IA168 — Problem set 3

Problem 1 [5 points]

Consider the following two-player strategic-form game G:

$$\begin{array}{c|ccc} X & Y \\ \hline A & (5,5) & (-1,6) \\ B & (6,-1) & (1,1) \\ \end{array}$$

a) In G_{irep}^{avg} , find a subgame-perfect equilibrium whose outcome is (4.5, 4.2).

b) Calculate $\inf_{s \in SPE(G_{irep}^{avg})} u_1(s)$.

c) Calculate $\sup_{s \in SPE(G_{iren}^{avg})} u_1(s)$.

Justify your reasoning.

Problem 2 [4 points]

Consider the following two-player strategic-form game G, with real-valued parameters x, y:

The players will play an infinite number of rounds, with a discount factor δ . Both will play the following strategy: If only B's have been played so far (i.e., the current history lies in $(B, B)^*$), then the player plays B; otherwise he plays A. Let s denote the corresponding strategy profile.

Find all pairs $(x, y) \in \mathbb{R} \times \mathbb{R}$ for which $\inf \{ \delta \in \mathbb{R} : 0 < \delta < 1 \land s \text{ is a SPE in } G_{irep}^{\delta} \} = 3/5$. Justify your reasoning.

Problem 3 [4 points]

Consider the incomplete-information game $G = (\{1, 2\}, (\{A, B, C\}, \{D, E, F\}), (\{P, Q\}, \{R, S\}), (u_1, u_2)\}),$ where u_1, u_2 are given by the following matrices:

$u_1(-,-,P)$	D	E	F	$u_1(-,-,Q)$	D	E	F
A	6	5	4	A	6	5	4
B	1	2	5	B	1	2	3
C	1	2	3	C	1	5	3
$u_2(-,-,R)$	D	E	F	$u_2(-,-,S)$	D	E	F
$\frac{u_2(-,-,R)}{A}$	D 6	$\frac{E}{1}$	$\frac{F}{1}$	$\frac{u_2(-,-,S)}{A}$	D 1	$\frac{E}{5}$	$\frac{F}{1}$
$\frac{u_2(-,-,R)}{A}$	$\begin{array}{c} D \\ 6 \\ 5 \end{array}$	E 1 1	F 1 1	$\begin{array}{c c} u_2(-,-,S) \\ \hline A \\ B \end{array}$	D 1 2	$\frac{E}{5}$	$\frac{F}{1}$
$\frac{u_2(-,-,R)}{A}$	$ \begin{array}{c c} D \\ 6 \\ 5 \\ 4 \end{array} $	E 1 1 1 1	$\frac{F}{1}\\1\\2$	$\begin{array}{c c} u_2(-,-,S) \\ \hline A \\ B \\ C \\ \end{array}$	$egin{array}{c} D \\ 1 \\ 2 \\ 3 \end{array}$	$E \over 5 \\ 4 \\ 3$	$\begin{array}{c}F\\1\\2\\3\end{array}$

For each $X \in \{A, B, C, D, E, F\}$, find all strictly, weakly, and very weakly dominant strategies in game G_{-X} , where G_{-X} is created from G by deleting action X.

Problem 4 [7 points]

Consider the following Bayesian game: There are two players, they have two actions A, B, and they have two types S, R. Type S means the player wants to play the same action as the other player, R means he wants to play the other action. Specifically, the gain is +3 if this goal is achieved, plus there is bonus +1 for playing action A.

Formally: $G_P = (\{1,2\}, (\{A,B\}, \{A,B\}), (\{S,R\}, \{S,R\}), (u_1, u_2), P)$, where u_1, u_2 are given by the following matrices:

Let $BNE(G_P)$ denote the set of Bayesian Nash equilibria in game G_P . Moreover, let UV|XY denote the strategy profile ({(S,U), (R,V)}, {(S,X), (R,Y)}) (i.e., player 1 plays U if he is S and he plays V if he is R; similarly for player 2). Find a distribution P such that:

- a) $BNE(G_P) = \emptyset;$
- b) $BNE(G_P) = \{AA|AB, AB|AA\};$
- c) $BNE(G_P) = \{AB|AB\};$
- d) $BNE(G_P) = \{AB|AB, BA|BA\};$
- e) $BNE(G_P) = \{AA|AB\};$
- f) $|BNE(G_P)| = 5.$

Furthermore, P is required to satisfy that for every player $i \in \{1, 2\}$ and every type $t \in \{S, R\}$, the probability that i is of type t is positive.