

PV198 – One-chip Controllers

1

UART

PV198 – One-chip Controllers, SPI / Dávid Danaj

Content

- 1. What is UART
- 2. What is it used for
- 3. How does it work
- 4. FRDM-K66F UART
- 5. USB to UART Bridge
- 6. Application

What is UART

UART – Universal Asynchronous Receiver-Transmitter

Serial communication

What is it used for

Intra-board communication

- Sensors
- GPS
- Bluetooth
- Modems

How does it work – Scheme

How does it work

- 2 wires (Receive RX, Transmit TX)
- 1 to 1 communication
- Works without clock signal
- Requires same settings for devices (baud rate, parity, etc.)
- Asynchronous
- Full-duplex

How does it work – Message

$\operatorname{START}_{BIT}$ BIT 0 (BIT 1) BIT 2 (BIT 3) BIT 4 (BIT 5) BIT 6 (BIT 7) STOP START BIT (BIT 7) BIT (

Figure 59-14. Eight bits of data with LSB first

K66 Sub-Family Reference Manual

PV198 – One-chip Controllers, SPI / Dávid Danaj

How does it work – Message Packet 0 to 1 1 to 2 1 start 5 to 9 data bits parity stop bits bit bits Data Frame

http://www.circuitbasics.com/basics-uart-communication/

PV198 – One-chip Controllers, SPI / Dávid Danaj

How does it work – Settings

- Baud rate (typical 9600 115200)
- Number of data bits (8 9)
- Number of stop bits (1 2)
- Parity bit (disabled / odd / even)

FRDM-K66F UART

- 5 UART modules
- RS-485 support
- Hardware flow control (RTS/CTS)
- 9-bit UART support
- Interrupts
- DMA support
- TX/RX FIFO

USB to UART Bridge

- Silicon Labs <u>link</u>
- Might be needed to install driver

Application

- Create an application that reads data from UART and sends the data back to PC
- Update your code to rotate received character +2

Application – Step-by-step guide

- 1. Setup pin routing (done in template)
- 2. Setup UART peripheral (done in template)
- 3. Connect "USB to UART bridge" to a board (based on pin routing)
- 4. When "USB to UART bridge" is connected to a PC, it appears in Device Manage in "Ports (COM & LPT)" as "COM" port.
- 5. Open terminal application (or Terminal view in MCUXpresso IDE) and connect to correct COM port with your UART settings

Application – Step-by-step guide

Application – Step-by-step guide

γ ροιπτ.	🔀 Launch Terminal — 🗆 🗙	
*/	Choose terminal: Serial Terminal 🗸	8
s();	Serial port: COM14 ~	×
	Baud rate: 115200 V	
ems 📮 Console 😴 Terminal 🔉 📋 Memory 🖉 Heap and	Data size: 8 🗸 🗸 🗸	Call Hierarchy
	Parity: None ~	
	Stop bits: 1	
	Encoding: Default (ISO-8859-1)	
	OK Cancel	

PV198 - One-chip Controllers, SPI / Dávid Danaj

Application 2

- Open Python3
- Use import Serial
- Using Serial send string to device
- Check if device correctly encrypted string

Homework

- On device side you will receive 3 characters
- These 3 characters represent RGB values in order
- Your goal is to set LED color correctly according to received values