Integral and Discrete Transforms in Image Processing

Singular Value Decomposition and Independent Component Analysis

David Svoboda

email: svoboda@fi.muni.cz Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno, CZ

October 10, 2022

Outline

Singular Value Decomposition

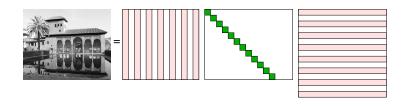
2 Independent Component Analysis (ICA)

2 Independent Component Analysis (ICA)

Motivation

Can we decompose the image into more & less important parts?

- Each image is understood as a matrix.
- Can we factorize such matrix into:
 - 2 transform matrices and
 - 1 matrix with (singular) values on its diagonal?



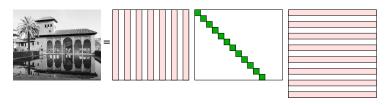
Definition

Any matrix $A \in \mathbb{R}^{m \times n}$ can be rewritten in the form

$$A = U\Sigma V^T$$

where

- $U \in \mathbb{R}^{m \times m}$... orthonormal matrix
- $oldsymbol{\Sigma} \in \mathbb{R}^{m imes n}$. . . sparse matrix with nonzero values on diagonal only
- $V \in \mathbb{R}^{n \times n}$... orthonormal matrix



Background

Provided $A = U\Sigma V^T$ and U, V are supposed to be orthonormal, and Σ diagonal one, we can derive:

$$A^{T}A = \left(U\Sigma V^{T}\right)^{T} \left(U\Sigma V^{T}\right)$$
$$= V\Sigma U^{T}U\Sigma V^{T} / U^{T}U = I/$$
$$= V\Sigma^{2}V^{T}$$

Eigen decomposition brings:

- V ... matrix of eigenvectors of A^TA
- \bullet Σ^2 ... diagonal matrix with eigenvalues (ordered by importance)

Background

Rows of matrix V^T are composed of normalized eigenvectors of A^TA .

Diagonal matrix Σ is formed by square roots of eigenvalues of A^TA .

Matrix U can be simply derived $(V^{-1} = V^T)$: $A = U\Sigma V^T \Rightarrow U = A\Sigma^{-1}V^{T-1} = A\Sigma^{-1}V$

An example

Let $A \in \mathbb{R}^{2\times 3}$ be a matrix defined as follows:

$$A = \left[\begin{array}{rrr} 3 & 2 & 1 \\ 2 & 1 & 4 \end{array} \right]$$

First, we need to form A^TA , which is positive definite, i.e. all the eigenvalues are real and positive:

$$A^T A = \begin{bmatrix} 3 & 2 \\ 2 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 13 & 8 & 11 \\ 8 & 5 & 6 \\ 11 & 6 & 17 \end{bmatrix}.$$

An example (cont'd)

The eigenvalues and normalized eigenvectors of A^TA are, respectively:

$$\lambda_{1} = 30 \qquad \mathbf{e}_{1} = \left[-\frac{17}{5\sqrt{30}}, -\frac{10}{5\sqrt{30}}, \frac{19}{5\sqrt{30}} \right]$$

$$\lambda_{2} = 5 \qquad \mathbf{e}_{2} = \left[-\frac{6}{5\sqrt{5}}, -\frac{5}{5\sqrt{5}}, \frac{8}{5\sqrt{5}} \right]$$

$$\lambda_{3} = 0 \qquad \mathbf{e}_{3} = \left[\frac{7}{5\sqrt{6}}, -\frac{2}{\sqrt{6}}, -\frac{1}{5\sqrt{6}} \right]$$

Hence

$$V^{T} = \begin{bmatrix} \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \end{bmatrix}$$
$$\Sigma = \begin{bmatrix} \sqrt{30} & 0 & 0 \\ 0 & \sqrt{5} & 0 \end{bmatrix}$$

Notice: Zeros eigenvalues are omitted.

An example (cont'd)

Last step is to get matrix U:

$$U = A\Sigma^{-1}V$$

Due to diagonal nature of matrix Σ , we can do:

$$\mathbf{u}_i = \frac{1}{\sqrt{\lambda_i}} A \mathbf{e_i}$$

Therefore

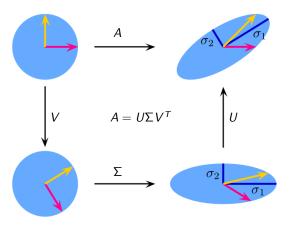
$$U = [\mathbf{u}_1 \mathbf{u}_2] = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}$$

Finally:

$$A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} \sqrt{30} & 0 & 0 \\ 0 & \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} -\frac{17}{5\sqrt{30}} & -\frac{10}{5\sqrt{30}} & \frac{19}{5\sqrt{30}} \\ -\frac{6}{5\sqrt{5}} & -\frac{5}{5\sqrt{5}} & \frac{8}{5\sqrt{5}} \\ \frac{7}{5\sqrt{6}} & -\frac{2}{\sqrt{6}} & -\frac{1}{5\sqrt{6}} \end{bmatrix}$$

Interpretation (Geometrical meaning in 2D)

Matrix A can be understood as a composition of several basic linear transforms:



source: wikipedia.org

Interpretation (for higher dimensions)

Let A be a flattened database of faces:

The SVD of A into $U\Sigma V^T$ gives us the *eigenfaces* as columns in U, ordered by importance.

0th eigenvector

Application in Image Processing - Compression

An arbitrary image (stored in matrix A) can be

- **1** decomposed $(A \rightarrow U\Sigma V^T)$
- some of singular values from Σ can be eliminated
- composed $(A \leftarrow U\Sigma V^T)$

n = 1

n = 10

n = 30

n = 60

n = 100

original image (n = 512)

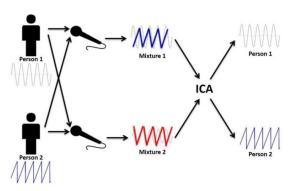
number of singular values

2 Independent Component Analysis (ICA)

Independent Component Analysis (ICA)

Motivation

Cocktail party problem



source: https://vocal.com/blind-signal-separation/independent-component-analysis/

Latent components:

- Person $1 \dots \text{signal } s_1(t)$
- Person 2 . . . signal $s_2(t)$

Measured components:

- Mixture 1 . . . signal $x_1(t)$
- Mixture 2 . . . signal $x_2(t)$

Independent Component Analysis (ICA)

Problem formulation

Definition

Let

$$X = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \quad S = \begin{bmatrix} s_1(t) \\ s_2(t) \end{bmatrix}$$

then X = AS, where A is an unknown mixing matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \Rightarrow x_1(t) = a_{11}s_1(t) + a_{12}s_2(t) \\ x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)$$

We search for an unmixing matrix $W \approx A^{-1}$: S = WX

ICA can be used only if

- s_1 , s_2 are independent
- s₁, s₂ do not follow Gaussian distribution

Independent Component Analysis (ICA) Step by step

- Preprocessing the data matrix X whitening the input (measured) data
- FastICA algorithm
 rotation of the data to find the projection that optimizes non-Gaussianity of
 the source data ⇒ getting the projection matrix W
- S = WX S = WX

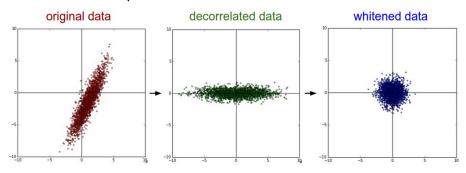
Notice: FastICA is one among many methods (InfoMAX, Projection pursuit, kurtosis, maximum likelihood) that solve the problem of ICA.

Independent Component Analysis (ICA)

Whitening

The objective is to normalize the data

- Center the data (shifting by mean)
- Uncorrelate the data (apply PCA)
- **3** Equalize the deviations (divide the *i*-th component by square root of its eigenvalue $\sqrt{\sigma_i}$



source: https://pantelis.github.io/cs677

Independent Component Analysis (ICA)

FastICA algorithm

Inputs:

- c . . . amount of latent components
- $X \in \mathbb{R}^{n \times m}$... matrix representing the whitened measured signals
- \circ g(u) = tanh(u)

Outputs:

- $W \in \mathbb{R}^{n \times c}$... unmixing matrix $W \approx A^{-1}$
- $S \in \mathbb{R}^{c \times m}$... matrix of estimated original components

1: **for**
$$p = 1 ... c$$
 do

- 2: $\mathbf{w}_p \leftarrow \text{random vector of length } n$
- 3: while \mathbf{w}_p converges do
- $\mathbf{w}_p \leftarrow E\{\mathbf{x}g(\mathbf{w}_p^T\mathbf{x})\} E\{g'(\mathbf{w}_p^T\mathbf{x})\}\mathbf{w}_p$ 4:
- $\mathbf{w}_p \leftarrow \mathbf{w}_p \sum_{i=1}^{p-1} (\mathbf{w}_p^T \mathbf{w}_i) \mathbf{w}_i$
- 5:
- $\mathbf{w}_p \leftarrow \frac{\mathbf{w}_p}{||\mathbf{w}_p||}$ 6:
- end while
- 8: end for
- 9: $W \leftarrow [\mathbf{w}_1, \dots, \mathbf{w}_c]$
- 10: $S \leftarrow W^T X$

▶ build unmixing matrix ▷ estimate original components

▶ Newton iteration

▷ orthogonalization

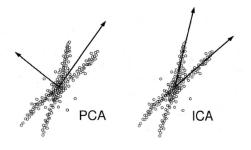
▷ normalization

19 / 22

Conclusion

Let's inspect the mutual relationship of:

- Principal component analysis (PCA) ... decorrelation
- Singular Value Decomposition (SVD) ... generalization of PCA
- Independent Component Analysis (ICA) ... independence



source: www.tu-chemnitz.de

Bibliography

- Compton E. A., Ernstberger S. L. Singular Value Decomposition: Application to Image Processing, Journal of Undergraduate Research, Volume 17, 2020
- Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Networks: the Official Journal of the International Neural Network Society. 2000 May-Jun;13(4-5):411-430.
- YouTube lectures by Steven L. Brunton (https://youtu.be/gXbThCXjZFM)

You should know the answers ...

- Explain the purpose of using SVD.
- What are the main properties of matrices U and V?
- What is does singular value mean?
- Can PCA fail to find proper components? Support your claim.
- Give an example how ICA can be applied to image/signal processing
- What does whitening mean?