
Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Autotuning
Introduction to autotuning, overview of our research

Jǐŕı Filipovič et al.
Institute of Computer Science

Masaryk University

2021

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Program development workflow

Implementation questions

I which algorithm to use?

I how to implement the algorithm efficiently?

I how to set-up a compiler?

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Program development workflow

Compiler’s questions

I how to map variables to registers?

I which unrolling factor to use for a loop?

I which functions should be inlined?

I and many others...

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Program development workflow

Execution

I how many nodes and threads assign to the program?

I should accelerators be used?

I how to mix MPI and OpenMP threads?

A compiler works with heuristics, people usually too.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Program development workflow

Execution

I how many nodes and threads assign to the program?

I should accelerators be used?

I how to mix MPI and OpenMP threads?

A compiler works with heuristics, people usually too.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Tuning of the program

We can empirically tune those possibilities

I use different algorithm

I change code optimizations

I use different compiler flags

I execute in a different number of threads

I etc.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Tuning of the program

A tuning allows us to outperform heuristics – we just test what
works better.

I however, we have to invest more time into development

I there are vertical dependencies, so we cannot perform tuning
steps in isolation

I the optimum usually depends on hardware and input

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Autotuning

The tuning can be automated

I then we talk about autotuning

Autotuning

I in design time, we define the space of tuning parameters,
which can be changed

I each tuning parameter defines some property of the tuned
application

I a search method is used to traverse the space of tuning
parameters efficiently

I performed according to some objective, usually performance

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Taxonomy of Autotuning

Tuning scope

I what properties of the application are changed by autotuner

I e.g. compiler flags, number of threads, source code
optimizations parameters

Tuning time

I offline autotuning (performed once, e.g., after SW installation)

I dynamic autotuning (performed in runtime)

Developer involvement

I transparent, or requiring only minor developer assist (e.g.
compiler flags tuning)

I low-level, requiring an expert programmer to identify tunning
opportunities (e.g. optimizations parameters tuning)

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Our focus

We target autotuning of code optimization parameters

I the source code is changed during a tuning process

I the user defines how tuning parameters influence the code

I very powerful (source code may control nearly everything)
I implementation is difficult

I requires recompilation
I runtime checks of correctness/precision
I non-trivial expression of tuning parameters
I we have no implicit assumptions about tuning space

I heterogeneous computing (we are tuning OpenCL or CUDA
code)

I offline and dynamic autotuning

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Motivation Example

Let’s solve a simple problem – vectors addition

I we will use CUDA

I we want to optimize the code

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Motivation Example

__global__ void add(float* const a, float* b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

It should not be difficult to write different variants of the code...

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Optimization

__global__ void add(float4∗ const a, float4∗ b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

Kernel has to be executed with n/4 threads.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Optimization

__global__ void add(float2∗ const a, float2∗ b) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

b[i] += a[i];

}

Kernel has to be executed with n/2 threads.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Optimization

__global__ void add(float* const a, float* b, const int n) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

for (; i < n; i += blockDim.x*gridDim.x)

b[i] += a[i];

}

Kernel has to be executed with n/m threads, where m can be
anything.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

What to Optimize?

Mixture of:

I thread-block size

I vector variables

I serial work

i.e. 3D space – and this is trivial example...

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Autotuning

Autotuning tools may explore code parameters automatically

__global__ void

add(VECTYPE* const a, VECTYPE* b, const int n) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

#if SERIAL WORK > 1

for (; i < n; i += blockDim.x*gridDim.x)

#endif

b[i] += a[i];

}

The code executing kernel add has to configure parallelism
according to values of VECTYPE and SERIAL WORK tuning
parameters.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Kernel Tuning Toolkit

We have developed a Kernel Tuning Toolkit (KTT)

I a framework allowing to tune code parameters for OpenCL
and CUDA

I allows both offline and dynamic tuning

I enables cross-kernel optimizations

I mature implementation, documented, with examples

I https://github.com/HiPerCoRe/KTT

Jǐŕı Filipovič et al. Autotuning

https://github.com/HiPerCoRe/KTT

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Kernel Tuning Toolkit

Typical workflow similar to CUDA/OpenCL

I initialize the tuner for a specified device

I create input/output of the kernel

I create kernel

I create a tuning space for the kernel

I assign input/output to the kernel

I execute or tune the kernel

KTT creates a layer between an application and OpenCL/CUDA.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

KTT Sample Code

// Initialize tuner and kernel

ktt::Tuner tuner(platformIndex , deviceIndex);

const ktt:: DimensionVector ndRangeDimensions(inputSize);

const ktt:: DimensionVector workGroupDimensions (128);

ktt:: KernelId foo = tuner.addKernelFromFile(kernelFile , "foo",

ndRangeDimensions , workGroupDimensions);

// Creation and assign of kernel arguments

ktt:: ArgumentId a = tuner.addArgumentVector(srcA ,

ktt:: ArgumentAccessType :: ReadOnly);

ktt:: ArgumentId b = tuner.addArgumentVector(srcB ,

ktt:: ArgumentAccessType :: WriteOnly);

tuner.setKernelArguments(foo ,

std::vector <ktt::ArgumentId >{a, b});

// Addition of tuning variables

tuner.addParameter(foo , "UNROLL", {1, 2, 4, 8});

tuner.tuneKernel(foo);

tuner.printResult(foo , "foo.csv", ktt:: PrintFormat ::CSV);

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Kernel Tuning Toolkit

In practise, we usually need more functionality
I tuning parameters can affect parallelism configuration (e.g.

block and grid size in CUDA)
I by pre-defined functions (e.g. multiply specified block/grid

dimmension)
I by lambda function provided by programmer

I some combinations of tuning parameters can be discarded a
priori
I lambda functions constraining tuning space

I KTT can check, if tuned kernel runs successfully
I automatic check of successful execution
I user can provide reference kernel, or reference class, and

comparing function, KTT compares results automatically

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Advanced features of KTT

Cross-kernel optimizations

I the user can add specific code for kernels execution into
launchComputation method

I the code may query tuning parameters

I the code may call multiple kernels

I allows tuning code parameters with wider influence, as tuned
kernels do not need to be functionally equivalent

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Reduction

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Advanced features of KTT

Dynamic autotuning

I dynamic tuning performs autotuning during application
runtime

I KTT can execute the best kernel known so far to perform
kernel’s task

I or try different combination of tuning parameters before the
execution

I tuning is transparent for the application

I tuning can be queried in any time

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Dynamic Tuning Sample

// Main application loop

while(application_run) {

...

if (tuningRequired)

tuner.tuneKernelByStep(foo , {b});

else {

ktt:: ComputationResult best =

tuner ->getBestComputationResult(foo);

tuner.runKernel(compositionId ,

best.getConfiguration (), {b});

}

...

}

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Dynamic tuning

Dynamic autotuning is challenging
I when the kernel is executed, there must be no significant

performance drop
I automatic memory management has to move only necessary

data
I KTT has to support asynchronous execution of

I memory copy, host and device code execution
I simultaneous execution of multiple kernels

Parallelism in KTT
I intra-manipulator: parallelism inside launchComputation

method
I global parallelism: asynchronous execution of multiple

launchComputation instances

During autotuning, global parallelism is disabled.
Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

KTT Architecture

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Benchmark set

Benchmark dimensions configurations
BiCG 11 5,122
Convolution 10 5,248
Coulomb 3D 8 1,260
GEMM 15 241,600
GEMM batched 11 424
Hotspot 6 480
Transpose 9 10,752
N-body 8 9,408
Reduction 5 175
Fourier 6 360

Table: A list of the benchmarks and the size and dimensionality (i.e., the
number of tuning parameters) of their tuning spaces.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Testbed setup

Device Architecture SP perf. BW
2× Xeon E5-2650 Sandy Bridge 512 102
Xeon Phi 5110P Knights Corner 2,022 320
Tesla K20 Kepler 3,524 208
GeForce GTX 750 Maxwell 1,044 80
GeForce GTX 1070 Pascal 5,783 256
Radeon RX Vega 56 GCN 5 8,286 410
GeForce RTX 2080Ti Turing 11,750 616

Table: Devices used in our benchmarks. Arithmetic performance (SP
perf.) is measured in single-precision GFlops, memory bandwidth (BW) is
measured in GB/s.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Performance

Benchmark 2080Ti 1070 750 K20 Vega56 E5-2650 5110P
BiCG 88.3% 84.7% 81.7% 50.4% 75.6% 46.0% 6.45%
Coulomb 3D 91.8% 91.4% 84.3% 43.2% 65.3% 74.2% 22.2%
GEMM 79.8% 80.6% 91.1% 51.3% 96.3% 37.5% 19.7%
GEMM batched 86.8% 81.4% 90.0% 49.6% 86.0% 27.7% 20.9%
Transpose 87.1% 80.2% 86.3% 64.2% 86.1% 62.5% 10.0%
N-body 89.7% 86.6% 87.7% 40.6% 82.2% 77.7% 29.9%
Reduction 68.7% 87.5% 89.4% 64.1% 71.6% 33.9% 10.1%
Hotspot 1.35× 1.94× 2.06× 1.4× 2.88× 1.2× 12.8×

Table: Performance of benchmarks autotuned for various hardware
devices. The performance relative to the theoretical peak of devices.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Performance portability

GPU→GPU
Benchmark avg±stdev worst failed
BiCG 89.0%±12.3% 57% 1
Convolution 79.4%±14.9% 55% 3
Coulomb 3D 95.8%±6.5% 67% 0
GEMM 83.6%±16.4% 31% 0
GEMM batched 85.4%±17% 37% 0
Hotspot 80.3%±17.5% 46% 3
Transpose 85.0%±21.9% 8% 3
N-body 78.8%±24.2% 2% 3
Reduction 88.4%±24% 12% 3
Fourier 74.5%±30% 31% 0

Table: Relative performance of benchmarks ported across GPU
architectures without re-tuning.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Dynamic autotuining of Batched GEMM

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

kernel perf.
perf. with overhead

offline tuned

Figure: Batched GEMM on GeForce GTX 1070.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

Dynamic autotuining of Batched GEMM

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

kernel perf.
perf. with overhead

offline tuned

Figure: Batched GEMM on Tesla K20.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

3D Fourier Reconstruction

Figure: Performance of dynamic tuned 3D Fourier reconstruction.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

3D Fourier Reconstruction

2080Ti 1070 750 680
2080Ti 100% 99% 31% 49%
1070 99% 100% 31% 50%
750 43% 67% 100% 94%
680 60% 72% 71% 100%

Table: Performance portability of 3D Fourier reconstruction with
128× 128 samples.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

3D Fourier Reconstruction

128x128 91x91 64x64 50x50 32x32
128x128 100% 100% 77% 70% 32%
91x91 100% 100% 76% 68% 33%
64x64 94% 94% 100% 91% 67%
50x50 79% 78% 98% 100% 86%
32x32 65% 67% 80% 92% 100%

Table: Performance portability on GeForce GTX1070 for different
samples.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

3D Fourier Reconstruction

best runtime tuning 50 tuning full
2080Ti 1m40s 88% ± 3% 54%
1070 5m49s 96% ± 2% 79%
750 16m59s 92% ± 4% 72%
680 15m12s 94% ± 2% 75%

Table: The relative performance of dynamically-tuned 3D Fourier
reconstruction.

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

What do we use KTT for?

So we have developed fancy autotuning framework...

I which is interesting work anyway, but we can use it also for
something more...

In GPU-accelerated applications

I used during program development (exploration of possible
optimizations)

I manually added into applications to enable dynamic tuning

I used in cryo-electron microscopy suite Xmipp

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

What do we use KTT for?

Some more theoretical (but still with clear practical usage) tasks

I searching tuning space

I scheduling autotuning

I interoperability with other tools

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

What do we use KTT for?

Searching tuning space

I important to speed-up autotuning convergence

I discrete many-dimensional non-convex spaces are hard to
optimize with mathematical optimization

I as spaces changes with hardware or input, it is also hard task
for machine learning

I novel approach: ML used for relating tuning parameters to
performance counters, expert system used steer optimization
method

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

What do we use KTT for?

Scheduling autotuning

I to autotune or not to autotune – that is the question

I if we perform finite number of computation for given
combination of data and hardware, it is not clear whether
autotuning improves overall time

I to decide the question, we need to know (predict)
I overhead of tuning process (number of tuning steps × average

time of tuned kernel with re-compilation)
I expected speed of tuned kernel

I we believe it is possible to guess from historical data and
performance counters

Jǐŕı Filipovič et al. Autotuning

Introduction
Kernel Tuning Toolkit

Evaluation
Related Activities

What do we use KTT for?

Interoperability

I programming heterogeneous nodes is generaly challenging:
distribution of work among multiple accelerators and CPU,
data distribution

I we work on connection of KTT with StarPU
I StarPU implements task-based parallelism, it executes DAG of

data-dependent tasks on heterogeneous nodes
I alternative implementation of tasks
I StarPU schedules data movement and task execution across

the node

I KTT makes tasks tunable

Jǐŕı Filipovič et al. Autotuning

	Introduction
	Kernel Tuning Toolkit
	Evaluation
	Related Activities

