
Big Data Analytics
PA220: Database systems for data analytics

Contents

• properties of current data

• architecture of data processing and analytics systems

• challenges in Big Data processing

• distributed data warehouse

02.12.2021 PA220 DB for Analytics 2

Motivation

• Data production
• Information systems
• Monitoring services
• Sensors, GPS tracking
• Social networks

• Data processing
• Storage & archiving
• Summarization
• Reporting
• Visualization
• Insights
• Predictions

3

2952 Mgr 121 kr.
325040 NMgr 132 kr.
…

02.12.2021 PA220 DB for Analytics

Nature of Current Data and Processing

• Volume
• the amount of data increases

tenfold every five years

• Variety
• varying data structure, text,

multimedia, …

• Velocity
• continuous data flow from

sensors, social networks, …

• Veracity
• with different data sources, it is

getting more difficult to maintain
data certainty

• Real-time processing

4

Big Data

Source: tableau.com

02.12.2021 PA220 DB for Analytics

• TDWI report, Q4 2014
• 105 companies

over 500 emp.

5

Data Processed in Real-time

02.12.2021 PA220 DB for Analytics

Necessities for Big Data Analytics

• infrastructure for big data
• processing

• batch
• stream (real-time)

• storage
• key-value stores
• column stores

• algorithms for big data
• data integration
• data reporting
• analytic functions
• machine learning

602.12.2021 PA220 DB for Analytics

Computational & Storage Opportunities

• horizontal scaling instead of vertical scaling

• new platforms
• HDFS & MapReduce (e.g., Hadoop)

• distributed stream processing (e.g., Storm)

• column storage (e.g., Vertica)

• NoSQL platforms (e.g., HBase)

• in-memory DBMSs (e.g., VoltDB)

702.12.2021 PA220 DB for Analytics

Hadoop Platform

• SW library for distributed processing of large data sets
• across clusters of computers

• high-availability achieved on application layer by replication
• tasks run / data stored on unreliable HW

• HDFS – distributed high-throughput file system
• designed for mostly immutable files
• concurrent write not supported
• cooperation with MapReduce – data & computation locality

• MapReduce – programming model for large scale data processing
• Map() – filtering and sorting, outputs “key,value” pairs
• Reduce() – summarizing Map() results by their keys

Map(k1,v1) → list(k2,v2)

Reduce(k2, list (v2)) → list(k3,v3)

802.12.2021 PA220 DB for Analytics

HDFS

• Files are divided into blocks (chunks), typically 64 MB
• The chunks are replicated at three different machines

• ...in an “intelligent” fashion, e.g., never all on the same computer rack

• The block size and replication factor are tunable per file.
• One machine is a name node (master)
• The others are data nodes (chunk servers)

• The master keeps track of all file metadata
• mappings from files to chunks and locations of the chunks on data nodes

• To find a file chunk, the client queries the master,
and then it contacts the relevant data nodes.

• The master’s metadata files are also replicated.
• Files in HDFS are write-once (except for appends and truncates)

• and have strictly one writer at any time.

02.12.2021 PA220 DB for Analytics 9

HDFS Architecture

02.12.2021 PA220 DB for Analytics 10

Source: https://hadoop.apache.org/docs/current/

Distributed Computation Platforms

• batch processing -> MapReduce, Spark, …

• stream processing -> Storm, Spark Streaming, …

• MapReduce
• a programming model for distributed data processing
• cooperates with a distributed file system

• A distributed computational task has three phases:
• The map phase: data transformation
• The grouping phase done automatically by the MapReduce Framework
• The reduce phase: data aggregation

• The user defines only map & reduce functions.

1102.12.2021 PA220 DB for Analytics

MapReduce – Map Function

• Map function simplifies the problem in this way:
• Input: a single data item (e.g., line of text) from a data file
• Output: zero or more (key, value) pairs

• The keys are not typical “primary keys”:
• They do not have to be unique
• A map task can produce several key-value pairs with the same key (even from

a single input)

• Map phase applies the map function to all items

02.12.2021 PA220 DB for Analytics 12

MapReduce – Map Function

• input data

• map function

• output data
(color indicates the key value)

02.12.2021 PA220 DB for Analytics 13

MapReduce – Grouping Phase

• Grouping (Shuffling): The key-value outputs from the map phase
are grouped by key
• Values sharing the same key are sent to the same reducer
• These values are consolidated into a single list (key, list)

• This is convenient for the reduce function

• This phase is realized by the MapReduce framework

02.12.2021 PA220 DB for Analytics 14

• intermediate output
(color indicates the key value)

• grouping phase – shuffle function

MapReduce – Reduce Function

• Reduce: combine the values
for each key

• to achieve the final result(s) of the
computational task

• Input: (key, value-list)
• value-list contains all values generated for

given key in the Map phase

• Output: (key, value-list)
• zero or more output records

02.12.2021 PA220 DB for Analytics 15

• input file

• map function

• output data
(color indicates the key value)
• shuffle function

• reduce function

• output records

MapReduce Example: Word Count

• Task: Calculate word frequency in a set of documents

02.12.2021 PA220 DB for Analytics 16

map(String key, Text value):

// key: document name (ignored)

// value: content of document (words)

foreach word w in value:

emitIntermediate(w, 1);

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

foreach v in values:

result += v;

emit(key, result);

MapReduce Example: Word Count

02.12.2021 PA220 DB for Analytics 17

Source: http://www.cs.uml.edu/~jlu1/doc/source/report/MapReduce.html

Distributed Computation Platforms

• batch processing -> MapReduce, Spark, …

• stream processing -> Storm, Spark Streaming, …

• Storm
• real-time computation system, scalable, fault-tolerant
• algorithm as a directed acyclic graph

• edges = streams of data tuples
• spouts = data source
• bolts = processing node

• data model = a tuple of named fields
• mapping to physical workers

18

Spout

Spout

Bolt

Bolt

Bolt

02.12.2021 PA220 DB for Analytics

Apache Spark

• a unified analytics engine for large-scale data processing.

• high performance for both batch and streaming data
• using a state-of-the-art DAG scheduler,

• a query optimizer, and

• a physical execution engine.

• 100x faster than Hadoop

02.12.2021 PA220 DB for Analytics 19

Distributed Storage Platforms

• key-value stores / NoSQL databases (Hbase)
• structured / tabular data model, but flexible schema

• horizontal scaling

• no ACID, no join operation

• key = identifies a row (typically with timestamp)

• value = a multidimensional structure

• column stores (C-store)
• relational data model, values of a column stored continuously

• read-optimized, high-query throughput DBMS

• relaxed consistency on reads
20

"aaaaa" : {
"A" : {

"foo" : "y",
"bar" : "d"

},
"B" : {

"" : "w"
}

}

02.12.2021 PA220 DB for Analytics

Distributed Storage Platforms

• real-time databases (e.g., VoltDB (originally H-Store))
• NewSQL databases

• scalability of NoSQL, relational data model

• ACID guarantees

• row-oriented storage on a distributed shared-nothing cluster

• main memory db

• fault-tolerance by node replication

2102.12.2021 PA220 DB for Analytics

Data Warehouse for Big Data

22

Reporting /
Visualization

Analytics
R / Apache Mahout

Hive / Pig

Data
Warehouse

HDFS / NoSQL /
NewSQL

Sources
Batch

ETL

Spark

Hive

Kylin

Stream

Staging
Hadoop

Storm / Spark
Streaming

Staging
VoltDB

Impala

02.12.2021 PA220 DB for Analytics

Distributed Data Warehouse

• Hive – data warehouse for large datasets
• unstructured data in HDFS, structure projected on read
• manages and queries data using HiveQL

• converts them to Map-Reduce jobs
• supports indexing
• DML operations

• UPDATE & DELETE at row level

• Kylin – provides OLAP for big data
• precalculates aggregations – data cube on Hadoop and Spark
• query engine translation

• exploit prepared aggregations
• low-latency query evaluation (sub-second)

• integrate with Tableau, Power BI

2302.12.2021 PA220 DB for Analytics

Advanced Analytics

• Apache Mahout
• scalable machine learning library

• based on Hadoop, Spark

• aimed at
• recommendations, collaborative filtering

• clustering, dimensionality reduction, classification

• Project R
• platform for statistical computing and visualization

• integrate to Hadoop

2402.12.2021 PA220 DB for Analytics

Advanced Analytics

• data quality is crucial
• Tamr

• data unification platform

• automated integration with machine learning

• thousands of data sources

• analytic model
• computed & adjusted off-line

• deployment
• in complex analysis

• in ETL

2502.12.2021 PA220 DB for Analytics

Advanced Analytics in Real-time

• event processing
• tracking streams to detect events

• event = change of state, exceeding a threshold, anomalies, …

• deriving conclusions from events

• complex event processing
• combine multiple sources

• implement pattern detection, correlation, filtering, aggregation, …

• extension to SQL – StreamSQL
• continuous queries with incremental results

• windowing & aggregations

• windowing & joins

2602.12.2021 PA220 DB for Analytics

Apache Hive

• A system for querying and managing structured data built on top of
Hadoop
• Uses Map-Reduce for execution
• HDFS for storage – but any system that implements Hadoop FS API

• Key Building Principles:
• Structured data with rich data types (structs, lists and maps)
• Directly query data from different formats (text/binary) and file formats

(Flat/Sequence)
• SQL as a familiar programming tool and for standard analytics
• Allow embedded scripts for extensibility and for non-standard

applications
• Rich metadata to allow data discovery and for optimization

02.12.2021 PA220 DB for Analytics 27

Apache Hive – Architecture

02.12.2021 PA220 DB for Analytics 28

Source: https://data-flair.training/blogs/apache-hive-architecture/

Apache Hive – MetaStore

• Stores Table/Partition properties:
• Table schema and SerDe library for formatting rows

• Table Location on HDFS

• Logical Partitioning keys and types

• Partition level metadata

• Other information

02.12.2021 PA220 DB for Analytics 29

Apache Hive – Structured Data

• Type system
• Primitive types (double, float, bigint, int, smallint, tinyint, boolean, string, timestamp)
• Recursively build up using Composition/Maps/Lists

• ObjectInspector interface for user-defined types
• To recursively list schema
• To recursively access fields within a row object

• Generic (De)Serialization Interface (SerDe)

• Serialization families implement interface
• Thrift DDL based SerDe
• Delimited text based SerDe
• You can write your own SerDe (XML, JSON …)

02.12.2021 PA220 DB for Analytics 30

Apache Hive – Query Language

• Basic SQL
• From clause subquery

• ANSI JOIN (equi-join only)

• Multi-table Insert

• Multi group-by

• Sampling

• Objects traversal

• Extensibility
• Pluggable Map-reduce scripts using TRANSFORM

02.12.2021 PA220 DB for Analytics 31

hive> select * from temperature limit 10;
OK
stanice NULL NULL NULL NULL flag NULL NULL NULL stat nazev
AQW00061705 1 1 1 26.888888888888893 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQW00061705 1 2 1 26.888888888888893 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQW00061705 1 3 1 26.833333333333332 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQW00061705 1 4 1 26.777777777777782 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQW00061705 1 5 1 26.777777777777782 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQW00061705 1 6 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQW00061705 1 7 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQW00061705 1 8 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQW00061705 1 9 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
Time taken: 0.293 seconds, Fetched: 10 row(s)

hive> describe temperature;
OK
stanice string
mesic int
den int
hodina int
teplota double
flag string
latitude double
longitude double
vyska double
stat string
nazev string
Time taken: 0.22 seconds, Fetched: 11 row(s)

Apache Hive – Query Language

• Aggregate queries mapped to MR jobs:

02.12.2021 PA220 DB for Analytics 32

hive> select count(*) from temperature;
Query ID = dohnal_20210119140041_1a94796f-172f-4d40-b8c3-10932ea638c3
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):

set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:

set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:

set mapreduce.job.reduces=<number>
2021-01-19 14:00:41,609 INFO [3093d28d-ea97-4e81-ab63-7c6cdd17fe7d main] client.ConfiguredRMFailoverProxyProvider: Failing over to rm2
Starting Job = job_1605005553005_4269, Tracking URL = https://hador-c1.ics.muni.cz:8090/proxy/application_1605005553005_4269/
Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_1605005553005_4269
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2021-01-19 14:00:50,401 Stage-1 map = 0%, reduce = 0%
2021-01-19 14:01:01,721 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 6.07 sec
2021-01-19 14:01:13,029 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 8.2 sec
MapReduce Total cumulative CPU time: 8 seconds 200 msec
Ended Job = job_1605005553005_4269
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 8.2 sec HDFS Read: 8456014 HDFS Write: 107 HDFS EC Read: 0 SUCCESS
Total MapReduce CPU Time Spent: 8 seconds 200 msec
OK
4003322
Time taken: 32.929 seconds, Fetched: 1 row(s)

Apache Hive – Query Language

• Custom map/reduce scripts:

02.12.2021 PA220 DB for Analytics 33

FROM (
FROM pv_users
SELECT TRANSFORM(pv_users.userid, pv_users.date) USING 'map_script' AS (dt, uid)
CLUSTER BY(dt)

) map

INSERT INTO TABLE pv_users_reduced
SELECT TRANSFORM(map.dt, map.uid) USING 'reduce_script' AS (day, count);

import sys
import datetime

for line in sys.stdin:
line = line.strip()
userid, unixtime = line.split('\t')
weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
print ','.join([str(weekday), userid])

Sample map_script.py:

Apache Hive – MapReduce

02.12.2021 PA220 DB for Analytics 34

Apache Hive - HiveQL

• Joins – inner, outer
• equi-joins with conjunctions supported

• Group by

02.12.2021 PA220 DB for Analytics 35

INSERT INTO TABLE pv_users
SELECT pv.pageid, u.age
FROM page_view pv JOIN user u ON (pv.userid = u.userid);

INSERT INTO TABLE pv_users
SELECT pv.*, u.gender, u.age
FROM page_view pv FULL OUTER JOIN user u ON (pv.userid = u.id)
WHERE pv.date = 2008-03-03;

SELECT pageid, age, count(1)
FROM pv_users
GROUP BY pageid, age;

SELECT pageid, COUNT(DISTINCT userid)
FROM page_view GROUP BY pageid

Apache Hive – Tables and Files

02.12.2021 PA220 DB for Analytics 36

FROM pv_users

INSERT INTO TABLE pv_gender_sum
SELECT pv_users.gender, count_distinct(pv_users.userid)
GROUP BY(pv_users.gender)

INSERT INTO DIRECTORY ‘/user/facebook/tmp/pv_age_sum.dir’
SELECT pv_users.age, count_distinct(pv_users.userid)
GROUP BY(pv_users.age)

INSERT INTO LOCAL DIRECTORY ‘/home/me/pv_age_sum.dir’
FIELDS TERMINATED BY ‘,’ LINES TERMINATED BY \013
SELECT pv_users.age, count_distinct(pv_users.userid)
GROUP BY(pv_users.age);

Apache Impala

• a query engine that runs on Apache Hadoop
• circumvents MapReduce to directly access the data

• a specialized distributed query engine like commercial parallel RDBMSs
• in C++, not Java; runtime code generation

• low-latency SQL queries to data stored in HDFS and Apache Hbase
• an order-of-magnitude faster performance than Hive

• uses the same metadata, SQL syntax (HiveQL), ODBC driver, and user
interface as Apache Hive

• supported storage formats
• (compressed) text file, sequence file, RCFile, Avro, Parquet, HBase

02.12.2021 PA220 DB for Analytics 37

Apache Impala – Architecture

02.12.2021 PA220 DB for Analytics 38

Source: http://impala.apache.org/overview.html

Apache Impala – Query Language

• SQL support:
• essentially SQL-92, minus correlated subqueries

• only equi-joins; no non-equi joins, no cross products

• Order By requires Limit

• (Limited) DDL support

• SQL-style authorization via Apache Sentry (incubating)

• UDFs and UDAFs are supported

• Join Limitation
• The smaller table has to fit in aggregate memory of all executing nodes.

02.12.2021 PA220 DB for Analytics 39

Apache Impala – Query Planning

• 2-phase planning process:
• single-node plan: left‐deep tree of plan operators

• plan partitioning: partition single-node plan to maximize scan locality,
minimize data movement

• Parallelization of operators:
• All query operators are fully distributed.

• Plan operators:
• Scan, HashJoin, HashAggregation, Union, TopN, Exchange

02.12.2021 PA220 DB for Analytics 40

Apache Impala – Query Planning

02.12.2021 PA220 DB for Analytics 41

SELECT t1.custid, SUM(t2.revenue) AS revenue
FROM LargeHdfsTable t1

JOIN LargeHdfsTable t2 ON (t1.id1 = t2.id)
JOIN SmallHbaseTable t3 ON (t1.id2 = t3.id)

WHERE t3.category = 'Online'
GROUP BY t1.custid
ORDER BY revenue DESC
LIMIT 10;

Apache Impala – Execution Engine

• Written in C++ for minimal execution overhead

• Internal in-memory tuple format
• puts fixed-width data at fixed offsets

• Uses intrinsics/special cpu instructions
• for text parsing, crc32 computation, etc.

• Runtime code generation for “big loops”
• e.g., insert batch of rows into a hash table; unroll a loop that inlines all

function calls, contains no dead code, minimizes branches

• code generated using llvm

02.12.2021 PA220 DB for Analytics 42

Apache Hive vs. Impala - Performance

• 20 pre-selected diverse TPC-DS queries
• modified to remove unsupported language

• Sufficient data scale for realistic comparison (3 TB, 15 TB, and 30 TB)

• Realistic nodes (e.g., 8‐core CPU, 96GB RAM, 12x2TB disks)

• Methodology - multiple runs, reviewed fairness for competition, …

• Results:
• Impala vs Hive 0.12 (Impala 6-‐70x faster)

• Impala vs “DBMS-Y” (Impala average of 2x faster)

• Impala scalability (Impala achieves linear scale)

02.12.2021 PA220 DB for Analytics 43

Apache Hive vs. Impala - Performance

02.12.2021 PA220 DB for Analytics 44

Apache Hive vs. Impala - Performance

02.12.2021 PA220 DB for Analytics 45

Apache Hive vs. Impala

Hive Impala

Design MapReduce jobs massively parallel processing (MPP)

Use case long-running ETL jobs low-latency/interactive queries,
also for multi-user load;
interactive BI experience

Complex data types Yes No

Query processing disk-based in-memory

02.12.2021 PA220 DB for Analytics 46

Summary

• Big Data changes Data Warehousing to Distributed DWH

• Based on horizontally scalable frameworks

• Transition from batch processing (MR jobs) to stream processing (DAG
of tasks)

• Query optimizers – special algorithms, in-memory processing,

• Real-time data processing and visualizations

02.12.2021 PA220 DB for Analytics 47

Credits

• Hive Tutorial
• https://cwiki.apache.org/confluence/display/Hive/Tutorial

• Facebook Data Team - HIVE: Data Warehousing & Analytics on
Hadoop
• https://slideshare.net/zshao/hive-data-warehousing-analytics-on-hadoop-

presentation

• Mark Grover - Impala: A Modern, Open-Source SQL Engine for
Hadoop
• https://slideshare.net/markgrover/introduction-to-impala

02.12.2021 PA220 DB for Analytics 48

