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Lecture Plan
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Lecture 2: Word Vectors, Word Senses, and Neural Network Classifiers
1. Course organization (2 mins)
2. Finish looking at word vectors and word2vec (10 mins)
3. Optimization basics (8 mins)
4. Can we capture the essence of word meaning more effectively by counting? (8m)
5. The GloVe model of word vectors (8 min)
6. Evaluating word vectors (12 mins)
7. Word senses (6 mins)
8. Review of classification and how neural nets differ (8 mins)
9. Introducing neural networks (14 mins)

Key Goal: To be able to read word embeddings papers by the end of class



1. Course Organization

• Come to office hours/help sessions!
• Come to discuss final project ideas as well as the assignments
• Try to come early, often and off-cycle

• TA office hours: 3-hour block on Mon, Tue, Wed, Thu, & Sat, with multiple TAs
• Just show up on Nooks and go to the Welcome room!
• Our friendly course staff will be on hand to assist you

• Chris’s office hours:
• Mon 2–4pm. Book slot on Calendly. You can still come along this coming Monday!

• Week 10:
• We lose a week this year with no exam week, so we need to do final projects sooner
• No lectures in week 10; projects due Tue in week 10; extra project help sessions
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2. Review: Main idea of word2vec

4

• Start with random word vectors
• Iterate through each word in the whole corpus

• Try to predict surrounding words using word vectors: 𝑃 𝑜 𝑐 = !"#(%!"&#)
∑$∈& !"#(%$" &#)

• Learning: Update vectors so they can predict actual surrounding words better
• Doing no more than this, this algorithm learns word vectors that capture 

well word similarity and meaningful directions in a wordspace!

…crisesbankingintoturningproblems… as

𝑃 𝑤!"# | 𝑤!

𝑃 𝑤!"$ | 𝑤!

𝑃 𝑤!%# | 𝑤!

𝑃 𝑤!%$ | 𝑤!



Word2vec parameters and computations
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U                           V 𝑈. 𝑣,- softmax(𝑈. 𝑣,-)
outside             center                     dot product       probabilities

The model makes the same predictions at each position
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We want a model that gives a reasonably high 
probability estimate to all words that occur in the 
context (at all often)

“Bag of words” model!



Word2vec maximizes objective function by 
putting similar words nearby in space
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3. Optimization: Gradient Descent

• To learn good word vectors: We have a cost function 𝐽 𝜃 we want to minimize
• Gradient Descent is an algorithm to minimize 𝐽 𝜃 by changing 𝜃
• Idea: from current value of 𝜃, calculate gradient of 𝐽 𝜃 , then take small step in the 

direction of negative gradient. Repeat.
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Note: Our
objectives
may not 
be convex
like this L

But life turns 
out to be 
okay J



• Update equation (in matrix notation):

• Update equation (for a single parameter):

• Algorithm:

Gradient Descent

𝛼 = step size or learning rate
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Stochastic Gradient Descent

• Problem: 𝐽 𝜃 is a function of all windows in the corpus (often, billions!)
• So                 is very expensive to compute

• You would wait a very long time before making a single update!

• Very bad idea for pretty much all neural nets!
• Solution: Stochastic gradient descent (SGD)
• Repeatedly sample windows, and update after each one, or each small batch

• Algorithm:
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Stochastic gradients with word vectors! [Aside]

• Iteratively take gradients at each such window for SGD
• But in each window, we only have at most 2m + 1 words, 

so                  is very sparse!
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Stochastic gradients with word vectors!

• We might only update the word vectors that actually appear!

• Solution: either you need sparse matrix update operations to 
only update certain rows of full embedding matrices U and V, 
or you need to keep around a hash for word vectors

• If you have millions of word vectors and do distributed 
computing, it is important to not have to send gigantic 
updates around!

[            ]|V|

d
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Rows not columns 
in actual DL 
packages!



2b. Word2vec algorithm family: More details

Why two vectors? à Easier optimization. Average both at the end
• But can implement the algorithm with just one vector per word … and it helps

Two model variants:
1. Skip-grams (SG)

Predict context (“outside”) words (position independent) given center word

2. Continuous Bag of Words (CBOW)
Predict center word from (bag of) context words

We presented: Skip-gram model

Additional efficiency in training:
1. Negative sampling

So far: Focus on naïve softmax (simpler, but expensive, training method)
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The skip-gram model with negative sampling (HW2)

• The normalization term is computationally expensive

• 𝑃 𝑜 𝑐 = !"#(%!"&#)
∑$∈& !"#(%$

" &#)

• Hence, in standard word2vec and HW2 you implement the skip-gram model with 
negative sampling

• Main idea: train binary logistic regressions for a true pair (center word and a word in its 
context window) versus several noise pairs (the center word paired with a random 
word)
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The skip-gram model with negative sampling (HW2)
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• From paper: “Distributed Representations of Words and Phrases and their 
Compositionality” (Mikolov et al. 2013)

• Overall objective function (they maximize): 

• The logistic/sigmoid function: 
(we’ll become good friends soon)

• We maximize the probability 
of two words co-occurring in first log
and minimize probability of noise words



The skip-gram model with negative sampling (HW2)

• Notation more similar to class and HW2:

𝐽./0123456/ 𝒖7, 𝒗8, 𝑈 = − log 𝜎 𝒖7-𝒗8 − ,
9∈{< 23456/= >.=>8/2}

log 𝜎(−𝒖9-𝒗8)

• We take k negative samples (using word probabilities)
• Maximize probability that real outside word appears, 

minimize probability that random words appear around center word

• Sample with P(w)=U(w)3/4/Z, the unigram distribution U(w) raised to the 3/4 power
(We provide this function in the starter code). 

• The power makes less frequent words be sampled more often
15



4. Why not capture co-occurrence counts directly?

Building a co-occurrence matrix X

• 2 options: windows vs. full document 

• Window: Similar to word2vec, use window around 
each word à captures some syntactic and semantic 
information

• Word-document co-occurrence matrix will give 
general topics (all sports terms will have similar 
entries) leading to “Latent Semantic Analysis”
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Example: Window based co-occurrence matrix

17

• Window length 1 (more common: 5–10)
• Symmetric (irrelevant whether left or right context)
• Example corpus: 

• I like deep learning
• I like NLP
• I enjoy flying

counts I like enjoy deep learning NLP flying .

I 0 2 1 0 0 0 0 0

like 2 0 0 1 0 1 0 0

enjoy 1 0 0 0 0 0 1 0

deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1

NLP 0 1 0 0 0 0 0 1

flying 0 0 1 0 0 0 0 1

. 0 0 0 0 1 1 1 0



Co-occurrence vectors
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• Simple count co-occurrence vectors
• Vectors increase in size with vocabulary
• Very high dimensional: require a lot of storage (though sparse)
• Subsequent classification models have sparsity issues à Models are less robust

• Low-dimensional vectors
• Idea: store “most” of the important information in a fixed, small number of 

dimensions: a dense vector
• Usually 25–1000 dimensions, similar to word2vec
• How to reduce the dimensionality?



Classic Method: Dimensionality Reduction on X (HW1)

Singular Value Decomposition of co-occurrence matrix X

Factorizes X into UΣVT, where U and V are orthonormal

Retain only k singular values, in order to generalize.
"𝑋 is the best rank k approximation to X , in terms of least squares. 
Classic linear algebra result. Expensive to compute for large matrices.
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Hacks to X (several used in Rohde et al. 2005 in COALS)
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• Running an SVD on raw counts doesn’t work well

• Scaling the counts in the cells can help a lot
• Problem: function words (the, he, has) are too frequent à syntax has too much 

impact. Some fixes: 
• log the frequencies
• min(X,t), with t ≈ 100
• Ignore the function words

• Ramped windows that count closer words more than further away words
• Use Pearson correlations instead of counts, then set negative values to 0
• Etc.



Interesting semantic patterns emerge in the scaled vectors
Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 13: Multidimensional scaling for nouns and their associated verbs.

Table 10
The 10 nearest neighbors and their percent correlation similarities for a set of nouns, under the COALS-14K model.

gun point mind monopoly cardboard lipstick leningrad feet
1) 46.4 handgun 32.4 points 33.5 minds 39.9 monopolies 47.4 plastic 42.9 shimmery 24.0 moscow 59.5 inches
2) 41.1 firearms 29.2 argument 24.9 consciousness 27.8 monopolistic 37.2 foam 40.8 eyeliner 22.7 sevastopol 57.7 foot
3) 41.0 firearm 25.4 question 23.2 thoughts 26.5 corporations 36.7 plywood 38.8 clinique 22.7 petersburg 52.0 metres
4) 35.3 handguns 22.3 arguments 22.4 senses 25.0 government 35.6 paper 38.4 mascara 20.7 novosibirsk 45.7 legs
5) 35.0 guns 21.5 idea 22.2 subconscious 23.2 ownership 34.8 corrugated 37.2 revlon 20.3 russia 45.4 centimeters
6) 32.7 pistol 20.1 assertion 20.8 thinking 22.2 property 32.3 boxes 35.4 lipsticks 19.6 oblast 44.4 meters
7) 26.3 weapon 19.5 premise 20.6 perception 22.2 capitalism 31.3 wooden 35.3 gloss 19.5 minsk 40.2 inch
8) 24.4 rifles 19.3 moot 20.4 emotions 21.8 capitalist 31.0 glass 34.1 shimmer 19.2 stalingrad 38.4 shoulders
9) 24.2 shotgun 18.9 distinction 20.1 brain 21.6 authority 30.7 fabric 33.6 blush 19.1 ussr 37.8 knees
10) 23.6 weapons 18.7 statement 19.9 psyche 21.3 subsidies 30.5 aluminum 33.5 nars 19.0 soviet 36.9 toes

Table 11
The 10 nearest neighbors for a set of verbs, according to the COALS-14K model.

need buy play change send understand explain create
1) 50.4 want 53.5 buying 63.5 playing 56.9 changing 55.0 sending 56.3 comprehend 53.0 understand 58.2 creating
2) 50.2 needed 52.5 sell 55.5 played 55.3 changes 42.0 email 53.0 explain 46.3 describe 50.6 creates
3) 42.1 needing 49.1 bought 47.6 plays 48.9 changed 40.2 e-mail 49.5 understood 40.0 explaining 45.1 develop
4) 41.2 needs 41.8 purchase 37.2 players 32.2 adjust 39.8 unsubscribe 44.8 realize 39.8 comprehend 43.3 created
5) 41.1 can 40.3 purchased 35.4 player 30.2 affect 37.3 mail 40.9 grasp 39.7 explained 42.6 generate
6) 39.5 able 39.7 selling 33.8 game 29.5 modify 35.7 please 39.1 know 39.0 prove 37.8 build
7) 36.3 try 38.2 sells 32.3 games 28.3 different 33.3 subscribe 38.8 believe 38.2 clarify 36.4 maintain
8) 35.4 should 36.3 buys 29.0 listen 27.1 alter 33.1 receive 38.5 recognize 37.1 argue 36.4 produce
9) 35.3 do 34.0 sale 26.8 playable 25.6 shift 32.7 submit 38.0 misunderstand 37.0 refute 35.4 integrate
10) 34.7 necessary 31.5 cheap 25.0 beat 25.1 altering 31.5 address 37.9 understands 35.9 tell 35.2 implement

Table 12
The 10 nearest neighbors for a set of adjectives, according to the COALS-14K model.

high frightened red correct similar fast evil christian
1) 57.5 low 45.6 scared 53.7 blue 59.0 incorrect 44.9 similiar 43.1 faster 24.3 sinful 48.5 catholic
2) 51.9 higher 37.2 terrified 47.8 yellow 37.7 accurate 43.2 different 41.2 slow 23.4 wicked 48.1 protestant
3) 43.4 lower 33.7 confused 45.1 purple 37.5 proper 40.8 same 37.8 slower 23.2 vile 47.9 christians
4) 43.2 highest 33.3 frustrated 44.9 green 36.3 wrong 40.6 such 28.2 rapidly 22.5 demons 47.2 orthodox
5) 35.9 lowest 32.6 worried 43.2 white 34.1 precise 37.7 specific 27.3 quicker 22.3 satan 47.1 religious
6) 31.5 increases 32.4 embarrassed 42.8 black 32.9 exact 35.6 identical 26.8 quick 22.3 god 46.4 christianity
7) 30.7 increase 32.3 angry 36.8 colored 30.7 erroneous 34.6 these 25.9 speeds 22.3 sinister 43.8 fundamentalist
8) 29.2 increasing 31.6 afraid 35.6 orange 30.6 valid 34.4 unusual 25.8 quickly 22.0 immoral 43.5 jewish
9) 28.7 increased 30.4 upset 33.5 grey 30.6 inaccurate 34.1 certain 25.5 speed 21.5 hateful 43.2 evangelical
10) 28.3 lowering 30.3 annoyed 32.4 reddish 29.8 acceptable 32.7 various 24.3 easy 21.3 sadistic 41.2 mormon
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COALS model from
Rohde et al. ms., 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence 



5. Towards GloVe: Count based vs. direct prediction

• LSA, HAL (Lund & Burgess), 
• COALS, Hellinger-PCA (Rohde 

et al, Lebret & Collobert)

• Fast training
• Efficient usage of statistics

• Primarily used to capture word 
similarity

• Disproportionate importance 
given to large counts

• Skip-gram/CBOW (Mikolov et al)
• NNLM, HLBL, RNN (Bengio et 

al; Collobert & Weston; Huang et al; Mnih
& Hinton)

• Scales with corpus size

• Inefficient usage of statistics

• Can capture complex patterns 
beyond word similarity 

• Generate improved performance 
on other tasks
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Ratios of co-occurrence probabilities can encode 
meaning components

Crucial insight: 

x = solid x = water   

large

x = gas

small

x = random   

smalllarge

small large large small

~1 ~1large small

Encoding meaning components in vector differences
[Pennington, Socher, and Manning, EMNLP 2014]



Ratios of co-occurrence probabilities can encode 
meaning components

Crucial insight: 

x = solid x = water   

1.9 x 10-4

x = gas x = fashion

2.2 x 10-5

1.36 0.96

Encoding meaning in vector differences
[Pennington, Socher, and Manning, EMNLP 2014]

8.9

7.8 x 10-4 2.2 x 10-3

3.0 x 10-3 1.7 x 10-5

1.8 x 10-5

6.6 x 10-5

8.5 x 10-2



A: Log-bilinear model:

with vector differences

Encoding meaning in vector differences

Q: How can we capture ratios of co-occurrence probabilities as 
linear meaning components in a word vector space?



Combining the best of both worlds
GloVe   [Pennington, Socher, and Manning, EMNLP 2014]

• Fast training
• Scalable to huge corpora 
• Good performance even with 

small corpus and small vectors



GloVe results

1. frogs
2. toad
3. litoria
4. leptodactylidae
5. rana
6. lizard
7. eleutherodactylus

litoria leptodactylidae

rana eleutherodactylus

Nearest words to
frog:
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6. How to evaluate word vectors?

• Related to general evaluation in NLP: Intrinsic vs. extrinsic
• Intrinsic:

• Evaluation on a specific/intermediate subtask
• Fast to compute
• Helps to understand that system
• Not clear if really helpful unless correlation to real task is established

• Extrinsic:
• Evaluation on a real task
• Can take a long time to compute accuracy
• Unclear if the subsystem is the problem or its interaction or other subsystems
• If replacing exactly one subsystem with another improves accuracy à Winning!
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Intrinsic word vector evaluation

• Word Vector Analogies

• Evaluate word vectors by how well 
their cosine distance after addition 
captures intuitive semantic and 
syntactic analogy questions

• Discarding the input words from the 
search!

• Problem: What if the information is 
there but not linear?

man:woman :: king:?

a:b :: c:?

king

man
woman
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Glove Visualizations
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Glove Visualizations: Company - CEO
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Glove Visualizations: Comparatives and Superlatives
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Analogy evaluation and hyperparameters

Glove word vectors evaluation

33

The total number of words in the corpus is pro-
portional to the sum over all elements of the co-
occurrence matrix X ,

|C | ⇠

X

i j

Xi j =

|X |X

r=1

k

r↵
= kH|X |,↵ , (18)

where we have rewritten the last sum in terms of
the generalized harmonic number Hn,m . The up-
per limit of the sum, |X |, is the maximum fre-
quency rank, which coincides with the number of
nonzero elements in the matrix X . This number is
also equal to the maximum value of r in Eqn. (17)
such that Xi j � 1, i.e., |X | = k

1/↵ . Therefore we
can write Eqn. (18) as,

|C | ⇠ |X |
↵

H|X |,↵ . (19)

We are interested in how |X | is related to |C | when
both numbers are large; therefore we are free to
expand the right hand side of the equation for large
|X |. For this purpose we use the expansion of gen-
eralized harmonic numbers (Apostol, 1976),

Hx,s =
x

1�s

1 � s
+ ⇣ (s) + O(x

�s ) if s > 0, s , 1 ,
(20)

giving,

|C | ⇠
|X |

1 � ↵
+ ⇣ (↵) |X |↵ + O(1) , (21)

where ⇣ (s) is the Riemann zeta function. In the
limit that X is large, only one of the two terms on
the right hand side of Eqn. (21) will be relevant,
and which term that is depends on whether ↵ > 1,

|X | =

(
O(|C |) if ↵ < 1,
O(|C |1/↵ ) if ↵ > 1. (22)

For the corpora studied in this article, we observe
that Xi j is well-modeled by Eqn. (17) with ↵ =
1.25. In this case we have that |X | = O(|C |0.8).
Therefore we conclude that the complexity of the
model is much better than the worst case O(V 2),
and in fact it does somewhat better than the on-line
window-based methods which scale like O(|C |).

4 Experiments

4.1 Evaluation methods

We conduct experiments on the word analogy
task of Mikolov et al. (2013a), a variety of word
similarity tasks, as described in (Luong et al.,
2013), and on the CoNLL-2003 shared benchmark

Table 2: Results on the word analogy task, given
as percent accuracy. Underlined scores are best
within groups of similarly-sized models; bold
scores are best overall. HPCA vectors are publicly
available2; (i)vLBL results are from (Mnih et al.,
2013); skip-gram (SG) and CBOW results are
from (Mikolov et al., 2013a,b); we trained SG†

and CBOW† using the word2vec tool3. See text
for details and a description of the SVD models.

Model Dim. Size Sem. Syn. Tot.
ivLBL 100 1.5B 55.9 50.1 53.2
HPCA 100 1.6B 4.2 16.4 10.8
GloVe 100 1.6B 67.5 54.3 60.3

SG 300 1B 61 61 61
CBOW 300 1.6B 16.1 52.6 36.1
vLBL 300 1.5B 54.2 64.8 60.0
ivLBL 300 1.5B 65.2 63.0 64.0
GloVe 300 1.6B 80.8 61.5 70.3
SVD 300 6B 6.3 8.1 7.3

SVD-S 300 6B 36.7 46.6 42.1
SVD-L 300 6B 56.6 63.0 60.1
CBOW† 300 6B 63.6 67.4 65.7

SG† 300 6B 73.0 66.0 69.1
GloVe 300 6B 77.4 67.0 71.7
CBOW 1000 6B 57.3 68.9 63.7

SG 1000 6B 66.1 65.1 65.6
SVD-L 300 42B 38.4 58.2 49.2
GloVe 300 42B 81.9 69.3 75.0

dataset for NER (Tjong Kim Sang and De Meul-
der, 2003).

Word analogies. The word analogy task con-
sists of questions like, “a is to b as c is to ?”
The dataset contains 19,544 such questions, di-
vided into a semantic subset and a syntactic sub-
set. The semantic questions are typically analogies
about people or places, like “Athens is to Greece
as Berlin is to ?”. The syntactic questions are
typically analogies about verb tenses or forms of
adjectives, for example “dance is to dancing as fly
is to ?”. To correctly answer the question, the
model should uniquely identify the missing term,
with only an exact correspondence counted as a
correct match. We answer the question “a is to b

as c is to ?” by finding the word d whose repre-
sentation wd is closest to wb � wa + wc according
to the cosine similarity.4

2http://lebret.ch/words/
3http://code.google.com/p/word2vec/
4Levy et al. (2014) introduce a multiplicative analogy

evaluation, 3COSMUL, and report an accuracy of 68.24% on
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Analogy evaluation and hyperparameters

• More data helps
• Wikipedia is better than news text!

• Dimensionality
• Good dimension is ~300

34

Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and

Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size

In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s
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Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X

and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with

word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:
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Figure 2: Accuracy on the analogy task as function of vector size and window size/type. All models are
trained on the 6 billion token corpus. In (a), the window size is 10. In (b) and (c), the vector size is 100.

Word similarity. While the analogy task is our
primary focus since it tests for interesting vector
space substructures, we also evaluate our model on
a variety of word similarity tasks in Table 3. These
include WordSim-353 (Finkelstein et al., 2001),
MC (Miller and Charles, 1991), RG (Rubenstein
and Goodenough, 1965), SCWS (Huang et al.,
2012), and RW (Luong et al., 2013).
Named entity recognition. The CoNLL-2003
English benchmark dataset for NER is a collec-
tion of documents from Reuters newswire articles,
annotated with four entity types: person, location,
organization, and miscellaneous. We train mod-
els on CoNLL-03 training data on test on three
datasets: 1) ConLL-03 testing data, 2) ACE Phase
2 (2001-02) and ACE-2003 data, and 3) MUC7
Formal Run test set. We adopt the BIO2 annota-
tion standard, as well as all the preprocessing steps
described in (Wang and Manning, 2013). We use a
comprehensive set of discrete features that comes
with the standard distribution of the Stanford NER
model (Finkel et al., 2005). A total of 437,905
discrete features were generated for the CoNLL-
2003 training dataset. In addition, 50-dimensional
vectors for each word of a five-word context are
added and used as continuous features. With these
features as input, we trained a conditional random
field (CRF) with exactly the same setup as the
CRFjoin model of (Wang and Manning, 2013).

4.2 Corpora and training details

We trained our model on five corpora of varying
sizes: a 2010 Wikipedia dump with 1 billion to-
kens; a 2014 Wikipedia dump with 1.6 billion to-
kens; Gigaword 5 which has 4.3 billion tokens; the
combination Gigaword5 + Wikipedia2014, which

the analogy task. This number is evaluated on a subset of the
dataset so it is not included in Table 2. 3COSMUL performed
worse than cosine similarity in almost all of our experiments.

has 6 billion tokens; and on 42 billion tokens of
web data, from Common Crawl5. We tokenize
and lowercase each corpus with the Stanford to-
kenizer, build a vocabulary of the 400,000 most
frequent words6, and then construct a matrix of co-
occurrence counts X . In constructing X , we must
choose how large the context window should be
and whether to distinguish left context from right
context. We explore the effect of these choices be-
low. In all cases we use a decreasing weighting
function, so that word pairs that are d words apart
contribute 1/d to the total count. This is one way
to account for the fact that very distant word pairs
are expected to contain less relevant information
about the words’ relationship to one another.

For all our experiments, we set xmax = 100,
↵ = 3/4, and train the model using AdaGrad
(Duchi et al., 2011), stochastically sampling non-
zero elements from X , with initial learning rate of
0.05. We run 50 iterations for vectors smaller than
300 dimensions, and 100 iterations otherwise (see
Section 4.6 for more details about the convergence
rate). Unless otherwise noted, we use a context of
ten words to the left and ten words to the right.

The model generates two sets of word vectors,
W and W̃ . When X is symmetric, W and W̃ are
equivalent and differ only as a result of their ran-
dom initializations; the two sets of vectors should
perform equivalently. On the other hand, there is
evidence that for certain types of neural networks,
training multiple instances of the network and then
combining the results can help reduce overfitting
and noise and generally improve results (Ciresan
et al., 2012). With this in mind, we choose to use

5To demonstrate the scalability of the model, we also
trained it on a much larger sixth corpus, containing 840 bil-
lion tokens of web data, but in this case we did not lowercase
the vocabulary, so the results are not directly comparable.

6For the model trained on Common Crawl data, we use a
larger vocabulary of about 2 million words.



Another intrinsic word vector evaluation

• Word vector distances and their correlation with human judgments
• Example dataset: WordSim353 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
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Word 1 Word 2 Human (mean)
tiger cat 7.35
tiger tiger 10
book paper 7.46
computer internet 7.58
plane car 5.77
professor doctor 6.62
stock phone 1.62
stock CD 1.31
stock jaguar 0.92

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/


Correlation evaluation

• Word vector distances and their correlation with human judgments

• Some ideas from Glove paper have been shown to improve skip-gram (SG) model also
(e.g., average both vectors)

the sum W +W̃ as our word vectors. Doing so typ-
ically gives a small boost in performance, with the
biggest increase in the semantic analogy task.

We compare with the published results of a va-
riety of state-of-the-art models, as well as with
our own results produced using the word2vec
tool and with several baselines using SVDs. With
word2vec, we train the skip-gram (SG†) and
continuous bag-of-words (CBOW†) models on the
6 billion token corpus (Wikipedia 2014 + Giga-
word 5) with a vocabulary of the top 400,000 most
frequent words and a context window size of 10.
We used 10 negative samples, which we show in
Section 4.6 to be a good choice for this corpus.

For the SVD baselines, we generate a truncated
matrix Xtrunc which retains the information of how
frequently each word occurs with only the top
10,000 most frequent words. This step is typi-
cal of many matrix-factorization-based methods as
the extra columns can contribute a disproportion-
ate number of zero entries and the methods are
otherwise computationally expensive.

The singular vectors of this matrix constitute
the baseline “SVD”. We also evaluate two related
baselines: “SVD-S” in which we take the SVD of
p

Xtrunc, and “SVD-L” in which we take the SVD
of log(1+ Xtrunc). Both methods help compress the
otherwise large range of values in X .7

4.3 Results

We present results on the word analogy task in Ta-
ble 2. The GloVe model performs significantly
better than the other baselines, often with smaller
vector sizes and smaller corpora. Our results us-
ing the word2vec tool are somewhat better than
most of the previously published results. This is
due to a number of factors, including our choice to
use negative sampling (which typically works bet-
ter than the hierarchical softmax), the number of
negative samples, and the choice of the corpus.

We demonstrate that the model can easily be
trained on a large 42 billion token corpus, with a
substantial corresponding performance boost. We
note that increasing the corpus size does not guar-
antee improved results for other models, as can be
seen by the decreased performance of the SVD-

7We also investigated several other weighting schemes for
transforming X ; what we report here performed best. Many
weighting schemes like PPMI destroy the sparsity of X and
therefore cannot feasibly be used with large vocabularies.
With smaller vocabularies, these information-theoretic trans-
formations do indeed work well on word similarity measures,
but they perform very poorly on the word analogy task.

Table 3: Spearman rank correlation on word simi-
larity tasks. All vectors are 300-dimensional. The
CBOW⇤ vectors are from the word2vec website
and differ in that they contain phrase vectors.

Model Size WS353 MC RG SCWS RW
SVD 6B 35.3 35.1 42.5 38.3 25.6

SVD-S 6B 56.5 71.5 71.0 53.6 34.7
SVD-L 6B 65.7 72.7 75.1 56.5 37.0
CBOW† 6B 57.2 65.6 68.2 57.0 32.5

SG† 6B 62.8 65.2 69.7 58.1 37.2
GloVe 6B 65.8 72.7 77.8 53.9 38.1
SVD-L 42B 74.0 76.4 74.1 58.3 39.9
GloVe 42B 75.9 83.6 82.9 59.6 47.8

CBOW⇤ 100B 68.4 79.6 75.4 59.4 45.5

L model on this larger corpus. The fact that this
basic SVD model does not scale well to large cor-
pora lends further evidence to the necessity of the
type of weighting scheme proposed in our model.

Table 3 shows results on five different word
similarity datasets. A similarity score is obtained
from the word vectors by first normalizing each
feature across the vocabulary and then calculat-
ing the cosine similarity. We compute Spearman’s
rank correlation coefficient between this score and
the human judgments. CBOW⇤ denotes the vec-
tors available on the word2vec website that are
trained with word and phrase vectors on 100B
words of news data. GloVe outperforms it while
using a corpus less than half the size.

Table 4 shows results on the NER task with the
CRF-based model. The L-BFGS training termi-
nates when no improvement has been achieved on
the dev set for 25 iterations. Otherwise all config-
urations are identical to those used by Wang and
Manning (2013). The model labeled Discrete is
the baseline using a comprehensive set of discrete
features that comes with the standard distribution
of the Stanford NER model, but with no word vec-
tor features. In addition to the HPCA and SVD
models discussed previously, we also compare to
the models of Huang et al. (2012) (HSMN) and
Collobert and Weston (2008) (CW). We trained
the CBOW model using the word2vec tool8.
The GloVe model outperforms all other methods
on all evaluation metrics, except for the CoNLL
test set, on which the HPCA method does slightly
better. We conclude that the GloVe vectors are
useful in downstream NLP tasks, as was first

8We use the same parameters as above, except in this case
we found 5 negative samples to work slightly better than 10.
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Extrinsic word vector evaluation

• Extrinsic evaluation of word vectors: All subsequent NLP tasks in this class. More examples soon.

• One example where good word vectors should help directly: named entity recognition: identifying 
references to a person, organization or location

Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and

Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size

In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s
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Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X

and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with

word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:
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7. Word senses and word sense ambiguity

• Most words have lots of meanings! 
• Especially common words
• Especially words that have existed for a long time

• Example: pike

• Does one vector capture all these meanings or do we have a mess?
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pike

• A sharp point or staff 
• A type of elongated fish 
• A railroad line or system 
• A type of road 
• The future (coming down the pike) 
• A type of body position (as in diving) 
• To kill or pierce with a pike 
• To make one’s way (pike along)
• In Australian English, pike means to pull out from doing something: I reckon he could 

have climbed that cliff, but he piked!
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Improving Word Representations Via Global Context And 
Multiple Word Prototypes (Huang et al. 2012)

• Idea: Cluster word windows around words, retrain with each word assigned to multiple 
different clusters bank1, bank2, etc.
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Linear Algebraic Structure of Word Senses, with 
Applications to Polysemy      (Arora, …, Ma, …, TACL 2018)

• Different senses of a word reside in a linear superposition (weighted 
sum) in standard word embeddings like word2vec

• 𝑣pike = 𝛼!𝑣pike! + 𝛼"𝑣pike"+ 𝛼#𝑣pike#

• Where 𝛼! =
$!

$!%$"%$#
, etc., for frequency f

• Surprising result:
• Because of ideas from sparse coding you can actually separate out 

the senses (providing they are relatively common)!
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8. Classification review and notation

• Generally, we have a training dataset consisting of samples

{xi,yi}Ni=1

• xi are inputs, e.g., words (indices or vectors!), sentences, documents, etc.
• Dimension d

• yi are labels (one of C classes) we try to predict, for example:
• classes: sentiment (+/–), named entities, buy/sell decision
• other words
• later: multi-word sequences
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Classification intuition

• Training data: {xi,yi}N
i=1

• Simple illustration case: 
• Fixed 2D word vectors inputs to classify
• Using softmax/logistic regression
• Linear decision boundary

• Traditional ML/Stats approach: assume xi are fixed, 
train (i.e., set) softmax/logistic regression weights 𝑊 ∈ ℝ!×#
to determine a decision boundary (hyperplane) as in the picture

• Method: For each fixed x, predict:

Visualizations with ConvNetJS by Andrej Karpathy!
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Softmax classifier

Again, we can tease apart the prediction function into three steps:

1. For each row y row of W, calculate dot product with x:

2. Apply softmax function to get normalized probability:

= softmax(𝑓$)

3. Choose the y with maximum probability
• For each training example (x,y), our objective is to maximize the probability of the 

correct class y or we can minimize the negative log probability of that class:
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Training with “cross entropy loss”

• Concept of “cross entropy” is from information theory
• Let the true probability distribution be p
• Let our computed model probability be q
• The cross entropy is: 

• Assuming a ground truth (or true or gold or target) probability distribution that is 1 at 
the right class and 0 everywhere else:
p = [0,…,0,1,0,…0] then:

• Because of one-hot p, the only term left is the negative log probability of the true 
class: − log 𝑝(𝑦%|𝑥%)
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Classification over a full dataset

• Cross entropy loss function over 
full dataset {xi,yi}N

i=1 

• Instead of

We will write f in matrix notation:
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Traditional ML optimization

• For statistical machine learning 𝜃 usually
only consists of the elements of W:

• So, we update the decision 
boundary via only updating W Visualizations with ConvNetJS by Karpathy
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9. Neural Network Classifiers

• Softmax (≈ logistic regression) alone is not very powerful

• Softmax classifier only gives linear decision boundaries

This can be quite limiting

à Unhelpful when a
problem is complex

Wouldn’t it be cool to 
get these correct?
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Neural Nets for the Win!

• Neural networks can learn much more complex 
functions with nonlinear decision boundaries!

• Non-linear in the original space
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Classification difference with word vectors #1

• Commonly in NLP deep learning:
• We learn both W and word vectors x
• We learn both conventional parameters and (distributed!) representations
• The word vectors re-represent one-hot vectors—they move them around in an 

intermediate layer vector space—for easy classification with a (linear) softmax
classifier, conceptually via an embedding layer: x = Le

Very large number of 
parameters!
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Neural computation
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A neuron can be modeled as a binary logistic regression unit

hw,b(x) = f (w
Tx + b)

f (z) = 1
1+ e−z

w, b are the parameters of this neuron
i.e., this logistic regression model

b: We can have an “always on” bias 
feature, which gives a class prior, or 
separate it out, as a bias term

52

f = nonlinear activation function (e.g. sigmoid), w = weights, b = bias, h = hidden, x = inputs



Difference #2: A neural network 
= running several logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression functions, then we get 
a vector of outputs …

But we don’t have to decide 
ahead of time what variables 
these logistic regressions are 
trying to predict!
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Difference #2: A neural network 
= running several logistic regressions at the same time

… which we can feed into another logistic regression function

It is the loss function 
that will direct what 
the intermediate 
hidden variables should 
be, so as to do a good 
job at predicting the 
targets for the next 
layer, etc.
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Difference #2: A neural network 
= running several logistic regressions at the same time

Before we know it, we have a multilayer neural network….
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Matrix notation for a layer

We have 

In matrix notation

Activation f is applied element-wise:

a1

a2

a3

a1 = f (W11x1 +W12x2 +W13x3 + b1)
a2 = f (W21x1 +W22x2 +W23x3 + b2 )
etc.

z =Wx + b
a = f (z)

f ([z1, z2, z3]) = [ f (z1), f (z2 ), f (z3)]

W12

b3
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Non-linearities (aka “f ”): Why they’re needed

• Example: function approximation, 
e.g., regression or classification
• Without non-linearities, deep neural 

networks can’t do anything more than a 
linear transform

• Extra layers could just be compiled down 
into a single linear transform: W1 W2 x = Wx

• With more layers, they can approximate 
more complex functions!
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