

PA220: Database systems for data analytics

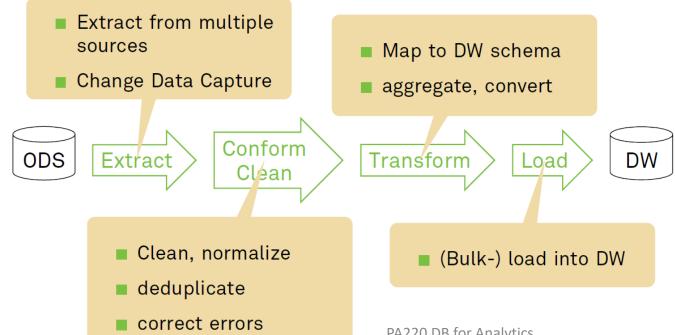
ETL Process

Contents

- Overview of ETL
- Data Cleaning
- Loading Tips
- Issues
- Summary

ETL Process Overview

- Data is periodically brought from the ODS to the data warehouse.
- In most DW systems, the ETL process is the most complex part.
 - and the most underestimated and time-consuming part.
 - Often, 80% of development time is spent on ETL

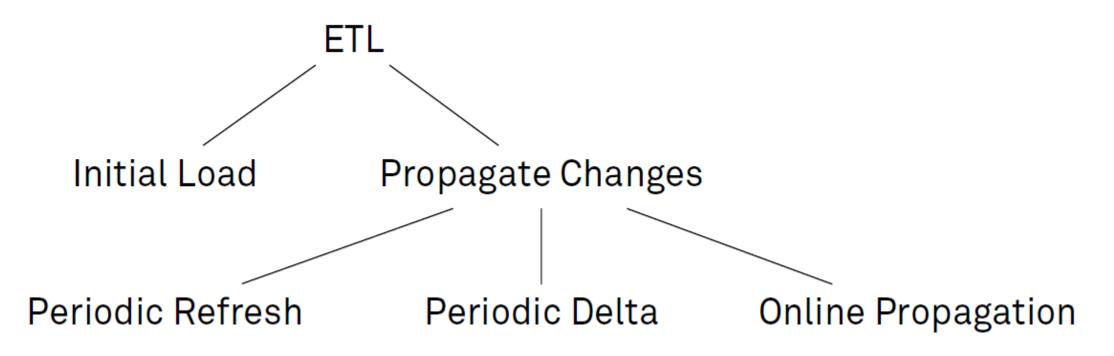


Data Staging Area

- Transit storage for data underway in the ETL process
 - Transformations/cleansing done here
- No user queries (some do it)
- Sequential operations (few) on large data volumes
 - Performed by central ETL logic
 - Easily restarted
 - No need for locking, logging, etc.
 - RDBMS or flat files? (DBMS have become better at this)
- Finished dimensions copied from staging area to relevant marts

ETL Process Types

• When do we run the ETL process?



ETL Process Types

- Considerations:
 - Overhead on data warehouse and source sides.
 - E.g., online propagation puts a permanent burden on both sides; cannot benefit from bulk loading mechanisms
 - Data Staleness
 - Frequent updates reduce staleness but increase overhead.
 - Debugging, Failure Handling
 - With online/stream-based mechanisms, it may be more difficult to track down problems.
 - Different process for different flavors of data?
 - E.g., periodic refresh may work well for small (dimension) tables.

Capturing Data Changes

- Detecting changes is a challenge:
 - Audit Columns
 - E.g., "last modified" time stamp
 - Set time stamps or "new" flags on every row update. How?
 - Unset "new" flags on every load into the DW. Why?
 - Full Diff
 - Keep old snapshot and diff it with the current version.
 - Thorough, will detect any change
 - Resource-intensive: need to move and scan large volumes
 - Optimization: Hashes/checksums to speed up comparison
 - Database Log Scraping
 - The database's write-ahead log contains all change inform.
 - Scraping the log may get messy, though.
 - Variant: create a message stream ODS \rightarrow DW

Data Cleansing

• After extraction, data must be **normalized** and **cleaned**.

	Name	Street	Clty	Phone
<i>r</i> ₁	Sweetlegal Investments Inc	202 North	Redmond	425-444-5555
<i>r</i> ₂	ABC Groceries Corp	Amphitheatre Pkwy	Mountain View	4081112222
r 3	Cable television services	One Oxford Dr	Cambridge	617-123-4567

	Name	Street	Clty	Phone
s ₁	Sweet legal Invesments Inc.	202 N	Redmond	
s ₂	ABC Groceries Corpn.	Amphitheetre Parkway	Mountain View	
s ₃	Cable Services	One Oxford Dr	Cambridge	6171234567

Data Quality (Revision)

- Data almost never has decent quality
- Data in DW must be:
 - Precise
 - DW data must match known numbers or explanation needed
 - Complete
 - DW has all relevant data, and the users know
 - Consistent
 - No contradictory data: aggregates fit with detail data
 - Unique
 - The same thing is called the same and has the same key (customers)
 - Timely
 - Data is updated "frequently enough" and the users know when

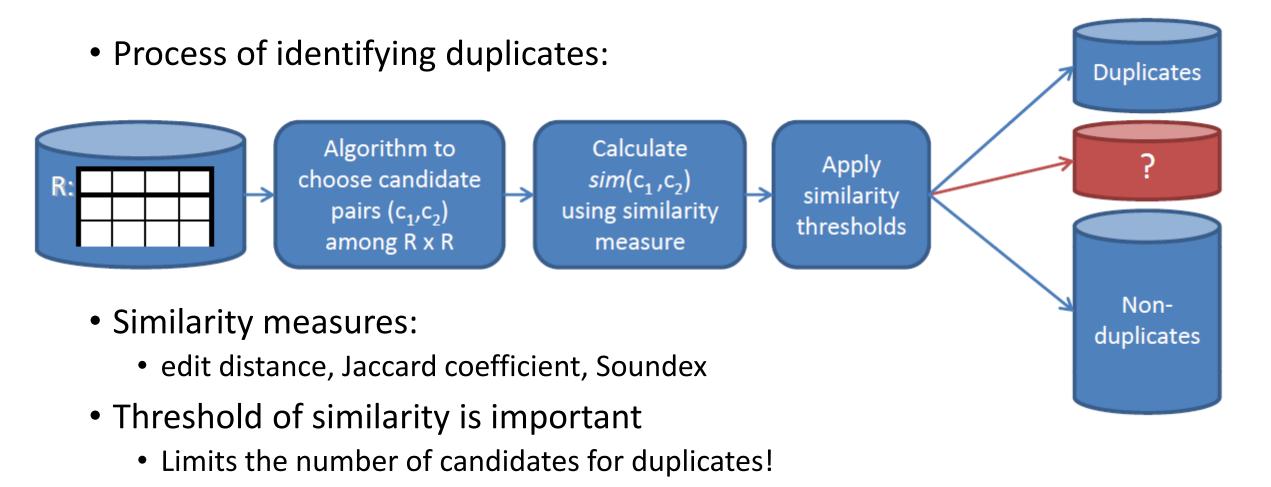
Data Cleansing

- Problem:
 - Real-world data is messy.
 - Consistency rules in the OLTP system?
 - A lot of data is still entered by people.
 - Data warehouses serve as an integration platform.
- Typical cleaning and normalization tasks:
 - Correct spelling errors.
 - Identify record matches and duplicates.
 - Resolve conflicts and inconsistencies.
 - Normalize ("conform") data.

Data Cleansing – Primitives

- Similarity Join
 - Bring together similar data
 - For record matching and deduplication
- Clustering
 - Put items into groups, based on "similarity"
 - E.g., pre-processing for deduplication
- Parsing
 - E.g., source table has an 'address' column; whereas target table has 'street', 'zip', and 'city' columns
 - Might have to identify pieces of a string to normalize (e.g., "Road" \rightarrow "Rd")

Data Cleansing – Similarity Join



Data Cleansing – Detecting Inconsistencies

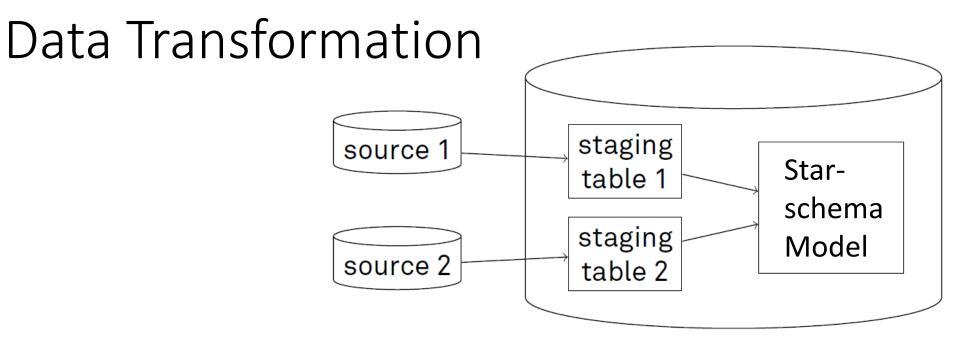
- Data screening system:
 - Column screens: Test data within a column
 - Correct value ranges, value formatting, null values?
 - Detect random/noise values
 - Structure screens: Relationship across columns
 - Foreign key relationships?
 - Combination of columns is a valid postal address?
 - Business rule screens: Data plausible according to business rules?
 - E.g., customer status X requires Y years of loyalty, Z EUR total revenue, etc.

Improving Data Quality

- Appoint "data stewards" responsible for data quality
 - A given steward has the responsibility for certain tables
 - Includes manual inspections and corrections!
- DW-controlled improvement
 - Default values
 - "Not yet assigned 157" note to data steward
- Source-controlled improvements
 - The optimal?
- Construct programs that check data quality
 - Are totals as expected?
 - Do results agree with alternative source?
- Do not fix all problems with data quality
 - Allow management to see "weird" data in their reports?

Schema Integration

- Different source systems, types, and schemas must be integrated.
- Infer mapping between schemas (automatically)?
- Tools:
 - Compare table and attribute names; consider synonyms and homonyms
 - Infer data types/formats and mapping rules
 - Techniques like similarity joins and deduplication.
- Still:
 - Often a lot of manual work needed.



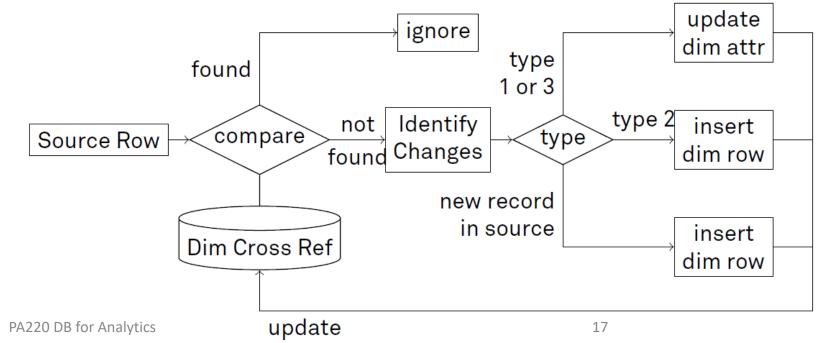
• Source → Staging Table:

- Tool depends on data source (database, XML, flat files, etc.)
 - e.g., SQL, XQuery, Perl, awk, etc.
- Often:
 - Extract to flat file (e.g., CSV)
 - Then bulk-load into staging table

Prepare Dimension Tables

Checks

- dimension row is new
- attributes in dimension have changed
- handle updates respecting SCD type of dimension



Prepare Dimension Tables - Problems

- "upsert" update if exists, else insert (aka SQL-based update)
 - often a real performance killer
 - better: separate updates and bulk-load inserts
- Generate and find dimension surrogate keys
 - e.g., use key generator of back-end DB
 - Maintain "Dim Cross Ref" table in memory or in back-end DB
- Dimensions must be updated before facts
 - The relevant dimension rows for new facts must be in place
 - Special key considerations if initial load must be performed again
- May re-compute aggregates (Type 1 updates)
 - again, bulk-loading/changing is a good choice

Loading Data – Performance Tips

- 1. Turn off logging
 - Databases maintain a write-ahead log to implement failure tolerance mechanisms.
 - Row-by-row logging causes huge overhead.
- 2. Disable indexes and reindex after updates
- 3. Pre-sort data
 - Depending on system, may speed up index construction.
 - Additional benefit: may result in better physical layout
- 4. Truncate table
 - When loading from scratch

Loading Data – Performance Tips

- 5. Enable "fast mode"
 - If data is prepared properly, database may use faster parsing mechanisms
 - e.g., "copy from" command
- 6. Make sure data is correct
 - Transformation, field truncation, error reporting may slow down bulk-loading significantly
- 7. Temporarily disable integrity control
 - Avoid checking during load, but do it in bulk, too.
 - e.g., foreign keys in the fact table

Loading Data – Performance Tips

8. Parallelization

- Dimensions can be loaded concurrently
- Fact tables can be loaded concurrently
- Partitions can be loaded concurrently
 - when horizontal partitioning of fact tables is used

Hints on ETL Design

- Do not try to implement all transformations in one step!
- Do **one** (or just a few) thing(s) at the time
 - Copy source data one-one to staging area
 - Compute deltas
 - Only if doing incremental load
 - Handle versions and DW keys
 - Versions only if handling slowly changing dimensions
 - Implement complex transformations
 - Load dimensions
 - Load facts

Issues

- Files versus streams/pipes
 - Streams/pipes: no disk overhead, fast throughput
 - Files: easier restart, often the only possibility
- ETL tool or not
 - Code: easy start, co-existence with IT infrastructure
 - Tool: better productivity on subsequent projects
- Load frequency
 - ETL time dependent of data volumes
 - Daily load is much faster than monthly
 - Applies to all steps in the ETL process
- Should DW be on-line 24*7?
 - Use partitions or several sets of tables

Summary

- ETL is very time consuming (80% of entire project)
 - Needs to be implemented as a sequence of many small steps
 - Data quality is crucial fixed in ETL
- Extraction of data from source systems might be very time consuming
 Incremental approach is suggested
- Transformation into DW format includes many steps, such as
 - building key, cleansing the data, handle inconsistent/duplicate data, etc.
- Load includes the loading of the data in the DW, updating indexes and pre-aggregates, etc.