
A Lightweight Algorithm for
Steiner Tree Problem Based on
Distance Network Heuristic

Miroslav Kadlec
1

Contents
● Steiner Minimum Tree
● Motivation
● Algorithms

● Distance Network Heuristic, Takahashi, Zelikovsky
● DNH optimizations
● Experiments

● ČEZ networks
● SteinLib

2

Steiner (minimum) tree in graphs
● Inputs

● graph G=(N, E)
● set of terminals S N⊆
● weights assigned to edges

● Steiner Tree = any tree, that spans S
● Steiner Minimum Tree (SMT) = the ST of minimum total weight
● Minimum Spanning Tree?

3

Steiner (not minimum) tree in a graph

4

Motivation
● Design communication lines between major elements of

the power grid (substations)
● Fiber optics added to selected power lines
● Deploment cost vary
● Some communication lines already deployed
● Overall cost should be minimized

5

Power grid as a graph
● Graph G = (N, E)

● Nodes:
● stations
● topo. points (deg. > 2)
● sem. points (deg. > 1)

● Edges:
● power lines
● existing comm. lines

● Weights based on:
● line length
● placement
● current state

6

Steiner trees for communication lines planning
● Existing optics

– cost/weight to 0
– we can utilize it to shorten runtime

● Use-case = iterative use
● incremental growth of the communication

network
● solutions for various scenarios
● variable circumstances
● => need for fast algorithm

7

Algorithms & heuristics
● Steiner Minimum Tree - NP-hard problem
● Preprocessing – reduce number of nodes and edges
● Solving:

● Distance Network Heuristic
● Takahaski algorithm
● Zelikovsky algorithm

8

Distance Network Heuristic
● Based on Distance Network (DN)

● Paths between all pairs of terminals
● Fast execution, basic quality
● Process

1) Compute DN
2) Compute MST using paths
3) Mark all used nodes as terminals
4) Recompute DN and MST with paths again

9

Takahaski algorithm
● Based on Dijkstra algorithm
● Fastest execution, lowest quality
● Process

1) Select a random terminal as a partial solution
2) While not all terminals are connected

a) Find closest disconnected terminal
b) Add to the solution

10

Zelikovsky algorithm
● Based on searching beneficial stars (incremental improvement)

● Star = 1 nonterminal connected to 3 terminals
● Win function – quantifies benefit of using each star

● Slower execution, higher quality
● Process

1) Start with a basic DNH
2) Construct Zelikovsky Tree
3) For each nonterminal

a) For each triplet of terminals
i) Evaluate Win of such star

4) Add center nonterminal of the best Win star to terminals and go to 2)
5) Recompute DNH with all added nonterminals

11

12

Tuned DNH - assumptions
● We expected DNH to be a good trade-off between

runtime and solution quality
● DNH is simple approach and can be optimized to run

faster without quality loss
● Centrality might be incorporated in DNH to increase

quality

13

Tuned DNH (1/4) - DN & MST alg.
● Distance network computation

● Floyd-Warshall
● Dijkstra algorithm

● DNH needs distances between pairs of terminals only
– for |S| << |N| outperforms Floyd-Warshall even in basic implementation

● Can run in parallel
● We can limit the searching depth (hopefully without quality loss)

● Minimum Spanning Tree
● Prim’s algorithm - faster than Kruskal’s

14

Tuned DNH (2/4) - Limited search depth
● Longer paths (# edges) are usually more expensive

→ low probability for the final solution
● Risk1: Outlying terminals

● terminals not distributed evenly
● outliers may not be connected
● Solution1: limit given by

number of terminals met

15

Tuned DNH – limited search depth
● Risk2: Isolated clusters

● larger than „terminals-met“ limit
● the terminals only „find“ other

of the same cluster
● Solution2: Force the Dijkstra

algorithm to “meet” existing optics
before ending

16

Tuned DNH (3/4) - shrinked optics subgraph
● Risk: Existing optics edges are searched first

● Solution: Shrinked optics
● 1) Store the path to closest node with existing optics
● 2) Update the distance network

● Eliminates the disconnections within the steiner tree while
reducing the runtime of the algorithm

17

Tuned DNH (4/4) - Centrality
● Higher centrality = higher

probability for a path to be
shared

● number of shortest paths
using given node

● Price discounts for paths with high centrality

18

Comparison
● Datasets:

● Subgraphs of ČEZ power distribution network
● Existing optics, relatively sparse

● SteinLib
● Open-source dataset of graphs for SMT

19

Algorithms comparison – solution quality

20

Algorithms comparison – solution quality

21

Algorithms comparison – execution time

22

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

