Integral and Discrete Transforms in Image Processing

2nd Generation of Wavelets – Lifting Scheme

David Svoboda

email: svoboda@fi.muni.cz Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno, CZ

CBIA

November 6, 2022

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

1/35

Image Transforms

2/35

Motivation

Practical use of DWT or FWT?

- Complexity of:
 - DWT: $O(n^2)$
 - FWT: O(cn)

Can we do it faster?

• DWT/FWT are computed in floating point arithmetic.

Can we restrict ourselves to integer number?

DWT/FWT are computed out-of-place.

Can we reduce the memory usage?

Outline

Motivation

- Analysis of FWT
- Lifting scheme
- Integer Wavelet transform
- 6 Applications

David Svoboda (CBIA@FI)

autumn 2022

Analysis of FWT

Let
$$|f| = N = 8 = 2^3 = 2^J$$
 and $j_0 = 0$

 $A_0(0)$ $D_0(0)$

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

6/35

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

Analysis of FWT

An example (Haar wavelets)

Let $f = A_i$ be an input signal:

$$A_{j-1} = \left(A_j * \left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]\right) (\downarrow 2 \times)$$

$$D_{j-1} = \left(A_j * \left[\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right]\right) (\downarrow 2 \times)$$

In each sample k, we perform one averaging and one difference:

$$A_{j-1}(k) = \left((A_j(k+1) + A_j(k)) \frac{\sqrt{2}}{2} \right) (\downarrow 2 \times)$$

$$D_{j-1}(k) = \left((A_j(k+1) - A_j(k)) \frac{\sqrt{2}}{2} \right) (\downarrow 2 \times)$$

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

autumn 2022

7 / 35

9/35

Analysis of FWT

Downsampling in Z-domain

Let $f = [f_0, f_1, f_2, ...]$ be a signal and further let

$$\Rightarrow f_{even} = [f_0, f_2, f_4, \dots]$$
 and

 $\Rightarrow f_{odd} = [f_1, f_3, f_5, \dots]$ be its even and odd samples, respectively.

The same rule is applied to filter $g = [g_0, g_1, g_2, \dots]$.

If h = f * g, then in Z-domain:

$$z^{0}: h_{0} = f_{0}g_{0}$$

$$z^{-1}: h_{1} = f_{1}g_{0} + f_{0}g_{1}$$

$$z^{-2}: h_{2} = f_{2}g_{0} + f_{1}g_{1} + f_{0}g_{2}$$

$$z^{-3}: h_{3} = f_{3}g_{0} + f_{2}g_{1} + f_{1}g_{2} + f_{0}g_{3}$$

$$z^{-4}: h_{4} = f_{4}g_{0} + f_{3}g_{1} + f_{2}g_{2} + f_{1}g_{3} + f_{0}g_{4}$$

Downsampling H(z) by 2 removes each odd line, which results in:

$$H_{\text{even}}(z) = F_{\text{even}}(z)G_{\text{even}}(z) + z^{-1}F_{\text{odd}}(z)G_{\text{odd}}(z)$$

David Svoboda (CBIA@FI) Image Transforms

Analysis of FWT

Fast Wavelet transform

- The filtering is followed by downsampling
- We throw away half of computed samples!

Optimization strategy

Let's flip the order of filtering and downsampling:

- we start with downsampling
- 2 we proceed with filtering

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

8/35

Analysis of FWT

Downsampling in Z-domain

Downsampling of A_i followed by filtering:

$$A_{j-1}(z) = A_{j_{even}}(z)L_{even}(z) + z^{-1}A_{j_{odd}}(z)L_{odd}(z)$$

$$D_{j-1}(z) = A_{j_{even}}(z)H_{even}(z) + z^{-1}A_{j_{odd}}(z)H_{odd}(z)$$

In (polyphase) matrix notation:

$$\begin{bmatrix} A_{j-1}(z) \\ D_{j-1}(z) \end{bmatrix} = \begin{bmatrix} L_{even}(z) & L_{odd}(z) \\ H_{even}(z) & H_{odd}(z) \end{bmatrix} \cdot \begin{bmatrix} A_{jeven}(z) \\ z^{-1}A_{jodd}(z) \end{bmatrix}$$

$$P(z) = \begin{bmatrix} L_{even}(z) & L_{odd}(z) \\ H_{even}(z) & H_{odd}(z) \end{bmatrix}$$

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

Analysis of FWT

The use of polyphase matrix

Lifting scheme

Example: Haar Filters to Lifting

1 Low (1) and high (h) frequency decomposition filter . . .

$$I = \left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right] \qquad h = \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$$

with emphasizing reference positions:

$$I = \left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right] \qquad h = \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right]$$

2 Z-analysis of both filters:

$$L(z) = \frac{\sqrt{2}}{2}z^0 + \frac{\sqrt{2}}{2}z^{-1}$$
 $H(z) = -\frac{\sqrt{2}}{2}z^0 + \frac{\sqrt{2}}{2}z^{-1}$

Lifting scheme

From Filters to Lifting

Algorithm invented by Wim Sweldens (1996):

- ① Input: either 'LoD' and 'HiD' filters or φ and ϕ functions
- 2 Convert both filters 'LoD' and 'HiD' to Z-domain
- 3 Create polyphase matrix (2×2)
- 4 Factorize matrix into simple (lower and upper diagonal) matrices Each simple matrix corresponds either to one update or prediction step
- © Convert each matrix from Z-domain to time domain

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

13 / 35

Lifting scheme

Example: Haar Filters to Lifting

2 Z-analysis of both filters (continued):

Using the rule:

$$Filter(z) = Filter_e(z^2) + z^{-1}Filter_o(z^2)$$

we perform the separation of even and odd part of both filters:

$$L_e(z) = \frac{\sqrt{2}}{2}z^0$$
 $L_o(z) = \frac{\sqrt{2}}{2}z^0$

$$H_e(z) = -\frac{\sqrt{2}}{2}z^0$$
 $H_o(z) = \frac{\sqrt{2}}{2}z^0$

3 Creation of Polyphase matrix:

$$P(z) = \begin{bmatrix} L_e(z) & L_o(z) \\ H_e(z) & H_o(z) \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

David Svoboda (CBIA@FI) Image Transforms

autumn 2022

14 / 35

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

Example: Haar Filters to Lifting

4 Factorization into lower diagonal matrix \approx dual step:

$$P(z) = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} \overline{L_e}(z) & \frac{\sqrt{2}}{2} \\ \overline{H_e}(z) & \frac{\sqrt{2}}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ \text{Lower}(z) & 1 \end{bmatrix}$$

We get a set of equations:

$$\frac{\sqrt{2}}{2} = \overline{L_e}(z) + \text{Lower}(z) \frac{\sqrt{2}}{2}$$
$$-\frac{\sqrt{2}}{2} = \overline{H_e}(z) + \text{Lower}(z) \frac{\sqrt{2}}{2}$$

Solution (divisor of polynomials – ambiguous!):

$$\text{Lower}(z) = -1; \quad \overline{H_e}(z) = 0; \quad \overline{L_e}(z) = \sqrt{2}$$

$$P(z) = \begin{bmatrix} \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

16 / 35

Lifting scheme

Example: Haar Filters to Lifting

Finally

$$P(z) = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

$ \left[\begin{array}{cc} \sqrt{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{array}\right] $	normalization	$N_A = \sqrt{2}, N_D = \frac{\sqrt{2}}{2}$
$ \left[\begin{array}{cc} 1 & \frac{1}{2} \\ 0 & 1 \end{array}\right] $	primal lifting step	$A_j \leftarrow A_j + \frac{1}{2}D_j$
$\left[\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array}\right]$	dual lifting step	$D_j \leftarrow D_j + (-1)A_j$

Lifting scheme

Example: Haar Filters to Lifting

4 Factorization into upper diagonal matrix \approx primal step:

$$P(z) = \begin{bmatrix} \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} \sqrt{2} & \overline{L_o}(z) \\ 0 & \overline{H_o}(z) \end{bmatrix} \cdot \begin{bmatrix} 1 & \text{Upper}(z) \\ 0 & 1 \end{bmatrix}$$

We get a set of equations:

$$\frac{\sqrt{2}}{2} = \sqrt{2} \cdot \text{Upper}(z) + \overline{L_o}(z)$$

$$\frac{\sqrt{2}}{2} = \overline{H_o}(z)$$

Solution:

$$\operatorname{Upper}(z) = \frac{1}{2}; \quad \overline{L_o}(z) = 0$$

$$\begin{bmatrix} \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$$

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

17 / 35

Lifting scheme

- Adopted idea of FastDWT
- The transition from level j to j-1 is computed efficiently
- Basic idea: split \rightarrow predict \rightarrow update \rightarrow normalize

Image Transforms

autumn 2022

19 / 35

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

18 / 35

David Svoboda (CBIA@FI)

Split step

- Also known as lazy wavelet.
- The signal A_i is split into odd and even samples:

$$(A_{i-1}, D_{i-1}) \leftarrow split(A_i)$$

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

autumn 2022

22 / 35

20 / 35

Lifting scheme

Update step

$$A_{j-1}(k) \leftarrow A_{j-1}(k) + update(D_{j-1}(k))$$

Also known as primal lifting step

David Svoboda (CBIA@FI)

- Update step repairs the wrong estimate of the prediction step.
- When using Haar wavelet, we use: $update_{Haar}(f(k)) = \frac{1}{2}f(k)$ $A_{i-1}(k) \leftarrow A_{i-1}(k) + \frac{1}{2}D_{i-1}(k)$

Image Transforms

Lifting scheme

Prediction step

even
$$A_{j-1}$$
split A_{j-1}
odd A_{j-1}

$$D_{j-1}(k) \leftarrow D_{j-1}(k) - predict(A_{j-1}(k))$$

- Also known as dual lifting step
- When using Haar wavelets the neighbouring samples are supposed to be equal, i.e. the predictor is simple: $predict_{Haar}(f(k)) = f(k)$ $D_{i-1}(k) \leftarrow D_{i-1}(k) - A_{i-1}(k)$

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

21 / 35

Lifting scheme

Normalization step

• The output signals are normalized to avoid boosting the signal.

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

Inverse lifting

• The forward algorithm can be simply inverted:

$$A_{j-1}(k) \leftarrow A_{j-1}(k) - update(D_{j-1}(k))$$

 $D_{j-1}(k) \leftarrow D_{j-1}(k) + predict(A_{j-1}(k))$
 $A_j \leftarrow merge(A_{j-1}, D_{j-1})$

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

24 / 35

Lifting scheme

From Filters to Lifting (Daubechies-2)

$$predict_1(f(k)) = (-1.732) f(k)$$

 $update_1(f(k)) = 0.433 f(k) - 0.067 f(k+1)$
 $predict_2(f(k)) = f(k-1)$

Lifting scheme

Inverse lifting (example)

• Namely for Haar wavelets we get:

$$A_{j-1}(k) \leftarrow A_{j-1}(k) \cdot N_{D}$$
 $D_{j-1}(k) \leftarrow D_{j-1}(k) \cdot N_{A}$
 $A_{j-1}(k) \leftarrow A_{j-1}(k) - (D_{j-1}(k)/2)$
 $D_{j-1}(k) \leftarrow D_{j-1}(k) + A_{j-1}(k)$
 $A_{j} = merge(A_{j-1}, D_{j-1})$

Lifting scheme

Technical/Implementation notes

Lifting ordering (for N = 8)

Zireing Gracing (16: 71 0)							
f(0)	f(1)	f(2)	f(3)	f(4)	f(5)	f(6)	f(7)
$A_2(0)$	$D_2(0)$	$A_2(1)$	$D_2(1)$	$A_2(2)$	$D_2(2)$	$A_2(3)$	$D_2(3)$
$A_1(0)$		$D_1(0)$		$A_1(1)$		$D_1(1)$	
$A_0(0)$				$D_0(0)$			

Notice: The computation is performed completedly in-place.

From filters to lifting scheme

• conversion 'LoD', 'HiD' $\to update(\cdot)$, $predict(\cdot)$ always exists but is not unique

Image Transforms

• conversion is performed in frequency domain via *Z*-transform (polyphase matrice factorization)

 $David \ Svoboda \ \ (CBIA@FI) \\ Image \ Transforms \\ autumn \ 2022 \\ 26 \ / \ 35$

David Svoboda (CBIA@FI)

autumn 2022

25 / 35

FWT and DWT comparison (examples)

Price of one decomposition level using DWT (|f| = N)

family of wavelets	multiplications	additions
Haar	4 <i>N</i>	2 N
Daubechies-2	8 <i>N</i>	6 <i>N</i>

Extra memory usage: one memory buffer of size O(N) needed for convolution.

Price of one decomposition level using LS (|f| = N)

family of wavelets	multiplications	additions
Haar	2 <i>N</i>	Ν
Daubechies-2	3 <i>N</i>	2 N

Extra memory usage: \emptyset

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

28 / 35

Integer Wavelet Transform

An example (Haar)

$$(A_{j-1}, D_{j-1}) \leftarrow split(A_j)$$

$$D_{j-1}(k) \leftarrow D_{j-1}(k) - floor(A_{j-1}(k))$$

$$A_{j-1}(k) \leftarrow A_{j-1}(k) + floor(D_{j-1}(k)/2)$$

Integer Wavelet Transform

Basic idea & Properties

- IWT originates from lifting scheme (chain of predictions and updates).
- The fixed point arithmetic is guaranteed via 'floor' function.
- The rounding error produced in forward transform is compensated by mirror 'floor' in inverse lifting. They cancel out each other.
- The lifting is the same as the standard one but
 - each multiplication is followed but the truncation
 - no normalization is present

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

30 / 35

Applications

- Fusion of images with different resolution
- Image registration
- Edge detection
- Image compression:

JPEG (6.21 kB)

JPEG2000 (1.83 kB)

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

31 / 35

David Svoboda (CBIA@FI)

Image Transforms

autumn 2022

Bibliography

- Li H., Manjunath B.S., Mitra S.K. Multisensor Image Fusion Using the Wavelet Transform, Graphical Models and Image Processing, Volume 57, Issue 3, May 1995, Pages 235-245, ISSN 1077-3169
- Jensen A., La Cour-Harbo A. Ripples in mathematics: the discrete wavelet transform, Springer, Berlin, 2001, ISBN 3-540-41662-5
- Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis. 1996, Vol 3, Issue 2, pp 186–200

David Svoboda (CBIA@FI) Image Transforms autumn 2022 34 / 35

You should know the answers . . .

- Explain three principal phases of lifting scheme.
- Compare the time and spatial complexity of FWT and lifting scheme.
- Compute one level of wavelet transform (using Haar's basis) via lifting scheme for signal f=[3 5 0 −1 4 2].
- What does integer wavelet transform mean?

David Svoboda (CBIA@FI) Image Transforms autumn 2022 35 / 35