

A Lightweight Algorithm for Steiner Tree Problem Based on Distance Network Heuristic

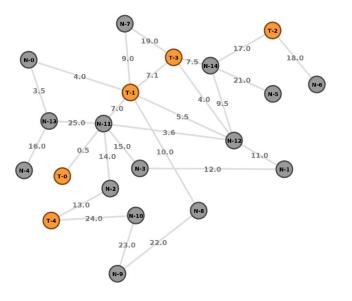
Miroslav Kadlec

Contents

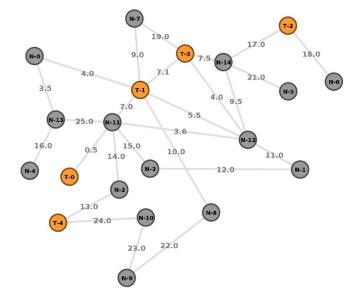
- Steiner Minimum Tree
- Motivation
- Algorithms
 - Distance Network Heuristic, Takahashi, Zelikovsky
- DNH optimizations
- Experiments
 - ČEZ networks
 - SteinLib

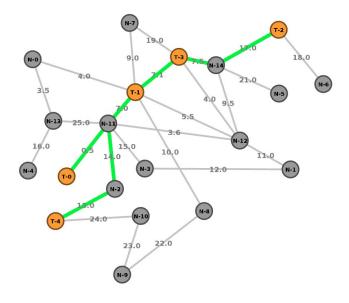
Steiner (minimum) tree in graph

- <u>Inputs</u>
 - **<u>graph</u>** G=(N, E)
 - set of <u>terminals</u> $S \subseteq N$
 - weights assigned to edges
- <u>Steiner Tree</u> = any tree, that spans S
- **<u>Steiner Minimum Tree (SMT)</u>** = the ST of minimum total weight
- Minimum Spanning Tree?



Steiner (not minimum) tree in a graph





Motivation

- Design communication lines between major elements of the power grid (substations)
 - Fiber optics added to selected power lines
 - Deploment cost vary
 - Some communication lines already deployed
 - Overall cost should be minimized

Power grid as a graph

- Graph G = (N, E)
 - Nodes:
 - stations
 - topo. points (deg. > 2)
 - sem. points (deg. > 1)
 - Edges:
 - power lines
 - existing comm. lines
 - Weights based on:
 - · line length
 - · placement
 - current state

Steiner trees for communication lines planning

• Existing optics

cost/weight to 0

we can utilize it to shorten runtime

- <u>Use-case = iterative use</u>
 - incremental growth of the communication network
 - solutions for various scenarios
 - variable circumstances
 - => <u>need for fast algorithm</u>

Algorithms & heuristics

- Steiner Minimum Tree NP-hard problem
- Preprocessing reduce number of nodes and edges
- Solving:
 - Distance Network Heuristic
 - <u>Takahaski algorithm</u>
 - Zelikovsky algorithm

Distance Network Heuristic

- Based on Distance Network (DN)
 - Paths between all pairs of terminals
- Fast execution, basic quality
- Process
 - 1) Compute DN
 - 2) Compute MST using paths
 - 3) Mark all used nodes as terminals
 - 4) Recompute DN and MST with paths again

Takahaski algorithm

- Based on Dijkstra algorithm
- Fastest execution, lowest quality

Process

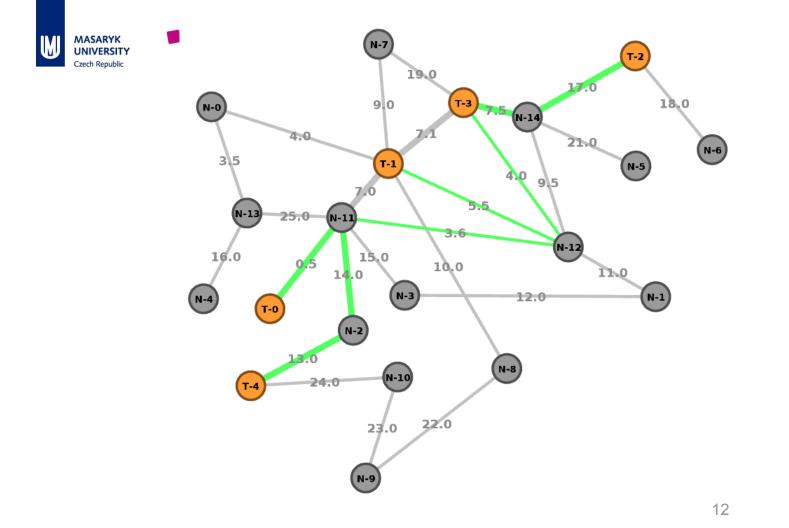
- 1) Select a random terminal as a partial solution
- 2) While not all terminals are connected
 - a) Find closest disconnected terminal
 - b) Add to the solution

Zelikovsky algorithm

- Based on searching beneficial stars (incremental improvement)
 - Star = 1 nonterminal connected to 3 terminals
 - · Win function quantifies benefit of using each star
- Slower execution, higher quality

Process

- 1) Start with a basic DNH
- 2) Construct Zelikovsky Tree
- 3) For each nonterminal
 - a) For each triplet of terminals
 - i) Evaluate Win of such star
- 4) Add center nonterminal of the best Win star to terminals and go to 2)
- 5) Recompute DNH with all added nonterminals



Tuned DNH - assumptions

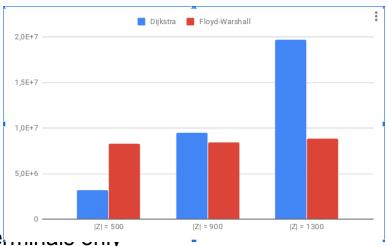
- We expected DNH to be a <u>good trade-off</u> between runtime and solution quality
 - DNH is simple approach and can be <u>optimized to run</u> <u>faster</u> without quality loss
 - <u>Centrality</u> might be incorporated in DNH to increase quality

Tuned DNH (1/4) - DN & MST alg.

- Distance network computation
 - Floyd-Warshall
 - Dijkstra algorithm
 - DNH needs distances between pairs of te

for |S| << |N| outperforms Floyd-Warshall even in basic implementation

- Can run in parallel
- We can limit the searching depth (hopefully without quality loss)
- Minimum Spanning Tree
 - Prim's algorithm faster than Kruskal's



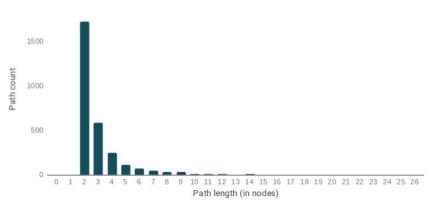
Tuned DNH (2/4) - Limited search depth

• Longer paths (# edges) are usually more expensive

 \rightarrow low probability for the final solution

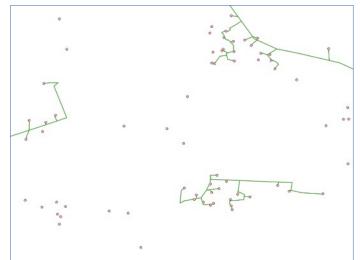
- <u>Risk1: Outlying terminals</u>
 - terminals not distributed evenly
 - outliers may not be connected
 - <u>Solution1</u>: limit given by
 number of terminals met

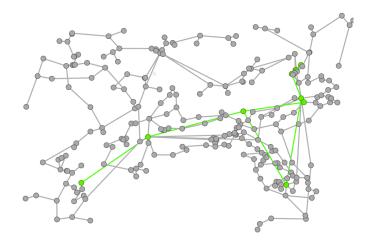
Number of paths of given length in the final solution



Tuned DNH – limited search depth

- <u>Risk2: Isolated clusters</u>
 - larger than "terminals-met" limit
 - the terminals only "find" other of the same cluster
 - <u>Solution2</u>: Force the Dijkstra algorithm to "meet" existing optics before ending





Tuned DNH (3/4) - shrinked optics subgraph

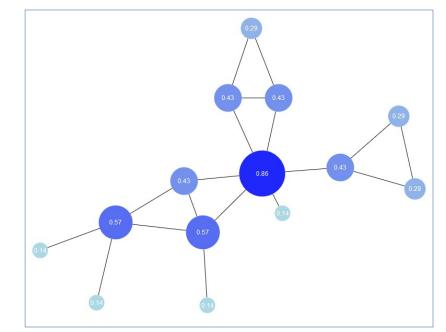
- <u>Risk: Existing optics edges are searched first</u>
 - Solution: Shrinked optics
 - 1) Store the path to closest node with existing optics
 - 2) Update the distance network

```
if (OPT(z1) + OPT(z2) < Cd((z1, z2))) {
    Cd((z1, z2)) = OPT(z1) + OPT(z2)
}</pre>
```

• Eliminates the disconnections within the steiner tree while reducing the runtime of the algorithm

Tuned DNH (4/4) - Centrality

- Higher centrality = higher probability for a path to be <u>shared</u>
- number of shortest paths using given node

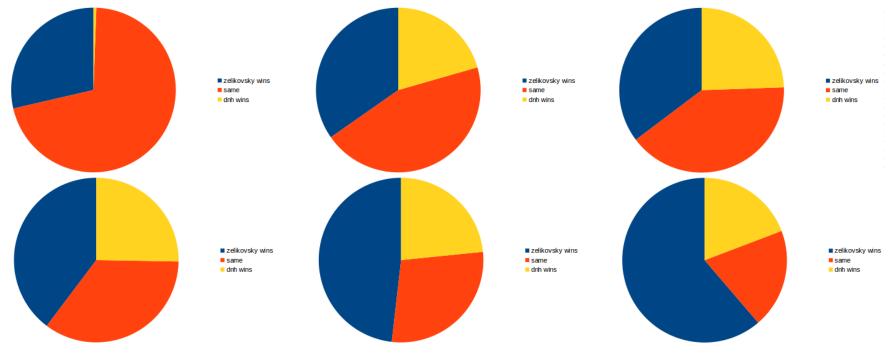


• **Price discounts** for paths with high centrality

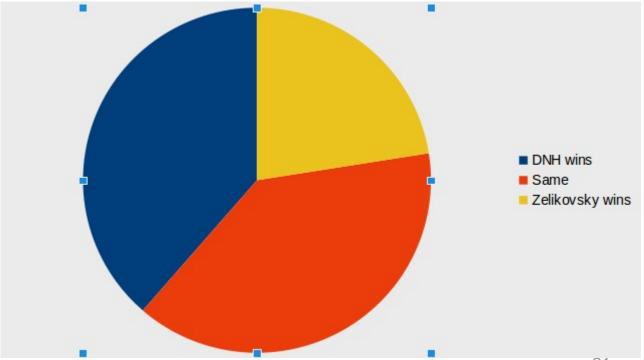
Comparison

- Datasets:
 - Subgraphs of ČEZ power distribution network
 - Existing optics, relatively sparse
 - SteinLib
 - Open-source dataset of graphs for SMT

Algorithms comparison – solution quality



Algorithms comparison – solution quality



Algorithms comparison – execution time

