

PV198 – One-chip Controllers ADC

Content

- 1. What is ADC
- 2. What is it used for
- 3. How does it work
- 4. FRDM-K66F ADC
- 5. Joystick
- 6. Application

What is ADC

- ADC Analog to Digital Converter
- Converting analog signal into digital values

What is it used for

- Everything that needs to transfer analog values into digital values
- Audio
- Sensors
- Video

. . .

Demo – Heartbeat sensor

Demo – Heartbeat sensor

How does it work

https://www.allaboutcircuits.com/technical-articles/understanding-the-dynamic-range-specification-of-an-ADC/

PV198 – One-chip Controllers, ADC / Dávid Danaj

7

How does it work – Resolution

- Smallest incremental voltage that can be recognized and thus causes a change in the digital output
- Expressed as the number of bits output by the ADC

How does it work – Resolution

https://www.electricaltechnology.org/2019/02/analog-to-digital-converter-adc.html

How does it work – Quantization error

- Difference between analog value and rounded digital value (rounding error)
 - Change in analog value smaller than the step of the digital value is ignored
 - The quantization error is 0.5 LSB for the ADC

How does it work – Sampling rate

- Nyquist–Shannon theorem
 - ADC sampling frequency must be at least twice the analog signal frequency

How does it work – Dynamic range

https://www.nxp.com/docs/en/application-note/AN5250.pdf

Linear successive approximation algorithm

Linear successive approximation algorithm

Example: Vin = 2.1 V Vref = 3.3 V 3-bit resolution	Step	Digital code	DAC output	Comparator output	Digital output
	1	100	1.65 V	1	1 00
	2	110	2.475 V	0	10 0
	3	101	2.0625	1	101

Linear successive approximation algorithm

FRDM-K66F ADC

- Linear successive approximation algorithm with up to 16-bit resolution
- Single or continuous conversion
- Can work in low-power modes
- HW trigger to start conversion
- HW average function
- Conversion complete interrupt
- DMA support

Joystick

Connection to board (do not use 5V!!!)

3.6.1.1 16-bit ADC operating conditions Table 31. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ.1	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	_
ΔV_{DDA}	Supply voltage	Delta to V_{DD} ($V_{DD} - V_{DDA}$)	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL	_	31/32 * VREFH	V	—
		All other modes	VREFL	_	VREFH		
<u>_</u>	Input	- 10 bit mode		0	10		

Figure 26. FRDM-K66F I/O header pinout

Figure 26. FRDM-K66F I/O header pinout

Application

- Create an application that reads position of the joystick (both axes) using ADC0 and ADC1
- Print position to terminal

Application

- Write periodic check into while loop to test if measurement is finished
- Use PIT to initialize read only once a second
- Either:
 - Write ADC read only using Interrupts
 - React to joystick button press

Steps

- Initialize (MCUXpresso Configuration Tools help here)
 - Pins (route ADC channels to pins)
 - Clocks
 - Peripherals (configure ADC0 and ADC1)
- Write application code (print position of the joystick)

Homework

- Use joystick to control LEDs (change intensity when joystick moves – use PWM)
- Use only ADC1 peripheral, with multiple channels
- Warning: ADC has special handling of interrupt flags