

Chapter 4: Intermediate SQL

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Chapter 4: Intermediate SQL

- Join Expressions
- Views
- Integrity Constraints
- SQL Data Types and Schemas
- Triggers

Joined Relations

- Join operations take two relations and return as a result another relation.
- A join operation is a Cartesian product which requires that tuples in the two relations match (under some condition). It also specifies the attributes that are present in the result of the join
- The join operations are typically used as subquery expressions in the from clause

Join operations – Example

Relation *course*

course_id	title	dept_name	credits
BIO-301	Genetics	Biology	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3

Relation prereq

course_id	prereq_id
BIO-301	BIO-101
CS-190	CS-101
CS-347	CS-101

Observe that

prereq information is missing for CS-315 and

course information is missing for CS-347

Database System Concepts - 6th Edition

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses null values.

Left Outer Join

course natural left outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null

Right Outer Join

course natural right outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	null	null	null	CS-101

Joined Relations

- Join operations take two relations and return as a result another relation.
- These additional operations are typically used as subquery expressions in the from clause
- Join condition defines which tuples in the two relations match, and what attributes are present in the result of the join.
- Join type defines how tuples in each relation that do not match any tuple in the other relation (based on the join condition) are treated.

Join types
inner join
left outer join
right outer join
full outer join

Join Conditions natural **on** < predicate> **using** $(A_1, A_1, ..., A_n)$

Full Outer Join

course natural full outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null
CS-347	null	null	null	CS-101

Joined Relations – Examples

course inner join prereq on course.course_id = prereq.course_id

course_id	title	dept_name	credits	prereq_id	course_id
BIO-301	Genetics	Biology	4	BIO-101	BIO-301
CS-190	Game Design	Comp. Sci.	4	CS-101	CS-190

- What is the difference between the above, and a natural join?
- course left outer join prereq on course.course_id = prereq.course_id

course_id	title	dept_name	credits	prereq_id	course_id
BIO-301	Genetics	Biology	4	BIO-101	BIO-301
CS-190	Game Design	Comp. Sci.	4	CS-101	CS-190
CS-315	Robotics	Comp. Sci.	3	null	null

Joined Relations – Examples

course natural right outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	null	null	null	CS-101

course full outer join prereq using (course_id)

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null
CS-347	null	null	null	CS-101

Join Types and Conditions Summary

Join types inner join left outer join right outer join full outer join Join conditions

natural on < predicate> **using** $(A_1, A_2, ..., A_n)$

Views

- In some cases, it is not desirable for all users to see the entire logical model (that is, all the actual relations stored in the database.)
- Consider a person who needs to know an instructors name and department, but not the salary. This person should see a relation described, in SQL, by

select *ID*, *name*, *dept_name* **from** *instructor*

- A view provides a mechanism to hide certain data from the view of certain users.
- Any relation that is not of the conceptual model but is made visible to a user as a "virtual relation" is called a view.

View Definition

A view is defined using the create view statement which has the form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view name is represented by *v*.

- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
- View definition is not the same as creating a new relation by evaluating the query expression
 - Rather, a view definition causes the saving of an expression; the expression is substituted into queries using the view.

Example Views

A view of instructors without their salary create view faculty as select ID, name, dept_name from instructor

Find all instructors in the Biology department select name from faculty where dept_name = 'Biology'

Create a view of department salary totals create view departments_total_salary(dept_name, total_salary) as select dept_name, sum (salary) from instructor group by dept_name;

Views Defined Using Other Views

create view physics_fall_2009 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name = 'Physics'
and section.semester = 'Fall'
and section.year = '2009';

create view physics_fall_2009_watson as select course_id, room_number from physics_fall_2009 where building= 'Watson';

Update of a View

 Add a new tuple to *faculty* view which we defined earlier insert into *faculty* values ('30765', 'Green', 'Music'); This insertion must be represented by the insertion of the tuple ('30765', 'Green', 'Music', null) into the *instructor* relation

Some Updates cannot be Translated Uniquely

- create view instructor_info as select ID, name, building from instructor, department where instructor.dept_name= department.dept_name;
- **insert into** *instructor_info* **values** ('69987', 'White', 'Taylor');
 - which department, if multiple departments in Taylor?
 - what if no department is in Taylor?
- Most SQL implementations allow updates only on simple views
 - The **from** clause has only one database relation.
 - The select clause contains only attribute names of the relation, and does not have any expressions, aggregates, or distinct specification.
 - Any attribute not listed in the **select** clause can be set to null
 - The query does not have a **group** by or **having** clause.

And Some Not at All

- create view history_instructors as select * from instructor where dept_name= 'History';
- What happens if we insert ('25566', 'Brown', 'Biology', 100000) into history_instructors?

Integrity Constraints

- Integrity constraints guard against accidental damage to the database, by ensuring that authorized changes to the database do not result in a loss of data consistency.
 - A checking account must have a balance greater than \$10,000.00
 - A salary of a bank employee must be at least \$4.00 an hour
 - A customer must have a (non-null) phone number

Integrity Constraints on a Single Relation

- not null
- primary key
- unique
- **check** (P), where P is a predicate

Not Null and Unique Constraints

not null

Declare name and budget to be not null

name varchar(20) not null budget numeric(12,2) not null

- unique ($A_1, A_2, ..., A_m$)
 - The unique specification states that the attributes A1, A2, ... Am form a candidate key.
 - Candidate keys are permitted to be null (in contrast to primary keys).

The check clause

check (P)

where P is a predicate

Example: ensure that semester is one of fall, winter, spring or summer:

```
create table section (
    course_id varchar (8),
    sec_id varchar (8),
    semester varchar (6),
    year numeric (4,0),
    building varchar (15),
    room_number varchar (7),
    time slot id varchar (4),
    primary key (course_id, sec_id, semester, year),
    check (semester in ('Fall', 'Winter', 'Spring', 'Summer'))
);
```


Referential Integrity

- Ensures that a value that appears in one relation for a given set of attributes also appears for a certain set of attributes in another relation.
 - Example: If "Biology" is a department name appearing in one of the tuples in the *instructor* relation, then there exists a tuple in the *department* relation for "Biology".
- Let A be a set of attributes. Let R and S be two relations that contain attributes A and where A is the primary key of S. A is said to be a **foreign key** of R if for any values of A appearing in R these values also appear in S.

Cascading Actions in Referential Integrity

```
create table course (
  course_id char(5) primary key,
             varchar(20),
  title
  dept_name varchar(20) references department
create table course (
  - -
  dept_name varchar(20),
  foreign key (dept_name) references department
         on delete cascade
         on update cascade,
```

alternative actions to cascade: set null, set default

Integrity Constraint Violation

E.g. create table person (

ID char(10), *name* char(40), *mother* char(10), *father* char(10), **primary** key *ID*, **foreign** key *father* references *person*, **foreign** key *mother* references *person*)

- How to insert a tuple without causing constraint violation?
 - insert father and mother of a person before inserting person
 - OR, set father and mother to null initially, update after inserting all persons (not possible if father and mother attributes declared to be **not null**)
 - OR defer constraint checking
 - and use transactions see Chapter 14

Complex Check Clauses

check (time_slot_id in (select time_slot_id from time_slot))

- why not use a foreign key here?
- Every section has at least one instructor teaching the section.
 - how to write this?
- Unfortunately: subquery in check clause not supported by pretty much any database
 - Alternative: triggers (later)
 - **create assertion** <assertion-name> **check** <predicate>;
 - Also not supported by anyone

Built-in Time/Date Data Types in SQL

- **date:** Dates, containing a (4 digit) year, month and date
 - Example: date '2005-7-27'
- **time:** Time of day, in hours, minutes and seconds.
 - Example: time '09:00:30' time '09:00:30.75'
- timestamp: date plus time of day
 - Example: timestamp '2005-7-27 09:00:30.75'
- interval: period of time
 - Example: interval '1' day
 - Subtracting a date/time/timestamp value from another gives an interval value
 - Interval values can be added to date/time/timestamp values

User-Defined Types

create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

 create table department (dept_name varchar (20), building varchar (15), budget Dollars);

Domains

create domain construct in SQL-92 creates user-defined domain types

create domain person_name char(20) not null

- Types and domains are similar. Domains can have constraints, such as **not null**, specified on them.
- create domain degree_level varchar(10) constraint degree_level_test check (value in ('Bachelors', 'Masters', 'Doctorate'));

Large-Object Types

- Large objects (photos, videos, CAD files, etc.) are stored as a large object.
 - blob: binary large object -- object is a large collection of uninterpreted binary data (whose interpretation is left to an application outside of the database system)
 - clob: character large object -- object is a large collection of character data
 - When a query returns a large object, a pointer is returned rather than the large object itself.

Index Creation

create table *student* (*ID* varchar (5), *name* varchar (20) not null, *dept_name* varchar (20), *tot_cred* numeric (3,0) default 0, primary key (*ID*))

create index studentID_index on student(ID)

Indices are data structures used to speed up access to records with specified values for index attributes

e.g. select *
 from student
 where ID = '12345'

can be executed by using the index to find the required record, without looking at all records of *student*

More on indices in Chapter 11

Triggers

- A trigger is a statement that is executed automatically by the system as a side effect of a modification to the database.
- To design a trigger mechanism, we must:
 - Specify the conditions under which the trigger is to be executed.
 - Specify the actions to be taken when the trigger executes.
- Triggers introduced to SQL standard in SQL:1999, but supported even earlier using non-standard syntax by most databases.
 - Syntax illustrated here may not work exactly on your database system; check the system manuals

Trigger Example

Maintain total credits earned for each student

- Executed when a student passes an exam
 - i.e. update of grade attribute of takes table

```
create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> 'F' and nrow.grade is not null
            and (orow.grade = 'F' or orow.grade is null)
begin
   update student
   set tot_cred= tot_cred +
      (select credits from course
       where course.course_id= nrow.course_id)
   where student.id = nrow.id;
end;
```


Trigger Example

Use of triggers to implement a special integrity constraint:

- time_slot_id is not a primary key of timeslot, so we cannot create a foreign key constraint from section to timeslot.
- Insert trigger on *section* table:

```
create trigger timeslot_check1 after insert on section
referencing new row as nrow
for each row
when (nrow.time_slot_id not in (
           select time_slot_id
           from time_slot)) /* time_slot_id not present in time_slot */
begin
   rollback
end;
                            Rollback command cancels all changes
                            to DB currently made (a transaction).
                            So the INSERT is taken back.
```


Trigger Example Cont.

Insert trigger on *time_slot* table: **create trigger** *timeslot_check2* **after delete on** *time_slot* referencing old row as orow for each row when (orow.time_slot_id not in (select time slot id **from** *time_slot*) /* last tuple for *time slot id* deleted from *time slot* */ and orow.time_slot_id in (select time_slot_id **from** section)) /* and time_slot_id still referenced from section*/ begin rollback end;

Triggering Events and Actions in SQL

- Triggering event can be insert, delete or update
- Triggers on update can be restricted to specific attributes
 - E.g., after update of takes on grade
- Values of attributes before and after an update can be referenced
 - referencing old row as : for deletes and updates
 - referencing new row as : for inserts and updates
- Triggers can be activated **before** an event, which can serve as extra constraints. E.g. convert blank grades to null.

```
create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = ``)
begin atomic
    set nrow.grade = null;
end;
```


Statement Level Triggers

- Instead of executing a separate action for each affected row, a single action can be executed for all rows affected by a transaction
 - Use for each statement instead of for each row
 - Use referencing old table or referencing new table to refer to temporary tables (called *transition tables*) containing the affected rows
 - Can be more efficient when dealing with SQL statements that update a large number of rows

When Not To Use Triggers

- Triggers were used earlier for tasks such as
 - maintaining summary data (e.g., total salary of each department)
 - Replicating databases by recording changes to special relations (called change or delta relations) and having a separate process that applies the changes over to a replica
- There are better ways of doing these now:
 - Databases today provide built in materialized view facilities to maintain summary data
 - Databases provide built-in support for replication
- Encapsulation facilities can be used instead of triggers in many cases
 - Define methods to update fields
 - Carry out actions as part of the update methods instead of through a trigger

When Not To Use Triggers

- Risk of unintended execution of triggers, for example, when
 - loading data from a backup copy
 - replicating updates at a remote site
 - Trigger execution can be disabled before such actions.
- Other risks with triggers:
 - Error leading to failure of critical transactions that set off the trigger
 - Cascading execution

End of Chapter 4

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use