# Integral and Discrete Transforms in Image Processing Introduction & Some revision

#### David Svoboda

email: svoboda@fi.muni.cz Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno, CZ

**CBIA** 

September 12, 2022

## Outline

- Introduction
  - Course rules
  - Course itinerary
  - Recommended reading
- Some revision
  - Image transforms
  - Convolution
  - Impulse symbol
  - Complex numbers
  - Vector spaces

- Introduction
  - Course rules
  - Course itinerary
  - Recommended reading
- 2 Some revision
  - Image transforms
  - Convolution
  - Impulse symbol
  - Complex numbers
  - Vector spaces

#### Introduction

#### Course rules

- 12 lectures & seminars
- Lecture + seminar = 2 + 2 hours per week.
- Final exam is written & spoken and is focused on your skills rather than knowledge.
- Basic knowledge of English and math (calculus, statistics, algebra) is highly recommended.
- Digital Image Processing (PV131) is highly recommended.
- Seminars take place in PC labs using Python.
- The experience from seminars will be useful for completing a small project written in Python, MATLAB<sup>®</sup>, C/C++, Java (or the preferred language).
- At the end of each lecture you can find a list of questions you should be able to answer if you want to pass the final exam.

#### Introduction

#### Course itinerary

- Introduction & Revision
- 2 Fourier Transform, Spherical Harmonics, Hilbert Transform
- 3 Principle Component Analysis (PCA), Discrete Cosine Transform (DCT)
- Singular Value Decomposition (SVD), Independent Component Analysis (ICA)
- 5 Image Resampling, Texture filtering
- Z-transform
- Wavelet Transform
- Lifting Scheme
- Recursive Filtering, Steerable Filters
- Image Restoration
- Image Compression Methods
- Image Compression Standards

#### Introduction

#### Recommended reading

- Gonzalez, R. C., Woods, R. E., Digital image processing / 2nd ed., Upper Saddle River: Prentice Hall, 2002, pages 793, ISBN 0201180758
- Bracewell, R. N., Fourier transform and its applications / 2nd ed.
   New York: McGraw-Hill, pages 474, ISBN 0070070156
- Jähne, B., Digital image processing / 6th rev. and ext. ed., Berlin: Springer, 2005, pages 607, ISBN 3540240357
- selected papers



- Introduction
  - Course rules
  - Course itinerary
  - Recommended reading
- Some revision
  - Image transforms
  - Convolution
  - Impulse symbol
  - Complex numbers
  - Vector spaces

# Image transforms

#### Definition

Image transform  $\mathcal T$  is a function that converts the image from one vector space to another (or the same) vector space.

$$h = \mathcal{T}(f)$$

- f(x) or f(m) ...input image/signal
- h(y) or h(n) ... output image/signal
- ullet  $\mathcal{T}$  ... transform
- x, y ... positions in continuous signal
- $\bullet$  m,n  $\dots$  indices addressing the positions in discrete sequences/vectors

#### Definition

#### 1D convolution

• Discrete: given two 1D signals f(i) and g(i):

$$(f*g)(i) \equiv \sum_{k} f(k)g(i-k)$$

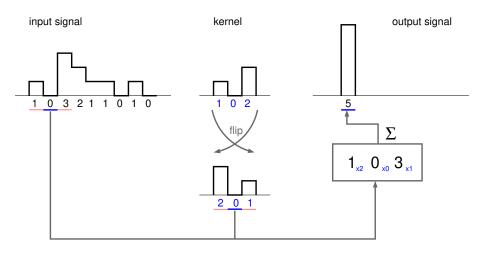
• Continuous: given two 1D signals f(x) and g(x):

$$(f * g)(x) \equiv \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Notice: 'g' is called a convolution kernel (mask)

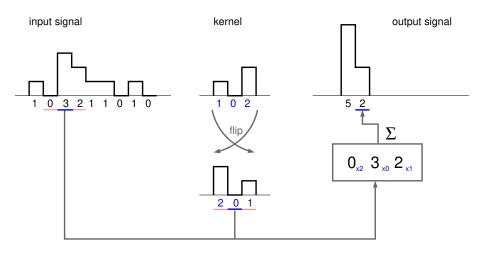
#### Example

#### 1D discrete convolution

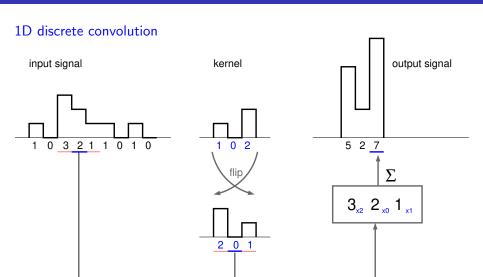


#### Example

#### 1D discrete convolution



#### Example



#### 2D convolution

• Discrete: given two 2D signals f(i,j) and g(i,j):

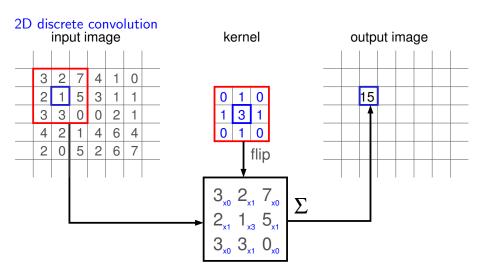
$$(f*g)(i,j) \equiv \sum_{k,l} f(k,l)g(i-k,j-l)$$

• Continuous: given two 2D signals f(x, y) and g(x, y):

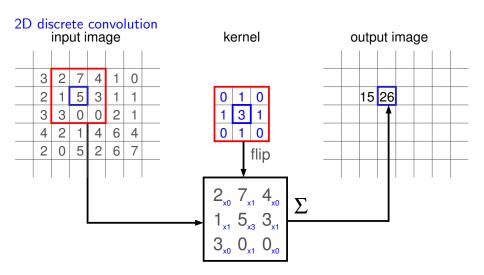
$$(f*g)(x,y) \equiv \int \int f(x',y')g(x-x',y-y')dx'dy'$$

Notice: If not necessary we will focus only on 1D discrete convolution.

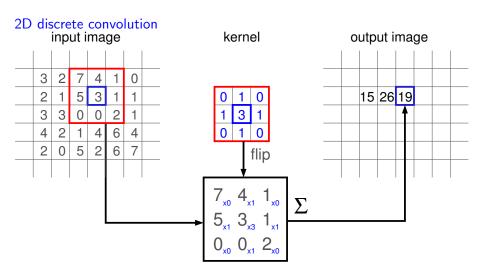
#### Example



#### Example



#### Example



autumn 2022

#### Basic properties

Commutativity:

$$f * g = g * f$$

Distributivity:

$$f*(g+h)=f*g+f*h$$

Associativity:

$$(f*g)*h=f*(g*h)$$

Convolution theorem:

$$FT(f) \cdot FT(g) = FT(f * g)$$
  
 $FT(f) * FT(g) = FT(f \cdot g)$ 

Separability:

2D kernel g is separable  $\Leftrightarrow rank(g) = 1$ 

Notice: Expression 'FT()' stands for Fourier transform.

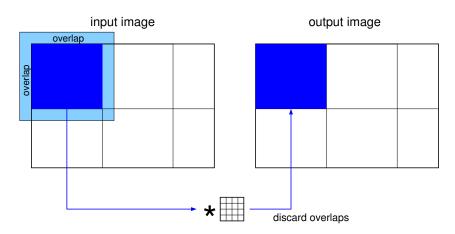
Complexity in 2D

## Conditions

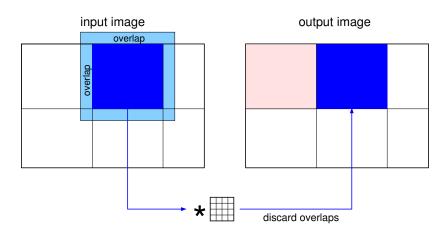
- input image  $f: M \times M \rightarrow \{0, \dots, 2^{\text{bitdepth}}\}$
- convolution kernel  $g: N \times N \rightarrow \langle 0; 1 \rangle$
- Standard/Naive 2D discrete convolution
  - Time:  $O(M^2N^2)$
  - Space: none required
  - Usability: Very slow.
- 2D discrete convolution with separable kernel
  - Time:  $O(M^2N)$
  - Space  $O(M^2)$
  - Usability: Not all PSFs are separable.
- Convolution theorem
  - Time:  $O((M+N)^2 log(M+N))$
  - Space:  $O((M+N)^2)$
  - Usability: Huge memory requirements.

autumn 2022

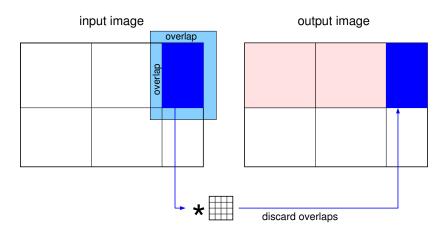
Memory optimization stategies / Parallelization



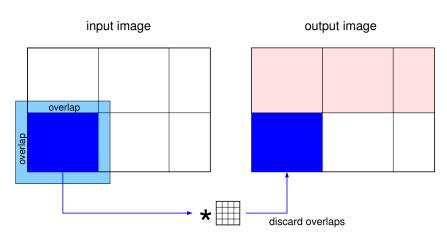
Memory optimization stategies / Parallelization



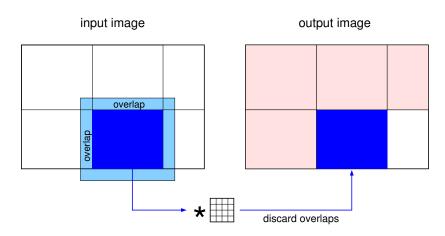
Memory optimization stategies / Parallelization



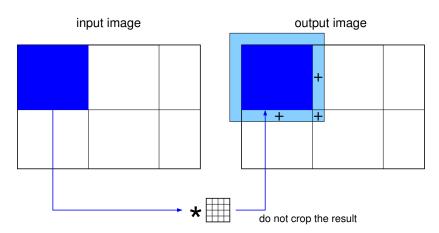
Memory optimization stategies / Parallelization



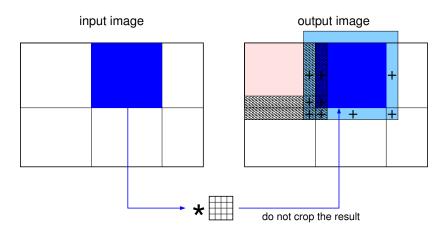
Memory optimization stategies / Parallelization



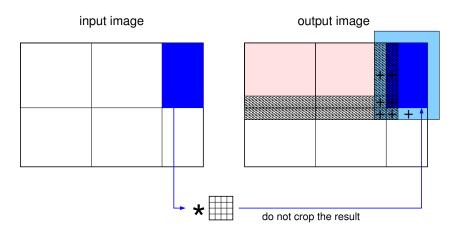
Memory optimization stategies / Parallelization



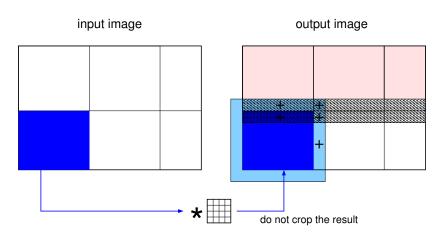
Memory optimization stategies / Parallelization



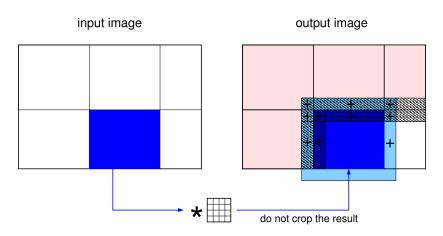
Memory optimization stategies / Parallelization



Memory optimization stategies / Parallelization



Memory optimization stategies / Parallelization



# Impulse symbol $\delta$

Infinitely brief and infinitely strong unit-area impulse:

$$\delta(x) = 0 \quad x \neq 0$$
 and 
$$\int\limits_{-\infty}^{\infty} \delta(x) dx = 1$$

- we call it Dirac delta function or impulse symbol
- it is NOT a function

# Impulse symbol $\delta$

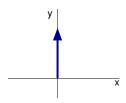
# Properties

Given 1D function f and  $a \in \mathbb{R}$ :

$$\int_{-\infty}^{\infty} \delta(x)f(x)dx = f(0)$$

$$\int_{-\infty}^{\infty} \delta(x-a)f(x)dx = f(a)$$

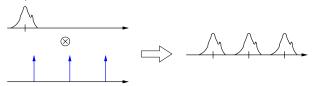
 $\delta(x)$  plot:



# Impulse symbol $\delta$

Convolution of any function f with:

- $\delta$  impulse shifts the origin of f to the nonzero response of  $\delta$
- $\bullet$   $\delta$  impulses replicate the function f



 Gaussian shifts the origin of f to the position of the peak of the Gaussian and smooths

## Kronecker delta (function)

Kronecker delta function ... discrete counterpart to Dirac delta impulse.

$$\delta_{i,j} = \left\{ egin{array}{ll} 1 & \mbox{if } (i=j) \\ 0 & \mbox{otherwise} \end{array} 
ight.$$

or

$$\delta(n) = \begin{cases} 1 & \text{if } (n=0) \\ 0 & \text{otherwise} \end{cases}$$



## Complex numbers

Any  $z \in \mathbb{C}$  can be written in one of the following ways:

• 
$$z = x + iy$$

• 
$$z = |z| (\cos \varphi + i \sin \varphi)$$

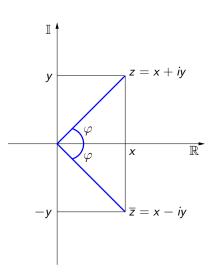
• 
$$z = |z|e^{i\varphi}$$

where  $x, y \in \mathbb{R}$  and  $i^2 = -1$  is a constant, |z| is a magnitude and  $\varphi$  is a phase of z

## Properties:

conjugate complex number:

conjugate complex number: 
$$\overline{z} = x - iy$$

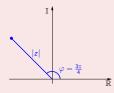


## Complex numbers

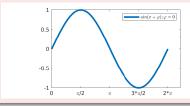
#### Be aware of the difference!

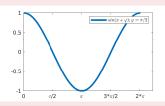
•  $\varphi$  – phase (of complex number)





 $\bullet$   $\varphi$  – phase shift (of a function)





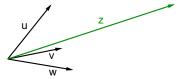
autumn 2022

### **Vectors**

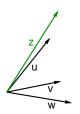
#### Basic properties

Let be given a Euclidean ( $\mathbb{K} = \mathbb{R}$ ) or unitary ( $\mathbb{K} = \mathbb{C}$ ) vector space  $\mathbb{V} \subseteq \mathbb{K}^n$  and three vectors  $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{V}$ :

• Vector addition:  $\mathbf{z} = \mathbf{u} + \mathbf{v} + \mathbf{w} \in \mathbb{V}$ 



• Linear combination of vectors:  $\mathbf{z} = \frac{1}{2}\mathbf{u} + 3\mathbf{v} - 2\mathbf{w} \in \mathbb{V}$ 



#### Vectors

#### Basic properties

Let be given Euclidean space  $\mathbb{V}=\langle u_1,u_2,\ldots,u_n\rangle$ , then each  $\mathbf{v}\in\mathbb{V}$  can be written as:

$$\mathbf{v} = a_1\mathbf{u_1} + a_2\mathbf{u_2} + \dots + a_n\mathbf{u_n}$$

#### where

- $(u_1, u_2, \ldots, u_n)$  is the basis of  $\mathbb{V}$
- $\forall i = \{1, \ldots, n\} : a_i \in \mathbb{K}$
- vector  $(a_1, a_2, \ldots, a_n)$  is unique.

#### Notes:

- two vectors u, v ∈ V are orthogonal, if u · v = 0
   ('·' stands to inner product)
- basis  $(\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_n})$  is orthonormal, if  $\forall i, j = 1, \dots, n : \mathbf{u_i} \cdot \mathbf{u_j} = \delta_{i,j}$   $(\delta_{i,j} \text{ stands for Kronecker delta})$

### **Vectors**

#### Example

Given Cartesian coordinate system  $\langle \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3} \rangle$  and a vector  $\mathbf{v} = (3.4, -2, 7)$ , we can write:

$$v = 3.4e_1 - 2e_2 + 7e_3$$

where

$$e_1 = (1,0,0)$$

$$e_2 = (0,1,0)$$

$$e_3 = (0,0,1)$$

Question: How to find the (linear combination) coefficients when we do not project the vector  $\mathbf{v}$  onto standard basis?

#### Projection to a new basis

Given a vector  $\boldsymbol{v} \in \mathbb{V}$  and "any" basis  $(u_1,u_2,\ldots,u_n)$  in  $\mathbb{V}$  , we can write:

$$\mathbf{v} = a_1\mathbf{u_1} + a_2\mathbf{u_2} + \dots + a_n\mathbf{u_n}$$

where

$$\forall i = \{1, \ldots, n\} : a_i = \frac{\mathbf{v} \cdot \mathbf{u_i}}{\mathbf{u_i} \cdot \mathbf{u_i}}$$

If the basis is orthonormal, it is sufficient to write:  $a_i = \mathbf{v} \cdot \mathbf{u_i}$ 

Notice: Inner product  $\mathbf{v} \cdot \mathbf{w}$  is a projection  $\mathbf{v}$  onto  $\mathbf{w}$ . The result is a number.

#### Vectors

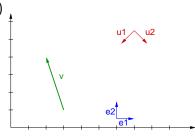
#### Example

- standard basis:  $\langle \mathbf{e_1}, \mathbf{e_2} \rangle = \langle (1,0), (0,1) \rangle$  $\mathbf{v}_{\langle \mathbf{e_1}, \mathbf{e_2} \rangle} = (-1,3)$
- another basis:  $\langle \mathbf{u_1}, \mathbf{u_2} \rangle = \langle (-0.7, -0.7), (0.7, -0.7) \rangle$   $(0.7 \doteq \frac{\sqrt{2}}{2})$

$$a_1 = \frac{(-1,3) \cdot (-0.7, -0.7)}{(-0.7, -0.7) \cdot (-0.7, -0.7)} \doteq -1.42$$

$$a_2 = \frac{(-1,3) \cdot (0.7, -0.7)}{(0.7, -0.7) \cdot (0.7, -0.7)} \doteq -2.86$$

 $\mathbf{v}_{\langle \mathbf{u_1}, \mathbf{u_2} \rangle} = (-1.42, -2.86)$ 



#### Vectors

#### Example (cont'd)

Each orthonormal basis forms a square matrix:

$$A = \begin{bmatrix} \mathbf{u_1} \\ \mathbf{u_2} \end{bmatrix} = \begin{bmatrix} -0.7 & -0.7 \\ 0.7 & -0.7 \end{bmatrix}$$

The projection is therefore realized using matrix multiplication:

$$\textbf{v}_{\langle \textbf{u}_1, \textbf{u}_2 \rangle} = A \textbf{v}_{\langle \textbf{e}_1, \textbf{e}_2 \rangle}$$

Notice: Transform from one basis onto another one is a linear mapping.

#### Properties of transform matrices:

- A is unitary matrix, i.e.  $A^{-1} = \overline{A}^T$ .
- If y = Ax is forward transform, then  $x = A^{-1}y = \overline{A}^Ty$  is inverse transform.

#### The following two sentences express the same:

- The vector  $\mathbf{v}$  is projected into the basis  $\langle \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n \rangle$ .
- $\bullet$  The vector v is decomposed into a linear combination of basis vectors  $u_1,u_2,\ldots,u_n$

## Let's increase the dimensionality: $2-D \rightarrow 3-D \rightarrow ... \rightarrow N-D$

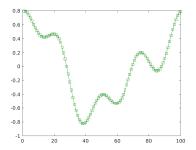
Let  $\mathbb{V} \subseteq \mathbb{K}^N$  be a N-dimensional vector space ( $\mathbb{K} = \mathbb{R}$  or  $\mathbb{C}$ ), then the following terms express the same:

- a vector  $v \in V$ example: v = (4, 2, 3, 6, -1, 5)
- a point  $p \in \mathbb{V}$  example: p = [4, 2, 3, 6, -1, 5]
- a discrete 1D function f, where |f| = N example:  $f = \{(0,4), (1,2), (2,3), (3,6), (4,-1), (5,5)\}$

Notice: The addition of points/vectors equals to addition of functions. The same for other well known operations like subtraction, multiplication by scalar, or linear combination.

# Decomposition in higher dimensions Example

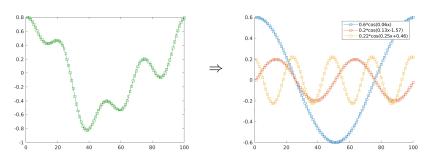
The discrete function below can be understood as a vector/point in 100-dimensional vector space:



Notice: In higher dimensions, we use rather the concept of functions.

Example

The discrete function below can be decomposed into a linear combination of some simple (well known) functions:



Notice: Each discrete function can be decomposed in this manner.

Another example

A step function (red color) is defined as an infinite sum of sine waves:

$$f_{z}(m) = \sum_{n=0}^{z} \frac{\sin\{(2n+1)m\}}{2n+1}$$

$$f_{3}(m)$$

$$f_{10}(m)$$

$$f_{35}(m)$$

Let be a discrete 1D function f of N samples:

• f can be uniquely expressed as a linear combination of basis functions  $\varphi_1, \varphi_2, \dots, \varphi_N$ :

$$f(m) = \sum_{k=1}^{N} a_k \varphi_k(m)$$

where  $a_k \in \mathbb{K}$  and  $(\varphi_1, \varphi_2, \dots, \varphi_N)$  form the orthonormal basis

The coefficients of linear combination are found as:

$$\forall k = \{1, \dots, N\} : a_k = f \cdot \varphi_k$$

i.e. using the projection (inner/dot product)

Notice: 
$$f \cdot \varphi_k = \sum_m f(m) \overline{\varphi_k(m)}$$

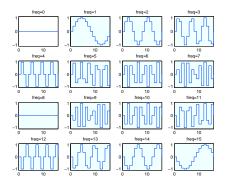
## Basis functions

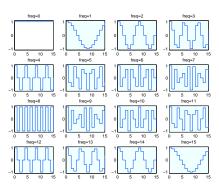
An example of sine & cosine waves sampled with N=16

#### Common request:

- the basis is orthonormal, i.e.  $\varphi_k \cdot \varphi_l = \delta_{k,l}$
- the basis functions for N = 16 are:

$$\varphi_k(m) = \frac{1}{\sqrt{N}} e^{\frac{-2\pi i m k}{N}} = \frac{1}{\sqrt{N}} \left( \cos \frac{2\pi m k}{N} - i \sin \frac{2\pi m k}{N} \right)$$





# Bibliography

- Gonzalez, R. C., Woods, R. E., Digital image processing / 2nd ed., Upper Saddle River: Prentice Hall, 2002, pages 793, ISBN 0201180758
- Bracewell, R. N., Fourier transform and its applications / 2nd ed.
   New York: McGraw-Hill, pages 474, ISBN 0070070156



## You should know the answers ...

- What happens if we convolve a function f with Gaussian located outside the origin?
- What is the result when convolving a function f with several  $\delta$  impulses?
- Under which conditions is the convolution kernel separable?
- What is the basis and vector space generated by the given basis?
- What are the orthogonal vectors?
- What is the orthonormal basis?
- How can we simply convert a vector from one basis to another basis?
- What is the unitary/orthogonal matrix?
- What is the difference between basis vector and basis function?