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Introduction

Course rules

@ 12 lectures & seminars
@ Lecture 4+ seminar = 2 4 2 hours per week.

@ Final exam is written & spoken and is focused on your skills rather than
knowledge.

@ Basic knowledge of English and math (calculus, statistics, algebra) is highly
recommended.

@ Digital Image Processing (PV131) is highly recommended.
@ Seminars take place in PC labs using Python.

@ The experience from seminars will be useful for completing a small project
written in Python, MATLAB®, C/C++, Java (or the preferred language).

@ At the end of each lecture you can find a list of questions you should be able
to answer if you want to pass the final exam.
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Introduction

Course itinerary

@ Introduction & Revision

@ Fourier Transform, Spherical Harmonics, Hilbert Transform

@ Principle Component Analysis (PCA), Discrete Cosine Transform (DCT)
@ Singular Value Decomposition (SVD), Independent Component Analysis (ICA)
@ Image Resampling, Texture filtering

@ Z-transform

@ Wavelet Transform

@ Lifting Scheme

© Recursive Filtering, Steerable Filters

@ Image Restoration

@ Image Compression Methods

@ Image Compression Standards

David Svoboda (CBIA®FI) Image Transforms autumn 2022 5/37



Introduction

Recommended reading

e Gonzalez, R. C., Woods, R. E., Digital image processing / 2nd ed.,
Upper Saddle River: Prentice Hall, 2002, pages 793, ISBN
0201180758

@ Bracewell, R. N., Fourier transform and its applications / 2nd ed.
New York: McGraw-Hill, pages 474, ISBN 0070070156

e Jihne, B., Digital image processing / 6th rev. and ext. ed., Berlin:
Springer, 2005, pages 607, ISBN 3540240357

@ selected papers
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© Some revision
@ Image transforms
@ Convolution
@ Impulse symbol
@ Complex numbers
@ Vector spaces
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Image transforms

Definition

Image transform 7T is a function that converts the image from one vector
space to another (or the same) vector space.

h="T(f)

e f(x) or f(m) ...input image/signal

@ h(y) or h(n) ...output image/signal
e 7 ...transform

@ X,y ...positions in continuous signal

@ m,n ...indices addressing the positions in discrete sequences/vectors
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Convolution

Definition

1D convolution

e Discrete: given two 1D signals (/) and g(i):

(Fxg)(i) =) f(k)gli — k)

k

e Continuous: given two 1D signals f(x) and g(x):

(f x g)(x / f(x"Ng(x — x")dx

Notice: 'g" is called a convolution kernel (mask)
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Convolution

Example

1D discrete convolution

input signal kernel output signal

103211010 102 5
S
D 1x20x03x1
201
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Convolution

Example

1D discrete convolution

input signal kernel output signal

103211010 102 52
N4 B
D Ox23x02x1
201
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Convolution

Example

1D discrete convolution

input signal kernel output signal

nll
%

103211010

527
flip I y
3x2 2x0 1 x1

10 2
201
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Convolution

Definition

2D convolution

e Discrete: given two 2D signals f(i,j) and g(i,/):

(F=g)i,j) = Zf (k,Ng(i —k,j—1)
e Continuous: given two 2D signals f(x,y) and g(x,y):

(e 8)xn) = [ [ 10y )glx =Xy = )aay’

Notice: If not necessary we will focus only on 1D discrete convolution.
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Convolution

Example

2D discrete convolution

input image kernel output image
3271410
2111513/ 1] 1 010 15
3/3 0[/0/ 2 1 113]1 1
41211/ 46| 4 110
2/0l5/2|6 7 flip
\
3x0 2><1 7x0 Z
- 2)(1 1x3 5x1
3x0 3><1 OxO
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Convolution

Example

2D discrete convolution

input image kernel output image
3127 4110
211151311 010 15]26
313/0 0]2 1 1 1 ?
4,2/ 114/6| 4 110
2/ 0/ 5]2/6|7 flip
\ 4
2x0 7><1 4x0 Z
> 1x1 5x3 3x1
3x0 Ox1 OxO
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Convolution

Example

2D discrete convolution

input image kernel output image
31217 4/1]0
2/ 1151311 010 15/26[19
3/3/0 0 2|1 113]1 *
41211416 4 110
2/0 5/ 2)6 7 flip
\
7x0 4><1 1x0 Z
- 5x1 3x3 1x1
OXO Ox1 2x0
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Convolution

Basic properties

Commutativity:

frg=gxf
Distributivity:

fx(g+h)y=fxg+fxh
Associativity:

(Fxg)xh="f=x(g=x*h)
Convolution theorem:

FT(f)-FT(g)=FT(f xg)

FT(f)xFT(g)=FT(f-g)
Separability:

2D kernel g is separable < rank(g) =1

Notice: Expression 'FT()' stands for Fourier transform.
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Convolution

Complexity in 2D

e input image f : MxM — {0,...,2bitdepth}
@ convolution kernel g : Nx N — (0; 1)

@ Standard/Naive 2D discrete convolution
o Time: O(M?N?)
@ Space: none required
o Usability: Very slow.
@ 2D discrete convolution with separable kernel
o Time: O(M?N)
o Space O(M?)
@ Usability: Not all PSFs are separable.
@ Convolution theorem
o Time: O((M 4+ N)?log(M + N))
e Space: O((M + N)?)
o Usability: Huge memory requirements.
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Convolution

Memory optimization stategies / Parallelization

"Overlap & Save" scheme

input image output image

overla

overla

discard overlaps
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Convolution

Memory optimization stategies / Parallelization

"Overlap & Add" scheme

input image output image

do not crop the result
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Impulse symbol ¢

Definition

Infinitely brief and infinitely strong unit-area impulse:

d(x)=0 x#0
and
/ d(x)dx =1

e we call it Dirac delta function or impulse symbol
e it is NOT a function
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Impulse symbol ¢

Properties

Given 1D function f and a € R:
/ I(x)f(x)dx = f(0)

/5(Xa)f(x)dx = f(a)

0(x) plot:
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Impulse symbol ¢

Properties

Convolution of any function f with:
@ 0 impulse shifts the origin of f to the nonzero response of §

@ ¢ impulses replicate the function

AN
T®TT:>/=\/=\/,\

@ Gaussian shifts the origin of f to the position of the peak of the
Gaussian and smooths
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Kronecker delta (function)

Kronecker delta function ... discrete counterpart to Dirac delta impulse.

%:{ 1 if (i =)

0 otherwise

or

5(n):{ 1 if(n=0)

0 otherwise
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Complex numbers

Any z € C can be written in one

of the following ways: I
D E=a L. y z=x+1y
@ z =|z|(cosp + isiny)
° z=|z|e/®
¥

where x,y € Rand i? = —1is a
constant, |z| is a magnitude and © X R
@ is a phase of z

Properties: R

@ conjugate complex number:
Z=x-—1y J
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Complex numbers

Be aware of the difference!

@ ¢ — phase (of complex number)

o w2 r 3412 e o 2 x 3412 2
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Vectors

Basic properties

Let be given a Euclidean (K = R) or unitary (K = C) vector space
V C K” and three vectors u,v,w € V:

@ Vector addition: z=u+v+wecV

\%
w
@ Linear combination of vectors: z = %u +3v—-2w eV

\4
w

David Svoboda (CBIA®FI) Image Transforms autumn 2022 23 /37



Vectors

Basic properties

Let be given Euclidean space V = (uj, uy, ..

.,Uyp), then each v € V can
be written as:

V = ajuy + arup + - - - 4 apup

where
@ (uj,uy,...,uy) is the basis of V
o Vi={l,...,n}:a, €K
@ vector (a1, a2,...,ap) is unique.
Notes:

@ two vectors u,v € V are orthogonal, if u-v=20
("' stands to inner product)

@ basis (uy,ug,...,uy,) is orthonormal, if Vi,j =1,..

.,n:ui-ujzé,-d-
(07 stands for Kronecker delta)
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Vectors

Example

Given Cartesian coordinate system (ej, ez, e3) and a vector
v =(3.4,—-2,7), we can write:

v =3.4e; — 2ep + Te3

where
es = (1,0,0)
€ = (07 170)
e = (0707 1)

Question: How to find the (linear combination) coefficients when we do
not project the vector v onto standard basis?
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Vectors

Projection to a new basis

Given a vector v € V and “any” basis (uy,ug,...,u,) in V, we can write:

vV = ajuy + auz + - - - + apuy

where

Vi={1,...,n}:a = vt

u; - u;
If the basis is orthonormal, it is sufficient to write: a; = v - u;

Notice: Inner product v - w is a projection v onto w. The result is a
number.
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Vectors

Example

e standard basis: (ej,ez) = ((1,0),(0,1))
V(ehez) = (—1,3)

o another basis: (u1,u) = ((=0.7,-0.7),(0.7,—=0.7)) (0.7 = ¥2)
(—1,3)-(=0.7,-0.7)
(—0.7,-0.7) - (—0.7, —0.7)
(-1,3)-(0.7,-0.7) .
(0.7,-0.7) - (0.7,-0.7)
V(ul,uz) = (—1.42, —2.86)

ai = —1.42

dy = —2.86

u}/\uZ
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Vectors

Example (cont'd)
Each orthonormal basis forms a square matrix:
_|wm | | =07 =07
a=lm]=] 7 7]

The projection is therefore realized using matrix multiplication:

Viugup) = Av<e17e2>

Notice: Transform from one basis onto another one is a linear mapping.
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Vectors

Projection to a new basis

Properties of transform matrices:
. : o —T
e Ais unitary matrix, ie. A=A .

. =T . .
o If y = Ax is forward transform, then x = A~ly = A" y is inverse
transform.

The following two sentences express the same:
@ The vector v is projected into the basis (uj, ug, ..., uy,).

@ The vector v is decomposed into a linear combination of basis vectors
up,uz, ..., Uy,
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Decomposition in higher dimensions

Let's increase the dimensionality: 2-D — 3-D — ... — N-D

Let V C KN be a N-dimensional vector space (K = R or C), then the
following terms express the same:

@ avectorveV
example: v = (4,2,3,6,—1,5)
@ apointpeV
example: p=1[4,2,3,6,—1,5]
@ a discrete 1D function f, where |f| = N
example: f = {(0,4),(1,2),(2,3),(3,6),(4,—1),(5,5)}

Notice: The addition of points/vectors equals to addition of functions.
The same for other well known operations like subtraction, multiplication
by scalar, or linear combination.
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Decomposition in higher dimensions

Example

The discrete function below can be understood as a vector/point in
100-dimensional vector space:

0.8 iy
%
06F
v
Vst
04} =y
02t .
ot
02}
04t s
0.6
0.8+ i
-1
[ 20 40 60 80 100

Notice: In higher dimensions, we use rather the concept of functions.
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Decomposition in higher dimensions

Example

The discrete function below can be decomposed into

a linear combination
of some simple (well known) functions:

- 0.6%0s(0.06x) |

+—0.2%c0s(0.13x-1.57)

0.22*c0s(0.25x+0.46)
=

Notice: Each discrete function can be decomposed in this manner.
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Decomposition in higher dimensions

Another example

A step function (red color) is defined as an infinite sum of sine waves:

£(m) = Z sin{(22nn—:—11)m}

P —  fy(m)
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Decomposition in higher dimensions

Let be a discrete 1D function f of N samples:
@ f can be uniquely expressed as a linear combination of basis functions
P1, P2y PN

N
F(m) =" akp(m)
k=1
where ax € K and (¢1, ¢2, ..., ¢n) form the orthonormal basis

The coefficients of linear combination are found as:
Vk={1,....N}rax =1 - o
i.e. using the projection (inner/dot product)

Notice: - =>_,, f(m)m
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Basis functions

An example of sine & cosine waves sampled with N = 16

Common request:
@ the basis is orthonormal, i.e. ¢y - @) = i
@ the basis functions for N = 16 are:
1 —omimk 1 2rmk . . 2wmk
@k(m):Te N = cos —y— —isin —

freq=0 freq=1 freq=2 freq=3 freq=0 freq=1 freq=2 freq=3
1 1

<
>
=
<
=
=

0 10 0 10 0 10 [ 10 0 5 10 15 0 5 10
- freq=5 freq=6 freq=7 freq=4 freq=5 freq=6 freq=7
1 1 1

@
B
°
8

=
=
=
s

0 10 0 10 0 10 o 10 0 5 10 15 0 5 10 5 10 1
freq=8 freq=9 freq=10 freq=11 freq=8 freq=9 freq=10 freg=11
1 1 = =

e
5
°

=
=
=

0 10 0 10 0 10 [ 10 o 5 10 15 0 5 10
= freq=13 freq=14 freq=15 freq=12 freq=13 freq=14 freq=15
1 1

&
o
5
.
5

=
=
S
=
=
2
<

0 10 0 10 0 10 [ 10
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Bibliography

e Gonzalez, R. C., Woods, R. E., Digital image processing / 2nd ed.,
Upper Saddle River: Prentice Hall, 2002, pages 793, ISBN
0201180758

@ Bracewell, R. N., Fourier transform and its applications / 2nd ed.
New York: McGraw-Hill, pages 474, ISBN 0070070156
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You should know the answers . ..

@ What happens if we convolve a function f with Gaussian located
outside the origin?

@ What is the result when convolving a function f with several §
impulses?

Under which conditions is the convolution kernel separable?

What is the basis and vector space generated by the given basis?
What are the orthogonal vectors?

What is the orthonormal basis?

How can we simply convert a vector from one basis to another basis?

What is the unitary/orthogonal matrix?

What is the difference between basis vector and basis function?
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