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1Language Models

• Modeling variants

– feed-forward neural network

– recurrent neural network

– long short term memory neural network

• May include input context
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2Feed Forward Neural Language Model
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3Recurrent Neural Language Model
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4Recurrent Neural Language Model
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5Recurrent Neural Language Model
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... and so on
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6Recurrent Neural Language Model
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7Recurrent Neural Translation Model

• We predicted the words of a sentence

• Why not also predict their translations?
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8Encoder-Decoder Model
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• Obviously madness

• Proposed by Google (Sutskever et al. 2014)
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9What is Missing?

• Alignment of input words to output words

⇒ Solution: attention mechanism
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10

neural translation model
with attention
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11Input Encoding
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• Inspiration: recurrent neural network language model on the input side
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12Hidden Language Model States

• This gives us the hidden states

RNN RNNRNN RNN RNN RNN RNN

• These encode left context for each word

• Same process in reverse: right context for each word
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13Input Encoder
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• Input encoder: concatenate bidrectional RNN states

• Each word representation includes full left and right sentence context
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14Encoder: Math
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• Input is sequence of words xj, mapped into embedding space Ē xj

• Bidirectional recurrent neural networks

←−
hj = f(

←−−
hj+1, Ē xj)

−→
hj = f(

−−→
hj−1, Ē xj)

• Various choices for the function f(): feed-forward layer, GRU, LSTM, ...
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15Decoder

• We want to have a recurrent neural network predicting output words
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16Decoder

• We want to have a recurrent neural network predicting output words
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• We feed decisions on output words back into the decoder state
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17Decoder

• We want to have a recurrent neural network predicting output words
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• We feed decisions on output words back into the decoder state
• Decoder state is also informed by the input context
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18More Detail
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• Decoder is also recurrent neural network
over sequence of hidden states si

si = f(si−1, Ey−1, ci)

• Again, various choices for the function f():
feed-forward layer, GRU, LSTM, ...

• Output word yi is selected by computing a
vector ti (same size as vocabulary)

ti = W (Usi−1 + V Eyi−1 + Cci)

then finding the highest value in vector ti

• If we normalize ti, we can view it as a
probability distribution over words

• Eyi is the embedding of the output word yi
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19Attention

RNN RNN

Attention

RNN RNN RNN

RNN RNN Decoder State

Input Context

Attention

Right-to-Left
Encoder

Left-to-Right
Encoder

si

αij

hj

hj RNN RNN RNN RNN RNN

• Given what we have generated so far (decoder hidden state)

• ... which words in the input should we pay attention to (encoder states)?
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20Attention
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• Given: – the previous hidden state of the decoder si−1

– the representation of input words hj = (
←−
hj,
−→
hj)

• Predict an alignment probability a(si−1, hj) to each input word j
(modeled with with a feed-forward neural network layer)
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21Attention

RNN RNN

Attention

RNN RNN RNN

RNN RNN Decoder State

Input Context

Attention

Right-to-Left
Encoder

Left-to-Right
Encoder

si

αij

hj

hj RNN RNN RNN RNN RNN

• Normalize attention (softmax)

αij =
exp(a(si−1, hj))∑
k exp(a(si−1, hk))
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22Attention
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• Relevant input context: weigh input words according to attention: ci =
∑

j αijhj
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23Attention
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• Use context to predict next hidden state and output word
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24

training
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25Comparing Prediction to Correct Word
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• Current model gives some probability ti[yi] to correct word yi

• We turn this into an error by computing cross-entropy: −log ti[yi]

Philipp Koehn Machine Translation: Neural Machine Translation 6 October 2020



26Computation Graph

• Math behind neural machine translation defines a computation graph

• Forward and backward computation to compute gradients for model training
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27Unrolled Computation Graph
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28Batching

• Already large degree of parallelism

– most computations on vectors, matrices
– efficient implementations for CPU and GPU

• Further parallelism by batching

– processing several sentence pairs at once
– scalar operation→ vector operation
– vector operation→matrix operation
– matrix operation→ 3d tensor operation

• Typical batch sizes 50–100 sentence pairs
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29Batches

• Sentences have different length

• When batching, fill up unneeded cells in tensors

⇒ A lot of wasted computations
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30Mini-Batches

• Sort sentences by length, break up into mini-batches

• Example: Maxi-batch 1600 sentence pairs, mini-batch 80 sentence pairs
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31Overall Organization of Training

• Shuffle corpus

• Break into maxi-batches

• Break up each maxi-batch into mini-batches

• Process mini-batch, update parameters

• Once done, repeat

• Typically 5-15 epochs needed (passes through entire training corpus)
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32

deeper models
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33Deeper Models

• Encoder and decoder are recurrent neural networks

• We can add additional layers for each step

• Recall shallow and deep language models
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• Adding residual connections (short-cuts through deep layers) help

Philipp Koehn Machine Translation: Neural Machine Translation 6 October 2020



34Deep Decoder

• Two ways of adding layers

– deep transitions: several layers on path to output
– deeply stacking recurrent neural networks

• Why not both?
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35Deep Encoder

• Previously proposed encoder already has 2 layers

– left-to-right recurrent network, to encode left context
– right-to-left recurrent network, to encode right context

⇒ Third way of adding layers
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