
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 4: Intermediate SQL

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and Sudarshan 4.2 Database System Concepts - 6th Edition

Chapter 4: Intermediate SQL

 Join Expressions

 Views

 Integrity Constraints

 SQL Data Types and Schemas

 Triggers

©Silberschatz, Korth and Sudarshan 4.3 Database System Concepts - 6th Edition

Joined Relations

 Join operations take two relations and return as a result

another relation.

 A join operation is a Cartesian product which requires that

tuples in the two relations match (under some condition).

It also specifies the attributes that are present in the result

of the join

 The join operations are typically used as subquery

expressions in the from clause

©Silberschatz, Korth and Sudarshan 4.4 Database System Concepts - 6th Edition

Join operations – Example

 Relation course

 Relation prereq

 Observe that

 prereq information is missing for CS-315 and

 course information is missing for CS-347

©Silberschatz, Korth and Sudarshan 4.5 Database System Concepts - 6th Edition

Outer Join

 An extension of the join operation that avoids loss of

information.

 Computes the join and then adds tuples form one relation

that does not match tuples in the other relation to the result

of the join.

 Uses null values.

©Silberschatz, Korth and Sudarshan 4.6 Database System Concepts - 6th Edition

Left Outer Join

 course natural left outer join prereq

©Silberschatz, Korth and Sudarshan 4.7 Database System Concepts - 6th Edition

Right Outer Join

 course natural right outer join prereq

©Silberschatz, Korth and Sudarshan 4.8 Database System Concepts - 6th Edition

Joined Relations

 Join operations take two relations and return as a result

another relation.

 These additional operations are typically used as subquery

expressions in the from clause

 Join condition – defines which tuples in the two relations

match, and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not

match any tuple in the other relation (based on the join

condition) are treated.

©Silberschatz, Korth and Sudarshan 4.9 Database System Concepts - 6th Edition

Full Outer Join

 course natural full outer join prereq

©Silberschatz, Korth and Sudarshan 4.10 Database System Concepts - 6th Edition

Joined Relations – Examples

 course inner join prereq on

course.course_id = prereq.course_id

 What is the difference between the above, and a natural join?

 course left outer join prereq on

course.course_id = prereq.course_id

©Silberschatz, Korth and Sudarshan 4.11 Database System Concepts - 6th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan 4.12 Database System Concepts - 6th Edition

Join Types and Conditions Summary

©Silberschatz, Korth and Sudarshan 4.13 Database System Concepts - 6th Edition

Views

 In some cases, it is not desirable for all users to see the entire

logical model (that is, all the actual relations stored in the

database.)

 Consider a person who needs to know an instructors name

and department, but not the salary. This person should see a

relation described, in SQL, by

 select ID, name, dept_name

 from instructor

 A view provides a mechanism to hide certain data from the

view of certain users.

 Any relation that is not of the conceptual model but is made

visible to a user as a “virtual relation” is called a view.

©Silberschatz, Korth and Sudarshan 4.14 Database System Concepts - 6th Edition

View Definition

 A view is defined using the create view statement which has

the form

 create view v as < query expression >

 where <query expression> is any legal SQL expression. The

view name is represented by v.

 Once a view is defined, the view name can be used to refer to

the virtual relation that the view generates.

 View definition is not the same as creating a new relation by

evaluating the query expression

 Rather, a view definition causes the saving of an expression;

the expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan 4.15 Database System Concepts - 6th Edition

Example Views

 A view of instructors without their salary

 create view faculty as

 select ID, name, dept_name

 from instructor

 Find all instructors in the Biology department

 select name

 from faculty

 where dept_name = „Biology‟

 Create a view of department salary totals

 create view departments_total_salary(dept_name, total_salary) as

 select dept_name, sum (salary)

 from instructor

 group by dept_name;

©Silberschatz, Korth and Sudarshan 4.16 Database System Concepts - 6th Edition

Views Defined Using Other Views

 create view physics_fall_2009 as

 select course.course_id, sec_id, building, room_number

 from course, section

 where course.course_id = section.course_id

 and course.dept_name = ‟Physics‟

 and section.semester = ‟Fall‟

 and section.year = ‟2009‟;

 create view physics_fall_2009_watson as

 select course_id, room_number

 from physics_fall_2009

 where building= ‟Watson‟;

©Silberschatz, Korth and Sudarshan 4.17 Database System Concepts - 6th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier

 insert into faculty values (‟30765‟, ‟Green‟, ‟Music‟);

 This insertion must be represented by the insertion of the tuple

 (‟30765‟, ‟Green‟, ‟Music‟, null)

 into the instructor relation

©Silberschatz, Korth and Sudarshan 4.18 Database System Concepts - 6th Edition

Some Updates cannot be Translated Uniquely

 create view instructor_info as

 select ID, name, building

 from instructor, department

 where instructor.dept_name= department.dept_name;

 insert into instructor_info values (‟69987‟, ‟White‟, ‟Taylor‟);

which department, if multiple departments in Taylor?

what if no department is in Taylor?

 Most SQL implementations allow updates only on simple views

 The from clause has only one database relation.

 The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates, or

distinct specification.

 Any attribute not listed in the select clause can be set to null

 The query does not have a group by or having clause.

©Silberschatz, Korth and Sudarshan 4.19 Database System Concepts - 6th Edition

And Some Not at All

 create view history_instructors as

 select *

 from instructor

 where dept_name= ‟History‟;

 What happens if we insert (‟25566‟, ‟Brown‟, ‟Biology‟, 100000)

into history_instructors?

©Silberschatz, Korth and Sudarshan 4.20 Database System Concepts - 6th Edition

Integrity Constraints

 Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes to the

database do not result in a loss of data consistency.

 A checking account must have a balance greater than

$10,000.00

 A salary of a bank employee must be at least $4.00 an

hour

 A customer must have a (non-null) phone number

©Silberschatz, Korth and Sudarshan 4.21 Database System Concepts - 6th Edition

 Integrity Constraints on a Single Relation

 not null

 primary key

 unique

 check (P), where P is a predicate

©Silberschatz, Korth and Sudarshan 4.22 Database System Concepts - 6th Edition

Not Null and Unique Constraints

 not null

 Declare name and budget to be not null

 name varchar(20) not null

 budget numeric(12,2) not null

 unique (A1, A2, …, Am)

 The unique specification states that the attributes A1, A2, …

Am

form a candidate key.

 Candidate keys are permitted to be null (in contrast to primary

keys).

©Silberschatz, Korth and Sudarshan 4.23 Database System Concepts - 6th Edition

The check clause

 check (P)

 where P is a predicate

Example: ensure that semester is one of fall, winter, spring

or summer:

create table section (

 course_id varchar (8),

 sec_id varchar (8),

 semester varchar (6),

 year numeric (4,0),

 building varchar (15),

 room_number varchar (7),

 time slot id varchar (4),

 primary key (course_id, sec_id, semester, year),

 check (semester in (‟Fall‟, ‟Winter‟, ‟Spring‟, ‟Summer‟))

);

©Silberschatz, Korth and Sudarshan 4.24 Database System Concepts - 6th Edition

Referential Integrity

 Ensures that a value that appears in one relation for a given

set of attributes also appears for a certain set of attributes in

another relation.

 Example: If “Biology” is a department name appearing in

one of the tuples in the instructor relation, then there exists

a tuple in the department relation for “Biology”.

 Let A be a set of attributes. Let R and S be two relations that

contain attributes A and where A is the primary key of S. A is

said to be a foreign key of R if for any values of A appearing

in R these values also appear in S.

©Silberschatz, Korth and Sudarshan 4.25 Database System Concepts - 6th Edition

Cascading Actions in Referential Integrity

 create table course (

 course_id char(5) primary key,

 title varchar(20),

 dept_name varchar(20) references department

)

 create table course (

 …

 dept_name varchar(20),

 foreign key (dept_name) references department

 on delete cascade

 on update cascade,

 . . .

)

 alternative actions to cascade: set null, set default

©Silberschatz, Korth and Sudarshan 4.26 Database System Concepts - 6th Edition

Integrity Constraint Violation

 E.g. create table person (

 ID char(10),

 name char(40),

 mother char(10),

 father char(10),

 primary key ID,

 foreign key father references person,

 foreign key mother references person)

 How to insert a tuple without causing constraint violation?

 insert father and mother of a person before inserting person

 OR, set father and mother to null initially, update after

inserting all persons (not possible if father and mother

attributes declared to be not null)

 OR defer constraint checking

and use transactions – see Chapter 14

©Silberschatz, Korth and Sudarshan 4.27 Database System Concepts - 6th Edition

Complex Check Clauses

 check (time_slot_id in (select time_slot_id from time_slot))

 why not use a foreign key here?

 Every section has at least one instructor teaching the section.

 how to write this?

 Unfortunately: subquery in check clause not supported by

pretty much any database

 Alternative: triggers (later)

 create assertion <assertion-name> check <predicate>;

 Also not supported by anyone

©Silberschatz, Korth and Sudarshan 4.28 Database System Concepts - 6th Edition

Built-in Time/Date Data Types in SQL

 date: Dates, containing a (4 digit) year, month and date

 Example: date „2005-7-27‟

 time: Time of day, in hours, minutes and seconds.

 Example: time „09:00:30‟ time „09:00:30.75‟

 timestamp: date plus time of day

 Example: timestamp „2005-7-27 09:00:30.75‟

 interval: period of time

 Example: interval „1‟ day

 Subtracting a date/time/timestamp value from another gives

an interval value

 Interval values can be added to date/time/timestamp values

©Silberschatz, Korth and Sudarshan 4.29 Database System Concepts - 6th Edition

User-Defined Types

 create type construct in SQL creates user-defined type

 create type Dollars as numeric (12,2) final

 create table department

(dept_name varchar (20),

building varchar (15),

budget Dollars);

©Silberschatz, Korth and Sudarshan 4.30 Database System Concepts - 6th Edition

Domains

 create domain construct in SQL-92 creates user-defined

domain types

 create domain person_name char(20) not null

 Types and domains are similar. Domains can have

constraints, such as not null, specified on them.

 create domain degree_level varchar(10)

constraint degree_level_test

check (value in (‟Bachelors‟, ‟Masters‟, ‟Doctorate‟));

©Silberschatz, Korth and Sudarshan 4.31 Database System Concepts - 6th Edition

Large-Object Types

 Large objects (photos, videos, CAD files, etc.) are stored as a

large object:

 blob: binary large object -- object is a large collection of

uninterpreted binary data (whose interpretation is left to an

application outside of the database system)

 clob: character large object -- object is a large collection of

character data

 When a query returns a large object, a pointer is returned

rather than the large object itself.

©Silberschatz, Korth and Sudarshan 4.32 Database System Concepts - 6th Edition

Index Creation

 create table student

(ID varchar (5),

name varchar (20) not null,

dept_name varchar (20),

tot_cred numeric (3,0) default 0,

primary key (ID))

 create index studentID_index on student(ID)

 Indices are data structures used to speed up access to records

with specified values for index attributes

 e.g. select *

 from student

 where ID = „12345‟

can be executed by using the index to find the required

record, without looking at all records of student

More on indices in Chapter 11

©Silberschatz, Korth and Sudarshan 4.33 Database System Concepts - 6th Edition

Triggers

 A trigger is a statement that is executed automatically by

the system as a side effect of a modification to the

database.

 To design a trigger mechanism, we must:

 Specify the conditions under which the trigger is to be

executed.

 Specify the actions to be taken when the trigger

executes.

 Triggers introduced to SQL standard in SQL:1999, but

supported even earlier using non-standard syntax by

most databases.

 Syntax illustrated here may not work exactly on your

database system; check the system manuals

©Silberschatz, Korth and Sudarshan 4.34 Database System Concepts - 6th Edition

Trigger Example

 Maintain total credits earned for each student

 Executed when a student passes an exam

 i.e. update of grade attribute of takes table

 create trigger credits_earned after update of takes on (grade)

referencing new row as nrow

referencing old row as orow

for each row

when nrow.grade <> ‟F‟ and nrow.grade is not null

 and (orow.grade = ‟F‟ or orow.grade is null)

begin

 update student

 set tot_cred= tot_cred +

 (select credits from course

 where course.course_id= nrow.course_id)

 where student.id = nrow.id;

end;

©Silberschatz, Korth and Sudarshan 4.35 Database System Concepts - 6th Edition

Trigger Example

 Use of triggers to implement a special integrity constraint:

 time_slot_id is not a primary key of timeslot, so we cannot

create a foreign key constraint from section to timeslot.

 Insert trigger on section table:

 create trigger timeslot_check1 after insert on section

referencing new row as nrow

for each row

when (nrow.time_slot_id not in (

 select time_slot_id

 from time_slot)) /* time_slot_id not present in time_slot */

begin

 rollback

end; Rollback command cancels all changes

to DB currently made (a transaction).

So the INSERT is taken back.

©Silberschatz, Korth and Sudarshan 4.36 Database System Concepts - 6th Edition

Trigger Example Cont.

 Insert trigger on time_slot table:

create trigger timeslot_check2 after delete on time_slot

referencing old row as orow

for each row

when (orow.time_slot_id not in (

 select time_slot_id

 from time_slot)

 /* last tuple for time slot id deleted from time slot */

 and orow.time_slot_id in (

 select time_slot_id

 from section)) /* and time_slot_id still referenced from section*/

begin

 rollback

end;

©Silberschatz, Korth and Sudarshan 4.37 Database System Concepts - 6th Edition

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes

 E.g., after update of takes on grade

 Values of attributes before and after an update can be
referenced

 referencing old row as : for deletes and updates

 referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as
extra constraints. E.g. convert blank grades to null.

 create trigger setnull_trigger before update of takes
 referencing new row as nrow
 for each row
 when (nrow.grade = „ „)
 begin atomic
 set nrow.grade = null;
 end;

©Silberschatz, Korth and Sudarshan 4.38 Database System Concepts - 6th Edition

Statement Level Triggers

 Instead of executing a separate action for each affected

row, a single action can be executed for all rows affected by

a transaction

 Use for each statement instead of for each row

 Use referencing old table or referencing new

table to refer to temporary tables (called transition

tables) containing the affected rows

 Can be more efficient when dealing with SQL

statements that update a large number of rows

©Silberschatz, Korth and Sudarshan 4.39 Database System Concepts - 6th Edition

When Not To Use Triggers

 Triggers were used earlier for tasks such as

 maintaining summary data (e.g., total salary of each department)

 Replicating databases by recording changes to special relations

(called change or delta relations) and having a separate process

that applies the changes over to a replica

 There are better ways of doing these now:

 Databases today provide built in materialized view facilities to

maintain summary data

 Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in many cases

 Define methods to update fields

 Carry out actions as part of the update methods instead of

through a trigger

©Silberschatz, Korth and Sudarshan 4.40 Database System Concepts - 6th Edition

When Not To Use Triggers

 Risk of unintended execution of triggers, for example, when

 loading data from a backup copy

 replicating updates at a remote site

 Trigger execution can be disabled before such actions.

 Other risks with triggers:

 Error leading to failure of critical transactions that set off the

trigger

 Cascading execution

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 4

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

