PA220: Database systems for data analytics

Big Data Analytics

Contents

e properties of current data

* architecture of data processing and analytics systems
 challenges in Big Data processing

* distributed data warehouse

Motivation

* Data production
* Information systems
* Monitoring services
* Sensors, GPS tracking
* Social networks

* Data processing
e Storage & archiving
* Summarization
Reporting
Visualization
Insights
Predictions

02.12.2021

6y

PA220 DB for Analytics

2952 Mgr 121 kr.
325040 NMgr 132 kr.

Nature of Current Data and Processing

Big Data

 the amount of data increases
tenfold every five years

* varying data structure, text,
multimedia, ...

* continuous data flow from
sensors, social networks, ...

* with different data sources, it is

getting more difficult to maintain

data certainty

Real-time processing

* Volume
* Variety
* Velocity
* Veracity
02.12.2021

Data Analytics b

[&World Bank

Dimensions Sl
¥ 2 Geography
s Reglon
@ Country
& Country Cade
sk Income
a Long Name
B Year
abe Measure Names

Measures

* im Aflas

Population
Technology
Latitude (generated)

L4

t40aFF

L

Longitude (generated)
Number of Records
Measure Values

Parameters
Profit Bin Size
Top Customers

iif Columns
i= Rows

Pages

Marks.

o* Circle

& d i
Colar Size Label

Detail Toaltip

& Income)

= YEAR(Year)
ibe % Country

Income

B High income: nonDECD

W High income: DECD
Upper middle income
Lower middle income

B Low income

PA220 DB for Analytics

Internet users {per 100 people)

SUM(Mobile cellular..

SUM{Internet users ..

100

0

80

70

60

50

40

Source: tableau.com

Andorra@® @

80

Bermuda

Kuwait

N .. o0 @ Hong Kong SAR, China

® Hong Kong SAR, China

L @ Cayman Islands
@ ® @
® @ @ Macao SAR, China

@ @ Saudi Arabia

®» £ © Saudi Arabia

’ ¥ Montenegro

Meontenegro

T Maldives
r Libya

Gabon

100 120 140 160 180 200 220 240 260 280 300 320
Mobile cellular subscriptions (per 100 peaple)

Data Processed in Real-time ... e

* TDWI report, Q4 2014

* 105 companies
over 500 emp.

02.12.2021

Structured data
(tables, records)

Application logs

Event data
(messages, usually in real time)

Semi-structured data
(XML and similar standards)

Complex data
(hierarchical or legacy sources)

Raw data
(e.g., data directly from POS terminals)

Machine-generated data
(sensors, RFID, devices)

Weblogs and click streams

Spatial data
(long/lat coordinates, GPS output)

Social media data
(blogs, tweets, social networks)

Unstructured data
(human language, audio, video)

Scientific data
(astronomy, genomes, physics)

PA220 DB for Analytics

24%

24%

18%

HH

%

B3 nx

51%

30%

16%

26%

34%

26%

38%

34%

36%

33%

3%

40%

38%

41%

46%

60%

55%

471%

56%

45%

39%

85%

18%

Necessities for Big Data Analytics

e infrastructure for big data

* processing
* batch
e stream (real-time)

¢ storage
* key-value stores
e column stores

* algorithms for big data
* data integration
* data reporting
* analytic functions
* machine learning

Computational & Storage Opportunities

* horizontal scaling instead of vertical scaling

* new platforms
 HDFS & MapReduce (e.g., Hadoop)
 distributed stream processing (e.g., Storm)
e column storage (e.g., Vertica)
* NoSQL platforms (e.g., HBase)
* in-memory DBMSs (e.g., VoltDB)

Hadoop Platform

e SW library for distributed processing of large data sets
* across clusters of computers

* high-availability achieved on application layer by replication
* tasks run / data stored on unreliable HW
 HDFS — distributed high-throughput file system

» designed for mostly immutable files
e concurrent write not supported
* cooperation with MapReduce — data & computation locality

* MapReduce — programming model for large scale data processing
* Map() —filtering and sorting, outputs “key,value” pairs Map(k1,v1) = list(k2,v2)
e Reduce() — summarizing Map() results by their keys Reduce(k2, list (v2)) = list(k3,v3)

HDFS

* Files are divided into blocks (chunks), typically 64 MB

* The chunks are replicated at three different machines
e ...in an “intelligent” fashion, e.g., never all on the same computer rack
* The block size and replication factor are tunable per file.
* One machine is a name node (master)

* The others are data nodes (chunk servers)

* The master keeps track of all file metadata
* mappings from files to chunks and locations of the chunks on data nodes

* To find a file chunk, the client queries the master,
and then it contacts the relevant data nodes.
* The master’s metadata files are also replicated.

* Files in HDFS are write-once (except for appends and truncates)
* and have strictly one writer at any time.

HDFS Architecture

Metadata (Name, replicas, ...):
Metadat@,ops”{ Namenode /home/foo/data, 3, ...
Block ops
Read Datanodes Datanodes

1 | |
Replication L

\ Blocks

S~ \ / \)

Rack 1 vwite Rack 2

Source: https://hadoop.apache.org/docs/current/

02.12.2021 PA220 DB for Analytics

Distributed Computation Platforms

e batch processing -> MapReduce, Spark, ...
e stream processing -> Storm, Spark Streaming, ...

* MapReduce
e a programming model for distributed data processing
e cooperates with a distributed file system

e Adistributed computational task has three phases:
* The map phase: data transformation
* The grouping phase done automatically by the MapReduce Framework
* The reduce phase: data aggregation

* The user defines only map & reduce functions.

MapReduce — Map Function

* Map function simplifies the problem in this way:

* |nput: a single data item (e.g., line of text) from a data file
e Qutput: zero or more (key, value) pairs

* The keys are not typical “primary keys”:
* They do not have to be unique
* A map task can produce several key-value pairs with the same key (even from

a single input)

* Map phase applies the map function to all items

02.12.2021 PA220 DB for Analytics 12

MapReduce — Map Function

* input data

@ @ @ @ » map function

. o @ °outputdata
OO (color indicates the key value)

02.12.2021 PA220 DB for Analytics 13

MapReduce — Grouping Phase

* Grouping (Shuffling): The key-value outputs from the map phase
are grouped by key

* Values sharing the same key are sent to the same reducer

* These values are consolidated into a single list (key, list)
* This is convenient for the reduce function

* This phase is realized by the MapReduce framework

O
O . O O . O.O O . * intermediate output
O O . O O (color indicates the key value)

@ @ @ * grouping phase — shuffle function

00000 COOOO||0O0O0OO

02.12.2021 PA220 DB for Analytics 14

MapReduce — Reduce Function

oot

VYV YV mapfunion

°
OO. 00

 Reduce: combine the values
for each key

* to achieve the final result(s) of the
computational task

* |nput: (key, value-list)
 value-list contains all values generated for
given key in the Map phase

e QOutput: (key, value-list)

* zero or more output records

VooV

v

00000 OO00 | 000000
VooV Y
000 000

02.12.2021 PA220 DB for Analytics

* input file

* output data
(color indicates the key value)
* shuffle function

* reduce function

* output records

15

MapReduce Example: Word Count

» Task: Calculate word frequency in a set of documents

map (String key, Text value):
// key: document name (ignored)
// value: content of document (words)
foreach word w in value:
emitIntermediate (w, 1);

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
foreach v in wvalues:
result += v;
emit (key, result);

02.12.2021 PA220 DB for Analytics

MapReduce Example: Word Count

Input Splitting Mapping Shuffling Reducing Final result
Bear, 1 —— Bear,2 |
Deer,1 ———» Bear, 1 g
Deer Bear River ——— Bear, 1 | R
v Rivel',1 .\\ /
_./"/' \ \\ ."{" Car, 1
-~ \ N7 e Car,1 - Car,3 [Bear2
Deer Bear River Car, 1 |5 X 4 Cant Car, 3
Car Car River ———» CarCarRiver ——» Car, 1 AV Deer, 2
Deer Car Bear River,1 (/% /™ River, 2
\/‘\ X Y Deer,1 —»| Deor,2 —»
. K Deer, 1
" . 4 ’ P 4
R Deer, 1 /// A //_,—
Al DeerCarBear = Car1 " -7 \ el
Bear,1 |~ | River,1 . »| River,2
1 River, 1

Source: http://www.cs.uml.edu/~jlul/doc/source/report/MapReduce.html

02.12.2021 PA220 DB for Analytics 17

Distributed Computation Platforms

* stream processing -> Storm, Spark Streaming, ...

 Storm

* real-time computation system, scalable, fault-tolerant

* algorithm as a directed acyclic graph
* edges = streams of data tuples
e spouts = data source
* bolts = processing node

» data model = a tuple of named fields
* mapping to physical workers

02.12.2021 PA220 DB for Analytics 18

Apache Spark

* a unified analytics engine for large-scale data processing.

* high performance for both batch and streaming data
* using a state-of-the-art DAG scheduler,
* a query optimizer, and
* a physical execution engine.
e 100x faster than Hadoop

MLlib
(machine

learning)

Apache Spark

02.12.2021 PA220 DB for Analytics

Distributed Storage Platforms

* key-value stores / NoSQL databases (Hbase)

"aaaaa" : {
 structured / tabular data model, but flexible schema "A"
e horizontal scalin foo" Y
g ||barll : Ildll
* no ACID, no join operation },
IIBII :{
mnim : IIWII
* key = identifies a row (typically with timestamp))
e value = a multidimensional structure }

e column stores (C-store)
* relational data model, values of a column stored continuously
* read-optimized, high-query throughput DBMS
* relaxed consistency on reads

Distributed Storage Platforms

* real-time databases (e.g., VoltDB (originally H-Store))
* NewSQL databases

* scalability of NoSQL, relational data model
* ACID guarantees

* row-oriented storage on a distributed shared-nothing cluster
* main memory db
* fault-tolerance by node replication

Data Warehouse for Big Data

ETL Data
Warehouse

Sources

Batch Hive / Pig HDFS / NoSQL /

Stream Storm / Spark

/ Streaming

02.12.2021 PA220 DB for Analytics

22

Reporting /
Visualization

Analytics
R / Apache Mahout

Distributed Data Warehouse

* Hive — data warehouse for large datasets
e unstructured data in HDFS, structure projected on read
* manages and queries data using HiveQL
e converts them to Map-Reduce jobs
e supports indexing
* DML operations
 UPDATE & DELETE at row level

* Kylin — provides OLAP for big data

* precalculates aggregations — data cube on Hadoop and Spark
e query engine translation

* exploit prepared aggregations

* low-latency query evaluation (sub-second)
* integrate with Tableau, Power Bl

Advanced Analytics

* Apache Mahout
* scalable machine learning library
* based on Hadoop, Spark

* aimed at
* recommendations, collaborative filtering
 clustering, dimensionality reduction, classification

* Project R
 platform for statistical computing and visualization
* integrate to Hadoop

Advanced Analytics

 data quality is crucial

* Tamr
 data unification platform
e automated integration with machine learning
* thousands of data sources

* analytic model

 computed & adjusted off-line

* deployment
* in complex analysis
* inETL

Advanced Analytics in Real-time

* event processing
 tracking streams to detect events
* event = change of state, exceeding a threshold, anomalies, ...
 deriving conclusions from events

e complex event processing
 combine multiple sources
* implement pattern detection, correlation, filtering, aggregation, ...

* extension to SQL — StreamSQL
e continuous queries with incremental results
 windowing & aggregations
* windowing & joins

Apache Hive

* A system for querying and managing structured data built on top of
Hadoop

* Uses Map-Reduce for execution
* HDFS for storage — but any system that implements Hadoop FS API

* Key Building Principles:
e Structured data with rich data types (structs, lists and maps)

* Directly query data from different formats (text/binary) and file formats
(Flat/Sequence)

* SQL as a familiar programming tool and for standard analytics

* Allow embedded scripts for extensibility and for non-standard
applications

* Rich metadata to allow data discovery and for optimization

Apache Hive — Architecture

Thrift ‘ JDBC ODBC
Application Application Application
l l l Hive
Client
Thrift JDBC ODBC
Client Client Client
B VI 2 "

HiveServer2 Beeline

W

Driver

i

Hive

— Services

compiler

optimizer

I-

A 4

MapReduce Processing
—— & Resource
YARN Management

Distributed
Storage

'(—'

HDFS

Source: https://data-flair.training/blogs/apache-hive-architecture/

02.12.2021 PA220 DB for Analytics

28

Apache Hive — MetaStore

* Stores Table/Partition properties:
* Table schema and SerDe library for formatting rows

* Table Location on HDFS " CREMTE TRRLE myles |
user_id BIGINT,
. oy e . page_url STRING,
* Logical Partitioning keys and types e tine o)
PY Pa rtition Ievel metadata ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
* Other information » CREATE table mylog rc (

user_id BIGINT,
page_url STRING,
unix_ time INT)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'
STORED AS RCFILE;

02.12.2021 PA220 DB for Analytics 29

Apache Hive — Structured Data

* Type system
* Primitive types (double, float, bigint, int, smallint, tinyint, boolean, string, timestamp)
* Recursively build up using Composition/Maps/Lists

* ObjectIinspector interface for user-defined types
* To recursively list schema
* To recursively access fields within a row object

* Generic (De)Serialization Interface (SerDe)

* Serialization families implement interface
e Thrift DDL based SerDe
* Delimited text based SerDe
* You can write your own SerDe (XML, JSON ...)

Apache Hive — Query Language

hive> select * from temperature limit 10;
oK
stanice NULL NULL NULL NULL flag NULL NULL NULL stat nazev

AQWO0061705 1 1 1 26.888888888888893 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
. AQWO0061705 1 2 1 26.888888888888893 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
[] Ba S I C SQL AQWOOO61705 1 3 1 26.833333333333332 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQWO0061705 1 4 1 26.777777777777782 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQWO0061705 1 5 1 26.777777777777782 P -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQWO0061705 1 6 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
® F ro m C I a u Se S u bq u e ry AQWOO061705 1 7 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQWO0061705 1 8 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
AQWO061705 1 9 1 NULL -14.3306 -170.7136 3.7 AS PAGO PAGO WSO AP
P M Time taken: 0.293 seconds, Fetched: 10 row(s)
e ANSI JOIN (equi-join only)
hive> describe temperature;
. oK
stanice strin
* Multi-table Insert serive
den int
. hodina int
* Multi group-by
ag string
latitude double
: longitude double
* Sa m pI I ng vyska double
stat string
nazev string
[J

Objects trave rsal Time taken: ©.22 seconds, Fetched: 11 row(s)

* Extensibility
* Pluggable Map-reduce scripts using TRANSFORM

Apache Hive — Query Language

* Aggregate queries mapped to MR jobs:

hive> select count(*) from temperature;
Query ID = dohnal_20210119140041_ 1a94796f-172f-4d40-b8c3-10932ea638c3
Total jobs =1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
2021-01-19 14:00:41,609 INFO [3093d28d-ea97-4e81l-ab63-7c6cdd1l7fe7d main] client.ConfiguredRMFailoverProxyProvider: Failing over to rm2
Starting Job = job_1605005553005_ 4269, Tracking URL = https://hador-cl.ics.muni.cz:8090/proxy/application_1605005553005 4269/
Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_1605005553005_ 4269
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2021-01-19 14:00:50,401 Stage-1 map = 0%, reduce = 0%
2021-01-19 14:01:01,721 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 6.07 sec
2021-01-19 14:01:13,029 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 8.2 sec
MapReduce Total cumulative CPU time: 8 seconds 200 msec
Ended Job = job_1605005553005_4269
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 8.2 sec HDFS Read: 8456014 HDFS Write: 107 HDFS EC Read: © SUCCESS
Total MapReduce CPU Time Spent: 8 seconds 200 msec
oK
4003322
Time taken: 32.929 seconds, Fetched: 1 row(s)

Apache Hive — Query Language

e Custom map/reduce scripts:

FROM (
FROM pv_users
SELECT TRANSFORM(pv_users.userid, pv_users.date) USING 'map_script' AS (dt, uid)
CLUSTER BY(dt)

) map

INSERT INTO TABLE pv_users_ reduced
SELECT TRANSFORM(map.dt, map.uid) USING 'reduce_script' AS (day, count);

Sample map_script.py: | import sys

import datetime

for line in sys.stdin:
line = line.strip()
userid, unixtime = line.split('\t'")
weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
print ','.join([str(weekday), userid])

Apache Hive — MapReduce

Machine 1
<k1, v1> <nk1, nv1> <nk1, nv1> <nk1, nv1>
<k2, v2> [> <nk2, nv2> <nk3, nv3> [> <nk1, nvé> [:> 22::;’ %Z
<k3, v3> <nk3, nv3> <nk1, nvé> <nk3, nv3> ’
Local Global Local Local
Map Shuffle Sort Reduce
Machine 2
<k4, v4> <nk2, nv4> <nk2, nv4> <nk2, nv4>
<k5, v5> [:} <nk2, nv5> <nk2, nv5> [> <nk2, nv5> [:> <nk2, 3>
<k6, v6> <nk1, nvé> <nk2, nv2> <nk2, nv2>
02.12.2021

PA220 DB for Analytics

34

Apache Hive - HiveQL

* Joins — inner, outer

* equi-joins with conjunctions supported

INSERT INTO TABLE pv_users
SELECT pv.pageid, u.age
FROM page view pv JOIN user u ON (pv.userid = u.userid);

INSERT INTO TABLE pv_users

SELECT pv.*, u.gender, u.age

FROM page_view pv FULL OUTER JOIN user u ON (pv.userid = u.id)
WHERE pv.date = 2008-03-03;

e Group by
SELECT pageid, age, count(1)
FROM pv_users
GROUP BY pageid, age;

SELECT pageid, COUNT(DISTINCT userid)
FROM page view GROUP BY pageid

Apache Hive — Tables and Files

FROM pv_users

INSERT INTO TABLE pv_gender_sum
SELECT pv_users.gender, count distinct(pv_users.userid)
GROUP BY(pv_users.gender)

INSERT INTO DIRECTORY ¢/user/facebook/tmp/pv_age sum.dir’
SELECT pv_users.age, count distinct(pv_users.userid)
GROUP BY(pv_users.age)

INSERT INTO LOCAL DIRECTORY €¢/home/me/pv_age sum.dir’
FIELDS TERMINATED BY ¢,’ LINES TERMINATED BY \013
SELECT pv_users.age, count_distinct(pv_users.userid)
GROUP BY(pv_users.age);

Apache Impala

* a query engine that runs on Apache Hadoop
e circumvents MapReduce to directly access the data

* a specialized distributed query engine like commercial parallel RDBMSs
* in C++, not Java; runtime code generation

* low-latency SQL queries to data stored in HDFS and Apache Hbase
e an order-of-magnitude faster performance than Hive

* uses the same metadata, SQL syntax (HiveQL), ODBC driver, and user
interface as Apache Hive

 supported storage formats
* (compressed) text file, sequence file, RCFile, Avro, Parquet, HBase

Apache Impala — Architecture

Common Hive SQL and interface Unified metadata

>
>

e
-—
—
-

Fully MPP
Distributed
+

L
Local
Direct Reads

Source: http://impala.apache.org/overview.html

02.12.2021 PA220 DB for Analytics 38

Apache Impala — Query Language

* SQL support:
* essentially SQL-92, minus correlated subqueries
* only equi-joins; no non-equi joins, no cross products
* Order By requires Limit
* (Limited) DDL support
e SQL-style authorization via Apache Sentry (incubating)
 UDFs and UDAFs are supported

* Join Limitation
* The smaller table has to fit in aggregate memory of all executing nodes.

Apache Impala — Query Planning

* 2-phase planning process:
* single-node plan: left-deep tree of plan operators

* plan partitioning: partition single-node plan to maximize scan locality,
minimize data movement

* Parallelization of operators:
* All query operators are fully distributed.

* Plan operators:
e Scan, HashJoin, HashAggregation, Union, TopN, Exchange

Apache Impala — Query Planning

SELECT tl.custid, SUM(t2.revenue) AS revenue

FROM LargeHdfsTable t1 at HDFS DN
JOIN LargeHdfsTable t2 ON (tl.idl = t2.id)
JOIN SmallHbaseTable t3 ON (tl.id2 = t3.id)

WHERE t3.category = 'Online’ at HBase RS
GROUP BY t1l1.custid
ORDER BY revenue DESC

at coordinator

LIMIT 10;

hash
t1.custid

Broadcast

02.12.2021 PA220 DB for Analytics 41

Apache Impala — Execution Engine

 Written in C++ for minimal execution overhead

* Internal in-memory tuple format
* puts fixed-width data at fixed offsets

* Uses intrinsics/special cpu instructions
* for text parsing, crc32 computation, etc.

* Runtime code generation for “big loops”

* e.g., insert batch of rows into a hash table; unroll a loop that inlines all
function calls, contains no dead code, minimizes branches

e code generated using llvm

Apache Hive vs. Impala - Performance

* 20 pre-selected diverse TPC-DS queries
* modified to remove unsupported language

 Sufficient data scale for realistic comparison (3 TB, 15 TB, and 30 TB)
* Realistic nodes (e.g., 8-core CPU, 96GB RAM, 12x2TB disks)
 Methodology - multiple runs, reviewed fairness for competition, ...

* Results:
* Impala vs Hive 0.12 (Impala 6--70x faster)
* Impala vs “DBMS-Y” (Impala average of 2x faster)
* Impala scalability (Impala achieves linear scale)

Apache Hive vs. Impala - Performance

900

800

700
w"-é‘ 600 -
S 500 -
E 400 ¥ mpala
@
E 300 - ¥ Hive 0.12

. J _I _I

100 -

. INEE RN

£ & & & n“&&& &&”"ﬁ’&"é”&‘é‘j“
TPC-D5 Query ;

02.12.2021 PA220 DB for Analytics 44

Apache Hive vs. Impala - Performance

1400
1300
1200
1100

Time in 5econds
=]
a8

200
100

02.12.2021

‘7, mm

?@-ﬁp =

£

-
.
o¥

Y . - - [|
n H o & &

ST O
TPC-D5 Query

PA220 DB for Analytics

¥ Impala

DBMS-Y

45

Apache Hive vs. Impala

Design MapReduce jobs massively parallel processing (MPP)

Use case long-running ETL jobs low-latency/interactive queries,
also for multi-user load;
interactive Bl experience

Complex data types Yes No

Query processing disk-based in-memory

02.12.2021 PA220 DB for Analytics 46

summary

* Big Data changes Data Warehousing to Distributed DWH
* Based on horizontally scalable frameworks

* Transition from batch processing (MR jobs) to stream processing (DAG
of tasks)

* Query optimizers — special algorithms, in-memory processing,
* Real-time data processing and visualizations

Credits

* Hive Tutorial
* https://cwiki.apache.org/confluence/display/Hive/Tutorial

* Facebook Data Team - HIVE: Data Warehousing & Analytics on

Hadoop
 https://slideshare.net/zshao/hive-data-warehousing-analytics-on-hadoop-

presentation
 Mark Grover - Impala: A Modern, Open-Source SQL Engine for

Hadoop
* https://slideshare.net/markgrover/introduction-to-impala

