 + 1) * (x2 + x + 1) = x5 + 2x4 + 2x3 + 2x2 + x + 1

 (P(x) * Q(x)) 2 = (x 5 + x + 1)

If n=5 it is in some applications useful or necessary to perform the operation

mod x5 + 1 and result is P(x)*Q(x) = x

• P(x) /Q(x) = x

 P(x) / Q(x) = (x3 + x2 + 1) / (x2 + x + 1) = x – (x-1) / (x2 + x + 1)

 (P(x) / Q(x)) 2 = x + 1

15.1.2 Non decomposable polynomial in the infinite body GF(2)

Polynomial P(x) of degree m is irreducible if it cannot be divided without a remainder by any

other lower-order polynomial. Examples:

x4 + x3 + x2 + x +1

x4 + x3 + 1

x4 + x +1

x2 + x + 1

x + 1

Be careful polynomial x2+1 is decomposable. Polynomial x2 + 1 is divisible by x + 1, because

x 2 + 1 = (x+1) (x+1).

15.1.3 Primitive polynomial

Polynomial P(x) of degree m is primitive if it can be divided completely by (1+xk), where

k=2m-1 and cannot be divided completely by (1+xi), for all i<k. For every positive k, there is

at least one primitive polynomial order k. Determining of the primitive polynomials of higher

orders is not easy. Commonly are used tables.

m polynomial example
Number of primitive

polynomial order m

1 x+1 1

2 x2+x+1 1

3 x3+x+1 2

4 x4+x+1 2

5 x5+x2+1 6

6 x5+x+1 6

7 x7+x3+1 18

8 x8+x4+x3+x2+1 16

9 x9+x4+1 48

..

16 x16+x12+x3+x+1 2048

Table 15.1: Table of the primitive polynomials

file 4

15.2 Signature analysis

The design of contemporary digital systems is primarily based on the application of bus

structures linking Large Scale Integration (LSI) circuits - eg microprocessors, ROMs, RAMs,

complex interfacing units, programmable structures. Both the bus and the ports of these systems

are bi-directional.

Finding and locating malfunctions inside the microprocessor is difficult even if detailed

documentation is available. That is why most repairs of microprocessor systems are solved by

replacing the entire board.

In another situation are designers of electronic systems. It is necessary to detect whether the

unsatisfactory function of the microprocessor system is due to an incorrect design of the

technical structure or control program, or to a failure of the implemented circuits. Although

they are armed with logic analyzers and other special instrumentation, the finding the cause of

the unsatisfactory function of the microprocessor system with the bus structure requires a

detailed knowledge of the circuits, the solved algorithm and the programming tool. Finding the

occasional unwanted behavior of the system can take a very long time. The main problem is

that test devices provide either too much or too little information.

Contemporary diagnostic devices provide many configuration options to monitor system

behavior conditions, and it is often the case that the diagnostic expert needs to look for a suitable

configuration of the fault finding conditions in the design of the electronic system.

In addition to other techniques, it is possible to compress the internal data to effectively find

the malfunctioning part of the electronic system. Long data strings, which are cyclically

repeated in an existing system running at normal operating speed, can be compressed into a

compact, easy-to-interpret and characteristic expression. This term does not have to say

anything other than that the relevant node examined or does not work properly. This principle

uses flagship analysis of electronic systems.

15.3 Basis of a Signature Analysis

The basic components of the Signature Analysis (SA) are data compression and a stimulus

generated by the test circuit.

The principle of signature analysis is as follows - each node of the electronic system is

understood as a source of the sequential signal. In a certain time interval, can be traced a certain

number of logical zero "log.0" and logic one "log.1" at this node. If a repeatable synchronization

of this signal can be ensured, it can be easily, repetitively and reliably written to the serial

register and then performed further operations over it. The signal entered in the registry can be

understood as a code and we need to find a suitable tool to verify its authenticity. This can be

verified by comparing the current code with the standard code, which is obtained by measuring

on a fault-free electronic system.

The basic prerequisite for the successful application of the signature analysis is the fact that the

code generated by an error-free circuit (and represented by the sequence log.0 and log.1) differs

from the code affected by circuit failure - from the modified sequence log log.0 and log.1.

The basis of the signature analysis is, as with all diagnostic methods, the skill to force the failure

file 5

to affect the behavior of the signal at a system node that is accessible to the probe of the

measuring instruments.

The elegance of the signature analysis then consists in simply comparing code (signature) in

the nodes of a properly functioning electronic system (etalon) with signature in the node of the

electronic system with a failure. When using the signature analysis, it is not necessary to analyze

the behavior of the circuit and to penetrate to the nature of the unwanted signal sequences. It is

clear that signature analysis is a suitable method especially for repairing already designed and

previously functioning electronic systems.

Authentication of the code stored in the logbook may be somewhat difficult for large segments

of the diagnostic system capacities. To simplify authentication, data compression is used in

symptomatic analysis. Compression principles are generally more. The simplest is to detect the

number of "log 1" in the symptom – see Figure 15.1.

Figure 15.1: Examples of manifestations of failure symptoms in the test

circuit

It can be seen from the previous figure that simply counting the number of log.1 may not always

be successful, because especially for the symptoms of moving log.1 or moving log.0, the sum

leads to incorrect authentication. To eliminate this phenomenon, a data compression mechanism

is used. The checksum may be entirely satisfactory.

The compression mechanism interprets the serial data in the test node as sequence and these

bits change into so-called security word-signature. The signature is generated by the generating

polynomial. This is a mechanism commonly used for securing serially transmitted digital

information. In common realizations, a code length of 216 bits is assumed. This word length

follows from bus widths of the most commonly used single-chip processors that use sixteen-bit

symptom – log. 1 redundancy (log. 0 loss)

symptom – log. 1 shift

symptom – log. 0 shift

symptom - global change of the signal

symptom – shift of the signal edge

etalon

symptom - log. 1 loss (log. 0 redundancy)

file 6

buses. The structure of the generating polynomial is determined by the desired attributes of the

signature. The basic requirement is that two or more different signals do not have the same

signature.

Unique identification of the input code of the signature analysis is provided by the

synchronization signal - CLK and by the so-called time window. The sync signal defines the

valid values of the test signal (signature analyzer input signal) denoted by DATA.

The time window defines part of the cyclically repeated operation of the system under test

subjected to diagnostic analysis and is sometimes referred to in the signature analysis as the

START-STOP interval. Most digital systems are designed as synchronous systems and

therefore signal changes in the nodes of the circuit under test are synchronized with one of the

edges of the synchronization signal.

For the exact time window definition, it is not enough just to select the signals defining its start

and end, but it is necessary to define the edges of these signals. The same is true for selecting

DATA signal sampling times. You must select the edge of the sync signal that does not cause

the measured signals to change. It is desirable to select the edge of the synchronization signal,

which expresses the end of the transition states and the stabilization of the measured signals

amplitude. In this way, it is possible to clearly define the testing conditions of the digital system

for a clear and repeatable sequence of diagnostic operations allowing localization of a failure

of the tested digital system.

Provided that these conditions are met, DATA enters into the signature analyzer synchronously

with the clock signal of the device under test during the START-STOP interval. Both the

synchronization and the time window are defined by the test system.

The signature is generated by the shifting register, complemented by the circuits performing

the polynomial function. Small coding distances of DATA signal are interpreted as large code

distances by the signature, in other words small changes in the input data will be a major change

in the signature.

15.3.1 Linear Feedback Shift Register - LFSR

The Linear Feedback Shift Register – LFSR – allows to perform modulo2 multiplication and

division operations. These features have multiple uses for encoding serial interfaces, such as

pseudo-random test sequence generator, signature analyzer, and other applications. These

operations are easily accomplishing by integrating the nonequivalence circuits into shift register

feedbacks. Since the feedback loop is only the non-equivalence circuit - XOR, which is a linear

logic function, this feedback is referred to as linear feedback. Shift register is easily realized by

chain of the D flip-flops.

The LFSRs are used as efficient test sequence generators too. For generating test sequences,

counters can be used, but LFSRs are faster, they have a simpler structure, and the test sequence

can be easily changed by setting the sliding register's initial state.

15.3.1.1 Implementation of multiplication and division in the finite body GF(2)

Both operations can be implemented in two ways. In the first variant, the XOR circuits are

serially arranged in a chain of flip-flops. In the second variant, the XOR circuits are connected

in parallel to the outputs of the flip-flops - in this variant, the parity generation circuit can be

file 7

used, simplifying both the design and the realization. These options are listed in the following

examples.

Example 1:

Circuit multiplication by polynomial Q(x) = x4+ x + 1.

Figure 15.2: Circuit multiplication by polynomial Q(x) = 1 + x + x4 relized

by linear feedback shift register - variant 1

The shifting register is connected in such a way that the multiplication is represented by

a serial sequence of bits fed to the shifting register input, which is completed by the XOR

circuits connected according to the multiplier shape.

Figure 15.3: Circuit multiplication by polynomial Q(x) = 1 + x + x4 realized

by linear feedback shift register - variant 2

Example 2:

Polynomial multiplication circuit by 1 + x3 + x4 + x5 + x6

First possible realization

Second possible realization

Figure 15.4: hardware implementation of multiplication of polynomials ,

first and second posible realizations

D

R3 R2

D

CLK

XOR P(x) product XOR

R0 R1

D D

R4

P(x)
product XOR

R4

D4

R3

D3

R2

\

D2 XOR

R1

CLK

D1

R0

file 8

To realize the division, the divider is fed to the sliding register input as a bit sequence, and the

divisor is represented by the XOR circuitry. The partitioning circuit can be connected again in

two variants. Both options illustrate the following examples, each of which includes a wiring

diagram accompanied by partition demonstrations in a table showing successive changes to the

contents of each registry bit and arithmetic calculation.

Example 3:

Circuit division by polynomial Q(x) = x4 + x +1

Figure 15.5: Circuit division by polynomial Q(x) = 1 + x + x4 linear

feedback shift register - variant 1

Demonstration of polynomial division x7+ x6+ x5+ x4+ x2+ 1 by polynomial x4+ x + 1.

input sequence outputs of flip-flops serial output

P0 P1 P2 P3 P4 P5 P6 P7 R0 R1 R2 R3 R4 O0 O1 O2 O3 O4 O5 O6 O7

1 0 1 0 1 1 1 1 0 1 0 0 0 0 0

 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0

 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0

 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0

 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0

 1 0 1 1 0 1 1 0 1 1 1 0 0 0 0

 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0

 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0

 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0

 R0 R1 R2 R3 R4

Table 15.2: Illustration of hardware division - variant 1

Algebraic expression of division modulo 2:

[(x7 + x6 + x5 + x4 + 0x3 + x2 + 0x + 1) : (x4 + x + 1)]2 = x3 + x2 + x

-x7 - x4 - x3

 x6 + x5 + x3 + x2 + 1

 -x6 - x3 - x2

 x5 + 1

 - x5 - x2 - x

 x2 + x + 1

Quotient O(x) = x3 + x2 + x and its binary interpretation O(x) = 0 1 1 1 0.

The integer rest R = (x2 + x + 1), its binary interpretation = 0 1 1 1.

D4

R2

D2

CLK

D1

R0

XOR

R0

D3

R1

Px XOR
quotient

R3

file 9

Figure 15.6: Circuit division by polynomial Q(x) = 1 + x + x4 linear

feedback shift register - variant 2

Demonstration of polynomial division x7+ x6+ x5+ x4+ x2+ 1 by polynomial x4+ x + 1.

input sequence outputs of flip-flops serial output

P0 P1 P2 P3 P4 P5 P6 P7 R4 R3 R2 R1 R0 O0 O1 O2 O3 O4 O5 O6 O7

1 0 1 0 1 1 1 1 00 1 0 0 0 0

 1 0 1 0 1 1 1 00 1 1 0 0 0 0

 1 0 1 0 1 1 00 1 1 1 0 0 0 0

 1 0 1 0 1 10 0 1 1 1 0 0 0 0

 1 0 1 0 11 0 0 1 1 1 0 0 0 0

 1 0 1 11 1 0 0 1 1 1 0 0 0 0

 1 0 01 1 1 0 0 1 1 1 0 0 0 0

 1 00 1 1 1 0 0 1 1 1 0 0 0 0

 1 10 0 1 1 1 0 0 1 1 1 0 0 0 0

 R4 R3 R2 R1 R0

Table 15.3: Illustration of hardware division - variant 2

Example 4:

Polynomial division circuit by 1 + x + x3

First posible realization

Second possible realization

Figure 15.7: hardware implementation of dividing of polynomials

CLK

D2

R3

D3

R2 R1

D4

XOR

quotient

R0

Px

XOR

R4

D1

file 10

Example 4:

input sequence register content output

V0 V1 V2 V3 V4 V5 V6 V7 P0 P1 P2 P3 P4 O0 O1 O2

1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0

 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0

 1 0 1 0 1 1 1 1 0 0 0 0 0 0

 1 0 1 0 1 1 1 1 0 0 0 0 0

 1 0 1 0 1 1 1 1 0 0 0 0

 1 0 1 0 1 1 1 1 0 0 0

 1 0 0 0 0 1 0 1 0 0

 1 0 0 0 0 1 0 1 0

 0 0 1 0 1 1 0 1

Linear Feedback Shift Register – LFSR is diagnostics tool based on hardware implementation

of dividing of polynomials. Maximum length sequence of states is 2n-1 (n is number of bits).

The maximum length can only be achieved if LSFR connected by a primitive polynomial.

input sequence register content output

V0 V1 V2 V3 V4 V5 V6 V7 P0 P1 P2 P3 P4 O0 O1 O2

1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0

 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0

 1 0 1 0 1 1 0 1 0 0 0 0 0 0

 1 0 1 0 1 1 0 1 0 0 0 0 0

 1 0 1 0 1 1 0 1 0 0 0 0

 1 0 1 0 1 1 0 1 0 0 0

 1 0 1 1 1 1 0 1 0 0

 1 0 1 1 1 1 0 1 0

 1 0 1 1 1 1 0 1

15.3.1.2 Structure of easy-to-tested digital systems

The good testability of digital systems is the result of a considerable effort by the designer.

input

M2

P0

 1

P1

 x

M2

M2 output

quotient

P2

 x2

P3

 x3

P4

 x4

output - quotient
input

P2

 x2

P3

 x3

P0

 1

P1

 x

P4

 x4
 + + +

file 11

Testability requires a number of technical adjustments and accessories for technical and

software. Testability must be part of the initial design of the device, it can be stated that it must

be part of the system design idea, that is, before its specific configuration and the peripheral

and program solutions are stabilized. It is only during this period that a fully-fledged testing

and repairing strategy can be implemented and only the space for their implementation can be

effectively defined (e.g. the ROM space, the location for the switches, the measuring points and

the additional technical equipment).

Testability of devices can be increased by rigorous division into functional units. E.g. by

dividing the circuits into several mutually dependent modules, each of which will be on its own

circuit board, we will get a more readily understandable and repairable device than in case of

interconnected circuits on one large printed circuit board. This solution, on the other hand, is

not entirely ideal because it introduces additional hardware to the system and reduces system

failure intensity.

Microprocessor systems generally allow such divisions of functional units. However, if

signature analysis is applied to such systems, large PCBs lose many of their poor testability,

and their other exits are again highlighted (excluding transient resistors in connectors, low

production costs of large series, etc.).

The basic component of testability is self-control, usually carried out in the form of tests and

measurements carried out by built-in diagnostic tools, to verify the functionality of most

circuits. The self-monitoring routine can be started automatically when you turn on the machine

(POST - Power on Start Test) or by pressing a button on the control panel or other stimulus.

The result of a typical self-check is a type indication (good - bad) and can be immediately

displayed to the operator or transmitted to the remote service station after the diagnostic bus.

Self-monitoring can provide diagnostic information at a certain level, if required.

The main features of self-control are:

• pre-alerts the operator of possible problems in system operation,

• convinces the operator that the system whose correct function was in doubt is in fact

okay.

The second feature also protects inexperienced customers from sending a functioning (but

very complex) system to unnecessary repairs.

If the device is found to be defective, it must either be repaired or discarded. Correction means

"Detecting its malfunction and then locating the fault". If the device has been developed for

ease of testability, most defects will be quickly found and corrected. This is the moment when

efforts made to design and implement easy testability are effective in the speed and success of

repairs.

15.3.2 Generating test sequences

LFSR can be used as the test sequence generator. In this case, the partition is not input to its

input, but it is, for example, asynchronously set to the initial value. At the beginning of the

activity, the initial, nonzero content must be entered into the LFSR because the LFSR does not

get from the zero state. After running, LFSR generates the same sequence of internal states that

can be applied as test vectors.

file 12

If the feedback is connected, for example, according to the primitive polynomial x4 + x + 1, the

maximum length of the sequence of states can be 24 - 1 = 15 (zero status missing). This

maximum length can only be achieved if the LFSR is connected according to the primitive

polynomial. We can use this circuit as an internal test generator by fitting it into the test unit

and connecting its parallel outputs permanently to the locations we want to stimulate. This test

method can be used practically for all types of logic circuits, but is actually effective for

combination circuits.

Figure 15.8: Principal scheme of embedding the signature analyzer into the

numeric system

The LFSR is also used as a flag analyzer too, and is synchronized with common clocks to the

test generator. The result of the test is compared to the symptom stored in the memory of the

correct symptom-standards. In the event of nonconformity, the comparator signals the error –

see Figure 15.8.

Note:

This method of implementation of the internal test was used, for example, by Intel in its 80386

microprocessor. The length of the LFSR used ranges from 12 to 37. The diagnostic coverage achieved by the

manufacturer is better than 98%.

This circuit can be used as a test generator, so that it is incorporated into the unit under test and

its parallel outputs connect permanently to the places that we want to stimulate. It can be used

as BILBO - Built-In Logic Observer.

15.4 Systems BILBO - Built-In Logic Observer

It is a design element of VLSI circuits that perform multiple functions. By default, it can work

as a parallel register, a serial register, a LFSR to generate test vectors, and eventually as

a multiple input flag analyzer - MISA.

To illustrate the construction of the BILBO circuits, there is an example of a dedicated

register controlled by two signals B1 and B2, which define one of the above circuit

configurations as follows:

• B1, B2 = 00 multiple input signature analyzer,

• B1, B2 = 01 test signature generator,

• B1, B2 = 10 parallel register,

• B1, B2 = 11 serial register.

testing start

error indication

tested vector generator

system under test

signature analyzer

comparator

etalon memory

file 13

Figure 15.9. Diagram of the BILBO

Figure 15.10: BILBO as scan register (serial registr)

Figure 15.11: BILBO as paralel registr

& D

Din

&

Dout

CLK

& D

Din

&

Dout

B2

B1

\

B2

\

& 1

&

Din-s

B1 1

& D

Din

&

Dout

CLK

& D

Din

&

Dout

1

1

0

& 1

&

Din-s

0 1

& D

Din

&

Dout

CLK

& D

Din

&

Dout

0

1

1

& 1

&

Din-s

0 1

file 14

Figure 15.12: BILBO as more inputs signature analyzer

Figure 15.13: BILBO as generator test vectors

Note:

In the previous figures, the passive parts of the BILBO register are grayed out.

Figure 15.14: Implementation of the BILBO into digital system

The BILBO circuit can be used for both external and internal testing of large digital circuits and

systems. It can be implemented in technical equipment similar to BOUNDERS SCAN circuits

– see Figure 15.14.

BILBO

BILBO

circuit
under test

BILBO

BILBO

circuit
under test

BILBO

BILBO

circuit
under test

BILBO

BILBO

circuit
under test

& D

Din

&

Dout

CLK

& D

Din

&

Dout

0

0

1

& 1

&

Din-s

1 1

& D

Din

&

Dout

CLK

& D

Din

&

Dout

1

0

0

& 1

&

Din-s

1 1

file 15

15.5 System HILDO - Highly Integrated Logic Design Observer

When designing built-in diagnostic tools, there is increasing pressure to reduce the cost of

diagnostics. For these reasons, two separate diagnostic parts of the system are combined into

one unit. The main feature of the HILDO method is that in a single LZPR string, the test

generator and response compressor are hidden at the same time. This connection was designed

to test VLSI circuits and was labeled HILDO - Highly Integrated Logic Design Observer.

The HILDO is combination of two separate diagnostic system components into a single unit.

In a single chain LSFR hides generator and compressor test responses at the same time.

The HILDO Registry is basically a multiple input signature analyzer. In addition, in each cycle

it generates one step of the test on its outputs, it also receives a test response on each of its

inputs. This test response is first added to the existing content of module 2, then the entire

content moves one space to the right. Thus, the linear feedback register does not go through its

usual cycle, because the received responses to a given diagnostic register actually insert a new

start state in each cycle.

Figure 15.15: Principal scheme of the multiple input signature analyzer

Note:

In the figure - see Figure 15.15 - the bindings of the polynomial are marked in blue.

Figure 15.16: Schematic diagram of the register HILDO

circuit under test

HILDO

CLK

D

I0

D

I1

D

I2

D

I3

file 16

List of figures

Figure 15.1: Examples of manifestations of failure symptoms in the test circuit 5
Figure 15.2: Circuit multiplication by polynomial Q(x) = 1 + x + x4 relized by linear feedback

shift register - variant 1 .. 7

Figure 15.3: Circuit multiplication by polynomial Q(x) = 1 + x + x4 realized by linear

feedback shift register - variant 2 ... 7
Figure 15.4: hardware implementation of multiplication of polynomials, first and second

posible realizations ... 7
Figure 15.5: Circuit division by polynomial Q(x) = 1 + x + x4 linear feedback shift register -

variant 1 .. 8
Figure 15.6: Circuit division by polynomial Q(x) = 1 + x + x4 linear feedback shift register -

variant 2 .. 9

Figure 15.7: hardware implementation of dividing of polynomials ... 9
Figure 15.8: Principal scheme of embedding the signature analyzer into the numeric system12
Figure 15.9. Diagram of the BILBO .. 13
Figure 15.10: BILBO as scan register (serial registr) ... 13
Figure 15.11: BILBO as paralel registr .. 13

Figure 15.12: BILBO as more inputs signature analyzer .. 14

Figure 15.13: BILBO as generator test vectors .. 14
Figure 15.14: Implementation of the BILBO into digital system .. 14

Figure 15.15: Principal scheme of the multiple input signature analyzer 15
Figure 15.16: Schematic diagram of the register HILDO .. 15

List of tables

Table 15.1: Table of the primitive polynomials ... 3

Table 15.2: Illustration of hardware division - variant 1 .. 8
Table 15.3: Illustration of hardware division - variant 2 .. 9

