Natural Language Processing with Deep Learning CS224N/Ling284

John Hewitt

Lecture 9: Self-Attention and Transformers

Lecture Plan

- 1. From recurrence (RNN) to attention-based NLP models
- 2. Introducing the Transformer model
- 3. Great results with Transformers
- 4. Drawbacks and variants of Transformers

Reminders:

- Assignment 4 due on Thursday!
- Mid-quarter feedback survey due Tuesday, Feb 16 at 11:59PM PST!
- Final project proposal due Tuesday, Feb 16 at 4:30PM PST!
- Please try to hand in the project proposal on time; we want to get you feedback quickly!

As of last week: recurrent models for (most) NLP!

 Circa 2016, the de facto strategy in NLP is to encode sentences with a bidirectional LSTM: (for example, the source sentence in a translation)

 Define your output (parse, sentence, summary) as a sequence, and use an LSTM to generate it.

 Use attention to allow flexible access to memory

Today: Same goals, different building blocks

- Last week, we learned about sequence-to-sequence problems and encoder-decoder models.
- Today, we're not trying to motivate entirely new ways of looking at problems (like Machine Translation)
- Instead, we're trying to find the best building blocks to plug into our models and enable broad progress.

Issues with recurrent models: Linear interaction distance

- RNNs are unrolled "left-to-right".
- This encodes linear locality: a useful heuristic!
 - Nearby words often affect each other's meanings
- **Problem:** RNNs take **O(sequence length)** steps for distant word pairs to interact.

tasty pizza

Issues with recurrent models: Linear interaction distance

- **O(sequence length)** steps for distant word pairs to interact means:
 - Hard to learn long-distance dependencies (because gradient problems!)
 - Linear order of words is "baked in"; we already know linear order isn't the right way to think about sentences...

Info of *chef* has gone through O(sequence length) many layers!

Issues with recurrent models: Lack of parallelizability

- Forward and backward passes have O(sequence length) unparallelizable operations
 - GPUs can perform a bunch of independent computations at once!
 - But future RNN hidden states can't be computed in full before past RNN hidden states have been computed
 - Inhibits training on very large datasets!

Numbers indicate min # of steps before a state can be computed

If not recurrence, then what? How about word windows?

- Word window models aggregate local contexts
 - (Also known as 1D convolution; we'll go over this in depth later!)
 - Number of unparallelizable operations does not increase sequence length!

Numbers indicate min # of steps before a state can be computed

If not recurrence, then what? How about word windows?

- Word window models aggregate local contexts
- What about long-distance dependencies?
 - Stacking word window layers allows interaction between farther words
- Maximum Interaction distance = sequence length / window size
 - (But if your sequences are too long, you'll just ignore long-distance context)

Red states indicate those "visible" to h_k

If not recurrence, then what? How about attention?

- Attention treats each word's representation as a query to access and incorporate information from a set of values.
 - We saw attention from the decoder to the encoder; today we'll think about attention within a single sentence.
- Number of unparallelizable operations does not increase sequence length.
- Maximum interaction distance: O(1), since all words interact at every layer!

All words attend to all words in previous layer; most arrows here are omitted

Self-Attention

- Recall: Attention operates on queries, keys, and values.
 - We have some **queries** q_1, q_2, \dots, q_T . Each query is $q_i \in \mathbb{R}^d$
 - We have some **keys** $k_1, k_2, ..., k_T$. Each key is $k_i \in \mathbb{R}^d$
 - We have some values v_1, v_2, \dots, v_T . Each value is $v_i \in \mathbb{R}^d$
- In self-attention, the queries, keys, and values are drawn from the same source.
 - For example, if the output of the previous layer is $x_1, ..., x_T$, (one vec per word) we could let $v_i = k_i = q_i = x_i$ (that is, use the same vectors for all of them!)
- The (dot product) self-attention operation is as follows:

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})}$$

Compute **keyquery** affinities

 $e_{ii} = q_i^{\dagger} k_i$

Compute attention weights from affinities (softmax) The number of queries can differ from the number of keys and values in practice.

 $output_i = \sum_j \alpha_{ij} v_j$

Compute outputs as weighted sum of **values**

Self-attention as an NLP building block

- In the diagram at the right, we have stacked self-attention blocks, like we might stack LSTM layers.
- Can self-attention be a drop-in replacement for recurrence?
- No. It has a few issues, which we'll go through.
- First, self-attention is an operation on **sets**. It has no inherent notion of order.

Barriers and solutions for Self-Attention as a building block

Barriers

Solutions

 Doesn't have an inherent notion of order!

Fixing the first self-attention problem: sequence order

- Since self-attention doesn't build in order information, we need to encode the order of the sentence in our keys, queries, and values.
- Consider representing each sequence index as a vector

 $p_i \in \mathbb{R}^d$, for $i \in \{1, 2, ..., T\}$ are position vectors

- Don't worry about what the p_i are made of yet!
- Easy to incorporate this info into our self-attention block: just add the p_i to our inputs!
- Let $\tilde{v}_i \tilde{k}_i, \tilde{q}_i$ be our old values, keys, and queries.

$$\begin{aligned} v_i &= \tilde{v}_i + p_i \\ q_i &= \tilde{q}_i + p_i \\ k_i &= \tilde{k}_i + p_i \end{aligned}$$

In deep self-attention networks, we do this at the first layer! You could concatenate them as well, but people mostly just add...

Position representation vectors through sinusoids

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

- Pros:
 - Periodicity indicates that maybe "absolute position" isn't as important
 - Maybe can extrapolate to longer sequences as periods restart!
- Cons:
 - Not learnable; also the extrapolation doesn't really work!

Position representation vectors learned from scratch

- Learned absolute position representations: Let all p_i be learnable parameters! Learn a matrix $p \in \mathbb{R}^{d \times T}$, and let each p_i be a column of that matrix!
- Pros:
 - Flexibility: each position gets to be learned to fit the data
- Cons:
 - Definitely can't extrapolate to indices outside 1, ..., T.
- Most systems use this!
- Sometimes people try more flexible representations of position:
 - Relative linear position attention [Shaw et al., 2018]
 - Dependency syntax-based position [Wang et al., 2019]

Barriers and solutions for Self-Attention as a building block

Barriers

• Doesn't have an inherent notion of order!

Solutions

- Add position representations to the inputs

Adding nonlinearities in self-attention

- Note that there are no elementwise nonlinearities in self-attention; stacking more self-attention layers just re-averages value vectors
- Easy fix: add a **feed-forward network** to post-process each output vector.

$$m_i = MLP(\text{output}_i)$$

= $W_2 * \text{ReLU}(W_1 \times \text{output}_i + b_1) + b_2$

Intuition: the FF network processes the result of attention

Barriers and solutions for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!
- No nonlinearities for deep learning magic! It's all just weighted averages

Solutions

- Add position representations to the inputs
- Easy fix: apply the same feedforward network to each self-attention output.

- Need to ensure we don't "look at the future" when predicting a sequence
 - Like in machine translation
 - Or language modeling

Masking the future in self-attention

- To use self-attention in decoders, we need to ensure we can't peek at the future.
- At every timestep, we could change the set of keys and queries to include only past words. (Inefficient!)
- To enable parallelization, we mask out attention to future words by setting attention scores to -∞.

[The matrix of e_{ij} values]

Masking the future in self-attention

- To use self-attention in decoders, we need to ensure we can't peek at the future.
- At every timestep, we could change the set of keys and queries to include only past words. (Inefficient!)
- To enable parallelization, we **mask out attention** to future words by setting attention scores to $-\infty$. $e_{ij} = \begin{cases} q_i^{\mathsf{T}} k_j, j < i \\ -\infty, i > i \end{cases}$

Barriers and solutions for Self-Attention as a building block

Barriers

- Doesn't have an inherent notion of order!
- No nonlinearities for deep learning magic! It's all just weighted averages

Need to ensure we don't "look at the future" when predicting a sequence

- Like in machine translation
- Or language modeling

Solutions

- Add position representations to the inputs
- Easy fix: apply the same feedforward network to each self-attention output.
- Mask out the future by artificially setting attention weights to 0!

Necessities for a self-attention building block:

• Self-attention:

• the basis of the method.

• Position representations:

- Specify the sequence order, since self-attention is an unordered function of its inputs.
- Nonlinearities:
 - At the output of the self-attention block
 - Frequently implemented as a simple feed-forward network.
- Masking:
 - In order to parallelize operations while not looking at the future.
 - Keeps information about the future from "leaking" to the past.
- That's it! But this is not the **Transformer** model we've been hearing about.

Outline

- 1. From recurrence (RNN) to attention-based NLP models
- 2. Introducing the Transformer model
- **3.** Great results with Transformers
- 4. Drawbacks and variants of Transformers

The Transformer Encoder-Decoder [Vaswani et al., 2017]

First, let's look at the Transformer Encoder and Decoder Blocks at a high level

[input sequence]

[output sequence]

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Next, let's look at the Transformer Encoder and Decoder Blocks

What's left in a Transformer Encoder Block that we haven't covered?

- **1.** Key-query-value attention: How do we get the *k*, *q*, *v* vectors from a single word embedding?
- 2. Multi-headed attention: Attend to multiple places in a single layer!
- **3.** Tricks to help with training!
 - 1. Residual connections
 - 2. Layer normalization
 - 3. Scaling the dot product
 - 4. These tricks **don't improve** what the model is able to do; they help improve the training process. Both of these types of modeling improvements are very important!

The Transformer Encoder: Key-Query-Value Attention

- We saw that self-attention is when keys, queries, and values come from the same source. The Transformer does this in a particular way:
 - Let $x_1, ..., x_T$ be input vectors to the Transformer encoder; $x_i \in \mathbb{R}^d$
- Then keys, queries, values are:
 - $k_i = Kx_i$, where $K \in \mathbb{R}^{d \times d}$ is the key matrix.
 - $q_i = Qx_i$, where $Q \in \mathbb{R}^{d \times d}$ is the query matrix.
 - $v_i = V x_i$, where $V \in \mathbb{R}^{d \times d}$ is the value matrix.
- These matrices allow *different aspects* of the *x* vectors to be used/emphasized in each of the three roles.

The Transformer Encoder: Key-Query-Value Attention

- Let's look at how key-query-value attention is computed, in matrices.
 - Let $X = [x_1; ...; x_T] \in \mathbb{R}^{T \times d}$ be the concatenation of input vectors.
 - First, note that $XK \in \mathbb{R}^{T \times d}$, $XQ \in \mathbb{R}^{T \times d}$, $XV \in \mathbb{R}^{T \times d}$.
 - The output is defined as output = $\operatorname{softmax}(XQ(XK)^{\top}) \times XV$.

The Transformer Encoder: Multi-headed attention

- What if we want to look in multiple places in the sentence at once?
 - For word *i*, self-attention "looks" where x[⊤]_iQ[⊤]Kx_j is high, but maybe we want to focus on different *j* for different reasons?
- We'll define multiple attention "heads" through multiple Q,K,V matrices
- Let, $Q_{\ell}, K_{\ell}, V_{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}$, where *h* is the number of attention heads, and ℓ ranges from 1 to *h*.
- Each attention head performs attention independently:
 - output_{ℓ} = softmax $(XQ_{\ell}K_{\ell}^{\top}X^{\top}) * XV_{\ell}$, where output_{ℓ} $\in \mathbb{R}^{d/h}$
- Then the outputs of all the heads are combined!
 - output = Y[output₁; ...; output_h], where $Y \in \mathbb{R}^{d \times d}$
- Each head gets to "look" at different things, and construct value vectors differently.

The Transformer Encoder: Multi-headed attention

- What if we want to look in multiple places in the sentence at once?
 - For word *i*, self-attention "looks" where x[⊤]_iQ[⊤]Kx_j is high, but maybe we want to focus on different *j* for different reasons?
- We'll define **multiple attention "heads"** through multiple Q,K,V matrices
- Let, $Q_{\ell}, K_{\ell}, V_{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}$, where *h* is the number of attention heads, and ℓ ranges from 1 to *h*.

Same amount of computation as single-head selfattention!

The Transformer Encoder: Residual connections [He et al., 2016]

- **Residual connections** are a trick to help models train better.
 - Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (where *i* represents the layer)

$$X^{(i-1)}$$
 — Layer $\longrightarrow X^{(i)}$

• We let $X^{(i)} = X^{(i-1)} + Layer(X^{(i-1)})$ (so we only have to learn "the residual" from the previous layer)

$$X^{(i-1)} \longrightarrow X^{(i)}$$

 Residual connections are thought to make the loss landscape considerably smoother (thus easier training!)

[no residuals] [residuals] [Loss landscape visualization, Li et al., 2018, on a ResNet]

The Transformer Encoder: Layer normalization [Ba et al., 2016]

- Layer normalization is a trick to help models train faster.
- Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation **within each layer**.
 - LayerNorm's success may be due to its normalizing gradients [Xu et al., 2019]
- Let $x \in \mathbb{R}^d$ be an individual (word) vector in the model.
- Let $\mu = \sum_{j=1}^{d} x_j$; this is the mean; $\mu \in \mathbb{R}$.
- Let $\sigma = \sqrt{\frac{1}{d} \sum_{j=1}^{d} (x_j \mu)^2}$; this is the standard deviation; $\sigma \in \mathbb{R}$.
- Let $\gamma \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ be learned "gain" and "bias" parameters. (Can omit!)
- Then layer normalization computes:

Normalize by scalar mean and variance
$$x - \mu$$

The Transformer Encoder: Layer normalization [Ba et al., 2016]

- Layer normalization is a trick to help models train faster.
- Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation **within each layer**.
 - LayerNorm's success may be due to its normalizing gradients [Xu et al., 2019]
- Let $x \in \mathbb{R}^d$ be an individual (word) vector in the model.
- Let $\mu = \sum_{j=1}^{d} x_j$; this is the mean; $\mu \in \mathbb{R}$.
- Let $\sigma = \sqrt{\frac{1}{d} \sum_{j=1}^{d} (x_j \mu)^2}$; this is the standard deviation; $\sigma \in \mathbb{R}$.
- Let $\gamma \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ be learned "gain" and "bias" parameters. (Can omit!)
- Then layer normalization computes:

The Transformer Encoder: Scaled Dot Product [Vaswani et al., 2017]

- **"Scaled Dot Product"** attention is a final variation to aid in Transformer training.
- When dimensionality *d* becomes large, dot products between vectors tend to become large.
 - Because of this, inputs to the softmax function can be large, making the gradients small.
- Instead of the self-attention function we've seen:

output_{ℓ} = softmax $(XQ_{\ell}K_{\ell}^{\top}X^{\top}) * XV_{\ell}$

• We divide the attention scores by $\sqrt{d/h}$, to stop the scores from becoming large just as a function of d/h (The dimensionality divided by the number of heads.)

output_{$$\ell$$} = softmax $\left(\frac{XQ_{\ell}K_{\ell}^{\mathsf{T}}X^{\mathsf{T}}}{\sqrt{d/h}}\right) * XV_{\ell}$

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Looking back at the whole model, zooming in on an Encoder block:

[input sequence]

[output sequence]

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Looking back at the whole model, zooming in on an Encoder block:

[input sequence]

[output sequence]
The Transformer Encoder-Decoder [Vaswani et al., 2017]

The Transformer Encoder-Decoder [Vaswani et al., 2017]

The Transformer Decoder: Cross-attention (details)

- We saw that self-attention is when keys, queries, and values come from the same source.
- In the decoder, we have attention that looks more like what we saw last week.
- Let $h_1, ..., h_T$ be **output** vectors **from** the Transformer **encoder**; $x_i \in \mathbb{R}^d$
- Let $z_1, ..., z_T$ be input vectors from the Transformer **decoder**, $z_i \in \mathbb{R}^d$
- Then keys and values are drawn from the **encoder** (like a memory):
 - $k_i = Kh_i$, $v_i = Vh_i$.
- And the queries are drawn from the **decoder**, $q_i = Qz_i$.

The Transformer Encoder: Cross-attention (details)

- Let's look at how cross-attention is computed, in matrices.
 - Let $H = [h_1; ...; h_T] \in \mathbb{R}^{T \times d}$ be the concatenation of encoder vectors.
 - Let $Z = [z_1; ...; z_T] \in \mathbb{R}^{T \times d}$ be the concatenation of decoder vectors.
 - The output is defined as output = $\operatorname{softmax}(ZQ(HK)^{\top}) \times HV$.

Outline

- 1. From recurrence (RNN) to attention-based NLP models
- 2. Introducing the Transformer model
- **3**. Great results with Transformers
- 4. Drawbacks and variants of Transformers

Great Results with Transformers

First, Machine Translation from the original Transformers paper!

Model	BLEU		Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$	

42 [Test sets: WMT 2014 English-German and English-French]

[Vaswani et al., 2017]

Great Results with Transformers

Next, document generation!

	Model	Test perplexity	ROUGE-L
	seq2seq-attention, $L = 500$	5.04952	12.7
1	Transformer-ED, $L = 500$	2.46645	34.2
	Transformer-D, $L = 4000$	2.22216	33.6
	Transformer-DMCA, no MoE-layer, $L = 1100$	0 2.05159	36.2
	Transformer-DMCA, $MoE-128$, $L = 11000$	1.92871	37.9
	Transformer-DMCA, $MoE-256$, $L = 7500$	1.90325	38.8
old stanc	lard Transform	ers all the way dow	vn.

[Liu et al., 2018]; WikiSum dataset

The

Great Results with Transformers

Before too long, most Transformers results also included **pretraining**, a method we'll go over on Thursday.

Transformers' parallelizability allows for efficient pretraining, and have made them the de-facto standard.

On this popular aggregate benchmark, for example:

GLUE

All top models are Transformer (and pretraining)-based.

	Rank	Name	Model	URL	Score
	1	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.8
	2	HFL iFLYTEK	MacALBERT + DKM		90.7
+	3	Alibaba DAMO NLP	StructBERT + TAPT		90.6
+	4	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6
	5	ERNIE Team - Baidu	ERNIE		90.4
	6	T5 Team - Google	T5		90.3

More results Thursday when we discuss pretraining.

Outline

- 1. From recurrence (RNN) to attention-based NLP models
- 2. Introducing the Transformer model
- **3.** Great results with Transformers
- 4. Drawbacks and variants of Transformers

What would we like to fix about the Transformer?

- Quadratic compute in self-attention (today):
 - Computing all pairs of interactions means our computation grows quadratically with the sequence length!
 - For recurrent models, it only grew linearly!
- Position representations:
 - Are simple absolute indices the best we can do to represent position?
 - Relative linear position attention [Shaw et al., 2018]
 - Dependency syntax-based position [Wang et al., 2019]

Quadratic computation as a function of sequence length

- One of the benefits of self-attention over recurrence was that it's highly parallelizable.
- However, its total number of operations grows as $O(T^2d)$, where T is the sequence length, and d is the dimensionality.

$$XQ = XQK^{\top}X^{\top} = XQK^{\top}X^{\top} \qquad \begin{array}{c} \text{Need to compute all} \\ pairs of interactions! \\ O(T^2d) \end{array}$$

- Think of *d* as around **1**, **000**.
 - So, for a single (shortish) sentence, $T \le 30$; $T^2 \le 900$.
 - In practice, we set a bound like T = 512.
 - But what if we'd like $T \ge 10,000$? For example, to work on long documents?

Recent work on improving on quadratic self-attention cost

- Considerable recent work has gone into the question, Can we build models like Transformers without paying the $O(T^2)$ all-pairs self-attention cost?
- For example, Linformer [Wang et al., 2020]

Key idea: map the sequence length dimension to a lowerdimensional space for values, keys

Recent work on improving on quadratic self-attention cost

- Considerable recent work has gone into the question, Can we build models like Transformers without paying the $O(T^2)$ all-pairs self-attention cost?
- For example, **BigBird** [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, **like local windows**, **looking at everything**, and **random interactions**.

(c) Global Attention

(d) **BIGBIRD**

49

Parting remarks

- Pretraining on Thursday!
- Good luck on assignment 4!
- Remember to work on your project proposal!