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1Alternative Architectures

• We introduced one translation model

– attentional seq2seq model
– core organizing feature: recurrent neural networks

• Other core neural architectures

– convolutional neural networks
– attention

• But first: look at various components of neural architectures
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components
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3Components of Neural Networks

• Neural networks originally inspired by the brain

– a neuron receives signals from other neurons
– if sufficiently activated, it sends signals
– feed-forward layers are roughly based on this

• Computation graph

– any function possible, as long as it is partially differentiable
– not limited by appeals to biological validity

• Deep learning maybe a better name
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4Feed-Forward Layer

• Classic neural network component

• Given an input vector x, matrix multiplication M with adding a bias vector b

Mx+ b

• Adding a non-linear activation function

y = activation(Mx+ b)

• Notation
y = FFactivation(x) = a(Mx+ b)
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5Feed-Forward Layer

• Historic neural network designs: several feed-forward layers

– input layer
– hidden layers
– output layer

• Powerful tools for a wide range of machine learning problems

• Matrix multiplication also called affine transforms

– appeals to its geometrical properties
– straight lines in input still straight lines in output
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6Factored Decomposition

• One challenge: very large input and output vectors

• Number of parameters in matrix M = |x| × |y|

⇒ Need to reduce size of matrix

• Solution: first reduce to smaller representation
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7Factored Decomposition: Math

x x
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• Intuition
– given highly dimension vector x
– first map to into lower dimensional vector v (matrix A)
– then map to output vector y (matrix B)

v = Ax

y = Bv = BAx
• Example

– |x| = 20,000, |y| = 50,000→M = 1,000,000,000
– |v| = 100→ A = 20,000 × 100 = 2,000,000, B = 100 × 50,000 = 5,000,000
– reduction from 1,000,000,000 to 7,000,000
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8Factored Decomposition: Interpretation

• Vector v is a bottleneck feature

• Forced to captures salient features

• One example: word embeddings
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basic mathematical operations
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10Concatenation

• Often multiple input vectors to processing step

• For instance recurrent neural network

– input word
– previous state

• Combined in feed-forward layer

y = activation(M1x1 +M2x2 + b)

• Another view

x = concat(x1, x2)

y = activation(Mx+ b)

• Splitting hairs here, but concatenation useful generally
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11Addition

• Adding vectors: very simplistic, but often done

• Example: compute sentence embeddings s from word embeddings w1, ..., wn

s =

n∑
i

wi

• Reduces varying length sentence representation into fixed sized vector

• Maybe weight the words, e.g., by attention
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12Multiplication

• Another elementary mathematical operation

• Three ways to multiply vectors

– element-wise multiplication

v � u =

(
v1
v2

)
�
(
u1
u2

)
=

(
v1 × u1
v2 × u2

)
– dot product

v · u = vTu =

(
v1
v2

)T (
u1
u2

)
= v1 × u1 + v2 × u2

used for simple version of attention mechanism

– third possibility: vuT , not commonly done
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13Maximum

• Goal: reduce the dimensionality of representation

• Example: detect if a face is in image

– any region of image may have positive match
– represent different regions with element in a vector
– maximum value: any region has a face

• Max pooling

– given: n dimensional vector
– goal: reduce to n

k dimensional vector
– method: break up vector into blocks of k elements, map each into single value
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14Max Out

• Max out

– first branch out into multiple feed-forward layers

W1x+ b1

W2x+ b2

– element-wise maximum

maxout(x) = max(W1x+ b1,W2x+ b2)

• ReLu activation is a maxout layer: maximum of feed-forward layer and 0

ReLu(x) = max(Wx+ b, 0)
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processing sequences
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16Recurrent Neural Networks

• Already described recurrent neural networks at length
– propagate state s
– over time steps t
– receiving an input xt at each turn

st = f(st−1, xt)

(state may computed may as a feed-forward layer)

• More successful
– gated recurrent units (GRU)
– long short-term memory cells (LSTM)

• Good fit for sequences, like words in a sentence
– humans also receive word by word
– most recent words most relevant
→ closer to current state

• But computational problematic: very long computation chains
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17Alternative Sequence Processing

• Convolutional neural networks

• Attention
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convolutional neural networks
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19Convolutional Neural Networks (CNN)

• Popular in image processing

• Regions of an image are reduced into increasingly smaller representation

– matrix spanning part of image reduced to single value
– overlapping regions
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20CNNs for Language
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• Map words into fixed-sized sentence representation
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21Hierarchical Structure and Language

• Syntactic and semantic theories of language

– language is recursive
– central: verb
– dependents: subject, objects, adjuncts
– their dependents: adjectives, determiners
– also nested: relative clauses

• How to compute sentence embeddings active research topic
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22Convolutional Neural Networks

• Key step

– take a high dimensional input representation
– map to lower dimensional representation

• Several repetitions of this step

• Examples

– map 50×50 pixel area into scalar value
– combine 3 or more neighboring words into a single vector

• Machine translation

– encode input sentence into single vector
– decode this vector into a sentence in the output language
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attention
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24Attention

• Machine translation is a structured prediction task

– output is not a single label
– output structure needs to be built, word by word

• Relevant information for each word prediction varies

• Human translators pay attention to different parts of the input sentence when
translating

⇒ Attention mechanism
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25Computing Attention

• Attention mechanism in neural translation model (Bahdanau et al., 2015)

– previous hidden state si−1
– input word embedding hj
– trainable parameters b, Wa, Ua, va

a(si−1, hj) = vTa tanh(Wasi−1 + Uahj + b)

• Other ways to compute attention

– Dot product: a(si−1, hj) = sTi−1hj

– Scaled dot product: a(si−1, hj) = 1√
|hj|

sTi−1hj

– General: a(si−1, hj) = sTi−1Wahj

– Local: a(si−1) =Wasi−1
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26Attention of Luong et al. (2015)

• Luong et al. (2015) demonstrate good results with the dot product

a(si−1, hj) = sTi−1hj

• No trainable parameters

• Additional changes

• Currently more popular
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27Attention of Luong et al. (2015)

Luong et al. (2015) Bahdanau et al. (2015)

RNN
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28Attention of Luong et al. (2015)

Luong et al. (2015)

Attention
αij = softmax FF(si−1, hj)

Input context ci =
∑
j αijhj

Output word
p(yt|y<t, x) =
softmax

(
W FFtanh(si−1, ci)

)
Decoder state
si = FFtanh(si−1, Eyi−1)

Bahdanau et al. (2015)

Attention
αij = softmax FF(si−1, hj)

Input context ci =
∑
j αijhj

Output word
p(yt|y<t, x) =
softmax

(
W FFtanh(si−1, Eyi−1, ci)

)
Decoder state
si = FFtanh(si−1, Eyi−1, ci)
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29Multi-Head Attention

• Add redundancy

– say, 16 attention weights
– each based on its own parameters

• Formally, for each head k compute an associated between

– decoder state si−1 at time step i
– encoder state hj for the jth input word
– using the softmax of some parameterized function ak

αkij = softmax ak(si−1, hj)

• Average the attention weights
αij =

1

k

∑
k

αkij

• Multi-head attention is a form of ensembling
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30Fine-Grained Attention

• Why just use a single scalar value to weight entire vectors?

– learn weights for each element
– computation of attention values returns vector instead of scalar

• Architecturally, still a feed-forward neural network (or any of variants)

a(si−1, hj) = FFk(si−1, hj)

• Softmax is now applied over each dimension d

αdij =
exp ad(si−1, hj)∑

k a
d(si−1, hk)

• Input context is now computed by a element-wise multiplication

ci =
∑
j

αij × hj
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31Self Attention

• Finally, a very different take at attention

• Motivation so far: need for alignment between input words and output words

• Now: refine representation of input words in the encoder

– representation of an input word mostly depends on itself
– but also informed by the surrounding context
– previously: recurrent neural networks (considers left or right context)
– now: attention mechanism

• Self attention:
Which of the surrounding words is most relevant to refine representation?
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32Self Attention

• Formal definition (based on sequence of vectors hj, packed into matrix H

self-attention(H) = softmax
(HHT√
|h|

)
H

• Association between every word representation hj any other context word hk

– computed by dot product
– results in a vector of raw association values

HHT

• Scaled by the size of the word representation vectors |h|, and softmax

softmax
(HHT√
|h|

)
• Resulting vector of normalized association values used to weigh context words
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33Self Attention

• More familiar math, using word representation vectors hj

• Raw association HHT√
|h|

ajk =
1

|h|
hjh

T
k

• Normalized association (softmax)

αjk =
exp(ajk)∑
κ exp(ajκ)

• Weighted sum
self-attention(hj) =

∑
k

αjκhk

• More on this later (Transformer)
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convolutional machine translation
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35Convolutional Machine Translation

• First end-to-end neural machine translation model of the modern era
[Kalchbrenner and Blunsom, 2013]

• Encoder

Embed Embed Embed
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Embed Embed Embed

FF

FF

FF

FF FF

Input Word
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K2 Layer

K3 Layer

L3 Layer

Input Words

– always two convolutional layers, with different size
– here: K2 and K3

• Decoder similar
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36Refinement

Embed Embed Embed
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• Convolutions do not result in a single sentence embedding but a sequence
• Decoder is also informed by a recurrent neural network
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37CNNs With Attention
[Gehring et al. 2017]

• Combination of

– convolutional neural networks
– attention

• Sequence-to-sequence attention, mainly as before

• Recurrent neural networks replaced by convolutional layers
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38Encoder
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• Stacked encoder convolutions

• Not shortening representations

• But: faster processing due to more parallelism
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39Encoder: Math

• Start with input word embeddings Exj

h0,j = E xj

• Progress through

– sequence of layer encodings hd,j
– at different depth d
– until maximum depth D

hd,j = f(hd−1,j−k, ..., hd−1,j+k)

• Details

– function f is feed-forward layer with shortcut connection
– final representation hD,j may only be informed by partial sentence context
– all words at one depth can be processed in parallel→ fast
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40Decoder

FF
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• Decoder state computed by convolutional layers over previous output words

• Each convolutional state also informed by the input context (using attention)
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41Decoder: Math

• Recall: decoder recurrent neural network decoder

si = f(si−1, Eyi−1, ci)
– encoder state si
– embedding of previous output word Eyi−1
– input context ci

• Now

– state computation not depending on previous state si−1 (not recurrent)
– conditioned on the sequence of the κ most recent previous words

si = f(Eyi−κ, ..., Eyi−1, ci)

• Stacked convolutions

s1,i = f(Eyi−κ, ..., Eyi−1, ci)

sd,i = f(sd−1,i−κ−1, ..., sd−1,i, ci) for d > 0, d ≤ D̂
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42Attention

• Attention mechanism fundamentally unchanged

• Input context ci computed based on association a(si−1, hj) between

– encoder state hj
– decoder state si−1

• Now

– encoder state hD,j
– decoder state sD̂,i−1

• Refinement when computing the context vector ci:
shortcut connection between encoder state hD,j and input word embedding xj
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transformer
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44Self Attention: Transformer

• Self-attention in encoder

– refine word representation based on relevant context words
– relevance determined by self attention

• Self-attention in decoder

– refine output word predictions based on relevant previous output words
– relevance determined by self attention

• Also regular attention to encoder states in decoder

• Currently most successful model

(maybe only with self attention in decoder, but regular recurrent decoder)
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45Encoder
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46Self Attention Layer

• Given: input word representations hj, packed into a matrix H = (h1, ..., hj)

• Self attention
self-attention(H) = softmax

(HHT√
|h|

)
H

• Shortcut connection
self-attention(hj) + hj

• Layer normalization

ĥj = layer-normalization(self-attention(hj) + hj)

• Feed-forward step with ReLU activation function

relu(Wĥj + b)

• Again, shortcut connection and layer normalization

layer-normalization(relu(Wĥj + b) + ĥj)
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47Stacked Self Attention Layers

• Stack several such layers (say, D = 6)

• Start with input word embedding

h0,j = Exj

• Stacked layers
hd,j = self-attention-layer(hd−1,j)
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48Decoder
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Decoder computes attention-based representations of the output in several layers,
initialized with the embeddings of the previous output words
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49Self-Attention in the Decoder

• Same idea as in the encoder

• Output words are initially encoded by word embeddings si = Eyi.

• Self attention is computed over previous output words

– association of a word si is limited to words sk (k ≤ i)
– resulting representation s̃i

self-attention(S̃) = softmax
(SST√
|h|

)
S
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50Attention in the Decoder

• Original intuition of attention mechanism: focus on relevant input words

• Computed with dot product S̃HT

• Compute attention between the decoder states S̃ and the final encoder states H

attention(S̃,H) = softmax
(S̃HT√
|h|

)
H

• Note: attention mechanism formally mirrors self-attention
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51Full Decoder

Encoder Layer
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52Full Decoder

• Self-attention
self-attention(S̃) = softmax

(SST√
|h|

)
S

– shortcut connections
– layer normalization
– feed-forward layer

• Attention
attention(S̃,H) = softmax

(S̃HT√
|h|

)
H

– shortcut connections
– layer normalization
– feed-forward layer

• Multiple stacked layers
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53Mix and Match

• Encoder may be multiple layers of either

– recurrent neural networks
– self-attention layers

• Decoder may be multiple layers of either

– recurrent neural networks
– self-attention layers

• Also possible: self-attention encoder, recurrent neural network deocder

• Even better: both self-attention and recurrent neural network, merged at the end
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