

PA220: Database systems for data analytics Big Data Analytics

Contents

- properties of current data
- architecture of data processing and analytics systems
- challenges in Big Data processing
- distributed data warehouse

Motivation

- Data production
 - Information systems
 - Monitoring services
 - Sensors, GPS tracking
 - Social networks
- Data processing
 - Storage & archiving
 - Summarization
 - Reporting
 - Visualization
 - Insights
 - Predictions

Nature of Current Data and Processing

- Volume
 - the amount of data increases tenfold every five years

Big Data

- Variety
 - varying data structure, text, multimedia, ...
- Velocity
 - continuous data flow from sensors, social networks, ...
- Veracity
 - with different data sources, it is getting more difficult to maintain data certainty

Source: tableau.com

• Real-time processing

Data Processed in Real-time _ Today _ Within three years _ N/A

- TDWI report, Q4 2014
 - 105 companies over 500 emp.

Structured data (tables, records)		51%		31%	18%			
Application logs	33%		27%	40%				
Event data (messages, usually in real time)	26%		36%	38%				
Semi-structured data (XML and similar standards)	26%		33%	41%				
Complex data (hierarchical or legacy sources)	24%	30	%	46%				
Raw data (e.g., data directly from POS terminals)	24%	16%		60%				
Machine-generated data (sensors, RFID, devices)	19%	26%		55%				
Weblogs and click streams	19%	34%		47%				
Spatial data (long/lat coordinates, GPS output)	18%	26%		56%				
Social media data (blogs, tweets, social networks)	17%	38%		45%				
Unstructured data (human language, audio, video)	7%	34%		59%				
Scientific data (astronomy, genomes, physics) PA220 DB for Analytics	5% 10%		5	85%				

Necessities for Big Data Analytics

- infrastructure for big data
 - processing
 - batch
 - stream (real-time)
 - storage
 - key-value stores
 - column stores
- algorithms for big data
 - data integration
 - data reporting
 - analytic functions
 - machine learning

Computational & Storage Opportunities

- horizontal scaling instead of vertical scaling
- new platforms
 - HDFS & MapReduce (e.g., Hadoop)
 - distributed stream processing (e.g., Storm)
 - column storage (e.g., Vertica)
 - NoSQL platforms (e.g., HBase)
 - in-memory DBMSs (e.g., VoltDB)

Hadoop Platform

- SW library for distributed processing of large data sets
 - across clusters of computers
- high-availability achieved on application layer by replication
 - tasks run / data stored on unreliable HW
- HDFS distributed high-throughput file system
 - designed for mostly immutable files
 - concurrent write not supported
 - cooperation with MapReduce data & computation locality
- MapReduce programming model for large scale data processing
 - Map() filtering and sorting, outputs "key, value" pairs
 - Reduce() summarizing Map() results by their keys

 $Map(k1,v1) \rightarrow list(k2,v2)$

HDFS

- Files are divided into blocks (chunks), typically 64 MB
 - The chunks are replicated at three different machines
 - ... in an "intelligent" fashion, e.g., never all on the same computer rack
 - The block size and replication factor are tunable per file.
- One machine is a name node (master)
- The others are data nodes (chunk servers)
 - The master keeps track of all file metadata
 - mappings from files to chunks and locations of the chunks on data nodes
 - To find a file chunk, the client queries the master, and then it contacts the relevant data nodes.
 - The master's metadata files are also replicated.
- Files in HDFS are write-once (except for appends and truncates)
 - and have strictly one writer at any time.

HDFS Architecture

Distributed Computation Platforms

- batch processing -> MapReduce, Spark, ...
- stream processing -> Storm, Spark Streaming, ...
- MapReduce
 - a programming model for distributed data processing
 - cooperates with a distributed file system
 - A distributed computational task has three phases:
 - The map phase: data transformation
 - The grouping phase done automatically by the MapReduce Framework
 - The reduce phase: data aggregation
 - The user defines only map & reduce functions.

MapReduce – Map Function

- Map function simplifies the problem in this way:
 - Input: a single data item (e.g., line of text) from a data file
 - Output: zero or more (key, value) pairs
- The keys are not typical "primary keys":
 - They do not have to be unique
 - A map task can produce several key-value pairs with the same key (even from a single input)
- Map phase applies the map function to all items

MapReduce – Map Function

- input data
- map function
- output data (color indicates the key value)

MapReduce – Grouping Phase

- Grouping (Shuffling): The key-value outputs from the map phase are grouped by key
 - Values sharing the same key are sent to the same reducer
 - These values are consolidated into a single list (key, list)
 - This is convenient for the reduce function
- This phase is realized by the MapReduce framework

- intermediate output (color indicates the key value)
- grouping phase shuffle function

MapReduce – Reduce Function

- Reduce: combine the values for each key
 - to achieve the final result(s) of the computational task
 - Input: (key, value-list)
 - value-list contains all values generated for given key in the Map phase
 - Output: (key, value-list)
 - zero or more output records

- input file
- map function
- output data
 (color indicates the key value)
 shuffle function
- reduce function
- output records

MapReduce Example: Word Count

• Task: Calculate word frequency in a set of documents

```
map(String key, Text value):
    // key: document name (ignored)
    // value: content of document (words)
    foreach word w in value:
        emitIntermediate(w, 1);
```

```
reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    foreach v in values:
        result += v;
emit(key, result);
```

MapReduce Example: Word Count

Source: http://www.cs.uml.edu/~jlu1/doc/source/report/MapReduce.html

Distributed Computation Platforms

- batch processing -> MapReduce, Spark, ...
- stream processing -> Storm, Spark Streaming, ...
- Storm
 - real-time computation system, scalable, fault-tolerant
 - algorithm as a directed acyclic graph
 - edges = streams of data tuples
 - spouts = data source
 - bolts = processing node
 - data model = a tuple of named fields
 - mapping to physical workers

Apache Spark

- a unified analytics engine for large-scale data processing.
- high performance for both batch and streaming data
 - using a state-of-the-art DAG scheduler,
 - a query optimizer, and
 - a physical execution engine.
 - 100x faster than Hadoop

Distributed Storage Platforms

- key-value stores / NoSQL databases (Hbase)
 - structured / tabular data model, but flexible schema
 - horizontal scaling
 - no ACID, no join operation
 - key = identifies a row (typically with timestamp)
 - value = a multidimensional structure
- column stores (C-store)
 - relational data model, values of a column stored continuously
 - read-optimized, high-query throughput DBMS
 - relaxed consistency on reads

Distributed Storage Platforms

- real-time databases (e.g., VoltDB (originally H-Store))
 - NewSQL databases
 - scalability of NoSQL, relational data model
 - ACID guarantees
 - row-oriented storage on a distributed shared-nothing cluster
 - main memory db
 - fault-tolerance by node replication

Data Warehouse for Big Data

Distributed Data Warehouse

- Hive data warehouse for large datasets
 - unstructured data in HDFS, structure projected on read
 - manages and queries data using HiveQL
 - converts them to Map-Reduce jobs
 - supports indexing
 - DML operations
 - UPDATE & DELETE at row level
- Kylin provides OLAP for big data
 - precalculates aggregations data cube on Hadoop and Spark
 - query engine translation
 - exploit prepared aggregations
 - low-latency query evaluation (sub-second)
 - integrate with Tableau, Power BI

Advanced Analytics

- Apache Mahout
 - scalable machine learning library
 - based on Hadoop, Spark
 - aimed at
 - recommendations, collaborative filtering
 - clustering, dimensionality reduction, classification
- Project R
 - platform for statistical computing and visualization
 - integrate to Hadoop

Advanced Analytics

- data quality is crucial
 - Tamr
 - data unification platform
 - automated integration with machine learning
 - thousands of data sources
- analytic model
 - computed & adjusted off-line
 - deployment
 - in complex analysis
 - in ETL

Advanced Analytics in Real-time

event processing

- tracking streams to detect events
- event = change of state, exceeding a threshold, anomalies, ...
- deriving conclusions from events
- complex event processing
 - combine multiple sources
 - implement pattern detection, correlation, filtering, aggregation, ...
 - extension to SQL StreamSQL
 - continuous queries with incremental results
 - windowing & aggregations
 - windowing & joins

Apache Hive

- A system for querying and managing structured data built on top of Hadoop
 - Uses Map-Reduce for execution
 - HDFS for storage but any system that implements Hadoop FS API
- Key Building Principles:
 - Structured data with rich data types (structs, lists and maps)
 - Directly query data from different formats (text/binary) and file formats (Flat/Sequence)
 - SQL as a familiar programming tool and for standard analytics
 - Allow embedded scripts for extensibility and for non-standard applications
 - Rich metadata to allow data discovery and for optimization

Apache Hive – Architecture

Source: https://data-flair.training/blogs/apache-hive-architecture/

Apache Hive – MetaStore

- Stores Table/Partition properties:
 - Table schema and SerDe library for formatting rows
 - Table Location on HDFS
 - Logical Partitioning keys and types
 - Partition level metadata
 - Other information

```
» CREATE TABLE mylog (
    user_id BIGINT,
    page_url STRING,
    unix_time INT)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
```

```
» CREATE table mylog_rc (
    user_id BIGINT,
    page_url STRING,
    unix_time INT)
    ROW FORMAT SERDE
    'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'
```

```
STORED AS RCFILE;
```

Apache Hive – Structured Data

- Type system
 - Primitive types (double, float, bigint, int, smallint, tinyint, boolean, string, timestamp)
 - Recursively build up using Composition/Maps/Lists
- ObjectInspector interface for user-defined types
 - To recursively list schema
 - To recursively access fields within a row object
- Generic (De)Serialization Interface (SerDe)
- Serialization families implement interface
 - Thrift DDL based SerDe
 - Delimited text based SerDe
 - You can write your own SerDe (XML, JSON ...)

Apache Hive – Query Language

- Basic SQL
 - From clause subquery
 - ANSI JOIN (equi-join only)
 - Multi-table Insert
 - Multi group-by
 - Sampling
 - Objects traversal
- Extensibility
 - Pluggable Map-reduce scripts using TRANSFORM

hive>	select	t * from		temperature	limit	10;	
ОК							

stanice NULL	NULL	NULL	NULL	flag	NULL	NULL	NULL	stat	nazev								
AQW00061705	1	1	1	26.888	88888888	88893	Р	-14.33	306	-170.	7136	3.7	AS	PAGO	PAGO	WSO AP	,
AQW00061705	1	2	1	26.888	88888888	88893	Р	-14.33	306	-170.	7136	3.7	AS	PAGO	PAGO	WSO AP	,
AQW00061705	1	3	1	26.833	33333333	33332	Р	-14.33	306	-170.	7136	3.7	AS	PAGO	PAGO	WSO AP	,
AQW00061705	1	4	1	26.777	7777777	77782	Р	-14.33	306	-170.	7136	3.7	AS	PAGO	PAGO	WSO AP	,
AQW00061705	1	5	1	26.777	7777777	77782	Р	-14.33	306	-170.	7136	3.7	AS	PAGO	PAG0	WSO AP	,
AQW00061705	1	6	1	NULL		-14.3	306	-170.7	7136	3.7	AS	PAGO	PAGO WSO	AP			
AQW00061705	1	7	1	NULL		-14.3	306	-170.7	7136	3.7	AS	PAGO	PAGO WSO	AP			
AQW00061705	1	8	1	NULL		-14.3	306	-170.7	7136	3.7	AS	PAGO	PAGO WSO	AP			
AQW00061705	1	9	1	NULL		-14.3	306	-170.7	7136	3.7	AS	PAGO	PAGO WSO	AP			
Time taken:	0.293 seco	onds, Fet	tched: 10	row(s)													

hive> describe temperature; OK

string							
int	int						
int							
int							
double							
string							
double							
double							
double							
string							
string							
22 seconds, Fetched:	11 row(s						
	int int double string double double double string						

Apache Hive – Query Language

• Aggregate queries mapped to MR jobs:

hive> select count(*) from temperature; Query ID = dohnal 20210119140041 1a94796f-172f-4d40-b8c3-10932ea638c3 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> 2021-01-19 14:00:41,609 INFO [3093d28d-ea97-4e81-ab63-7c6cdd17fe7d main] client.ConfiguredRMFailoverProxyProvider: Failing over to rm2 Starting Job = job 1605005553005 4269, Tracking URL = https://hador-c1.ics.muni.cz:8090/proxy/application 1605005553005 4269/ Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_1605005553005_4269 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 2021-01-19 14:00:50,401 Stage-1 map = 0%, reduce = 0% 2021-01-19 14:01:01,721 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 6.07 sec 2021-01-19 14:01:13,029 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 8.2 sec MapReduce Total cumulative CPU time: 8 seconds 200 msec Ended Job = job 1605005553005 4269 MapReduce Jobs Launched: Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 8.2 sec HDFS Read: 8456014 HDFS Write: 107 HDFS EC Read: 0 SUCCESS Total MapReduce CPU Time Spent: 8 seconds 200 msec ОК 4003322

Time taken: 32.929 seconds, Fetched: 1 row(s)

Apache Hive – Query Language

• Custom map/reduce scripts:

```
FROM (
```

```
FROM pv_users
```

```
SELECT TRANSFORM(pv_users.userid, pv_users.date) USING 'map_script' AS (dt, uid)
CLUSTER BY(dt)
```

) map

```
INSERT INTO TABLE pv_users_reduced
   SELECT TRANSFORM(map.dt, map.uid) USING 'reduce_script' AS (day, count);
```

Sample map_script.py:

```
import sys
import datetime
for line in sys.stdin:
    line = line.strip()
    userid, unixtime = line.split('\t')
    weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
    print ','.join([str(weekday), userid])
```

Apache Hive – MapReduce

Apache Hive - HiveQL

- Joins inner, outer
 - equi-joins with conjunctions supported

INSERT INTO TABLE pv_users
SELECT pv.pageid, u.age
FROM page_view pv JOIN user u ON (pv.userid = u.userid);

INSERT INTO TABLE pv_users
SELECT pv.*, u.gender, u.age
FROM page_view pv FULL OUTER JOIN user u ON (pv.userid = u.id)
WHERE pv.date = 2008-03-03;

Group by

SELECT pageid, age, count(1)
FROM pv_users
GROUP BY pageid, age;

SELECT pageid, COUNT(DISTINCT userid) FROM page_view GROUP BY pageid

Apache Hive – Tables and Files

FROM pv_users

INSERT INTO TABLE pv_gender_sum
SELECT pv_users.gender, count_distinct(pv_users.userid)
GROUP BY(pv_users.gender)

INSERT INTO DIRECTORY '/user/facebook/tmp/pv_age_sum.dir'
SELECT pv_users.age, count_distinct(pv_users.userid)
GROUP BY(pv_users.age)

INSERT INTO LOCAL DIRECTORY '/home/me/pv_age_sum.dir'
FIELDS TERMINATED BY ',' LINES TERMINATED BY \013
SELECT pv_users.age, count_distinct(pv_users.userid)
GROUP BY(pv_users.age);
Apache Impala

- a query engine that runs on Apache Hadoop
 - circumvents MapReduce to directly access the data
 - a specialized distributed query engine like commercial parallel RDBMSs
 - in C++, not Java; runtime code generation
- low-latency SQL queries to data stored in HDFS and Apache Hbase
 - an order-of-magnitude faster performance than Hive
- uses the same metadata, SQL syntax (HiveQL), ODBC driver, and user interface as Apache Hive
- supported storage formats
 - (compressed) text file, sequence file, RCFile, Avro, Parquet, HBase

Apache Impala – Architecture

Source: http://impala.apache.org/overview.html

Apache Impala – Query Language

• SQL support:

- essentially SQL-92, minus correlated subqueries
- only equi-joins; no non-equi joins, no cross products
- Order By requires Limit
- (Limited) DDL support
- SQL-style authorization via Apache Sentry (incubating)
- UDFs and UDAFs are supported
- Join Limitation
 - The smaller table has to fit in aggregate memory of all executing nodes.

Apache Impala – Query Planning

- 2-phase planning process:
 - single-node plan: left-deep tree of plan operators
 - plan partitioning: partition single-node plan to maximize scan locality, minimize data movement
- Parallelization of operators:
 - All query operators are fully distributed.
- Plan operators:
 - Scan, HashJoin, HashAggregation, Union, TopN, Exchange

Apache Impala – Query Planning

Apache Impala – Execution Engine

- Written in C++ for minimal execution overhead
- Internal in-memory tuple format
 - puts fixed-width data at fixed offsets
- Uses intrinsics/special cpu instructions
 - for text parsing, crc32 computation, etc.
- Runtime code generation for "big loops"
 - e.g., insert batch of rows into a hash table; unroll a loop that inlines all function calls, contains no dead code, minimizes branches
 - code generated using llvm

Apache Hive vs. Impala - Performance

- 20 pre-selected diverse TPC-DS queries
 - modified to remove unsupported language
- Sufficient data scale for realistic comparison (3 TB, 15 TB, and 30 TB)
- Realistic nodes (e.g., 8-core CPU, 96GB RAM, 12x2TB disks)
- Methodology multiple runs, reviewed fairness for competition, ...
- Results:
 - Impala vs Hive 0.12 (Impala 6--70x faster)
 - Impala vs "DBMS-Y" (Impala average of 2x faster)
 - Impala scalability (Impala achieves linear scale)

Apache Hive vs. Impala - Performance

Apache Hive vs. Impala - Performance

Apache Hive vs. Impala

	Hive	Impala
Design	MapReduce jobs	massively parallel processing (MPP)
Use case	long-running ETL jobs	low-latency/interactive queries, also for multi-user load; interactive BI experience
Complex data types	Yes	No
Query processing	disk-based	in-memory

Summary

- Big Data changes Data Warehousing to Distributed DWH
- Based on horizontally scalable frameworks
- Transition from batch processing (MR jobs) to stream processing (DAG of tasks)
- Query optimizers special algorithms, in-memory processing,
- Real-time data processing and visualizations

Credits

- Hive Tutorial
 - https://cwiki.apache.org/confluence/display/Hive/Tutorial
- Facebook Data Team HIVE: Data Warehousing & Analytics on Hadoop
 - https://slideshare.net/zshao/hive-data-warehousing-analytics-on-hadooppresentation
- Mark Grover Impala: A Modern, Open-Source SQL Engine for Hadoop
 - https://slideshare.net/markgrover/introduction-to-impala