Integral and Discrete Transforms in Image Processing Selected Orthogonal Transforms

David Syoboda

email: svoboda@fi.muni.cz Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno, CZ

CBIA

August 24, 2022

Outline

- Revision
 - Algebra
 - Statistics
- 2 Motivation
- PCA-based Transform
 - Design
 - An example
- 4 Discrete Cosine Transform (DCT)
 - 1D DCT
 - 1D FastDCT
 - 2D DCT
- 5 Walsh-Hadamard Transform

- Revision
 - Algebra
 - Statistics
- 2 Motivation
- PCA-based Transform
 - Design
 - An example
- 4 Discrete Cosine Transform (DCT)
 - 1D DCT
 - 1D FastDCT
 - 2D DCT
- 5 Walsh-Hadamard Transform

Algebra

Definition:

Let $C \subset \mathbb{R}^{n \times n}$ be a square matrix. Vector $\mathbf{v} \in \mathbb{C}^n$ is an *eigenvector* of $C \Leftrightarrow \exists \lambda \in \mathbb{C} : C\mathbf{v} = \lambda \mathbf{v}$. λ is called an *eigenvalue*.

Properties of eigenvalues:

- $C\mathbf{v} = \lambda \mathbf{v}$ equals to $(C \lambda E)\mathbf{v} = 0$ The solution of equation $|C - \lambda E| = 0$ is identical to the search for roots in the polynomial of degree n.
- if C is symmetric then all the eigenvalues are real

Properties of eigenvectors:

- the two eigenvectors corresponding to two different eigenvalues are orthogonal
- if C is symmetric then all the eigenvectors are real and orthogonal

Algebra

Properties of symmetric matrices:

• if $C \subset \mathbb{R}^{n \times n}$: $C = C^T$ with its eigenvectors e_1, e_2, \ldots, e_n and eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ then $\exists A \subset \mathbb{R}^{n \times n}$ such that $A^T C A = D$, where

$$D = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_n \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ e_n \end{bmatrix}$$

Statistics

Cross-correlation:

• given two 1D signals f(i) and g(i):

$$(f \star g)(i) = \sum_{k} f(i+k)g(k)$$

• it is a measure of similarity of two signals

Auto-correlation:

• given 1D signal f(i):

$$(f \star f)(i) = \sum_{k} f(i+k)f(k)$$

• it is a measure for finding repeating patterns

Statistics

Auto-correlation example

Statistics

Auto-correlation example

Revision Statistics

Highly correlated signals

- contain repeating patterns
- energy (nonzero values) is stretched over the whole space
- this is what we usually have

Decorrelated signals

- energy (nonzero values) is compacted in one location
- easy to compress
- this is what we wish to have

Statistics

Covariance

• Covariance exhibits how much two signals f and g (let us assume |f| = |g| = n) vary from the mean with respect to each other:

$$cov(f,g) = rac{\sum\limits_{i=1}^{n}(f_i - \overline{f})(g_i - \overline{g})}{n-1}$$

 Covariance Matrix – a matrix of covariances between two signals f and g:

$$C = \begin{bmatrix} cov(f, f) & cov(f, g) \\ cov(g, f) & cov(g, g) \end{bmatrix}$$

Matrix *C* is always real and symmetric.

Notice: Two signals f and g are decorrelated iff cov(f,g)=cov(g,f)=0, i.e. when the matrix C is diagonal.

- Revision
 - Algebra
 - Statistics
- 2 Motivation
- PCA-based Transform
 - Design
 - An example
- 4 Discrete Cosine Transform (DCT)
 - 1D DCT
 - 1D FastDCT
 - 2D DCT
- 5 Walsh-Hadamard Transform

11 / 49

Motivation

The most common linear transforms

- sinusoidal transforms
 - DFT (discrete Fourier transform)
 - DCT (discrete cosine transform)
 - DST (discrete sine transform)
- rectangular wave transforms
 - Walsh-Hadamard transform
 - Haar transform
- variable basis
 - Discrete wavelet transform
- eigenvector-based transforms
 - Karhunen-Loeve transform

Motivation

Energy compaction

Evaluate DFT over some short signal:

$$\begin{array}{rcl} f & = & [1\ 3\ 4\ 2] \\ & \psi & / \text{DFT}/ \end{array}$$

$$\mathcal{F} & = & \frac{1}{\sqrt{4}}[10\ \ (-3-i)\ \ 0\ \ (-3+i)]$$

Measure the energy of the signals:

$$E(f)$$
 = $\sum f(i)^2 = 1^2 + 3^2 + 4^2 + 2^2 = 30$
 $E(\mathcal{F})$ = $\sum \mathcal{F}(i)^2 = 25 + 10/4 + 10/4 = 30$

The first component in f accounts for 3.3% of energy while the first component in \mathcal{F} accounts for 83.3% of energy.

Conclusion: Ability of energy compaction pprox optimality of the transform

Motivation

Why do we need image transforms?

- manipulation with data in another domain might be simpler example of use: low-pass, high-pass filtering
- data decorrelation ≈ co-variance removal ≈ energy compaction example of use: image compression

Which transform properties are the most important?

- speed
- simple to implement

Notice: The requirements suggest to use *linear transforms*, i.e. the input signal f is transformed into the signal F by:

$$F = Af$$
,

where A is a transform matrix.

- Revision
 - Algebra
 - Statistics
- 2 Motivation
- PCA-based Transform
 - Design
 - An example
- 4 Discrete Cosine Transform (DCT)
 - 1D DCT
 - 1D FastDCT
 - 2D DCT
- 5 Walsh-Hadamard Transform

Design of transform matrix A

Task to solve

Given an input discrete signal, design a transformation matrix such that the transformed signal has decorrelated samples (they are mutually independent).

Solution

Given a 2D image, let us break it up into k blocks of n pixels each.

Each block i is characterized with its vector $\mathbf{b}^{(i)}$, i = 1, 2, ..., k where length($\mathbf{b}^{(i)}$) = n.

Design of transform matrix A

input	input	expected output
(correlated)	(mean centered)	(decorrelated)
$\mathbf{b}^{(i)}$	$\mathbf{v}^{(i)} = \mathbf{b}^{(i)} - \overline{\mathbf{b}}$	$\mathbf{w}^{(i)} = A\mathbf{v}^{(i)}, i = 1, 2, \dots, k$
	$V = \left[\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(k)} ight]$	$W = AV = \left[\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(k)}\right]$
	$C_V = V \cdot V^T$	$C_W = W \cdot \dot{W}^T$
	C_V real, symmetric	C_W diagonal

$$C_W = W \cdot W^T = (AV) \cdot (AV)^T = A(V \cdot V^T)A^T = A \cdot C_V \cdot A^T$$

Notice:

- the off-diagonal elements of covariance matrix C_V are the covariances of the $\mathbf{v}^{(i)}$ vectors $\dots (V \cdot V^T)_{ab} = \sum_{i=1}^k v_a^{(i)} v_b^{(i)}$
- ullet the off-diagonal elements of covariance matrix \mathcal{C}_W are zero
- ullet the eigenvectors of C_V form the rows of a new matrix A
- C_W is a diagonal matrix formed of the eigenvalues of C_V

David Svoboda (CBIA@FI) Image Transforms a

Algorithm:

- collect the input data $\mathbf{b}^{(i)}$
- 3 calculate the covariance matrix C_V
- lacktriangle find eigenvectors and eigenvalues of C_V
- use eigenvectors to form the transform matrix A
- o use A as a transform matrix to original data
- **②** get transformed decorrelated data: $\mathbf{w}^{(i)} = A(\mathbf{b}^{(i)} \overline{\mathbf{b}})$

Notice: Red lines \equiv Principal Component Analysis (PCA).

An example

Let us submit the following 2D image to the PCA

2.5	2.4	0.5	0.7
2.2	2.9	1.9	2.2
3.1	3.0	2.3	2.7
2.0	1.6	1.0	1.1
1.5	1.6	1.1	0.9

Notice: Neighbouring pixels have usually similar value.

An example

We have chosen n=2, k=10 and fetched k vectors $\mathbf{b}^{(i)}, i=1,2,\ldots,k$ in the following manner:

	X	Y
$b^{(1)}$	2.5	2.4
$b^{(2)}$	0.5	0.7
$b^{(3)}$	2.2	2.9
$b^{(4)}$	1.9	2.2
${\bf b}^{(5)}$	3.1	3.0
$b^{(6)}$	2.3	2.7
${\bf b}^{(7)}$	2.0	1.6
${\bf b}^{(8)}$	1.0	1.1
${\bf b}^{(9)}$	1.5	1.6
$\mathbf{b}^{(10)}$	1.1	0.9

Correlation of the neighbouring intensities:

An example

Modify the input datasets:

	X	Y		$X - \overline{X}$	$Y - \overline{Y}$
$b^{(1)}$	2.5	2.4	$\mathbf{v}^{(1)}$	0.69	0.49
$b^{(2)}$	0.5	0.7	$v^{(2)}$	-1.31	-1.21
$b^{(3)}$	2.2	2.9	$v^{(3)}$	0.39	0.99
${\sf b}^{(4)}$	1.9	2.2	$v^{(4)}$	0.09	0.29
${\bf b}^{(5)}$	3.1	3.0	$v^{(5)}$	1.29	1.09
${\bf b}^{(6)}$	2.3	2.7	v ⁽⁶⁾	0.49	0.79
${\bf b}^{(7)}$	2.0	1.6	$v^{(7)}$	0.19	-0.31
${\bf b}^{(8)}$	1.0	1.1	v ⁽⁸⁾	-0.81	-0.81
${\bf b}^{(9)}$	1.5	1.6	$v^{(9)}$	-0.31	-0.31
${f b}^{(10)}$	1.1	0.9	$v^{(10)}$	-0.71	-1.01

An example

Evaluate all the covariances $C_V(X,X)$, $C_V(X,Y)$, $C_V(Y,X)$, and $C_V(Y,Y)$ and form the covariance matrix C_V :

$$C_V = V \cdot V^T = \begin{bmatrix} 0.617 & 0.615 \\ 0.615 & 0.717 \end{bmatrix}$$

Since the covariance matrix is square, we can calculate the eigenvectors and eigenvalues for this matrix:

eigenvalues

$$C_W = W \cdot W^T = \begin{pmatrix} 0.049 & 0 \\ 0 & 1.284 \end{pmatrix}$$

eigenvectors

$$A = \begin{pmatrix} -0.735 & 0.678 \\ -0.678 & -0.735 \end{pmatrix}$$

An example

An example

The following statements are equal:

- the eigenvalue λ_j is the highest one
- the eigenvector e_i is more dominant
- the energy (the majority in information) is gathered in element $\mathbf{w}_i^{(i)}, i=1,2,\ldots,k$
- ullet the element $oldsymbol{\mathbf{w}}_{j}^{(i)}, i=1,2,\ldots,k$ has the greatest variance

The following statements are also equal:

- the eigenvalue λ_I is the lowest one
- the eigenvector e_l is practically useless

An example

Transformed (decorrelated) data

	X'	Y'
$\mathbf{w}^{(1)}$	-0.827	-0.175
$\mathbf{w}^{(2)}$	1.777	0.142
$\mathbf{w}^{(3)}$	-0.992	0.384
$\mathbf{w}^{(4)}$	-0.274	0.130
$\mathbf{w}^{(5)}$	-1.675	-0.209
$\mathbf{w}^{(6)}$	-0.912	0.175
$\mathbf{w}^{(7)}$	0.099	-0.349
$w^{(8)}$	1.144	0.046
$\mathbf{w}^{(9)}$	0.438	0.017
$\mathbf{w}^{(10)}$	1.223	-0.162

An example

Clear less important component

	X'	Y'
$\mathbf{w}^{(1)}$	-0.827	0.000
$\mathbf{w}^{(2)}$	1.777	0.000
$\mathbf{w}^{(3)}$	-0.992	0.000
$\mathbf{w}^{(4)}$	-0.274	0.000
$\mathbf{w}^{(5)}$	-1.675	0.000
$\mathbf{w}^{(6)}$	-0.912	0.000
$\mathbf{w}^{(7)}$	0.099	0.000
$w^{(8)}$	1.144	0.000
$\mathbf{w}^{(9)}$	0.438	0.000
$\mathbf{w}^{(10)}$	1.223	0.000

An example

Transformed back with A^{-1}

	oldX	oldY	newX	newY
$b^{(1)}$	2.5	2.4	2.42	2.47
$b^{(2)}$	0.5	0.7	0.50	0.71
$b^{(3)}$	2.2	2.9	2.54	2.58
$\mathbf{b}^{(4)}$	1.9	2.2	2.01	2.09
${\bf b}^{(5)}$	3.1	3.0	3.04	3.05
${\bf b}^{(6)}$	2.3	2.7	2.48	2.53
${\bf b}^{(7)}$	2.0	1.6	1.74	1.84
${\bf b}^{(8)}$	1.0	1.1	0.97	1.13
${\bf b}^{(9)}$	1.5	1.6	1.49	1.61
${f b}^{(10)}$	1.1	0.9	0.91	1.08

Properties:

- optimal decorrelation method (see the example)
- too heavy for evaluation (searching for eigenvalues and eigenvectors)
- matrix A is data dependent (cannot be precomputed)
- all the eigenvectors must be kept for inverse transform

Conclusion: rather theoretical method

- Revision
 - Algebra
 - Statistics
- 2 Motivation
- PCA-based Transform
 - Design
 - An example
- 4 Discrete Cosine Transform (DCT)
 - 1D DCT
 - 1D FastDCT
 - 2D DCT
- 5 Walsh-Hadamard Transform

Discrete Cosine Transform (DCT) DFT → DCT

Let $f = [f(0) \quad f(1) \dots f(N-1)]$ be a discrete signal.

Let us modify it as follows:

```
f(0) \quad f(1) \quad f(2) \quad \dots \quad f(N-1)
\downarrow \quad \text{mirror}
f(N-1) \dots f(1) \quad f(0) \qquad \qquad f(0) \quad f(1) \quad f(2) \dots \quad f(N-1)
\downarrow \quad \text{insert zeros}
f(N-1) \quad 0 \dots \quad 0 \quad f(1) \quad 0 \quad f(0) \quad 0 \quad f(1) \quad 0 \quad f(2) \dots \quad 0 \dots \quad f(N-1) \quad 0
\downarrow \quad \text{DFT domain is periodical}
0 \quad f(0) \quad 0 \quad f(1) \quad 0 \quad f(2) \dots \quad 0 \dots \quad f(N-1) \quad 0 \quad f(N-1) \quad 0 \dots \quad 0 \quad f(1) \quad 0 \quad f(0)
\downarrow \quad \text{name substitution}
c(0) \quad c(1) \quad c(2) \quad c(3) \quad c(4) \dots \quad c(4N-1)
```

The relationship between signal 'c' and 'f':

$$c(2n) = 0 \text{ iff } 0 \le n < N$$

 $c(2n+1) = f(n) \text{ iff } 0 \le n < N$
 $c(4N-n) = c(n) \text{ iff } 0 < n < 2N$

The basic properties of signal 'c':

- c is even (ready for DFT working over real even data)
- |c| = 4N

Let us apply DFT to c:

$$\mathcal{C}(k) = \sum_{j=0}^{4N-1} c(j) e^{-\frac{2\pi i j k}{4N}} = /\text{symmetry} / = \sum_{j=0}^{2N-1} c(j) \left[e^{-\frac{2\pi i j k}{4N}} + e^{-\frac{2\pi i (4N-j)k}{4N}} \right]$$

$$= \sum_{j=0}^{2N-1} c(j) \left[e^{-\frac{2\pi i j k}{4N}} + e^{\frac{2\pi i j k}{4N}} \right] / \text{Euler-Moivre eq.} /$$

$$= \sum_{j=0}^{2N-1} c(j) \left[\left(\cos \frac{2\pi j k}{4N} - i \sin \frac{2\pi j k}{4N} \right) + \left(\cos \frac{2\pi j k}{4N} + i \sin \frac{2\pi j k}{4N} \right) \right]$$

$$= \sum_{j=0}^{2N-1} c(j) \left[2 \cos \frac{2\pi j k}{4N} \right]$$

$$= \dots$$

$$\mathcal{C}(k) = \sum_{j=0}^{2N-1} c(j) \left[2\cos\frac{2\pi jk}{4N} \right] / \text{separating odd and even items} /$$

$$= \sum_{l=0}^{N-1} 2c(2l) \left[\cos\frac{2\pi 2lk}{4N} \right] / \text{j=2l, } l \in \mathbb{N} /$$

$$+ \sum_{l=0}^{N-1} 2c(2l+1) \left[\cos\frac{2\pi (2l+1)k}{4N} \right] / \text{j=2l+1, } l \in \mathbb{N} /$$

$$= \sum_{l=0}^{N-1} 2f(l) \left[\cos\frac{(2l+1)\pi k}{2N} \right]$$

Signal C(k) is:

- even, because 'c' is even
- twice replicated, because 'c' is stretched by zeros

Notice: Only the coefficients C(k), $k = \{0, 1, 2, ..., N - 1\}$ are used.

This version of DCT is also known as DCT-II.

Discrete Cosine Transform (DCT)

Definition

Forward 1D-DCT:

$$\mathcal{C}(k) = \alpha(k) \sum_{l=0}^{N-1} f(l) \left[\cos \frac{(2l+1)\pi k}{2N} \right], \quad k = \{0, 1, 2, \dots, N-1\}$$
where
$$\alpha(k) = \begin{cases} \sqrt{\frac{1}{N}} & \text{iff } k = 0\\ \sqrt{\frac{2}{N}} & \text{iff } k \neq 0 \end{cases}$$

Inverse 1D-DCT:

$$f(I) = \sum_{k=0}^{N-1} \alpha(k) C(k) \left[\cos \frac{(2I+1)\pi k}{2N} \right], \quad I = \{0, 1, 2, \dots, N-1\}$$

Basic properties:

- basis formed of sampled cosine waves only
- no complex numbers

Fast Discrete Cosine Transform (F-DCT)

Derivation

Let us recombine the input signal:

$$y(l) = f(2l)$$

 $y(N-1-l) = f(2l+1) \quad (l=0,...,N/2-1)$

Example: $f = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8] \rightarrow y = [1 \ 3 \ 5 \ 7 \ 8 \ 6 \ 4 \ 2]$

Applying DCT on signal f we can deduce:

$$C(k) = \alpha(k) \sum_{l=0}^{N-1} f(l) \cos\left(\frac{(2l+1)\pi k}{2N}\right) /f \rightarrow y/= \cdots =$$

$$= \alpha(k) \sum_{l=0}^{N-1} y(l) \cos\left(\frac{(4l+1)\pi k}{2N}\right)$$

Fast Discrete Cosine Transform (F-DCT)

Derivation (cont'd)

Let us apply DFT on signal y:

$$\mathcal{Y}(k) = \sum_{l=0}^{N-1} y(l) e^{\frac{-2\pi ikl}{N}}$$

$$= \sum_{l=0}^{N-1} y(l) \left[\cos \frac{2\pi kl}{N} - i \sin \frac{2\pi kl}{N} \right] / \cdot e^{-\frac{\pi ik}{2N}} /$$

$$\operatorname{Real} \left[e^{-\frac{\pi ik}{2N}} \mathcal{Y}(k) \right] = \sum_{l=0}^{N-1} y(l) \left[\cos \frac{2\pi kl}{N} \cos \frac{k\pi}{2N} - \sin \frac{2\pi kl}{N} \sin \frac{k\pi}{2N} \right]$$

$$= \sum_{l=0}^{N-1} y(l) \cos \frac{(4l+1)k\pi}{2N} = \mathcal{C}(k) / \alpha(k)$$

$$\operatorname{Imag} \left[e^{-\frac{\pi ik}{2N}} \mathcal{Y}(k) \right] = \operatorname{omitted}$$

$$\mathcal{C}(k) = \alpha(k) \mathsf{Real}\left[e^{-rac{\pi i k}{2N}} \mathcal{Y}(k)
ight]$$

Fast Discrete Cosine Transform (F-DCT)

Algorithm

• recombine input sequence f of length N to get y:

$$y(l) = f(2l)$$

 $y(N-1-l) = f(2l+1) \quad (l=0,...,N/2-1)$

apply FFT to y:

$$\mathcal{Y} = \mathsf{FFT}(y)$$

- **3** for each k = 0, ..., N 1 do:
 - **1** multiply the *k*-th Fourier coefficient by factor $e^{-\frac{\pi i k}{2N}}$:

$$\mathcal{Y}'(k) = e^{-\frac{\pi i k}{2N}} \mathcal{Y}(k)$$

g fetch only real part from each Fourier coefficient and normalize the results:

$$C(k) = \alpha(k) \operatorname{Real} [\mathcal{Y}'(k)]$$

2D Discrete Cosine Transform (2D-DCT)

Definition

Forward 2D-DCT:

$$C(u, v) = \alpha(u)\alpha(v) \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k, l) \left[\cos \frac{(2k+1)\pi u}{2N} \cos \frac{(2l+1)\pi v}{2N} \right]$$
where $u, v = \{0, 1, 2, \dots, N-1\}$

Inverse 2D-DCT:

$$f(k,l) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \alpha(u)\alpha(v)C(u,v) \left[\cos\frac{(2k+1)\pi u}{2N}\cos\frac{(2l+1)\pi v}{2N}\right]$$

Basic properties:

- 2D-DCT it is simply an extension of 1D-DCT
- separable

2D Discrete Cosine Transform (2D-DCT)

Basis functions

1D-DCT 8 basis 1D functions (N = 8)

2D-DCT 64 basis 2D functions $(N \times N = 8 \times 8)$

Discrete Cosine Transform (DCT)

Properties

- Almost as efficient as PCA in term of decorrelation optimality.
- The transform matrix can be easily prepared without having the data.
- Unlike DFT, DCT works with real data.
- As its is derived directly from FFT, there exists fast alternative for DCT.
- Regarding its construction, it works with symmetric data.

- Revision
 - Algebra
 - Statistics
- 2 Motivation
- PCA-based Transform
 - Design
 - An example
- 4 Discrete Cosine Transform (DCT)
 - 1D DCT
 - 1D FastDCT
 - 2D DCT
- 5 Walsh-Hadamard Transform

42 / 49

Jacques Salomon Hadamard (1865 – 1963)

Similarly to DFT we can define Hadamard matrix which defines the transform:

$$H_{m} = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{m-1} & H_{m-1} \\ H_{m-1} & -H_{m-1} \end{pmatrix}$$

$$H_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$H_{0} = +1$$

An example:

An 8-samples long Walsh functions:

Formal definition:

$$\mathcal{H}(k) = \frac{1}{N} \sum_{n=0}^{N-1} f(n) \prod_{i=0}^{m-1} (-1)^{B(m,i,n,k)}$$

with $k \in \{0, 1, ..., N-1\}$, $N = 2^m$, and $B(m, i, n, k) = b_i(n)b_{m-1-i}(k)$, where $b_k(v)$ denotes the k-th bit in the binary representation of a non-negative integer v.

Notice: Similarly to FT we can define inverse (IWHT) or fast (FWHT) Walsh-Hadamard transform.

Properties:

- Unlike to DCT the basis functions contain plus and minus ones only.
- So-called Walsh functions are used as a basis functions.
- Any two basis functions are orthogonal.
- In real space only (like DCT).
- Worse approximation of PCA than DCT.
- Wide application in digital communications.
- One can implement the WHT on smaller, cheaper hardware.

Notice: Magnitude in WHT is affected by phase shifts in the signal! Typically, orthogonality is broken.

Bibliography

- Gonzalez, R. C., Woods, R. E. Digital image processing / 2nd ed., Upper Saddle River: Prentice Hall, c2002, pages 793, ISBN 0201180758
- Klette R., Zamperoni P. Handbook of Image Processing Operators, Wiley, 1996, ISBN-0471956422
- Salomon D. Data Compression, The Complete Reference, 4th edition, Springer, London, 2007, ISBN-1846286025

You should know the answers ...

- Explain the difference between correlated and decorrelated signal.
- How does the PCA decorrelate the given signal?
- How do we get the PCA transformation matrix A in practice?
- What is the content of matrix A used in PCA transform?
- Provide your own example (different from the examples presented in the lecture) suitable for PCA transform.
- Explain the relationship between DFT and DCT.
- Describe the F-DCT algorithm and compute F-DCT([1 6 6 1]).
- Analyze the ability to compact the energy for the following transforms: PCA, DFT, DCT, WHT