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e Distributed Data Processing

e Google MapReduce

O Motivation and History
O Google File System (GFS)
O MapReduce: Schema, Example, MapReduce Framework

e Apache Hadoop
o Hadoop Modules and Related Projects
O Hadoop Distributed File System (HDFS)
o Hadoop MapReduce

e MapReduce in Other Systems
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What is the best way of doing distributed processing?

doop »
Word
les <-r

1

Centralized (and in memory)

Don't doit, if don't have to
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e Big Data analytics (or data mining)

O need to process large data volumes quickly
O want to use computing cluster instead of a super-computer

e Communication (sending data) between compute
nodes is expensive

=> model of “moving the computing to data”
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Computing cluster architecture: /\

racks with compute nodes

e HW failures are rather a rule than an exception:

1. Files must be stored redundantly
m over different racks to overcome also rack failures

2. Computations must be divided into independent tasks
m that can be restarted in case of a failure

source: J. Leskovec, A. Rajaraman, and J. D. Uliman, Mining of Massive Datasets. 2014. 5
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e Google MapReduce

O Motivation and History
O Google File System (GFS)
O MapReduce: Schema, Example, MapReduce Framework
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PageRank works by counting the number and quality of links
to a page to determine a rough estimate of how important the
website is.

The underlying assumption is that
more important websites are likely
to receive more links from other
websites.

PageRank

https://en.wikipedia.org/wiki/PageRank
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® |In 2003, Google had the following problem:

"O

1. How to rank tens of billions of webpages by their
“importance” (PageRank) in a “reasonable” amount of time?

2. How to compute these rankings efficiently when the data is
scattered across thousands of computers?

e Additional factors:

1. Individual data files can be enormous (terabyte or more)

2. The files were rarely updated
m the computations were read-heavy, but not very write-heavy
m If writes occurred, they were appended at the end of the file 8
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e Google found the following solutions:

O Google File System (GFS)
m Adistributed file system

o MapReduce

m A programming model for distributed data processing
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e Files are divided into chunks (typically 64 MB)

O The chunks are replicated at three different machines
m ...inan “intelligent” fashion, e.g. never all on the same computer rack

o The chunk size and replication factor are tunable

H oopcn

® One machine is a master, the other chunkservers

o The master keeps track of all file metadata
m mappings from files to chunks and locations of the chunks

o To find a file chunk, client queries the master,
and then contacts the relevant chunkservers
O The master’s metadata files are also replicated

10
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Appllcatmn. (file name, chunk index) ~

GFS client _

(chunk handle,
chunk locations)

(chunk handle, byte range)

chunk data

source:

- GFS chunkserver

GFS master = /foo/bar
: chunk 2ef0

File namespace .

' .
Instructions to chunkserver
Chunkserver state

'
GFS chunkser?er
Linux file system

Linux file system

1. . file

SyStemdlstrlbuted

z il o284 d
5?2%:7 g (K atare eL;Ilelocks
e mapMap%seduce
HDFS ==tase T
Legend:

mmmmdp  Data messages

- Control messages

Figure 1: GFS Architecture

http://dl.acm.org/citation.cfm?id=945450
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MapReduce (1)

HDE
e MapReduce is a programming model sitting

on the top of a Distributed File System
o Originally: no data model — data stored directly in files

e A distributed computational task has three phases:
1. The map phase: data transformation
2. The grouping phase

m done automatically by the MapReduce Framework

3. The reduce phase: data aggregation

e User must define only map & reduce functions

12
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e Map function simplifies the problem in this way:

O Input: a single data item (e.g., line of text) from a data file
O Output: zero or more (key, value) pairs

e The keys are not typical “keys”:

O They do not have to be unique
O A map task can produce several key-value pairs with the
same key (even from a single input)

e Map phase applies the map function to all items.

13
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map function

output data
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® Grouping (Shuffling): The key-value outputs from
the map phase are grouped by key

O Values sharing the same key are sent to the same reducer.

O These values are consolidated into a single list (key, list).
m This is convenient for the reduce function

O This phase is realized by the MapReduce framework.

Grouping Phase

Hd‘

O . .
o) OO o ® intermediate output

O 0O ® S
()
O O ¢ o0 (color indicates key)

@ @ @ shuffle (grouping) phase

00000 OOOO||OCO000O

15
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e Reduce: combine the values for each key

m to achieve the final result(s) of the computational task

o Input: (key, value-list)
m the value-list contains all values generated for a given key in the Map
phase

o Output: (key, value-list)

m zero or more output records

16
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iInput data
map function

intermediate output
(color indicates key)

shuffle (grouping) phase

input data
reduce function

output data
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Task: Calculate word frequency in a set of documents

map (String key, Text value):
// key: document name (ignored)
// value: content of document (words)
foreach word w in wvalue:
emitIntermediate(w, 1);

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
foreach v in wvalues:
result += v;

emit (key, result); 18



Example: Word Count (2)

Input

Splitting

Mapping

Deer Bear River

Deer Bear River
Car Car River
Deer Car Bear

Deer, 1
Bear, 1
River, 1

.....

Car Car River

Deer Car Bear

Car, 1

—» Car 1

River, 1

Deer, 1

== Car, 1

Bear, 1

Shuffling Reducing
Bear, 1 ——w» Bear, 2
— = Bear, 1
[
LY ’{ Car, 1
%{,_ﬂr Car,1 ——»| Car,3
y \/ Car,1
>‘\ 3 )‘ Deer,1 ——w»{ Deer, 2
/‘ Deer, 1
7 /?\
s | River,1 | »| River, 2
 River, 1

source: http://www.cs.uml.edu/~jlul/doc/source/report/MapReduce.html

| Bear, 2

528, d
a‘ta’re el;clflocks

i mapMaPRe uce
HDFS " phase T ™

Final result

Car, 3
Deer, 2
River, 2

19
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MapReduce: Combiner

Hd‘

® |f the reduce function is commutative & associative

O The values can be combined in any order

and combined per partes (grouped)
m with the same result (e.g., Word Counts)

e ...then we can do "partial reductions”

o Apply the same reduce function right after the map phase,
before shuffling and redistribution to reducer nodes

® This (optional) step is known as the combiner
O Note: itis still necessary to run the reduce phase.

20
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Task: Calculate word frequency in a set of documents

OP
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combine (String key, Iterator values):
// key: a word
// values: a list of local counts
int result = 0;
foreach v in wvalues:
result += v;
emit (key, result);

21
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I—IDFS T phase% g. =
(A.B) (B.1)
(AL) ()} (B.2)
(A.D) O || mmmmm| 1E) N
= [(B,E) | NS e ([ 10.2)
£ |(BD) (.1 (E) (A, 12)) (A.2)
(C.8) (B.1) (B, 12.1]) (8.3)
(C, (L1 (C.2)
~ |(CD) (0.1 (0, 12,2) (D.4)
E|CN (A1) (0.2) (E, [1) (E))
@ |(0A) | |, s |AD || Fepmmm| [(A2)
(Ec) Ul e (C.') o e s AR A e (c ,l) H
(E.B) (B.1) (B.1)
(E.D) (0.))

source: http://www.admin-magazine.com/HPC/Articles/MapReduce-and-Hadoop 22
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e MapReduce framework takes care about

o Distribution and parallelizing of the computation
O Monitoring of the whole distributed task
O The grouping (shuffling) phase

m putting together intermediate results
O Recovering from any failures

e User must define only map & reduce functions
O but can define also other additional functions (see below)

23
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MapReduce Framework (2)

User
Program

(1) fork .~ :
o {l)fork H_)fork
y 2)
N 2 assign
- Lassign reduce .
I S map

split 0

(6) write | output

file O

output
file 1

split 1 worker

split 2 3) read (4) local write
worker
split 3

(5) remote read

split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

source: Dean, J. & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters 24



sysléna file
° 4; - dlsmbuted
MapReduce Framework: Details ;md el

a Re luce
HDEFS =
1. Input reader (function)
o defines how to read data from underlying storage

2. Map (phase)
O master node prepares M data splits and M idle Map tasks
O pass individual splits to the Map tasks that run on workers
O these map tasks are then running
o when a task is finished, its intermediate results are stored

3. Combiner (function, optional)

O combine local intermediate output from the Map phase
25
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4. Partition (function)
O to partition intermediate results for individual Reducers

5. Comparator (function)
O sort and group the input for each Reducer

6. Reduce (phase)
O master node creates R idle Reduce tasks on workers
O Partition function defines a data batch for each reducer
O each Reduce task uses Comparator to create key-values pairs
o function Reduce is applied on each key-values pair

7. Output writer (function)

o defines how the output key-value pairs are written out 6



MapReduce: Example Il

Task: Calculate a graph of web links
e what pages reference (<a href="">) each page (backlinks)

map (String url, Text html):
// url: web page URL
// html: HTML text of the page (linearized HTML tags)
foreach tag t 1n html:
if t is <a> then:
emitIntermediate (t.href, url);

reduce (String key, Iterator wvalues):
// key: target URLs
// values: a list of source URLs
emit (key, values);

27
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Example II: Result

Input: (page URL, HTML code)
("http://cnn.com", "<html>...<a href="http://cnn.com">1link</a>...</html>")
("http://ihned.cz", "<html>...<a href="http://cnn.com">link</a>...</html>")
("http://idnes.cz",
"<html>...<a href="http://cnn.com">x</a>...
<a href="http://ihned.cz">y</a>...<a href="http://idnes.cz">z</a>
</html>")

Intermediate output after Map phase:
("http://cnn.com", "http://cnn.com")
("http://cnn.com", "http://ihned.cz")

("http://cnn.com", "http://idnes.cz")

("http://ihned.cz", "http://idnes.cz")

("http://idnes.cz", "http://idnes.cz")

Intermediate result after shuffle phase (the same as output after Reduce phase):
("http://cnn.com", ["http://cnn.com", "http://ihned.cz", "http://idnes.cz"] )
("http://ihned.cz", [ "http://idnes.cz" ])

("http://idnes.cz", [ "http://idnes.cz" ])

28
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Task: What are the lengths of words in the input text

e output = how many words are in the text for each length

map (String key, Text value):
// key: document name (ignored)
// value: content of document (words)
foreach word w in value:
emitIntermediate (length(w), 1);

Node
OP

Hd
f1

reduce (Integer key, Iterator values):
// key: a length
// values: a list of counts
int result = 0;
foreach v in wvalues:
result += v;

emit (key, result); 29
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e MapReduce uses a “shared nothing” architecture

O Nodes operate independently, sharing no memory/disk
0 Common feature of many NoSQL systems

MapReduce: Features

Hd‘

e Data partitioned and replicated over many nodes

O Pro: Large number of read/write operations per second
O Con: Coordination problem —which nodes have my data,
and when?

30
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e MR is applicable if the problem is parallelizable

e Two problems:

1. The programming model is limited
(only two phases with a given schema)
2. There is no data model - it works only on “data chunks”

e Google’s answer to the 2nd problem was BigTable

O The first column-family system (2005)
O Subsequent systems: HBase (over Hadoop), Cassandra,...

31
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Agenda

e Apache Hadoop
o Hadoop Modules and Related Projects
O Hadoop Distributed File System (HDFS)
o Hadoop MapReduce

32
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e Open-source software framework
o Implemented in Java

® Able to run applications on large clusters of

commodity hardware

O Multi-terabyte data-sets
© Thousands of nodes

e Derived from the idea of Google's
MapReduce and Google File System

web: http://hadoop.apache.org/ 33
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e Hadoop Common
o Common support functions for other Hadoop modules

e Hadoop Distributed File System (HDFS)

O Distributed file system
O High-throughput access to application data

e Hadoo P YARN MapReduce Others

O JOb SChEdUIlng and Cluster (data processing) | (data processing)
resource management YARN

(cluster resource management)

e Hadoop MapReduce
O YARN-based system for —

pa ra”el data processing source: https://goo.gl/NPuuJr 34
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HDFS (Hadoop Distributed File System)

Hadoop »

s

® Free and open source
® Cross-platform (pure Java)

O Bindings for non-Java programming languages
e Highly scalable

e Fault-tolerant

o Idea: “failure is the norm rather than exception”
m A HDFS instance may consist of thousands of machines and each can fail

O Detection of faults
O Quick, automatic recovery

e Not the best in efficiency

35
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® Assumes:

O Streaming data access
m reading the files from the beginning till the end

O Batch processing rather than interactive user access
® lLarge data sets and files

e \Write-once / read-many
o Afile once created does not need to be changed often
O This assumption simplifies coherency

e Optimal applications for this model: MapReduce,
web-crawlers, data warehouses, ... N
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e Master/slave architecture

e HDFS exposes file system namespace
O Fileis internally split into blocks

® NameNode - master server

O Manages the file system namespace
m Opening/closing/renaming files and directories
m Regulates file accesses

O Determines mapping of blocks to DataNodes

e DataNode - manages file blocks

O Block read/write/creation/deletion/replication

O Usually one per physical node
37
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HDFS Architecture Fphiase T
Metadata (Name, replicas, ...):

Metadata,ops"[ Namenode /home/foo/data, 3, ...

Block ops
Read Datanodes Datanodes
* | |
O O A . Replication 0o 3
[] [ Blocks
" \ / /
N Y4
Rack 1 Rack 2
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HDFS: NameNode

HDFS

e NameNode has a structure called FsImage
O Entire file system namespace + mapping of blocks to files

+ file system properties
o Stored in a file in NameNode’s local file system

@) Designed to be compact
m Loaded in NameNode’s memory (4 GB of RAM is sufficient)

e NameNode uses a transaction log called EditLog

O torecord every change to the file system’s meta data
m E.g., creating a new file, change in replication factor of a file, ..

O EditLog is stored in the NameNode’s local file system

39
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e Stores data in files on its local file system

O Each HDFS block in a separate file
O Has no knowledge about HDFS file system

e \When the DataNode starts up:

O It generates a list of all HDFS blocks = BlockReport
O It sends the report to NameNode

40
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e HDFS can store very large files across a cluster

O Each file is a sequence of blocks

o All blocks in the file are of the same size

m Except the last one
m Block size is configurable per file (default 128MB)

O Blocks are replicated for fault tolerance
m Number of replicas is configurable per file

e NameNode receives HeartBeat and BlockReport
from each DataNode

O BlockReport: list of all blocks on a DataNode

41
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Block Replication
Namenode (Filename, numReplicas, block-ids, ...
/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {2,4,5}, ...
Datanodes
1 2 1 4 5
2
3 4 2 4
5 5
42
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® Primary objective: to store data reliably in case of:
o NameNode failure
o DataNode failure

O Network partition
m asubset of DataNodes can lose connectivity with NameNode

® |n case of absence of a HeartBeat message

o NameNode marks “dead” the DataNodes without
HeartBeat, and does not send any I/O requests to them.
O The death of a DataNode typically results in re-replication

43
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e Hadoop MapReduce requires:
o Distributed file system (typically HDFS)
O Engine that can distribute, coordinate, monitor and gather
the results (typically YARN)

® Two main components:

o JobTracker (master) = scheduler

m tracks the whole MapReduce job
B communicates with HDFS NameNode to run the task close to the data

o TaskTracker (slave on each node) —is assigned a Map or

a Reduce task (or other operations)
m Each task runs in its own JVM

44
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Processiny g input

e phase 2

Name Node

Master Node

JobTracker

Slave Node Slave Node Slave Node Slave Node

TaskTracker TaskTracker TaskTracker TaskTracker

Data Node Data Node Data Node Data Node

Map Reduce Map Reduce Map Reduce Map Reduce

source: http://bigdata.black/architecture/hadoop/what-is-hadoop/ 45



Hadoop MapReduce: Schema

MapReduce uloha

Map 1
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Job
Tracker

Task
Tracker

HDFS

file 1

output

Map() Task
/ v Tracker
f Input Format || RAM
partition() .
HDFS block 1 combine() [~ ].region 1
block 2 region 2
] block 3
Input - Tpiock 4 \_
files '
block 5 Map 2 P %
a
P N
Task region 1
Tracker region 2
o
Map3 (D)
P N
Task region 1
Tracker region 2

-

Reduce 2
/ Task \

Tracker/v sort
- v HDFS
—3 read reduce() output

v file 2
\ Output Format {
)

v

Map phase

Y

Reduce phase

- file

Google &
s,g}’St:erndlstrlbuted

: d
a‘ t a’re ek;fclflocks

educe

Proce ssing_ input

46



_file

syste

S AS5EF5] dlsml?ééﬁ%g
Hadoop MR: WordCount Example&»izfg;dmMath
FORS 2R

public class Map
extends Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(l);
private final Text word = new Text();

@Override protected void map (LongWritable key, Text wvalue,

Context context) throws ... {
String string = value.toString()
StringTokenizer tokenilizer = new StringTokenizer (string);
while (tokenizer.hasMoreTokens()) {

word.set (tokenizer.nextToken ()) ;

context.write (word, one);
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public class Reduce
extends Reducer<Text, IntWritable, Text, IntWritable> {

@Override
public void reduce (Text key, Iterable<IntWritable> walues,
Context context) throws ... {
int sum = 0O;
for (IntWritable wval : wvalues) {

sum += val.get();

}

context.write (key, new IntWritable (sum))

48
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Avro: a data serialization system

HBase: scalable distributed column-family database
Cassandra: scalable distributed column-family database

ZooKeeper: high-performance coordination service for
distributed applications

Hive: data warehouse: ad hoc querying & data summarization
Mahout: scalable machine learning and data mining library

50
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e MapReduce in Other Systems
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e Engine for distributed data processing

O Runs over Hadoop Yarn, Apache Mesos, standalone, ...
O Can access data from HDFS, Cassandra, HBase, AWS S3

e Can do MapReduce

O Is much faster than pure Hadoop
m They say 10x on the disk, 100x in memory

O The main reason: intermediate data in memory

e Different languages to write MapReduce tasks
O Java, Scala, Python, R

homepage: http://spark.apache.org/ 53
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e Example of a MapReduce task in Spark Shell

O The shell works with Scala language
O Example: Word count

val textFile = sc.textFile("hdfs://...")

val counts = textFile.flatMap(line => line.split (" "))
.map (word => (word, 1))
.reduceByKey ( + )

counts.saveAsTextFile ("hdfs://...")

® Comparison of Hadoop and Spark: link
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https://www.edureka.co/blog/apache-spark-vs-hadoop-mapreduce
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MapReduce in MongoDB

collection "accesses":

{
"user i1d": <ObjectId>,

"login time": <time the user entered the system>,
"logout time": <time the user left the system>,
"access type": <type of the access>

}
e How much time did each user spend logged Iin

o Counting just accesses of type “regular”

db.accesses.mapReduce (
function() { emit (this.user id, this.logout time - this.login time); 1},
function (key, values) { return Array.sum( values ); 1},
{
query: { access type: "regular" },
out: "access times"
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