
Natural Language Processing
with Deep Learning

CS224N/Ling284

John Hewitt

Lecture 9: Self-Attention and Transformers

Lecture Plan

1. From recurrence (RNN) to attention-based NLP models

2. Introducing the Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

Reminders:

Assignment 4 due on Thursday!

Mid-quarter feedback survey due Tuesday, Feb 16 at 11:59PM PST!

Final project proposal due Tuesday, Feb 16 at 4:30PM PST!

Please try to hand in the project proposal on time; we want to get you feedback
quickly!

2

As of last week: recurrent models for (most) NLP!

• Circa 2016, the de facto strategy in NLP is to
encode sentences with a bidirectional LSTM:
(for example, the source sentence in a translation)

3

• Define your output (parse, sentence,
summary) as a sequence, and use an LSTM to
generate it.

• Use attention to allow flexible access to
memory

Today: Same goals, different building blocks

• Last week, we learned about sequence-to-sequence problems and
encoder-decoder models.

• Today, we’re not trying to motivate entirely new ways of looking at
problems (like Machine Translation)

• Instead, we’re trying to find the best building blocks to plug into our
models and enable broad progress.

4

2014-2017ish
Recurrence

Lots of trial
and error

2021
??????

Issues with recurrent models: Linear interaction distance

• RNNs are unrolled “left-to-right”.

• This encodes linear locality: a useful heuristic!

• Nearby words often affect each other’s meanings

• Problem: RNNs take O(sequence length) steps for
distant word pairs to interact.

5

tasty pizza

The chef waswho …

O(sequence length)

Issues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences…

6

The waschef who …

Info of chef has gone through
O(sequence length) many layers!

Issues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(sequence length)
unparallelizable operations

• GPUs can perform a bunch of independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

• Inhibits training on very large datasets!

7

h1

0

1 T

hT

T-1

h2

1

2

2

3

Numbers indicate min # of steps before a state can be computed

If not recurrence, then what? How about word windows?

• Word window models aggregate local contexts

• (Also known as 1D convolution; we’ll go over this in depth later!)

• Number of unparallelizable operations does not increase sequence length!

8

Numbers indicate min # of steps before a state can be computed

0 0 0 0 0 0 0 0

h1 h2 hT

embedding

window 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2
window

If not recurrence, then what? How about word windows?

• Word window models aggregate local contexts

• What about long-distance dependencies?

• Stacking word window layers allows interaction between farther words

• Maximum Interaction distance = sequence length / window size

• (But if your sequences are too long, you’ll just ignore long-distance context)

9

Red states
indicate those
“visible” to hk

embedding

window (size=5)

h1 hk hT

window (size=5)

Too far from hk to be considered

If not recurrence, then what? How about attention?

• Attention treats each word’s representation as a query to access and
incorporate information from a set of values.

• We saw attention from the decoder to the encoder; today we’ll think about
attention within a single sentence.

• Number of unparallelizable operations does not increase sequence length.

• Maximum interaction distance: O(1), since all words interact at every layer!

embedding 0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2
attention

attention
1 1 1 1 1 1 1 1

All words attend
to all words in
previous layer;
most arrows here
are omitted

10

Self-Attention

• Recall: Attention operates on queries, keys, and values.

• We have some queries 𝑞1, 𝑞2, … , 𝑞𝑇. Each query is 𝑞𝑖 ∈ ℝ𝑑

• We have some keys 𝑘1, 𝑘2, … , 𝑘𝑇. Each key is 𝑘𝑖 ∈ ℝ𝑑

• We have some values 𝑣1, 𝑣2, … , 𝑣𝑇. Each value is 𝑣𝑖 ∈ ℝ𝑑

• In self-attention, the queries, keys, and values are drawn from the same source.

• For example, if the output of the previous layer is 𝑥1, … , 𝑥𝑇, (one vec per word)
we could let 𝑣𝑖 = 𝑘𝑖 = 𝑞𝑖 = 𝑥𝑖 (that is, use the same vectors for all of them!)

• The (dot product) self-attention operation is as follows:

The number of queries
can differ from the
number of keys and
values in practice.

𝑒𝑖𝑗 = 𝑞𝑖
⊤𝑘𝑗

Compute key-
query affinities

𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)

σ𝑗′ exp(𝑒𝑖𝑗′)

Compute attention
weights from affinities

(softmax)

output𝑖 =෍

𝑗

𝛼𝑖𝑗𝑣𝑗

Compute outputs as
weighted sum of values

11

Self-attention as an NLP building block

The

𝑤1

𝑘1 𝑞1 𝑣1

𝑤2

𝑘2 𝑞2 𝑣2

chef

𝑤3

𝑘3 𝑞3 𝑣3

who

𝑤𝑇

𝑘𝑇 𝑞𝑇 𝑣𝑇

food

…

𝑘1 𝑞1 𝑣1 𝑘2 𝑞2 𝑣2 𝑘3 𝑞3 𝑣3 𝑘𝑇 𝑞𝑇 𝑣𝑇

…

• In the diagram at the right, we
have stacked self-attention
blocks, like we might stack LSTM
layers.

• Can self-attention be a drop-in
replacement for recurrence?

• No. It has a few issues, which
we’ll go through.

• First, self-attention is an
operation on sets. It has no
inherent notion of order.

self-attention

self-attention

Self-attention doesn’t know the order of its inputs.
12

Barriers
• Doesn’t have an inherent

notion of order!

Barriers and solutions for Self-Attention as a building block

Solutions

13

Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝑝𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑇} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝑝𝑖 to our inputs!

• Let ෤𝑣𝑖 ෨𝑘𝑖 , ෤𝑞𝑖 be our old values, keys, and queries.

𝑣𝑖 = ෤𝑣𝑖 + 𝑝𝑖
𝑞𝑖 = ෤𝑞𝑖 + 𝑝𝑖
𝑘𝑖 = ෨𝑘𝑖 + 𝑝𝑖

In deep self-attention
networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add…

14

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

• Cons:

• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids

cos(𝑖/100002∗1/𝑑)
𝑝𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗
𝑑
2
/𝑑)

cos(𝑖/100002∗
𝑑
2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

D
im

en
si

o
n

15

• Learned absolute position representations: Let all 𝑝𝑖 be learnable parameters!

Learn a matrix 𝑝 ∈ ℝ𝑑×𝑇, and let each 𝑝𝑖 be a column of that matrix!

• Pros:

• Flexibility: each position gets to be learned to fit the data

• Cons:

• Definitely can’t extrapolate to indices outside 1,… , 𝑇.

• Most systems use this!

• Sometimes people try more flexible representations of position:

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

16

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning! It’s all just weighted
averages

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

17

Adding nonlinearities in self-attention

• Note that there are no elementwise
nonlinearities in self-attention;
stacking more self-attention layers
just re-averages value vectors

• Easy fix: add a feed-forward network
to post-process each output vector.

𝑚𝑖 = 𝑀𝐿𝑃 output𝑖
= 𝑊2 ∗ ReLU 𝑊1 × output𝑖 + 𝑏1 + 𝑏2

The

𝑤1 𝑤2

chef

𝑤3

who

𝑤𝑇

food

…
self-attention

Intuition: the FF network processes the result of attention

FF FF FF FF

…
self-attention

FF FF FF FF

18

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t
“look at the future” when
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

• Easy fix: apply the same
feedforward network to each self-
attention output.

19

Masking the future in self-attention

• To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

• At every timestep, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

• To enable parallelization, we
mask out attention to future
words by setting attention
scores to −∞.

The

chef

who

[START]

For encoding
these words

We can look at these
(not greyed out) words

𝑒𝑖𝑗 = ൝
𝑞𝑖
⊤𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

−∞

−∞

−∞

−∞

−∞

−∞−∞

−∞−∞ −∞

20 [The matrix of 𝑒𝑖𝑗 values]

Masking the future in self-attention

• To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

• At every timestep, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

• To enable parallelization, we
mask out attention to future
words by setting attention
scores to −∞.

The

chef

who

[START]

For encoding
these words

We can look at these
(not greyed out) words

𝑒𝑖𝑗 = ൝
𝑞𝑖
⊤𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

−∞

−∞

−∞

−∞

−∞

−∞−∞

−∞−∞ −∞

21

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t
“look at the future” when
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

• Easy fix: apply the same
feedforward network to each self-
attention output.

• Mask out the future by artificially
setting attention weights to 0!

22

• Self-attention:

• the basis of the method.

• Position representations:

• Specify the sequence order, since self-attention is an unordered function of its
inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple feed-forward network.

• Masking:

• In order to parallelize operations while not looking at the future.

• Keeps information about the future from “leaking” to the past.

• That’s it! But this is not the Transformer model we’ve been hearing about.

Necessities for a self-attention building block:

23

Outline

1. From recurrence (RNN) to attention-based NLP models

2. Introducing the Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

24

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Transformer
Encoder

Word
Embeddings

Position
Representations

+

[input sequence]

Word
Embeddings

Position
Representations

+

[output sequence]

Transformer
Decoder

[decoder attends
to encoder states]

First, let’s look at the Transformer Encoder and Decoder Blocks at a high level

Transformer
Decoder

[predictions!]

25

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Next, let’s look at the Transformer Encoder and Decoder Blocks

What’s left in a Transformer Encoder Block that we haven’t covered?

1. Key-query-value attention: How do we get the 𝑘, 𝑞, 𝑣 vectors from a single word embedding?

2. Multi-headed attention: Attend to multiple places in a single layer!

3. Tricks to help with training!

1. Residual connections

2. Layer normalization

3. Scaling the dot product

4. These tricks don’t improve what the model is able to do; they help improve the training process.
Both of these types of modeling improvements are very important!

26

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder: Key-Query-Value Attention

• We saw that self-attention is when keys, queries, and values come from the same
source. The Transformer does this in a particular way:

• Let 𝑥1, … , 𝑥𝑇 be input vectors to the Transformer encoder; 𝑥𝑖 ∈ ℝ𝑑

• Then keys, queries, values are:

• 𝑘𝑖 = 𝐾𝑥𝑖, where 𝐾 ∈ ℝ𝑑×𝑑 is the key matrix.

• 𝑞𝑖 = 𝑄𝑥𝑖, where Q ∈ ℝ𝑑×𝑑 is the query matrix.

• 𝑣𝑖 = 𝑉𝑥𝑖, where V ∈ ℝ𝑑×𝑑 is the value matrix.

• These matrices allow different aspects of the 𝑥 vectors to be used/emphasized in
each of the three roles.

27

The Transformer Encoder: Key-Query-Value Attention

• Let’s look at how key-query-value attention is computed, in matrices.

• Let 𝑋 = 𝑥1; … ; 𝑥𝑇 ∈ ℝ𝑇×𝑑 be the concatenation of input vectors.

• First, note that 𝑋𝐾 ∈ ℝ𝑇×𝑑, 𝑋𝑄 ∈ ℝ𝑇×𝑑, 𝑋𝑉 ∈ ℝ𝑇×𝑑.

• The output is defined as output = softmax 𝑋𝑄 𝑋𝐾 ⊤ × 𝑋𝑉.

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑇×𝑇

All pairs of
attention scores!

output ∈ ℝ𝑇×𝑑

=

𝐾⊤ 𝑋⊤

𝑋𝑄

First, take the query-key dot
products in one matrix
multiplication: 𝑋𝑄 𝑋𝐾 ⊤

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

𝑋𝑄𝐾⊤ 𝑋⊤softmax 𝑋𝑉

28

The Transformer Encoder: Multi-headed attention

• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝑖
⊤𝑄⊤𝐾𝑥𝑗 is high, but maybe we want

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention heads, and ℓ ranges
from 1 to ℎ.

• Each attention head performs attention independently:

• outputℓ = softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ, where outputℓ ∈ ℝ

𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = 𝑌[output1; … ; outputℎ], where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value vectors
differently.

29

The Transformer Encoder: Multi-headed attention

• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝑖
⊤𝑄⊤𝐾𝑥𝑗 is high, but maybe we want

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention heads, and ℓ ranges
from 1 to ℎ.

𝑋

𝑄 =
𝑋𝑄

Single-head attention
(just the query matrix)

𝑋

=
𝑋𝑄2

Multi-head attention
(just two heads here)

𝑄1𝑄2

𝑋𝑄1

Same amount of
computation as
single-head self-
attention!

30

The Transformer Encoder: Residual connections [He et al., 2016]

• Residual connections are a trick to help models train better.

• Instead of 𝑋(𝑖) = Layer(𝑋 𝑖−1) (where 𝑖 represents the layer)

• We let 𝑋(𝑖) = 𝑋(𝑖−1) + Layer(𝑋 𝑖−1) (so we only have to learn “the residual”
from the previous layer)

• Residual connections are thought to make
the loss landscape considerably smoother
(thus easier training!)

𝑋(𝑖−1)
Layer 𝑋(𝑖)

𝑋(𝑖−1)
Layer 𝑋(𝑖)+

[no residuals] [residuals]

[Loss landscape visualization,

Li et al., 2018, on a ResNet]31

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf

The Transformer Encoder: Layer normalization [Ba et al., 2016]

• Layer normalization is a trick to help models train faster.

• Idea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let 𝑥 ∈ ℝ𝑑 be an individual (word) vector in the model.

• Let 𝜇 = σ𝑗=1
𝑑 𝑥𝑗; this is the mean; 𝜇 ∈ ℝ.

• Let 𝜎 =
1

𝑑
σ𝑗=1
𝑑 𝑥𝑗 − 𝜇

2
; this is the standard deviation; 𝜎 ∈ ℝ.

• Let 𝛾 ∈ ℝ𝑑 and 𝛽 ∈ ℝ𝑑 be learned “gain” and “bias” parameters. (Can omit!)

• Then layer normalization computes:

output =
𝑥 − 𝜇

𝜎 + 𝜖
∗ 𝛾 + 𝛽

Normalize by scalar
mean and variance

Modulate by learned
elementwise gain and bias

32

https://arxiv.org/abs/1607.06450
https://papers.nips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf

The Transformer Encoder: Layer normalization [Ba et al., 2016]

• Layer normalization is a trick to help models train faster.

• Idea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let 𝑥 ∈ ℝ𝑑 be an individual (word) vector in the model.

• Let 𝜇 = σ𝑗=1
𝑑 𝑥𝑗; this is the mean; 𝜇 ∈ ℝ.

• Let 𝜎 =
1

𝑑
σ𝑗=1
𝑑 𝑥𝑗 − 𝜇

2
; this is the standard deviation; 𝜎 ∈ ℝ.

• Let 𝛾 ∈ ℝ𝑑 and 𝛽 ∈ ℝ𝑑 be learned “gain” and “bias” parameters. (Can omit!)

• Then layer normalization computes:

output =
𝑥 − 𝜇

𝜎 + 𝜖
∗ 𝛾 + 𝛽

Normalize by scalar
mean and variance

Modulate by learned
elementwise gain and bias

33

https://arxiv.org/abs/1607.06450
https://papers.nips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf

The Transformer Encoder: Scaled Dot Product [Vaswani et al., 2017]

• “Scaled Dot Product” attention is a final variation to aid in Transformer training.

• When dimensionality 𝑑 becomes large, dot products between vectors tend to
become large.

• Because of this, inputs to the softmax function can be large, making the
gradients small.

• Instead of the self-attention function we’ve seen:

outputℓ = softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ

• We divide the attention scores by 𝑑/ℎ, to stop the scores from becoming large

just as a function of 𝑑/ℎ (The dimensionality divided by the number of heads.)

outputℓ = softmax
𝑋𝑄ℓ𝐾ℓ

⊤𝑋⊤

𝑑/ℎ
∗ 𝑋𝑉ℓ

34

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Transformer
Decoder

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

[decoder attends
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:

[predictions!]

35

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Transformer
Decoder

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

[decoder attends
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:

[predictions!]

Multi-Head Attention

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

36

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

Looking back at the whole model,

zooming in on a Decoder block:

[predictions!]

Residual + LayerNorm

Multi-Head Cross-Attention

Masked Multi-Head Self-Attention

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

37

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder [Vaswani et al., 2017]

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

The only new part is attention from decoder to encoder.

Like we saw last week!

[predictions!]

Residual + LayerNorm

Multi-Head Cross-Attention

Masked Multi-Head Self-Attention

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

38

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Decoder: Cross-attention (details)

• We saw that self-attention is when keys, queries, and values come from the same
source.

• In the decoder, we have attention that looks more like what we saw last week.

• Let ℎ1, … , ℎ𝑇 be output vectors from the Transformer encoder; 𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑇 be input vectors from the Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the decoder, 𝑞𝑖 = 𝑄𝑧𝑖.

39

The Transformer Encoder: Cross-attention (details)

• Let’s look at how cross-attention is computed, in matrices.

• Let H = ℎ1; … ; ℎ𝑇 ∈ ℝ𝑇×𝑑 be the concatenation of encoder vectors.

• Let Z = 𝑧1; … ; 𝑧𝑇 ∈ ℝ𝑇×𝑑 be the concatenation of decoder vectors.

• The output is defined as output = softmax 𝑍𝑄 𝐻𝐾 ⊤ × 𝐻𝑉.

= 𝑍𝑄𝐾⊤ 𝐻⊤

∈ ℝ𝑇×𝑇

All pairs of
attention scores!

output ∈ ℝ𝑇×𝑑

=

𝐾⊤ 𝐻⊤

𝑍𝑄

First, take the query-key dot
products in one matrix
multiplication: 𝑍𝑄 𝐻𝐾 ⊤

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

𝑍𝑄𝐾⊤ 𝐻⊤softmax 𝐻𝑉

40

Outline

1. From recurrence (RNN) to attention-based NLP models

2. Introducing the Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

41

Great Results with Transformers

[Vaswani et al., 2017]

Not just better Machine
Translation BLEU scores

Also more efficient to
train!

First, Machine Translation from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]42

Great Results with Transformers

[Liu et al., 2018]; WikiSum dataset

Transformers all the way down.

Next, document generation!

The old standard

43

https://arxiv.org/pdf/1801.10198.pdf

Great Results with Transformers

[Liu et al., 2018]

Before too long, most Transformers results also included pretraining, a method we’ll
go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them
the de-facto standard.

On this popular aggregate
benchmark, for example:

All top models are
Transformer (and
pretraining)-based.

More results Thursday when we discuss pretraining.
44

https://arxiv.org/pdf/1801.10198.pdf

Outline

1. From recurrence (RNN) to attention-based NLP models

2. Introducing the Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

45

• Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?

46

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

• One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

• However, its total number of operations grows as 𝑂 𝑇2𝑑 , where 𝑇 is the
sequence length, and 𝑑 is the dimensionality.

Quadratic computation as a function of sequence length

47

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑇×𝑇

Need to compute all
pairs of interactions!
𝑂 𝑇2𝑑𝐾⊤ 𝑋⊤

𝑋𝑄

• Think of 𝑑 as around 𝟏, 𝟎𝟎𝟎.

• So, for a single (shortish) sentence, 𝑇 ≤ 30; 𝑇2 ≤ 𝟗𝟎𝟎.

• In practice, we set a bound like 𝑇 = 512.

• But what if we’d like 𝑻 ≥ 𝟏𝟎, 𝟎𝟎𝟎? For example, to work on long documents?

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Recent work on improving on quadratic self-attention cost

48

Key idea: map the
sequence length
dimension to a lower-
dimensional space for
values, keys In

fe
re

n
ce

 t
im

e
(s

)

Sequence length / batch size

https://arxiv.org/pdf/2006.04768.pdf

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, BigBird [Zaheer et al., 2021]

Recent work on improving on quadratic self-attention cost

49

Key idea: replace all-pairs interactions with a family of other interactions, like local
windows, looking at everything, and random interactions.

https://arxiv.org/pdf/2006.04768.pdf

• Pretraining on Thursday!

• Good luck on assignment 4!

• Remember to work on your project proposal!

Parting remarks

50

