
Alternative Architectures

Philipp Koehn

15 October 2020

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

1Alternative Architectures

• We introduced one translation model

– attentional seq2seq model
– core organizing feature: recurrent neural networks

• Other core neural architectures

– convolutional neural networks
– attention

• But first: look at various components of neural architectures

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

2

components

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

3Components of Neural Networks

• Neural networks originally inspired by the brain

– a neuron receives signals from other neurons
– if sufficiently activated, it sends signals
– feed-forward layers are roughly based on this

• Computation graph

– any function possible, as long as it is partially differentiable
– not limited by appeals to biological validity

• Deep learning maybe a better name

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

4Feed-Forward Layer

• Classic neural network component

• Given an input vector x, matrix multiplication M with adding a bias vector b

Mx+ b

• Adding a non-linear activation function

y = activation(Mx+ b)

• Notation
y = FFactivation(x) = a(Mx+ b)

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

5Feed-Forward Layer

• Historic neural network designs: several feed-forward layers

– input layer
– hidden layers
– output layer

• Powerful tools for a wide range of machine learning problems

• Matrix multiplication also called affine transforms

– appeals to its geometrical properties
– straight lines in input still straight lines in output

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

6Factored Decomposition

• One challenge: very large input and output vectors

• Number of parameters in matrix M = |x| × |y|

⇒ Need to reduce size of matrix

• Solution: first reduce to smaller representation

x x

y

y

v

M

A

B

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

7Factored Decomposition: Math

x x

y

y

v

M

A

B

• Intuition
– given highly dimension vector x
– first map to into lower dimensional vector v (matrix A)
– then map to output vector y (matrix B)

v = Ax

y = Bv = BAx
• Example

– |x| = 20,000, |y| = 50,000→M = 1,000,000,000
– |v| = 100→ A = 20,000 × 100 = 2,000,000, B = 100 × 50,000 = 5,000,000
– reduction from 1,000,000,000 to 7,000,000

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

8Factored Decomposition: Interpretation

• Vector v is a bottleneck feature

• Forced to captures salient features

• One example: word embeddings

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

9

basic mathematical operations

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

10Concatenation

• Often multiple input vectors to processing step

• For instance recurrent neural network

– input word
– previous state

• Combined in feed-forward layer

y = activation(M1x1 +M2x2 + b)

• Another view

x = concat(x1, x2)

y = activation(Mx+ b)

• Splitting hairs here, but concatenation useful generally

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

11Addition

• Adding vectors: very simplistic, but often done

• Example: compute sentence embeddings s from word embeddings w1, ..., wn

s =

n∑
i

wi

• Reduces varying length sentence representation into fixed sized vector

• Maybe weight the words, e.g., by attention

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

12Multiplication

• Another elementary mathematical operation

• Three ways to multiply vectors

– element-wise multiplication

v � u =

(
v1
v2

)
�
(
u1
u2

)
=

(
v1 × u1
v2 × u2

)
– dot product

v · u = vTu =

(
v1
v2

)T (
u1
u2

)
= v1 × u1 + v2 × u2

used for simple version of attention mechanism

– third possibility: vuT , not commonly done

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

13Maximum

• Goal: reduce the dimensionality of representation

• Example: detect if a face is in image

– any region of image may have positive match
– represent different regions with element in a vector
– maximum value: any region has a face

• Max pooling

– given: n dimensional vector
– goal: reduce to n

k dimensional vector
– method: break up vector into blocks of k elements, map each into single value

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

14Max Out

• Max out

– first branch out into multiple feed-forward layers

W1x+ b1

W2x+ b2

– element-wise maximum

maxout(x) = max(W1x+ b1,W2x+ b2)

• ReLu activation is a maxout layer: maximum of feed-forward layer and 0

ReLu(x) = max(Wx+ b, 0)

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

15

processing sequences

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

16Recurrent Neural Networks

• Already described recurrent neural networks at length
– propagate state s
– over time steps t
– receiving an input xt at each turn

st = f(st−1, xt)

(state may computed may as a feed-forward layer)

• More successful
– gated recurrent units (GRU)
– long short-term memory cells (LSTM)

• Good fit for sequences, like words in a sentence
– humans also receive word by word
– most recent words most relevant
→ closer to current state

• But computational problematic: very long computation chains

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

17Alternative Sequence Processing

• Convolutional neural networks

• Attention

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

18

convolutional neural networks

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

19Convolutional Neural Networks (CNN)

• Popular in image processing

• Regions of an image are reduced into increasingly smaller representation

– matrix spanning part of image reduced to single value
– overlapping regions

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

20CNNs for Language

Embed Embed Embed

FF FF FF FF

Embed Embed Embed

FF

FF

Embed Embed

FF FF FF

Embed Embed

FF FF FF

Embed Embed Embed

FF

FF FF FF

FF FF FF FF FF

FF FF FF

FF FF

FF

FF

FF

FF FF FF FF

FF

FF

FF

• Map words into fixed-sized sentence representation

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

21Hierarchical Structure and Language

• Syntactic and semantic theories of language

– language is recursive
– central: verb
– dependents: subject, objects, adjuncts
– their dependents: adjectives, determiners
– also nested: relative clauses

• How to compute sentence embeddings active research topic

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

22Convolutional Neural Networks

• Key step

– take a high dimensional input representation
– map to lower dimensional representation

• Several repetitions of this step

• Examples

– map 50×50 pixel area into scalar value
– combine 3 or more neighboring words into a single vector

• Machine translation

– encode input sentence into single vector
– decode this vector into a sentence in the output language

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

23

attention

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

24Attention

• Machine translation is a structured prediction task

– output is not a single label
– output structure needs to be built, word by word

• Relevant information for each word prediction varies

• Human translators pay attention to different parts of the input sentence when
translating

⇒ Attention mechanism

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

25Computing Attention

• Attention mechanism in neural translation model (Bahdanau et al., 2015)

– previous hidden state si−1
– input word embedding hj
– trainable parameters b, Wa, Ua, va

a(si−1, hj) = vTa tanh(Wasi−1 + Uahj + b)

• Other ways to compute attention

– Dot product: a(si−1, hj) = sTi−1hj

– Scaled dot product: a(si−1, hj) = 1√
|hj|

sTi−1hj

– General: a(si−1, hj) = sTi−1Wahj

– Local: a(si−1) =Wasi−1

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

26Attention of Luong et al. (2015)

• Luong et al. (2015) demonstrate good results with the dot product

a(si−1, hj) = sTi−1hj

• No trainable parameters

• Additional changes

• Currently more popular

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

27Attention of Luong et al. (2015)

Luong et al. (2015) Bahdanau et al. (2015)

RNN

Weighted
Sum

Attention

RNN

argmax

Output Word
Prediction

Output Word

Output Word
Embedding

Decoder State

Input Context

Attention

Encoder State

ti

yi

E yi-1

si

ci

αij

h…j…

RNN

Attention

RNN

argmax

Softmax

Weighted
Sum

Softmax

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

28Attention of Luong et al. (2015)

Luong et al. (2015)

Attention
αij = softmax FF(si−1, hj)

Input context ci =
∑
j αijhj

Output word
p(yt|y<t, x) =
softmax

(
W FFtanh(si−1, ci)

)
Decoder state
si = FFtanh(si−1, Eyi−1)

Bahdanau et al. (2015)

Attention
αij = softmax FF(si−1, hj)

Input context ci =
∑
j αijhj

Output word
p(yt|y<t, x) =
softmax

(
W FFtanh(si−1, Eyi−1, ci)

)
Decoder state
si = FFtanh(si−1, Eyi−1, ci)

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

29Multi-Head Attention

• Add redundancy

– say, 16 attention weights
– each based on its own parameters

• Formally, for each head k compute an associated between

– decoder state si−1 at time step i
– encoder state hj for the jth input word
– using the softmax of some parameterized function ak

αkij = softmax ak(si−1, hj)

• Average the attention weights
αij =

1

k

∑
k

αkij

• Multi-head attention is a form of ensembling

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

30Fine-Grained Attention

• Why just use a single scalar value to weight entire vectors?

– learn weights for each element
– computation of attention values returns vector instead of scalar

• Architecturally, still a feed-forward neural network (or any of variants)

a(si−1, hj) = FFk(si−1, hj)

• Softmax is now applied over each dimension d

αdij =
exp ad(si−1, hj)∑

k a
d(si−1, hk)

• Input context is now computed by a element-wise multiplication

ci =
∑
j

αij × hj

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

31Self Attention

• Finally, a very different take at attention

• Motivation so far: need for alignment between input words and output words

• Now: refine representation of input words in the encoder

– representation of an input word mostly depends on itself
– but also informed by the surrounding context
– previously: recurrent neural networks (considers left or right context)
– now: attention mechanism

• Self attention:
Which of the surrounding words is most relevant to refine representation?

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

32Self Attention

• Formal definition (based on sequence of vectors hj, packed into matrix H

self-attention(H) = softmax
(HHT√
|h|

)
H

• Association between every word representation hj any other context word hk

– computed by dot product
– results in a vector of raw association values

HHT

• Scaled by the size of the word representation vectors |h|, and softmax

softmax
(HHT√
|h|

)
• Resulting vector of normalized association values used to weigh context words

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

33Self Attention

• More familiar math, using word representation vectors hj

• Raw association HHT√
|h|

ajk =
1

|h|
hjh

T
k

• Normalized association (softmax)

αjk =
exp(ajk)∑
κ exp(ajκ)

• Weighted sum
self-attention(hj) =

∑
k

αjκhk

• More on this later (Transformer)

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

34

convolutional machine translation

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

35Convolutional Machine Translation

• First end-to-end neural machine translation model of the modern era
[Kalchbrenner and Blunsom, 2013]

• Encoder

Embed Embed Embed

FF FF FF FF

Embed Embed Embed

FF

FF

FF

FF FF

Input Word
Embeddings

K2 Layer

K3 Layer

L3 Layer

Input Words

– always two convolutional layers, with different size
– here: K2 and K3

• Decoder similar

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

36Refinement

Embed Embed Embed

FF FF FF FF

Embed Embed Embed

FF

FF FF FF

Input Word Embedding

K2 Encoder

K3 Encoder

Input Word

FF FF FF Transfer

FF FF FF FFFF

RNN RNN RNN RNNRNN RNN

Softmax Softmax Softmax SoftmaxSoftmax Softmax

Embed Embed Embed Embed Embed Embed

K3 Decoder

K2 Decoder

Output Word Prediction

Output Word

Output Word Embedding

• Convolutions do not result in a single sentence embedding but a sequence
• Decoder is also informed by a recurrent neural network

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

37CNNs With Attention
[Gehring et al. 2017]

• Combination of

– convolutional neural networks
– attention

• Sequence-to-sequence attention, mainly as before

• Recurrent neural networks replaced by convolutional layers

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

38Encoder

FF FF

Embed Embed Embed Embed

FF FF FF

Embed Embed

FF FF

Embed

FF FF

FF FF FF FF

FF FF FF

FF FF

FF

FF

FF

0

0

0

0

0

0

Encoder Convolution 3

Encoder Convolution 2

Encoder Convolution 1

Input Word
Embeddings

Input Words

• Stacked encoder convolutions

• Not shortening representations

• But: faster processing due to more parallelism

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

39Encoder: Math

• Start with input word embeddings Exj

h0,j = E xj

• Progress through

– sequence of layer encodings hd,j
– at different depth d
– until maximum depth D

hd,j = f(hd−1,j−k, ..., hd−1,j+k)

• Details

– function f is feed-forward layer with shortcut connection
– final representation hD,j may only be informed by partial sentence context
– all words at one depth can be processed in parallel→ fast

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

40Decoder

FF

Softmax

Embed Embed Embed Embed

Decoder Convolution 3

Output Word Prediction

Output Word

Output Word Embedding

FF FF Decoder Convolution 2

FF FFFF Decoder Convolution 1

Embed Embed

FF

FF

FF

Embed

Input Context

• Decoder state computed by convolutional layers over previous output words

• Each convolutional state also informed by the input context (using attention)

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

41Decoder: Math

• Recall: decoder recurrent neural network decoder

si = f(si−1, Eyi−1, ci)
– encoder state si
– embedding of previous output word Eyi−1
– input context ci

• Now

– state computation not depending on previous state si−1 (not recurrent)
– conditioned on the sequence of the κ most recent previous words

si = f(Eyi−κ, ..., Eyi−1, ci)

• Stacked convolutions

s1,i = f(Eyi−κ, ..., Eyi−1, ci)

sd,i = f(sd−1,i−κ−1, ..., sd−1,i, ci) for d > 0, d ≤ D̂

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

42Attention

• Attention mechanism fundamentally unchanged

• Input context ci computed based on association a(si−1, hj) between

– encoder state hj
– decoder state si−1

• Now

– encoder state hD,j
– decoder state sD̂,i−1

• Refinement when computing the context vector ci:
shortcut connection between encoder state hD,j and input word embedding xj

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

43

transformer

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

44Self Attention: Transformer

• Self-attention in encoder

– refine word representation based on relevant context words
– relevance determined by self attention

• Self-attention in decoder

– refine output word predictions based on relevant previous output words
– relevance determined by self attention

• Also regular attention to encoder states in decoder

• Currently most successful model

(maybe only with self attention in decoder, but regular recurrent decoder)

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

45Encoder

Weighted
Sum

Self
Attention

Weighted
Sum

Self
Attention

Weighted
Sum

Self
Attention

Weighted
Sum

Self
Attention

Weighted
Sum

Self
Attention

Weighted
Sum

Self
Attention

Weighted
Sum

Self
Attention

Input Context

Attention

Embed Embed Embed Embed Embed Embed Embed
Word and Position

EmbeddingEwxj Epj

<s> the house is big . </s> Input Wordxj

Add Add Add Add Add Add Add
Positional Input

Word EmbeddingEwxj + Epj

Em
bed

Em
bed

Em
bed

Em
bed

Em
bed

Em
bed

Em
bed

Input Word Positionj
0 1 2 3 4 5 6

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Input Context
with Shortcutĥj

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Encoder State

Refinement

hj

Sequence of self-attention layers

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

46Self Attention Layer

• Given: input word representations hj, packed into a matrix H = (h1, ..., hj)

• Self attention
self-attention(H) = softmax

(HHT√
|h|

)
H

• Shortcut connection
self-attention(hj) + hj

• Layer normalization

ĥj = layer-normalization(self-attention(hj) + hj)

• Feed-forward step with ReLU activation function

relu(Wĥj + b)

• Again, shortcut connection and layer normalization

layer-normalization(relu(Wĥj + b) + ĥj)

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

47Stacked Self Attention Layers

• Stack several such layers (say, D = 6)

• Start with input word embedding

h0,j = Exj

• Stacked layers
hd,j = self-attention-layer(hd−1,j)

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

48Decoder

Self
Attention

Self
Attention

Self
Attention

Self
Attention

Self
Attention

Self
Attention

Self
Attention Self-Attention

Embed Embed Embed Embed Embed Embed Embed
Word and Position

Embedding

<s> the house is big . </s> Output Wordyi

Add Add Add Add Add Add Add
Positional Output
Word Embeddingsi

Em
bed

Em
bed

Em
bed

Em
bed

Em
bed

Em
bed

Em
bed

Output Word
Positioni

0 1 2 3 4 5 6

Weighted
Sum

Weighted
Sum

Weighted
Sum

Weighted
Sum

Weighted
Sum

Weighted
Sum

Weighted
Sum Output Context

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Normalization
with Shortcut

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Output State

Refinement

Weighted
Sum

Weighted
Sum

Weighted
Sum

Weighted
Sum

Weighted
Sum

Weighted
Sum

Weighted
Sum Context

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Add &
Norm

Normalization
with Shortcutŝi

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Add &
Norm

FF

Decoder State

Refinement

si

Attention Attention Attention Attention Attention Attention Attention

Encoder State

Attention

h

Decoder computes attention-based representations of the output in several layers,
initialized with the embeddings of the previous output words

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

49Self-Attention in the Decoder

• Same idea as in the encoder

• Output words are initially encoded by word embeddings si = Eyi.

• Self attention is computed over previous output words

– association of a word si is limited to words sk (k ≤ i)
– resulting representation s̃i

self-attention(S̃) = softmax
(SST√
|h|

)
S

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

50Attention in the Decoder

• Original intuition of attention mechanism: focus on relevant input words

• Computed with dot product S̃HT

• Compute attention between the decoder states S̃ and the final encoder states H

attention(S̃,H) = softmax
(S̃HT√
|h|

)
H

• Note: attention mechanism formally mirrors self-attention

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

51Full Decoder

Encoder Layer

Input Word

Encoder Layer

Encoder Layer

Encoder Layer

Output Word
Embedding

Decoder Layer

Decoder Layer

Decoder Layer

Decoder Layer

Softmax Softmax Softmax Softmax Softmax Softmax Softmax

Argmax Argmax Argmax Argmax Argmax Argmax Argmax

Output Word
Prediction

Output Word

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

52Full Decoder

• Self-attention
self-attention(S̃) = softmax

(SST√
|h|

)
S

– shortcut connections
– layer normalization
– feed-forward layer

• Attention
attention(S̃,H) = softmax

(S̃HT√
|h|

)
H

– shortcut connections
– layer normalization
– feed-forward layer

• Multiple stacked layers

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

53Mix and Match

• Encoder may be multiple layers of either

– recurrent neural networks
– self-attention layers

• Decoder may be multiple layers of either

– recurrent neural networks
– self-attention layers

• Also possible: self-attention encoder, recurrent neural network deocder

• Even better: both self-attention and recurrent neural network, merged at the end

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020

