BERTScore

Marek Kadlčík, 485294

Problem statement

Given: machine translation output and reference translation

Compute: reasonable similarity score between the two

(This problem appears also in automatic image captioning, generative question answering...)

Reminder of existing solutions

- BLEU score
- word error rate
- precision and recall (or f1) of individual words
- METEOR

. . .

What makes a metric good?

- agreement with human judgement
- computational speed

BERTScore algorithm

- 1. embeddings_1 ← BERT(reference translation)
- 2. embeddings_2 ~ BERT(machine-translated sentence)
- 3. C ← cosine similarity matrix, i.e.: C[i, j] = cos_similarity(embeddings_1[i], embeddings_2[j])
- 4. recall \leftarrow take max in each row and compute average
- 5. precision \leftarrow take max in each column and compute average
- 6. return F1(recall, precision)

Example

Reference translation:

The weather is cold today.

Machine translation:

It is freezing today.

recall = avg(0.713, 0.515, 0.858, 0.796, 0.913)
precision = avg(...)

(Authors also try a variant with word weighting - not all words are equally important)

Properties

- not as fast as simple metrics (BERTScore requires evaluating BERT)
- has high agreement (~0.95 correlation) with human judgement

For detailed analysis of agreement with human judgement see the original paper, sections *Experimental setup* and *Results*.

Implementations

Author's implementation (pytorch):

- github: <u>https://github.com/Tiiiger/bert_score</u>
- pypi: <u>https://pypi.org/project/bert-score/</u>

Huggingface transformers:

<u>https://huggingface.co/metrics/bertscore</u>

Sources

https://arxiv.org/pdf/1904.09675.pdf

https://jlibovicky.github.io/2019/05/01/MT-Weekly-BERTScore.html