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Singular Value Decomposition (SVD)
Motivation

Can we decompose the image into more & less important parts?

Each image is understood as a matrix.

Can we factorize such matrix into:

2 transform matrices and
1 matrix with (singular) values on its diagonal?

=
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Singular Value Decomposition (SVD)
Definition

Any matrix A ∈ Rm×n can be rewritten in the form

A = UΣV T

where

U ∈ Rm×m . . . orthonormal matrix

Σ ∈ Rm×n . . . sparse matrix with nonzero values on diagonal only

V ∈ Rn×n . . . orthonormal matrix

=
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Singular Value Decomposition (SVD)
Background

Provided A = UΣV T and U,V are supposed to be orthonormal, and Σ
diagonal one, we can derive:

ATA =
(
UΣV T

)T (
UΣV T

)
= VΣUTUΣV T /UTU = I/

= VΣ2V T

Eigen decomposition brings:

V . . . matrix of eigenvectors of ATA

Σ2 . . . diagonal matrix with eigenvalues (ordered by importance)
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Singular Value Decomposition (SVD)
Background

V T Rows of matrix V T are composed of normalized
eigenvectors of ATA.

Σ Diagonal matrix Σ is formed by square roots of
eigenvalues of ATA.

U Matrix U can be simply derived (V−1 = V T ):

A = UΣV T ⇒ U = AΣ−1V T−1
= AΣ−1V
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Singular Value Decomposition (SVD)
An example

Let A ∈ R2×3 be a matrix defined as follows:

A =

[
3 2 1
2 1 4

]

First, we need to form ATA, which is positive definite, i.e. all the
eigenvalues are real and positive:

ATA =

 3 2
2 1
1 4

[
3 2 1
2 1 4

]
=

 13 8 11
8 5 6
11 6 17

 .
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Singular Value Decomposition (SVD)
An example (cont’d)

The eigenvalues and normalized eigenvectors of ATA are, respectively:

λ1 = 30

λ2 = 5

λ3 = 0

e1 =

[
− 17

5
√
30

,− 10

5
√
30

,
19

5
√
30

]
e2 =

[
− 6

5
√
5
,− 5

5
√
5
,

8

5
√
5

]
e3 =

[
7

5
√
6
,− 2√

6
,− 1

5
√
6

]
Hence

V T = [e1, e2, e3]

Σ =

[ √
30 0 0

0
√
5 0

]

Notice: Zeros eigenvalues are omitted.
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Singular Value Decomposition (SVD)
An example (cont’d)

Last step is to get matrix U:

U = AΣ−1V

Due to diagonal nature of matrix Σ, we can do:

ui =
1√
λi
Aei

Therefore

U = [u1u2] =

[
3
5

4
5

4
5 −3

5

]
Finally:

A =

[
3
5

4
5

4
5 −3

5

] [ √
30 0 0

0
√
5 0

] −
17

5
√
30
− 10

5
√
30

19
5
√
30

− 6
5
√
5
− 5

5
√
5

8
5
√
5

7
5
√
6

− 2√
6
− 1

5
√
6


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Singular Value Decomposition (SVD)
Interpretation (Geometrical meaning in 2D)

Matrix A can be understood as a composition of several basic linear
transforms:

A

Σ

UA = UΣV TV

source: wikipedia.org
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Singular Value Decomposition (SVD)
Interpretation (for higher dimensions)

Let A be a flattened database of faces:

A =

[

fa
ce

1

fa
ce

2

fa
ce

3

. . . fa
ce

n ]

The SVD of A into UΣV T gives us the eigenfaces as columns in U,
ordered by importance.

⇒

0th eigenvector
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Singular Value Decomposition (SVD)
Application in Image Processing – Compression

An arbitrary image (stored in matrix A) can be

1 decomposed
(
A→ UΣV T

)
2 some of singular values from Σ can be eliminated

3 composed
(
A← UΣV T

)

n = 1 n = 10 n = 30

n = 60 n = 100 original image (n = 512)

n
..
.n
u
m
b
er

o
f
si
n
g
u
la
r
va
lu
es
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Independent Component Analysis (ICA)
Motivation

Cocktail party problem

source: https://vocal.com/blind-signal-separation/independent-component-analysis/

Latent components:

Person 1 . . . signal s1(t)

Person 2 . . . signal s2(t)

Measured components:

Mixture 1 . . . signal x1(t)

Mixture 2 . . . signal x2(t)
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Independent Component Analysis (ICA)
Problem formulation

Definition

Let

X =

[
x1(t)
x2(t)

]
S =

[
s1(t)
s2(t)

]
then X = AS , where A is an unknown mixing matrix:

A =

[
a11 a12
a21 a22

]
⇒ x1(t) = a11s1(t) + a12s2(t)

x2(t) = a21s1(t) + a22s2(t)

We search for an unmixing matrix W ≈ A−1: S = WX

ICA can be used only if

s1, s2 are independent

s1, s2 do not follow Gaussian distribution
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Independent Component Analysis (ICA)
Step by step

1 Preprocessing the data matrix X
whitening the input (measured) data

2 FastICA algorithm
rotation of the data to find the projection that optimizes non-Gaussianity of

the source data ⇒ getting the projection matrix W

3 Estimating the original data
S = WX

Notice: FastICA is one among many methods (InfoMAX, Projection
pursuit, kurtosis, maximum likelihood) that solve the problem of ICA.
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Independent Component Analysis (ICA)
Whitening

The objective is to normalize the data
1 Center the data (shifting by mean)
2 Uncorrelate the data (apply PCA)
3 Equalize the deviations (divide the i-th component by square root of

its eigenvalue
√
σi

source: https://pantelis.github.io/cs677

David Svoboda (CBIA@FI) Image Transforms autumn 2022 18 / 22

https://pantelis.github.io/cs677


Independent Component Analysis (ICA)
FastICA algorithm

Inputs:

c . . . amount of latent components

X ∈ Rn×m . . . matrix representing the whitened measured signals

g(u) = tanh(u)

Outputs:

W ∈ Rn×c . . . unmixing matrix W ≈ A−1

S ∈ Rc×m . . . matrix of estimated original components

1: for p = 1 . . . c do
2: wp ← random vector of length n
3: while wp converges do
4: wp ← E{xg(wT

p x)} − E{g ′(wT
p x)}wp ▷ Newton iteration

5: wp ← wp −
∑p−1

j=1 (w
T
p wj)wj ▷ orthogonalization

6: wp ← wp

||wp|| ▷ normalization

7: end while
8: end for
9: W ← [w1, . . . ,wc ] ▷ build unmixing matrix

10: S ←W TX ▷ estimate original components
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Conclusion

Let’s inspect the mutual relationship of:

Principal component analysis (PCA) . . . decorrelation

Singular Value Decomposition (SVD) . . . generalization of PCA

Independent Component Analysis (ICA) . . . independence

source: www.tu-chemnitz.de
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You should know the answers . . .

Explain the purpose of using SVD.

What are the main properties of matrices U and V ?

What is does singular value mean?

Can PCA fail to find proper components? Support your claim.

Give an example how ICA can be applied to image/signal processing

What does whitening mean?
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