
Convolutional network

1



Convolutional networks – architecture
I Denote

I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

I [ji] is a set of all connections (i.e. pairs of neurons) sharing
the weight wji . 2



Visualzation methods

I Visualize weights
I Visualize most "important" inputs for a given class
I Visualize effect of input perturbations on the output
I Construct a local "interpretable" model

3



Alex-net - filters of the first convolutional layer

64 filters of depth 3 (RGB).

Combined each filter RGB channels into one RGB image of
size 11x11x3.

4



Maximizing input

Assume a trained model giving a score for each class given an
input image.
I Denote by yi(I) the value of the output neuron i on an input

image I.
I Maximize

yi(I) − λ ‖I ‖22

over all images I.
I A maximum image computed using gradient descent.
I Gives the most "representative" image of the class c.

5



Maximizing input - example

6



Image specific saliency maps

I Let us fix an output neuron i and an image I0.
I Rank pixels in I0 based on their influence on the value

yi(I0).

I Note that we can approximate yi locally around I0 with the
linear part of the Taylor series:

yi(I) ≈ yi(I0) + wT (I − I0) = wT I + (yi(I0) − wT I0)

where

w =
δyi

δI
(I0)

I Heuristics: The magnitude of the derivative indicates
which pixels need to be changed the least to affect the
score most.

7



Image specific saliency maps

I Let us fix an output neuron i and an image I0.
I Rank pixels in I0 based on their influence on the value

yi(I0).
I Note that we can approximate yi locally around I0 with the

linear part of the Taylor series:

yi(I) ≈ yi(I0) + wT (I − I0) = wT I + (yi(I0) − wT I0)

where

w =
δyi

δI
(I0)

I Heuristics: The magnitude of the derivative indicates
which pixels need to be changed the least to affect the
score most.

7



Saliency maps - example

8



Saliency maps - example

Quite noisy, the signal is spread and does not tell much about
the perception of the owl.

9



SmoothGrad

Average several saliency maps of noisy copies of the input.

10



Occlusion

I Systematically cover parts of the input image.
I Observe the effect on the output value.
I Find regions with the largest effect.

11



Occlusion - example

12



Occlusion - example

13



LIME - for images

Let us fix an image I0 to be explained.

Outline:
I Consider superpixels of I0 as interpretable components.
I Construct a linear model approximating the network aroung

the image I0 with weights corresponding to the superpixels.
I Select the superpixels with weights of large magnitude as

the important ones.

14



Superpixels as explainable components

Denote by P1, . . . ,P` all superpixels of I0.

Consider binary vectors ~x = (x1, . . . , x`) ∈ {0,1}`.

Each such vector ~x determines a "subimage" I[~x]
of I0 obtained by removing all Pk with xk = 0.

15



LIME

I Let us fix an output neuron i, we dnote by yi(I) the value of
i for a given input image I.

I Given an image I0 to be interpreted, consider the following
training set:

T = {(~x1, yi(I0[~x1])), . . . , (~xp , yi(I0[~xp])}

Here ~xh = (xh1, . . . , xh`) are (some) binary vectors of
{0,1}`. E.g. randomly selected.

I Train a linear model (ADALINE) with weights w1, . . . ,w` on
T minimizing the mean-squared error
(+ a regularization term making the number of non-zero
weights as small as possible).
Intuitively, the linear model approximates the networks on the
"subimages" of I obtained by removing unimportant superpixels.

I Inspect the weights (magnitude and sign).

16



LIME

I Let us fix an output neuron i, we dnote by yi(I) the value of
i for a given input image I.

I Given an image I0 to be interpreted, consider the following
training set:

T = {(~x1, yi(I0[~x1])), . . . , (~xp , yi(I0[~xp])}

Here ~xh = (xh1, . . . , xh`) are (some) binary vectors of
{0,1}`. E.g. randomly selected.

I Train a linear model (ADALINE) with weights w1, . . . ,w` on
T minimizing the mean-squared error
(+ a regularization term making the number of non-zero
weights as small as possible).
Intuitively, the linear model approximates the networks on the
"subimages" of I obtained by removing unimportant superpixels.

I Inspect the weights (magnitude and sign).

16



LIME - example

17



LIME - example

18



LIME - example

19



LIME - example

20


