Biometrics 2 Face recognition

PV181 Laboratory of security and applied cryptography Seminar 8. 12. 2021

Agáta Kružíková, kruzikova@mail.muni.cz Katarína Galanská, xgalansk@fi.muni.cz

Centre for Research on Cryptography and Security

Lecture structure

Seminar 1

- 1. Introduction
- 2. Fingerprints
- 3. Seminar activity
 - Fake fingerprints
- 4. Homework
 - Report on selected biometric system

Seminar 2

- 1. Fake fingerprints
 - Completion
- 2. Face recognition
- 3. Seminar activity
 - Hypotheses
- 4. Homework
 - Face detection

Fingerprint experiment

Completion

CRତCS

Fingerprints Completion

- Scan your genuine and fake fingerprints
 - In case of the bonus task do not forget to scan the fake without Gabor filtering it too!
- You will receive the scans in your Depository in IS
- Process the scans with NBIS software
- Try to "hack" your own smartphone

Preparation for post processing

- You will receive scans of your fingers
- Prepare the image for post processing
 - 8-bit grayscale raster
 - width at least 512 pixels
 - height at least 480 pixels
 - .png format

Fingerprints post processing

- Use <u>NIST Biometric Image Software (NBIS)</u>
 - $\circ~$ It is preinstalled on Iab PC in the within Ubuntu VM
- Create a minutia map in .xyt format (Mindtct)
 - o /opt/nbis/bin>./mindtct -m1 <fingerprint_scan_from_reader.png>
 <new_name_of_fingerprint_in_xyt_format>
- Check quality of the fingerprint (Nfig)
 - o /opt/nbis/bin>./nfiq -d <fingerprint_scan_from_reader.png>
 - Output: 1-5 where 1-best, 5-worst
- Check the number of identified minituas in .min file

Fingerprints post processing

- Repeat it for all fingerprint inputs which you scanned via reader
- Compare fake and real fingerprints (Bozoroth3)
 - Score above 40 means true match ("rule of thumb")
 - o /opt/nbis/bin>./bozorth3 <fake.xyt> <original.xyt>
- Bonus task: compare the real fingerprint to fake without Gabor filters
- Open the questionnaire and fill in the data from your observations
 - \circ $\,$ Mandatory for all, only the research questions are not $\,$

CRତCS

Help with future fingerprint image processing

- Open your image in ImageJ.
- Select your fingerprint with polygon selection.
- 3. Process \rightarrow Noice \rightarrow Add Noice
- 4. Save as \rightarrow .png
- 5. Upload to:

https://is.muni.cz/auth/el/fi/p odzim2021/PV181/ode/121 202412/

Face recognition

Theory and examples

Real-life example

© 2009 Geek Culture

joyoftech.com

CROCS

Face recognition – Input

- Single picture
- Video sequence
- 3D image
- Facial thermograms

Face recognition: The manual way

Face recognition: The automatic way

- Statistical
 - Eigenface, PCA, LDA, ...
- Neural networks
 - Microsoft: Face API
 - Facebook: DeepFace
 - VK: FindFace ("best results" in MegaFace comp.)
 - Google: FaceNet

FindFace – example

Subway photo (left), social network photo (right)

Challenges in face recognition

- Illumination
- Pose
- Environment
 - Noisy background
- Aging
- Feature occlusion
 - Hats, glasses, hair, ...
- Image quality
 - colour, resolution, ...

CROCS

New challenge in face recognition...

- <u>NIST study</u> on the effects of face masks
 - Error rates 5–50% on face masks
 - Nose and mask color matter
- NtechLab: "Even balaclava is OK."
 - Focus (even more) on eyes

Face recognition overview (OpenFace)

Photo © The OpenFace project, cmusatyalab.github.io/openface

Face detection: Haar cascades

 Machine learning based approach based on comparing pixel intensities in adjacent regions

Face detection: Haar cascades

Face Detection: Visualized <u>https://vimeo.com/12774628</u>

CV Dazzle: Anti face-detection

CV Dazzle: Anti face-detection

Photo © 2010-2016 Adam Harvey, CV Dazzle

Microsoft: Face API

Automatic passport control

Biometric passports

- "Smart card", contain NFC chip
- Two security levels:
 - BAC: Reading your photo+personal information (Try Android app Passport reader)
 - EAC: Reading your biometrics
 - Fingerprint, Face and Iris support

CROCS

KFC AliPay

- Introduced 2015
- Only one KFC in China
- Liveness detection
 - 3D camera
- 2017: login in Alibaba services

 See AliPay promo video at <u>https://www.theverge.com/2017/9/4/16251304/kfc</u> <u>-china-alipay-ant-financial-smile-to-pay</u> CROCS

KFC AliPay

Face impersonation

Photo © 2016 Carnegie Mellon University, Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition

Face impersonation

- Fooling deep-neural-networks-based face recognition systems (e.g. Face++)
 - Over 90% success rate
 - The principle is more general
- "physically realizable and inconspicuous"

Sharif, Mahmood, et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition." Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016.

Apple FaceID hacked

- Liveness detection feature hacked in 2019
- Researchers used a pair of modified glasses
- A victim has to sleep :-)

Soucce: https://threatpost.com/researchers-bypass-apple-faceid-using-biometrics-achilles-heel/147109/

Detecting sexual orientation from faces

Composite heterosexual faces

Composite gay faces

Average facial landmarks

Photo © 2017 Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology

Detecting sexual orientation from faces

- Classifying sexual orientation (straight vs. gay) on men/women photos
 - Human success: 61% / 54%
 - Neural networks: 81% / 71%
 - Neural networks (5 images): 91% / 83%
- May be a privacy issue!

Wang, Y., & Kosinski, M. (in press). Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology, 2017.

CROCS

Mugshots

BUDDSJD 10

CAUGHMANMD 3

CLYMANNS_1

DELAROSAJ_2

CHEWEYSR_22

DELOACHAM_1

GILLEYNK 1

Face recognition ban in San Francisco

- "Threat to civil liberties"
 - Ban for government agencies (city police and sheriff)
 - Federal agencies not affected
- Reason: discrimination, privacy issues
 - Less accurate at people of colour!
- Suppliers see it as a step back
- See more at www.banfacialrecognition.com

Gregory Barber, San Francisco Bans Agency Use of Facial-Recognition Tech. 2019, Wired.

Ethical use of technology?

Code of Ethics (ACM)

- 1. Society and human well-being
- 2. No harm for participants & risk analysis
- 3. Honesty (transparency)
- 4. No plagiarism
- 5. Respect privacy
- 6. Confidentiality
- 7. High quality & standards (competence)
- 8. Professional review
- 9. Inform society

ACM Code of Ethics and Professional Conduct., Online [2019]: acm.org/code-of-ethics

Homework

Exploring automatic face detection

Homework: Overview

- Explore what influences face detection
 - Use deep learning modules from OpenCV
 <u>github.com/crocs-muni/biometrics-utils</u>
 - Use a webcam or your own picture(s)
 - Your pictures will not be shared
 - Test real-live modifications or digital touch-up
- Submit to IS MUNI a single ZIP file with
 - Report (PDF) with proper methodology (see next slide)
 - Used adjusted images
- Deadline: 15. 12. 2020 8:00

Homework: Overview

Step 1: State the hypotheses.

E.g., obstructing eyes decreases face detection accuracy significantly more than obstructing other face parts.

Step 2: Set the criteria for a decision.

Set baseline (no obstructions) and test different settings, do *multiple* small changes (progressively obstructing eyes, mouth, ...).

Step 3: Interpret the results.

Summarize the results, reject the hypothesis if appropriate.

CRତCS

Homework: Hypotheses

- Measurable (we can make observations)
 - NOT: "There are invisible creatures all around us."
- **Falsifiable** (if it's false, we can show it)
 - NOT: "There are other planets in the universe where life exists."
- **Precise** (can be made into experiment)
 - NOT: "Candles repel mosquitoes."
- Reproducible (others can verify it)
 - NOT: "Putting an African bush elephant on the top of the Leaning tower of Pisa will crash it."
- Useful enough (predictive, not too general, ...)
 - NOT: "A Škoda Superb car with (...specification...) will drive more than 2 km with 20 I of petrol."

Note: Hypothesis is always a statement, not a question

Task: Formulating Hypotheses

Formulate possible good hypotheses based on these sentences:

- 1. Do people like iris eye readers?
- 2. 256b AES keys are secure.
- 3. PV080 is the best course at FI MU.
- 4. You can make a lock that opens with three different keys.
- 5. Closing the browser deletes the cookies.

Task: Formulating Hypotheses

Possible nice hypotheses:

- Non-IT university students consider using fingerprint readers more usable than iris eye readers for day-to-day authentication.
- 2. You cannot successfully break 256b AES encryption in CBC mode in one hour on machine XYZ.
- 3. Among all bachelor students at FI MU, the average selfreported satisfaction with PV080 is significantly higher than for IB000.

- 4. You cannot make a lock that opens with three different keys.
- 5. All non-permanent cookies are removed after closing

Homework: Report

- Write a summarizing report
 - Your hypotheses and how you tested them
 - Test at least 5 distinct features
- Concentrate on:
 - Having a formulated hypotheses for each feature
 - Having several images supporting/falsifying your idea
- Avoid:
 - Many changes in the face at once
 - Radical changes (deleting half the face)
 - Overgeneralization

Homework: Scoring

- Up to 10 points awarded
 - Scoring rubric available in the Information system
 - The rubric can help you understand what is important in the task!
- Have a look at old homework submission with good methodology in the Study Materials.
 - Special thanks to Vladimír Bouček for providing it.