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Alternative Architectures 1

e We introduced one translation model

— attentional seq2seq model

— core organizing feature: recurrent neural networks
e Other core neural architectures

— convolutional neural networks

— attention

e But first: look at various components of neural architectures
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Components of Neural Networks A=

e Neural networks originally inspired by the brain

— a neuron receives signals from other neurons
— if sufficiently activated, it sends signals
— feed-forward layers are roughly based on this
e Computation graph
— any function possible, as long as it is partially differentiable

— not limited by appeals to biological validity

e Deep learning maybe a better name
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Feed-Forward Layer 4

=

e (Classic neural network component

e Given an input vector x, matrix multiplication M with adding a bias vector b

Mx+b

e Adding a non-linear activation function

y = activation(Mx + b)

e Notation y = F Factivation(2) = a(Mz + b)
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Feed-Forward Layer 5

)
=

e Historic neural network designs: several feed-forward layers

— input layer
— hidden layers
— output layer

e Powerful tools for a wide range of machine learning problems

e Matrix multiplication also called affine transforms

— appeals to its geometrical properties
— straight lines in input still straight lines in output
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Factored Decomposition

e One challenge: very large input and output vectors
e Number of parameters in matrix M = |z| x |y

= Need to reduce size of matrixh

e Solution: first reduce to smaller representation

o0O0O0OO0OO0OO0O0 (O y
ooooooooo|l Jo
ooooooooo|l Jo A ©ooo0009
00000000 o] y 4
ooooooooo|l Jo D0O0O0OO0O0O0O0 O DOO0OO0O0O O
ooooooooo|l Jo 000000000 0000000
©ooooo0o0o009 g 000000000 0000000
A A v B
CoO0000000 CoO0O000000)
X X

W

Philipp Koehn Machine Translation: Alternative Architectures

15 October 2020



e Intuition

=
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Factored Decomposition: Math QY
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— given highly dimension vector z
— first map to into lower dimensional vector v (matrix A)
— then map to output vector y (matrix B)

e Example

v = Ax
y = Bv = BAx

— |z| = 20,000, |y| = 50,000 — M = 1,000,000,000
— Jv| =100 — A =20,000 x 100 = 2,000,000, B = 100 x 50,000 = 5,000,000
— reduction from 1,000,000,000 to 7,000,000
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Factored Decomposition: Interpretation

e Vector v is a bottleneck feature
e Forced to captures salient features

e One example: word embeddings
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basic mathematical operations
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Concatenation 10

e Often multiple input vectors to processing step

e For instance recurrent neural network
— input word
— previous state

e Combined in feed-forward layer

y = activation(Myxy + Moxo + b)I

e Another view
r = concat(zy, x2)

y = activation(Mz + b)

e Splitting hairs here, but concatenation useful generally
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Addition 1

e Adding vectors: very simplistic, but often done

e Example: compute sentence embeddings s from word embeddings w;, ..., wy,
n
S = Z w;
i

e Reduces varying length sentence representation into fixed sized vector!

e Maybe weight the words, e.g., by attention
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Multiplication 12

e Another elementary mathematical operation

e Three ways to multiply vectorsl

— element-wise multiplication

onm (0 () (222
() U9 Vo X U9

T
T _ [V ury\
VU =0V U= = V1 X U1 + V2 X U9
U2 ug

used for simple version of attention mechanisml

— dot product

T

— third possibility: vu*, not commonly done
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Maximum 3

e Goal: reduce the dimensionality of representation

e Example: detect if a face is in image

— any region of image may have positive match
— represent different regions with element in a vector
— maximum value: any region has a facel

e Max pooling

— given: n dimensional vector
— goal: reduce to 7 dimensional vector
— method: break up vector into blocks of k£ elements, map each into single value
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Max Out 14

e Max out
— first branch out into multiple feed-forward layers

Wla: + bl
WQI‘ + bgl

— element-wise maximum

maxout(x) = max(Wix + by, Waox + byl

e ReLu activation is a maxout layer: maximum of feed-forward layer and 0

ReLu(z) = max(Wz + b,0)
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QY

processing sequences
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Recurrent Neural Networks 16

o Already described recurrent neural networks at length

— propagate state s
— over time steps ¢
— receiving an input z; at each turn

St = f(St—h -Tt)

(state may computed may as a feed-forward layer)

e More successful

— gated recurrent units (GRU)
— long short-term memory cells (LSTM)

e Good fit for sequences, like words in a sentence

— humans also receive word by word
— most recent words most relevant
— closer to current state

e But computational problematic: very long computation chains
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Alternative Sequence Processing 17

e Convolutional neural networks

e Attention
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convolutional neural networks
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Convolutional Neural Networks (CNN)

e Popular in image processing

e Regions of an image are reduced into increasingly smaller representation

— matrix spanning part of image reduced to single value
— overlapping regions
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CNNss for Language 20
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e Map words into fixed-sized sentence representation
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Hierarchical Structure and Language =

e Syntactic and semantic theories of language

— language is recursive

— central: verb

— dependents: subject, objects, adjuncts

— their dependents: adjectives, determiners
— also nested: relative clauses

e How to compute sentence embeddings active research topic
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Convolutional Neural Networks 22

o Key step
— take a high dimensional input representation
— map to lower dimensional representation

e Several repetitions of this stepl

e Examples

— map 50x50 pixel area into scalar value

— combine 3 or more neighboring words into a single vectorl
e Machine translation

— encode input sentence into single vector
— decode this vector into a sentence in the output language
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Attention 24

e Machine translation is a structured prediction task

— output is not a single label
— output structure needs to be built, word by word

e Relevant information for each word prediction varies

e Human translators pay attention to different parts of the input sentence when
translating

= Attention mechanism

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020



Computing Attention 25

e Attention mechanism in neural translation model (Bahdanau et al., 2015)

— previous hidden state s;_;

— input word embedding h;

— trainable parameters b, W,, U,, v,

CL(Si_l, hj) = Ug tanh(Wasi_l + Uahj + b)

e Other ways to compute attention

— Dot product: a(s;_1,h;) = s} _{h;

— Scaled dot product: a(s;_1,h;) = ﬁs?_lhj
— General: a(si_l, ]’LJ) = S;-r_lwahj

— Local: CL(Si_l) = Wasz'—l
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Attention of Luong et al. (2015) 26

e Luong et al. (2015) demonstrate good results with the dot product
a(si-1,h;) = si_1h;

e No trainable parameters

e Additional changes

e Currently more popular
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Attention of Luong et al. (2015) 27

Luong et al. (2015) Bahdanau et al. (2015)
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Attention of Luong et al. (2015)

Luong et al. (2015)

Attention
a;; = softmax FF(s;_1, h;)

Input context ¢; = ), aijh;
Output word

p(yt\?kt, 33) —
softmax (W FFpnn(si—1, ¢;))

Decoder state
Si — FFtanh(Si—la Eyz-_1)

-
-
Bahdanau et al. (2015)

Attention
«;; = softmax FF(s;_1, h,)

Input context ¢; = ), aijh;
Output word

p(yt\?kt, 33) —
softmax(W FFtanh(Sz'—b Ey;_1, Cz))

Decoder state
s; = FFunn(si—1, Fyi—1,¢i)
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Multi-Head Attention 29

e Add redundancy

— say, 16 attention weights
— each based on its own parametersf

e Formally, for each head k£ compute an associated between

— decoder state s;_; at time step 7
— encoder state h; for the jth input word

— using the softmax of some parameterized function a*

ko k(.. |
ay; = softmax a”(s;—1, h;)l

e Average the attention weights
IS
Yij = 7 P
k

e Multi-head attention is a form of ensembling
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Fine-Grained Attention 30

e Why just use a single scalar value to weight entire vectors?

— learn weights for each element
— computation of attention values returns vector instead of scalarf

e Architecturally, still a feed-forward neural network (or any of variants)

CL(Si_l, h]) = FFk(Si_h hj)l

e Softmax is now applied over each dimension d

i &P a®(s;_1,h;)

N ad(sim, hy)

e Input context is now computed by a element-wise multiplication

C; = E Oéinhj
J
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Self Attention 31

e Finally, a very different take at attention
e Motivation so far: need for alignment between input words and output words

e Now: refine representation of input words in the encoder

— representation of an input word mostly depends on itself

— but also informed by the surrounding context

— previously: recurrent neural networks (considers left or right context)
— now: attention mechanism

o Self attention:
Which of the surrounding words is most relevant to refine representation?
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Self Attention 32

e Formal definition (based on sequence of vectors &, packed into matrix A

HHT>
il

e Association between every word representation %, any other context word Ay,

self-attention(H ) = softmax<

— computed by dot product
— results in a vector of raw association values

HHT

e Scaled by the size of the word representation vectors |h|, and softmax

HHT)
Vil

e Resulting vector of normalized association values used to weigh context words

softmax (
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Self Attention 33

e More familiar math, using word representation vectors h;

HHT

VIal

e Raw association

o _explag)
’ Zl-i exp<aﬂ7’€)
e Weighted sum
self-attention(h Z ol

e More on this later (Transformer)
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convolutional machine translation
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Convolutional Machine Translation 35

e First end-to-end neural machine translation model of the modern era
[Kalchbrenner and Blunsom, 2013]

/’\ L3 Layer

FF FF FF Ks Layer

e Encoder

[ FF [ FF j FF ( FF K2 Layer
Embed Embed Embed Embed InDUt W.OI’d
( j t j t j t j Embeddings

A A A A A A
Input Words

— always two convolutional layers, with different size
— here: K5 and K3

e Decoder similar
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Reﬁnement 36

Output Word Embedding
Output Word
oftma oftma oftma oftma oftma [oftmaj Output Word Prediction
RNN RNN RNN RNN )-»( RNN )-»( RNN J K2 Decoder
\(?f\(?j( FF ( FF j ( FF j Ks Decoder
A

4 4
FF Transfer

A
FF K3 Encoder
FF FF K2 Encoder
(Em@/ iEmbedi iEmbedi iEmbedi iEmbedi \(Em_baa Input Word Embedding
Input Word

e Convolutions do not result in a single sentence embedding but a sequence
e Decoder is also informed by a recurrent neural network
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CNNss With Attention o
[Gehring et al. 2017]

e Combination of

— convolutional neural networks
— attention

e Sequence-to-sequence attention, mainly as before

e Recurrent neural networks replaced by convolutional layers
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Encoder 38

FF FF FF FF FF FF FF Encoder Convolution 3
X >< TSI TOCT N

0 FF FF FF L FF ( 0 ) Encoder Convolution 2
1 f }( f f I EIN

0 FF FF FF FF ( 0 ) Encoder Convolution 1

R EEN
0 Embed Embec5><(Embed (Em:ed (Em:ed (Em:eca Em:eca (o) IEIrr;pt;gdvc\i/%rgs

Input Words

e Stacked encoder convolutions
e Not shortening representations

e But: faster processing due to more parallelism
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Encoder: Math 39

e Start with input word embeddings Ex;
h(),j =F €L

e Progress through

— sequence of layer encodings hg ;
— at different depth d
— until maximum depth D

ha; = f(ha=1,—ks - hd—1,+k)

e Details

— function f is feed-forward layer with shortcut connection
— final representation hp ; may only be informed by partial sentence context
— all words at one depth can be processed in parallel — fast
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Decoder 40

Output Word

Softmax:: ¢ Output Word Prediction

Decoder Convolution 3

i

Decoder Convolution 2

Decoder Convolution 1

Output Word Embedding

Input Context

e Decoder state computed by convolutional layers over previous output words

e FEach convolutional state also informed by the input context (using attention)
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Decoder: Math 41

e Recall: decoder recurrent neural network decoder

Si; = f(Si—17 Eyi—laci)
— encoder state s;
— embedding of previous output word Ey;_;
— Input context ¢;

e Now

— state computation not depending on previous state s;_; (not recurrent)
— conditioned on the sequence of the x most recent previous words

si= f(BYi_x,.., BYi_1,¢;)
e Stacked convolutions
51,0 = [(EYi—r, -, BYi—1,¢5)
Sdi = f(Sd—1,i—r—1,---ySd—1.i,¢Ci) ford > 0,d < D
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Attention 42

e Attention mechanism fundamentally unchanged

e Input context ¢; computed based on association a(s;_1, h;) between
— encoder state h;
— decoder state s;_;

e Now
— encoder state hp ;

— decoder state s D1

e Refinement when computing the context vector ¢;:

shortcut connection between encoder state i p ; and input word embedding x;
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transformer
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Self Attention: Transformer 44

e Self-attention in encoder
— refine word representation based on relevant context words
— relevance determined by self attention
e Self-attention in decoder
— refine output word predictions based on relevant previous output words
— relevance determined by self attention

e Also regular attention to encoder states in decoder

e Currently most successful model

(maybe only with self attention in decoder, but regular recurrent decoder)
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Encoder 45

hj Encoder State
Refinement

0. Input Context

hij :

with Shortcut

Weighted Input Context

Self Self Self Self Self Self Self -
Attention Attention Attention Attention Attention Attention Attention Attention
A

: Positional Input
Ewx; + Epj Add Add Add Add Add Add Add ositional Inpu

Word Embedding

Word and Position
Embedding

Input Word

Input Word Position

Sequence of self-attention layers
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Self Attention Layer 46

e Given: input word representations &, packed into a matrix H = (hq, ..., h;)

e Self attention HHT

VInl

self-attention(h,) + h,l

self-attention(H ) = softmax ( ) HI

e Shortcut connection

e Layer normalization

h; = layer-normalization(self-attention(h;) + h; )l

e Feed-forward step with ReLU activation function
relu(Wh, + b)l

e Again, shortcut connection and layer normalization

layer—normalization(relu(Wﬁj +b) + ibj)
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Stacked Self Attention Layers 47

e Stack several such layers (say, D = 6)

e Start with input word embedding
ho, j = Ex j

e Stacked layers hq ; = self-attention-layer(hq—1 ;)

Philipp Koehn Machine Translation: Alternative Architectures 15 October 2020



Decoder 48
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Decoder computes attention-based representations of the output in several layers,
initialized with the embeddings of the previous output words
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Self-Attention in the Decoder 49

e Same idea as in the encoder
e Output words are initially encoded by word embeddings s; = Ev;.

e Self attention is computed over previous output words

— association of a word s; is limited to words s (k < 7)
— resulting representation s;

3 T
self-attention(S) = softmax( o5 )S

VInl
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Attention in the Decoder 50

e Original intuition of attention mechanism: focus on relevant input words
e Computed with dot product SH”

e Compute attention between the decoder states S and the final encoder states H

- SHT
attention(S, H) = softmax( )H

il

e Note: attention mechanism formally mirrors self-attention
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Full Decoder 51
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Full Decoder 5

e Self-attention ~ ggT
self-attention(S) = softmax( )S
Vil

— shortcut connections
— layer normalization

— feed-forward layer

~

e Attention ( g HT)

S H
VAl

attention(S, H) = softmax

— shortcut connections
— layer normalization

— feed-forward layer

e Multiple stacked layers
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Mix and Match 53

e Encoder may be multiple layers of either

— recurrent neural networks
— self-attention layers

e Decoder may be multiple layers of either

— recurrent neural networks
— self-attention layers

e Also possible: self-attention encoder, recurrent neural network deocder

e Even better: both self-attention and recurrent neural network, merged at the end
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