convolution + max pooling
nonlinearity
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convolution + pooling layers fully connected layers  Nx binary classification



Convolutional networks — architecture

» Denote
> X a set of input neurons
> Y a set of output neurons
> Z asetof allneurons (X, Y C Z)
» individual neurons denoted by indices i, j etc.
> ¢&;is the inner potential of the neuron j after the computation
stops
> y; is the output of the neuron j after the computation stops
(define yo = 1 is the value of the formal unit input)
> wj is the weight of the connection from i to |

(in particular, wj is the weight of the connection from the formal unit
input, i.e. wjp = —b; where bj is the bias of the neuron j)

> j_ is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

> j~ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

> [ji] is a set of all connections (i.e. pairs of neurons) sharing
the weight w;;.



Visualzation methods

» Visualize weights

» Visualize most "important" inputs for a given class
» Visualize effect of input perturbations on the output
> Construct a local "interpretable" model



Alex-net - filters of the first convolutional layer
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64 filters of depth 3 (RGB).

Combined each filter RGB channels into one RGB image of
size 11x11x3.




Maximizing input

Assume a trained model giving a score for each class given an
input image.
» Denote by y;(/) the value of the output neuron i on an input
image |.
> Maximize

yi(l) = Al

over all images .
> A maximum image computed using gradient descent.
» Gives the most "representative” image of the class c.



Maximizing input - example

dumbbell cup dalmatian



Image specific saliency maps

~ » Let us fix an output neuron i and an image Ip.

> | » Rank pixels in Iy based on their influence on the value
Yi(lo)-

<



Image specific saliency maps

» Let us fix an output neuron i and an image Ip.

» Rank pixels in Iy based on their influence on the value
Yi(lo)-

> Note that we can approximate y; locally around Iy with the
linear part of the Taylor series:

yi(h) = yi(lo) + wT (1= lo) = wT I+ (yi(lo) — w' )
where

oyi
w = —7(l)
» Heuristics: The magnitude of the derivative indicates
which pixels need to be changed the least to affect the

score most.



Saliency maps - example




Saliency maps - example

Input image Gradients across RGB channels Max gradients Overlay

Quite noisy, the signal is spread and does not tell much about
the perception of the owl.



SmoothGrad

Gradient SmoothGrad

Average several saliency maps of noisy copies of the input.



» Systematically cover parts of the input image.
» Observe the effect on the output value.
» Find regions with the largest effect.



Occlusion - example




Occlusion - example




LIME - for images

Let us fix an image Iy to be explained.

Ouitline:
» Consider superpixels of Iy as interpretable components.
» Construct a linear model approximating the network aroung
the image Iy with weights corresponding to the superpixels.
> Select the superpixels with weights of large magnitude as
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the important ones.

Original Image Interpretable
Components



Superpixels as explainable components

Original Image Interpretable
Components

Denote by P4, ..., P, all superpixels of I.
Consider binary vectors X = (xi,...,X;) € {0, 1}°.

Each such vector X determines a "subimage" /[X]
of Iy obtained by removing all P, with x, = 0.




LIME

» Let us fix an output neuron i, we dnote by y;(/) the value of
i for a given input image 1.

> Given an image Iy to be interpreted, consider the following
training set:

T = {1, Yill[X1])), - ., (Xp, yi(lo[Xp])}

Here X, = (Xn1, ..., Xne) are (some) binary vectors of
{0,1}¢. E.g. randomly selected.



LIME

Let us fix an output neuron i, we dnote by y;(/) the value of
i for a given input image 1.

Given an image [y to be interpreted, consider the following
training set:

T = {1, Yill[X1])), - ., (Xp, yi(lo[Xp])}

Here X, = (Xn1, ..., Xne) are (some) binary vectors of
{0,1}¢. E.g. randomly selected.

Train a linear model (ADALINE) with weights wy, ..., w, on
7" minimizing the mean-squared error

(+ a regularization term making the number of non-zero
weights as small as possible).

Intuitively, the linear model approximates the networks on the
"subimages" of I obtained by removing unimportant superpixels.

» Inspect the weights (magnitude and sign).



LIME - example

Original Image
P(tree frog) =0.54

Perturbed Instances | P(tree frog)




LIME - example

Original Image
P(tree frog) =0.54

Perturbed Instances | P(tree frog)

0.00001

Explanation



(a) Original Image . (b} Explaining Electrie guitar () Explaining Acoustic guitar  (d) Explaining Labrador
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(a) Husky classified as wolf (k) Explanation
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