Convolutional network

Convolutional networks – architecture

- Denote
 - X a set of input neurons
 - Y a set of output neurons
 - Z a set of all neurons $(X, Y \subseteq Z)$
- individual neurons denoted by indices i, j etc.
 - ξ_j is the inner potential of the neuron *j* after the computation stops

y_j is the output of the neuron j after the computation stops

(define $y_0 = 1$ is the value of the formal unit input)

w_{ji} is the weight of the connection from *i* to *j*

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{i0} = -b_i$ where b_i is the bias of the neuron *j*)

- j_← is a set of all *i* such that *j* is adjacent from *i* (i.e. there is an arc **to** *j* from *i*)
- *j*→ is a set of all *i* such that *j* is adjacent to *i* (i.e. there is an arc **from** *j* to *i*)
- [ji] is a set of all connections (i.e. pairs of neurons) sharing the weight w_{ji}.

- Visualize weights
- Visualize most "important" inputs for a given class
- Visualize effect of input perturbations on the output
- Construct a local "interpretable" model

Alex-net - filters of the first convolutional layer

64 filters of depth 3 (RGB).

Combined each filter RGB channels into one RGB image of size 11x11x3.

Assume a trained model giving a score for each class given an input image.

- Denote by y_i(I) the value of the output neuron i on an input image I.
- Maximize

$$y_i(I) - \lambda \, \|I\|_2^2$$

over all images I.

- A maximum image computed using gradient descent.
- Gives the most "representative" image of the class *c*.

Maximizing input - example

dumbbell

cup

dalmatian

Image specific saliency maps

- Let us fix an output neuron *i* and an image I_0 .
- Rank pixels in I₀ based on their influence on the value y_i(I₀).

Image specific saliency maps

- Let us fix an output neuron i and an image I₀.
- Rank pixels in *l*₀ based on their influence on the value y_i(*l*₀).
- Note that we can approximate y_i locally around l₀ with the linear part of the Taylor series:

$$y_i(I) \approx y_i(I_0) + w^T(I - I_0) = w^T I + (y_i(I_0) - w^T I_0)$$

where

$$w = \frac{\delta y_i}{\delta I}(I_0)$$

Heuristics: The magnitude of the derivative indicates which pixels need to be changed the least to affect the score most.

Saliency maps - example

Saliency maps - example

Quite noisy, the signal is spread and does not tell much about the perception of the owl.

Average several saliency maps of noisy copies of the input.

- Systematically cover parts of the input image.
- Observe the effect on the output value.
- Find regions with the largest effect.

Occlusion - example

['harmonica, mouth organ, harp, mouth harp']

LIME - for images

Let us fix an image I_0 to be explained.

Outline:

- Consider superpixels of I_0 as interpretable components.
- Construct a linear model approximating the network aroung the image *l*₀ with weights corresponding to the superpixels.
- Select the superpixels with weights of large magnitude as the important ones.

Original Image

Interpretable Components

Superpixels as explainable components

Original Image

Interpretable Components

Denote by P_1, \ldots, P_ℓ all superpixels of I_0 .

Consider binary vectors $\vec{x} = (x_1, \dots, x_\ell) \in \{0, 1\}^\ell$.

Each such vector \vec{x} determines a "subimage" $I[\vec{x}]$ of I_0 obtained by removing all P_k with $x_k = 0$.

LIME

- Let us fix an output neuron *i*, we dnote by y_i(*I*) the value of *i* for a given input image *I*.
- Given an image *l*₀ to be interpreted, consider the following training set:

$$\mathcal{T} = \{ (\vec{x}_1, y_i(I_0[\vec{x}_1])), \dots, (\vec{x}_p, y_i(I_0[\vec{x}_p])) \}$$

Here $\vec{x}_h = (x_{h1}, \dots, x_{h\ell})$ are (some) binary vectors of $\{0, 1\}^{\ell}$. E.g. randomly selected.

LIME

- Let us fix an output neuron *i*, we dnote by y_i(*I*) the value of *i* for a given input image *I*.
- Given an image I₀ to be interpreted, consider the following training set:

$$\mathcal{T} = \{ (\vec{x}_1, y_i(I_0[\vec{x}_1])), \dots, (\vec{x}_p, y_i(I_0[\vec{x}_p])) \}$$

Here $\vec{x}_h = (x_{h1}, \dots, x_{h\ell})$ are (some) binary vectors of $\{0, 1\}^{\ell}$. E.g. randomly selected.

Train a linear model (ADALINE) with weights w_1, \ldots, w_ℓ on \mathcal{T} minimizing the mean-squared error

(+ a regularization term making the number of non-zero weights as small as possible).

Intuitively, the linear model approximates the networks on the "subimages" of *I* obtained by removing unimportant superpixels.

Inspect the weights (magnitude and sign).

Original Image P(tree frog) = 0.54

Explanation

(a) Original Image

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining Labrador

