PA220: Database systems for data analytics

Big Data Analytics




Contents

e properties of current data

* architecture of data processing and analytics systems
 challenges in Big Data processing

* distributed data warehouse



Motivation

* Data production
* Information systems
* Monitoring services
* Sensors, GPS tracking
* Social networks

* Data processing
e Storage & archiving
* Summarization
Reporting
Visualization
Insights
Predictions
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Nature of Current Data and Processing

Big Data

 the amount of data increases
tenfold every five years

* varying data structure, text,
multimedia, ...

* continuous data flow from
sensors, social networks, ...

* with different data sources, it is

getting more difficult to maintain

data certainty

Real-time processing

* Volume
* Variety
* Velocity
* Veracity
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Data Processed in Real-time ... e

* TDWI report, Q4 2014

* 105 companies
over 500 emp.
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Structured data
(tables, records)

Application logs

Event data
(messages, usually in real time)

Semi-structured data
(XML and similar standards)

Complex data
(hierarchical or legacy sources)

Raw data
(e.g., data directly from POS terminals)

Machine-generated data
(sensors, RFID, devices)

Weblogs and click streams

Spatial data
(long/lat coordinates, GPS output)

Social media data
(blogs, tweets, social networks)

Unstructured data
(human language, audio, video)

Scientific data
(astronomy, genomes, physics)
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Necessities for Big Data Analytics

e infrastructure for big data

* processing
* batch
e stream (real-time)

¢ storage
* key-value stores
e column stores

* algorithms for big data
* data integration
* data reporting
* analytic functions
* machine learning



Computational & Storage Opportunities

* horizontal scaling instead of vertical scaling

* new platforms
 HDFS & MapReduce (e.g., Hadoop)
 distributed stream processing (e.g., Storm)
e column storage (e.g., Vertica)
* NoSQL platforms (e.g., HBase)
* in-memory DBMSs (e.g., VoltDB)



Hadoop Platform

e SW library for distributed processing of large data sets
* across clusters of computers

* high-availability achieved on application layer by replication
* tasks run / data stored on unreliable HW
 HDFS — distributed high-throughput file system

» designed for mostly immutable files
e concurrent write not supported
* cooperation with MapReduce — data & computation locality

* MapReduce — programming model for large scale data processing
* Map() —filtering and sorting, outputs “key,value” pairs Map(k1,v1) = list(k2,v2)
e Reduce() — summarizing Map() results by their keys Reduce(k2, list (v2)) = list(k3,v3)



HDFS

* Files are divided into blocks (chunks), typically 64 MB

* The chunks are replicated at three different machines
e ...in an “intelligent” fashion, e.g., never all on the same computer rack
* The block size and replication factor are tunable per file.
* One machine is a name node (master)

* The others are data nodes (chunk servers)

* The master keeps track of all file metadata
* mappings from files to chunks and locations of the chunks on data nodes

* To find a file chunk, the client queries the master,
and then it contacts the relevant data nodes.
* The master’s metadata files are also replicated.

* Files in HDFS are write-once (except for appends and truncates)
* and have strictly one writer at any time.



HDFS Architecture

Metadata (Name, replicas, ...):
Metadat@,ops”{ Namenode /home/foo/data, 3, ...
Block ops
Read Datanodes Datanodes

1 | |
Replication L

\ Blocks

S~ \ / \ )

Rack 1 vwite Rack 2

Source: https://hadoop.apache.org/docs/current/
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Distributed Computation Platforms

e batch processing -> MapReduce, Spark, ...
e stream processing -> Storm, Spark Streaming, ...

* MapReduce
e a programming model for distributed data processing
e cooperates with a distributed file system

e Adistributed computational task has three phases:
* The map phase: data transformation
* The grouping phase done automatically by the MapReduce Framework
* The reduce phase: data aggregation

* The user defines only map & reduce functions.



MapReduce — Map Function

* Map function simplifies the problem in this way:

* |nput: a single data item (e.g., line of text) from a data file
e Qutput: zero or more (key, value) pairs

* The keys are not typical “primary keys”:
* They do not have to be unique
* A map task can produce several key-value pairs with the same key (even from

a single input)

* Map phase applies the map function to all items
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MapReduce — Map Function

* input data

@ @ @ @ » map function

. o @  °outputdata
OO (color indicates the key value)
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MapReduce — Grouping Phase

* Grouping (Shuffling): The key-value outputs from the map phase
are grouped by key

* Values sharing the same key are sent to the same reducer

* These values are consolidated into a single list (key, list)
* This is convenient for the reduce function

* This phase is realized by the MapReduce framework

O
O . O O . O.O O . * intermediate output
O O . O O (color indicates the key value)

@ @ @ * grouping phase — shuffle function

00000 COOOO||0O0O0OO
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MapReduce — Reduce Function

oot

VYV YV mapfunion

°
OO. 00

 Reduce: combine the values
for each key

* to achieve the final result(s) of the
computational task

* |nput: (key, value-list)
 value-list contains all values generated for
given key in the Map phase

e QOutput: (key, value-list)

* zero or more output records

VooV

v

00000 OO00 | 000000
VooV Y
000 000
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* input file

* output data
(color indicates the key value)
* shuffle function

* reduce function

* output records
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MapReduce Example: Word Count

» Task: Calculate word frequency in a set of documents

map (String key, Text value):
// key: document name (ignored)
// value: content of document (words)
foreach word w in value:
emitIntermediate (w, 1);

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
foreach v in wvalues:
result += v;
emit (key, result);
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MapReduce Example: Word Count

Input Splitting Mapping Shuffling Reducing Final result
Bear, 1 —— Bear,2 |
Deer,1 ———» Bear, 1 g
Deer Bear River ——— Bear, 1 | R
v Rivel',1 .\\ /
_./"/' \ \\ ."{" Car, 1
-~ \ N7 e Car,1 - Car,3 [ Bear2
Deer Bear River Car, 1 |5 X 4 Cant Car, 3
Car Car River ———» CarCarRiver ——» Car, 1 AV Deer, 2
Deer Car Bear River,1 (/% /™ River, 2
\/‘\ X Y Deer,1 —»| Deor,2 —»
. K Deer, 1
" . 4 ’ P 4
R Deer, 1 /// A //_,—
Al DeerCarBear = Car1 " -7 \ el
Bear,1 |~ | River,1 . »| River,2
1 River, 1

Source: http://www.cs.uml.edu/~jlul/doc/source/report/MapReduce.html
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Distributed Computation Platforms

* stream processing -> Storm, Spark Streaming, ...

 Storm

* real-time computation system, scalable, fault-tolerant

* algorithm as a directed acyclic graph
* edges = streams of data tuples
e spouts = data source
* bolts = processing node

» data model = a tuple of named fields
* mapping to physical workers

02.12.2021 PA220 DB for Analytics 18



Apache Spark

* a unified analytics engine for large-scale data processing.

* high performance for both batch and streaming data
* using a state-of-the-art DAG scheduler,
* a query optimizer, and
* a physical execution engine.
e 100x faster than Hadoop

MLlib
(machine

learning)

Apache Spark
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Distributed Storage Platforms

* key-value stores / NoSQL databases (Hbase)

"aaaaa" : {
 structured / tabular data model, but flexible schema "A"
e horizontal scalin foo" Y
g ||barll : Ildll
* no ACID, no join operation },
IIBII :{
mnim : IIWII
* key = identifies a row (typically with timestamp) )
e value = a multidimensional structure }

e column stores (C-store)
* relational data model, values of a column stored continuously
* read-optimized, high-query throughput DBMS
* relaxed consistency on reads



Distributed Storage Platforms

* real-time databases (e.g., VoltDB (originally H-Store))
* NewSQL databases

* scalability of NoSQL, relational data model
* ACID guarantees

* row-oriented storage on a distributed shared-nothing cluster
* main memory db
* fault-tolerance by node replication



Data Warehouse for Big Data

ETL Data
Warehouse

Sources

Batch Hive / Pig HDFS / NoSQL /

Stream Storm / Spark

/ Streaming
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Reporting /
Visualization

Analytics
R / Apache Mahout




Distributed Data Warehouse

* Hive — data warehouse for large datasets
e unstructured data in HDFS, structure projected on read
* manages and queries data using HiveQL
e converts them to Map-Reduce jobs
e supports indexing
* DML operations
 UPDATE & DELETE at row level

* Kylin — provides OLAP for big data

* precalculates aggregations — data cube on Hadoop and Spark
e query engine translation

* exploit prepared aggregations

* low-latency query evaluation (sub-second)
* integrate with Tableau, Power Bl



Advanced Analytics

* Apache Mahout
* scalable machine learning library
* based on Hadoop, Spark

* aimed at
* recommendations, collaborative filtering
 clustering, dimensionality reduction, classification

* Project R
 platform for statistical computing and visualization
* integrate to Hadoop



Advanced Analytics

 data quality is crucial

* Tamr
 data unification platform
e automated integration with machine learning
* thousands of data sources

* analytic model

 computed & adjusted off-line

* deployment
* in complex analysis
* inETL



Advanced Analytics in Real-time

* event processing
 tracking streams to detect events
* event = change of state, exceeding a threshold, anomalies, ...
 deriving conclusions from events

e complex event processing
 combine multiple sources
* implement pattern detection, correlation, filtering, aggregation, ...

* extension to SQL — StreamSQL
e continuous queries with incremental results
 windowing & aggregations
* windowing & joins



Apache Hive

* A system for querying and managing structured data built on top of
Hadoop

* Uses Map-Reduce for execution
* HDFS for storage — but any system that implements Hadoop FS API

* Key Building Principles:
e Structured data with rich data types (structs, lists and maps)

* Directly query data from different formats (text/binary) and file formats
(Flat/Sequence)

* SQL as a familiar programming tool and for standard analytics

* Allow embedded scripts for extensibility and for non-standard
applications

* Rich metadata to allow data discovery and for optimization



Apache Hive — Architecture

Thrift ‘ JDBC ODBC
Application Application Application
l l l Hive
Client
Thrift JDBC ODBC
Client Client Client
B VI 2 "

HiveServer2 Beeline

W

Driver

i

Hive

— Services

compiler

optimizer

I-

A 4

MapReduce Processing
—— & Resource
YARN Management

Distributed
Storage

'(—'

HDFS

Source: https://data-flair.training/blogs/apache-hive-architecture/
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Apache Hive — MetaStore

* Stores Table/Partition properties:
* Table schema and SerDe library for formatting rows

* Table Location on HDFS " CREMTE TRRLE myles |
user_id BIGINT,
. oy e . page_url STRING,
* Logical Partitioning keys and types e tine o)
PY Pa rtition Ievel metadata ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
* Other information » CREATE table mylog rc (

user_id BIGINT,
page_url STRING,
unix_ time INT)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'
STORED AS RCFILE;
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Apache Hive — Structured Data

* Type system
* Primitive types (double, float, bigint, int, smallint, tinyint, boolean, string, timestamp)
* Recursively build up using Composition/Maps/Lists

* ObjectIinspector interface for user-defined types
* To recursively list schema
* To recursively access fields within a row object

* Generic (De)Serialization Interface (SerDe)

* Serialization families implement interface
e Thrift DDL based SerDe
* Delimited text based SerDe
* You can write your own SerDe (XML, JSON ...)



Apache Hive — Query Language

hive> select * from temperature limit 10;
oK
stanice NULL NULL NULL NULL flag NULL NULL NULL stat nazev

AQWO0061705 1 1 1 26.888888888888893 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
. AQWO0061705 1 2 1 26.888888888888893 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
[ ] Ba S I C SQL AQWOOO61705 1 3 1 26.833333333333332 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQWO0061705 1 4 1 26.777777777777782 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQWO0061705 1 5 1 26.777777777777782 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQWO0061705 1 6 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
® F ro m C I a u Se S u bq u e ry AQWOO061705 1 7 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQWO0061705 1 8 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQWO061705 1 9 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
P M Time taken: 0.293 seconds, Fetched: 10 row(s)
e ANSI JOIN (equi-join only)
hive> describe temperature;
. oK
stanice strin
* Multi-table Insert serive
den int
. hodina int
* Multi group-by
ag string
latitude double
: longitude double
* Sa m pI I ng vyska double
stat string
nazev string
[ J

Objects trave rsal Time taken: ©.22 seconds, Fetched: 11 row(s)

* Extensibility
* Pluggable Map-reduce scripts using TRANSFORM



Apache Hive — Query Language

* Aggregate queries mapped to MR jobs:

hive> select count(*) from temperature;
Query ID = dohnal_20210119140041_ 1a94796f-172f-4d40-b8c3-10932ea638c3
Total jobs =1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
2021-01-19 14:00:41,609 INFO [3093d28d-ea97-4e81l-ab63-7c6cdd1l7fe7d main] client.ConfiguredRMFailoverProxyProvider: Failing over to rm2
Starting Job = job_1605005553005_ 4269, Tracking URL = https://hador-cl.ics.muni.cz:8090/proxy/application_1605005553005 4269/
Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_1605005553005_ 4269
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2021-01-19 14:00:50,401 Stage-1 map = 0%, reduce = 0%
2021-01-19 14:01:01,721 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 6.07 sec
2021-01-19 14:01:13,029 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 8.2 sec
MapReduce Total cumulative CPU time: 8 seconds 200 msec
Ended Job = job_1605005553005_4269
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 8.2 sec HDFS Read: 8456014 HDFS Write: 107 HDFS EC Read: © SUCCESS
Total MapReduce CPU Time Spent: 8 seconds 200 msec
oK
4003322
Time taken: 32.929 seconds, Fetched: 1 row(s)



Apache Hive — Query Language

e Custom map/reduce scripts:

FROM (
FROM pv_users
SELECT TRANSFORM(pv_users.userid, pv_users.date) USING 'map_script' AS (dt, uid)
CLUSTER BY(dt)

) map

INSERT INTO TABLE pv_users_ reduced
SELECT TRANSFORM(map.dt, map.uid) USING 'reduce_script' AS (day, count);

Sample map_script.py: | import sys

import datetime

for line in sys.stdin:
line = line.strip()
userid, unixtime = line.split('\t'")
weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
print ','.join([str(weekday), userid])



Apache Hive — MapReduce

Machine 1
<k1, v1> <nk1, nv1> <nk1, nv1> <nk1, nv1>
<k2, v2> [> <nk2, nv2> <nk3, nv3> [> <nk1, nvé> [:> 22::;’ %Z
<k3, v3> <nk3, nv3> <nk1, nvé> <nk3, nv3> ’
Local Global Local Local
Map Shuffle Sort Reduce
Machine 2
<k4, v4> <nk2, nv4> <nk2, nv4> <nk2, nv4>
<k5, v5> [:} <nk2, nv5> <nk2, nv5> [> <nk2, nv5> [:> <nk2, 3>
<k6, v6> <nk1, nvé> <nk2, nv2> <nk2, nv2>
02.12.2021
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Apache Hive - HiveQL

* Joins — inner, outer

* equi-joins with conjunctions supported

INSERT INTO TABLE pv_users
SELECT pv.pageid, u.age
FROM page view pv JOIN user u ON (pv.userid = u.userid);

INSERT INTO TABLE pv_users

SELECT pv.*, u.gender, u.age

FROM page_view pv FULL OUTER JOIN user u ON (pv.userid = u.id)
WHERE pv.date = 2008-03-03;

e Group by
SELECT pageid, age, count(1)
FROM pv_users
GROUP BY pageid, age;

SELECT pageid, COUNT(DISTINCT userid)
FROM page view GROUP BY pageid



Apache Hive — Tables and Files

FROM pv_users

INSERT INTO TABLE pv_gender_sum
SELECT pv_users.gender, count distinct(pv_users.userid)
GROUP BY(pv_users.gender)

INSERT INTO DIRECTORY ¢/user/facebook/tmp/pv_age sum.dir’
SELECT pv_users.age, count distinct(pv_users.userid)
GROUP BY(pv_users.age)

INSERT INTO LOCAL DIRECTORY €¢/home/me/pv_age sum.dir’
FIELDS TERMINATED BY ¢,’ LINES TERMINATED BY \013
SELECT pv_users.age, count_distinct(pv_users.userid)
GROUP BY(pv_users.age);



Apache Impala

* a query engine that runs on Apache Hadoop
e circumvents MapReduce to directly access the data

* a specialized distributed query engine like commercial parallel RDBMSs
* in C++, not Java; runtime code generation

* low-latency SQL queries to data stored in HDFS and Apache Hbase
e an order-of-magnitude faster performance than Hive

* uses the same metadata, SQL syntax (HiveQL), ODBC driver, and user
interface as Apache Hive

 supported storage formats
* (compressed) text file, sequence file, RCFile, Avro, Parquet, HBase



Apache Impala — Architecture

Common Hive SQL and interface Unified metadata

>
>

e
-—
—
-

Fully MPP
Distributed
+

L
Local
Direct Reads

Source: http://impala.apache.org/overview.html
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Apache Impala — Query Language

* SQL support:
* essentially SQL-92, minus correlated subqueries
* only equi-joins; no non-equi joins, no cross products
* Order By requires Limit
* (Limited) DDL support
e SQL-style authorization via Apache Sentry (incubating)
 UDFs and UDAFs are supported

* Join Limitation
* The smaller table has to fit in aggregate memory of all executing nodes.



Apache Impala — Query Planning

* 2-phase planning process:
* single-node plan: left-deep tree of plan operators

* plan partitioning: partition single-node plan to maximize scan locality,
minimize data movement

* Parallelization of operators:
* All query operators are fully distributed.

* Plan operators:
e Scan, HashJoin, HashAggregation, Union, TopN, Exchange



Apache Impala — Query Planning

SELECT tl.custid, SUM(t2.revenue) AS revenue

FROM LargeHdfsTable t1 at HDFS DN
JOIN LargeHdfsTable t2 ON (tl.idl = t2.id)
JOIN SmallHbaseTable t3 ON (tl.id2 = t3.id)

WHERE t3.category = 'Online’ at HBase RS
GROUP BY t1l1.custid
ORDER BY revenue DESC

at coordinator

LIMIT 10;

hash
t1.custid

Broadcast
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Apache Impala — Execution Engine

 Written in C++ for minimal execution overhead

* Internal in-memory tuple format
* puts fixed-width data at fixed offsets

* Uses intrinsics/special cpu instructions
* for text parsing, crc32 computation, etc.

* Runtime code generation for “big loops”

* e.g., insert batch of rows into a hash table; unroll a loop that inlines all
function calls, contains no dead code, minimizes branches

e code generated using llvm



Apache Hive vs. Impala - Performance

* 20 pre-selected diverse TPC-DS queries
* modified to remove unsupported language

 Sufficient data scale for realistic comparison (3 TB, 15 TB, and 30 TB)
* Realistic nodes (e.g., 8-core CPU, 96GB RAM, 12x2TB disks)
 Methodology - multiple runs, reviewed fairness for competition, ...

* Results:
* Impala vs Hive 0.12 (Impala 6--70x faster)
* Impala vs “DBMS-Y” (Impala average of 2x faster)
* Impala scalability (Impala achieves linear scale)



Apache Hive vs. Impala - Performance

900

800

700
w"-é‘ 600 -
S 500 -
E 400 ¥ mpala
@
E 300 - ¥ Hive 0.12

. J _I _I

100 -

. INEE RN

£ & & & n“&&& &&”"ﬁ’&"é”&‘é‘j“
TPC-D5 Query ;
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Apache Hive vs. Impala - Performance
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Apache Hive vs. Impala

Design MapReduce jobs massively parallel processing (MPP)

Use case long-running ETL jobs low-latency/interactive queries,
also for multi-user load;
interactive Bl experience

Complex data types Yes No

Query processing disk-based in-memory
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summary

* Big Data changes Data Warehousing to Distributed DWH
* Based on horizontally scalable frameworks

* Transition from batch processing (MR jobs) to stream processing (DAG
of tasks)

* Query optimizers — special algorithms, in-memory processing,
* Real-time data processing and visualizations



Credits

* Hive Tutorial
* https://cwiki.apache.org/confluence/display/Hive/Tutorial

* Facebook Data Team - HIVE: Data Warehousing & Analytics on

Hadoop
 https://slideshare.net/zshao/hive-data-warehousing-analytics-on-hadoop-

presentation
 Mark Grover - Impala: A Modern, Open-Source SQL Engine for

Hadoop
* https://slideshare.net/markgrover/introduction-to-impala



