

PV198 – One-chip Controllers

1

I2C

PV198 – One-chip Controllers, I2C / Dávid Danaj

Content

- 1. What is I2C
- 2. What is it used for
- 3. How does it work
- 4. FRDM-K66F I2C
- 5. Accelerometer & Magnetometer
- 6. Application

What is I2C

- I2C Inter-Integrated Circuit
- Invented in 1982 by Philips Semiconductor (now NXP Semiconductors)

What is it used for

Intra-board communication

- Peripherals
- Sensors

How does it work

- 2 wires (Clock SCL, Data SDA) pulled high
- Multi-master & multi-slave
- 100 kbit/s 5 Mbit/s
- 7-bit addressing / 10-bit addressing
- Synchronous
- Half-duplex

How does it work – Scheme

How does it work – Message

K66 Sub-Family Reference Manual, Figure 58-2.

FRDM-K66F I2C

- 4 I2C modules
- Address match wakeup in low power modes
- SMBus support
- DMA support
- Methods to use:
 - BOARD_I2C_Receive
 - BOARD_I2C_Send

Accelerometer & Magnetometer

- FXOS8700CQ <u>link</u>
- 3-axis, linear accelerometer + 3-axis, magnetometer combined into a single package

Accelerometer & Magnetometer

Connected to I2C bus and 2 GPIO signals

FXOS8700CQ	K66F Connection
SCL	PTD8/LLWU_P24/ I2C0_SCL /LPUART0_RX/FB_A16
SDA	PTD9/I2C0_SDA/LPUART0_TX/FB_A17
INT1	PTC17/CAN1_TX/UART3_TX/ENET0_1588_TMR1/FB_CS4/FB_TSIZ0/FB_BE31_24_BLS7_0/SDRAM _DQM3
INT2	PTC13/UART4_CTS/FTM_CLKIN1/FB_AD26/SDRAM_D26/TPM_CLKIN1

Table 6. Accelerometer and magnetometer signals connection

Freedom FRDM-K66F Development Platform User's Guide, Table 6.

Application – Template

- startInitialization (check sensor ID, wake-up)
- setupOrientationDetection (enable detection, interrupts, etc.) Homework
- *finishInitialization* (setup frequency, activate sensor)

Application

- Create an application that reads accelerometer output data registers
- Print register values into console

Bonus:

Calculate tilt angle from received values

Homework

- Create an application that detects orientation of the board (the same way as mobile phones do)
- Use the feature of the sensor do not calculate it in the MCU from XYZ register values
- Use interrupt from sensor
- Print current orientation into console when orientation of the board changes

Homework

- Write your code into method setupOrientationDetection()
- Link to Application note: AN4068