
Principles of NoSQL Databases
Data Model, Distribution & Consistency

Lecture 3 of NoSQL Databases (PA195)
David Novak & Vlastislav Dohnal

Faculty of Informatics, Masaryk University, Brno

Agenda

● Fundamentals of RDBMs and NoSQL Databases

● Data Model of Aggregates

● Models of Data Distribution
○ scalability
○ sharding vs. replication: master-slave, peer-to-peer

○ combination

● Consistency
○ write-write vs. read-write conflict
○ strategies and techniques
○ relaxing consistency

2

Fundamentals of RDBMS

Relational Database Management Systems (RDMBS)

1. Data structures are broken into the smallest units
○ normalization of database schema (3NF, BCNF)

● because the data structure is known in advance
● and users/applications query the data in different ways

○ database schema is rigid

2. Queries merge the data from different tables

3. Write operations are simple, search can be slower

4. Strong guarantees for transactional processing
3

From RDBMS to NoSQL

Efficient implementations of table joins and of
transactional processing require centralized system.

NoSQL Databases:

● Database schema tailored for a specific application
○ keep together data pieces that are often accessed together

● Write operations might be slower but read is fast
● Weaker consistency guarantees

=> efficiency and horizontal scalability
4

Data Model

● The model by which the database organizes data
● Each NoSQL DB type has a different data model

○ Key-value, document, column-family, graph
○ The first three are oriented on aggregates

● Let us have a look at the classic relational model

5

Example (1): UML Model

source: Holubová, Kosek, Minařík, Novák. Big Data a NoSQL databáze. 2015.
6

Example (2): Relational Model

source: Holubová, Kosek, Minařík, Novák. Big Data a NoSQL databáze. 2015.
7

Agenda

● Fundamentals of RDBMs and NoSQL Databases

● Data Model of Aggregates

● Models of Data Distribution
○ scalability
○ sharding vs. replication: master-slave, peer-to-peer
○ combination

● Consistency
○ write-write vs. read-write conflict
○ strategies and techniques
○ relaxing consistency

8

Aggregates

An aggregate
● A data unit with a complex structure

○ Not simply a tuple (a table row) like in RDBMS

● A collection of related objects treated as a unit
○ unit for data manipulation and management of consistency

● Relational model is aggregate-ignorant
○ It is not a bad thing, it is a feature
○ Allows to easily look at the data in different ways
○ Best choice when there is no primary structure for data

manipulation
9

Example (3): Aggregates

source: Holubová, Kosek, Minařík, Novák. Big Data a NoSQL databáze. 2015.
10

Example (4): Aggregates
// collection "Order"

{

"orderNumber": 11,

"date": "2015-04-01",

"customerID": 1,

"orderItems": [

{

"productID": 111,

"name": "Vysavač ETA E1490",

"quantity": 1,

"price": 1300

},

{

"productID": 112,

"name": "Sáček k ETA E1490",

"quantity": 10,

"price": 300

}

],

"invoice": { "bankAccount": …, …}

}

// collection "Customer"

{

"customerID": 1,

"name": "Jan Novák",

"address": {

"city": "Praha",

"street": "Krásná 5",

"ZIP": "111 00"

}

}

// collection "Invoice"

{

"invoiceID": 2015003,

"orderNumber": 11,

"bankAccount": "64640439/0100",

"paymentDate": "2015-04-16",

"address": {

"city": "Brno",

"street": "Slunečná 7",

"ZIP": "602 00"

}

}

11

NoSQL Databases: Aggregate-oriented

Many NoSQL stores are aggregate-oriented:
○ There is no general strategy to set aggregate boundaries
○ Aggregates give the database information about which bits

of data will be manipulated together
■ What should be stored on the same node

○ Minimize the number of nodes accessed during a search
○ Impact on concurrency control:

■ NoSQL databases typically support atomic manipulation of a single
aggregate at a time

12

Agenda

● Fundamentals of RDBMs and NoSQL Databases

● Data Model of Aggregates

● Models of Data Distribution
○ scalability
○ sharding vs. replication: master-slave, peer-to-peer

○ combination

● Consistency
○ write-write vs. read-write conflict
○ strategies and techniques
○ relaxing consistency

13

Scalability of Database Systems

● Scalability = handling growing amounts of data
and queries without losing performance

Two general approaches:

● vertical scalability,

● horizontal scalability.

14

Vertical Scalability (Scaling up)

● Involve larger and more powerful machines
○ large disk storage using disk arrays
○ massively parallel architectures
○ large main memories

● Traditional choice
○ in favour of strong consistency
○ very simple to realize (no handling of data distribution)

● Works in many cases but…

15

Vertical Scalability: Drawbacks

● Higher costs
○ Large machines cost more than equivalent commodity HW

● Data growth limit
○ Large machine works well until the data grows to fill it
○ Even the largest of machines has a limit

● Proactive provisioning
○ In the beginning, no idea of the final scale of the application
○ An upfront budget is needed when scaling vertically

● Vendor lock-in
○ Large machines are produced by a few vendors
○ Customer is dependent on a single vendor (proprietary HW)

16

Horizontal Scalability (Scaling out)

System is distributed across multiple machines/nodes

● Commodity machines, cost effective
● Provides higher scalability than vertical approach

○ Data is partitioned over many disks
○ Application can use main memory of all machines
○ Distribution computational model

● Introduces new problems:
○ synchronization, consistency, partial-failures handling, etc.

17

Horizontal Scalability: Fallacies

● Typical false assumptions of distributed computing:
○ The network is reliable
○ Latency is zero
○ Bandwidth is infinite
○ The network is secure
○ The network is homogeneous
○ Topology of the network does not change
○ There is one network administrator

source: https://blogs.oracle.com/jag/resource/Fallacies.html 18

https://blogs.oracle.com/jag/resource/Fallacies.html

Distribution Models: Overview

● for horizontal scalability
● Two generic ways of data distribution:

○ Replication – the same data is copied over multiple nodes
■ Master-slave vs. peer-to-peer

○ Sharding – different data chunks are put on different nodes
(data partitioning)
■ Master-master

● We can use either or combine them
○ Distribution models = specific ways to do sharding,

replication or combination of both
19

Distribution Model: Single Server

● Running the database on a single machine is
always the preferred scenario
○ it spares us a lot of problems

● It can make sense to use a NoSQL database on a
single server
○ Other advantages remain: Flexible data model, simplicity
○ Graph databases: If the graph is “almost” complete, it is

difficult to distribute it

20

Sharding (Data Partitioning)

● Placing different parts
of the data (card suits)
onto different servers

● Applicability: Different
clients access different
parts of the dataset

source: Sadalage & Fowler: NoSQL Distilled, 2012 21

Distribution Models: Sharding (2)

We should try to ensure that

1. Data accessed together is kept together
○ So that user gets all data from a single server
○ Aggregates data model helps achieve this

2. Arrange the data on the nodes:
○ Keep the load balanced (can change in time)
○ Consider the physical location (of the data centers)

● Many NoSQL databases offer auto-sharding
● A node failure makes shard’s data unavailable

○ Sharding is often combined with replication
22

Master-slave Replication

● We replicate data across
multiple nodes

● One node is designated as
primary (master), others as
secondary (slaves)

● Master is responsible for
processing all updates to
the data

● Reads from any node source: Sadalage & Fowler: NoSQL Distilled, 2012 23

Master-slave Replication (2)

● For scaling a read-intensive application
○ More read requests → more slave nodes
○ The master fails → the slaves can still handle read requests
○ A slave can become a new master quickly (it is a replica)

● Limited by ability of the master to process updates

● Masters are selected manually or automatically
○ User-defined vs. cluster-elected

24

Peer-to-peer Replication

● No master, all the
replicas are equal

● Every node can handle
a write and then
spreads the update
to the others

source: Sadalage & Fowler: NoSQL Distilled, 2012
25

Peer-to-peer Replication (2)

● Problem: consistency
○ Users can write simultaneously at two different nodes

● Solution:
○ When writing, the peers coordinate to avoid conflict

■ At the cost of network traffic
■ The write operation waits till the coordination process is finished

○ Not all replicas need to agree on the write, just a
majority (details below)

26

Sharding & Replication (1)

● Sharding and master-slave replication:
○ Each data shard is replicated (via a single master)

○ A node can be a master for some data and a slave for other

source: Sadalage & Fowler: NoSQL Distilled, 2012

27

Sharding & Replication (2)

● Sharding and peer-to-peer replication:
○ A common strategy for column-family databases
○ A typical default is replication factor of 3

■ i.e., each shard is present on three nodes

source: Sadalage & Fowler: NoSQL Distilled, 2012

=> we have to solve
consistency issues

(let’s first talk more about
what consistency means)

28

Agenda

● Fundamentals of RDBMs and NoSQL Databases

● Data Model of Aggregates

● Models of Data Distribution
○ scalability
○ sharding vs. replication: master-slave, peer-to-peer
○ combination

● Consistency
○ write-write vs. read-write conflict
○ strategies and techniques
○ relaxing consistency

29

Consistency in Databases

● “Consistency is the lack of contradiction in the DB”
● Centralized RDBMS ensure strong consistency

● Distributed NoSQL databases typically relax
consistency (and/or durability)
○ Strong consistency → eventual consistency
○ BASE (basically available, soft state, eventual consistency)
○ CAP theorem
○ tradeoff between consistency and availability

30

Write (Update) Consistency

● Problem: two users want
to update the same record
(write-write conflict)

○ Issues: lost update, second update is based on stale data

DB

Write(K, A)

Write(K, B)

● Two general solutions
○ Pessimistic approach: preventing conflicts from occurring

■ acquiring write locks before update

○ Optimistic approach: let conflicts occur, but detect them
and take actions to resolve them
■ conditional update, save both updates and record the conflict
■ implementation by, e.g., version stamps (details later in the course)

31

Read Consistency

● Problem: one user reads
in the middle of other
user’s writes
(read-write conflict, inconsistent read)

○ this leads to logical inconsistency

● Ideal solution: transactions (ACID)
○ strong consistency

DB

1. Write(K, A)

2. Read(K)

4. Write(K’, B)

3. Read(K’)

32

Read Consistency in NoSQL

● NoSQL databases inherently support atomic
updates only within a single aggregate
○ Update that affects multiple aggregates leaves a time slot

when clients could perform an inconsistent read
○ Inconsistency window

● Graph Databases
○ Typically strong consistency (if centralized)

33

Transaction Processing in NoSQL

● Basically, no problem if the DB is centralized
○ ACID can be implemented
○ Various levels of isolation (details later in the course)

■ read uncommitted
■ read committed
■ repeatable reads
■ serializable

● Distributed transactions (details later in the course)

○ X/Open Distributed Trans. Processing Model (X/Open XA)
○ Two-phase Commit Protocol (2PC)
○ Strong Strict Two-phase Locking (SS2PL)

34

Replication Consistency

● Consistency among replicas
○ Ensuring that the same data item

has the same value when reading
from different replicas

● After some time, the write propagates everywhere
○ Eventual consistency, in the meanwhile: stale data

○ Various levels of consistency (e.g., quorum - see below)

● Read-your-writes (session consistency)
○ Gets violated if a user writes and reads on different replicas
○ Solution: sticky session (session affinity)

node 1 node 2

read(K)

read(K)

35

CAP Theorem

CAP = Consistency, Availability, Partition Tolerance

Consistency

● After an update, all readers in a distributed system
(assuming replication) see the same data

● Example:
○ A single server database is always consistent
○ If the replication factor > 1, the system must handle the

writes and/or reads in a special way
36

CAP Theorem (2)

Availability

● Every request must result in a response
○ If a node (server) is working, it can read and write data

Partition Tolerance

● System continues to operate, even if two sets of servers
get isolated
○ A connection failure should not shut the system down

It would be great to have all these three CAP properties!
37

CAP Theorem: Formulation

● CAP Theorem: A “shared-data” system cannot
have all three CAP properties
○ Or: only two of the three CAP properties are possible

■ This is the common version of the theorem

● First formulated in 2000: prof. Eric Brewer
○ PODC Conference Keynote speech

■ www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

● Proven in 2002: Seth Gilbert & Nancy Lynch
○ SIGACT News 33(2) http://dl.acm.org/citation.cfm?id=564601

38

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://dl.acm.org/citation.cfm?id=564601

● A single-server system is
always CA
○ As well as all ACID systems

● A distributed system practically
has to be tolerant of network Partitions (P)
○ because it is difficult to detect all network failures

● So, tradeoff between Consistency and Availability
○ in fact, it is not a binary decision

CAP Theorem: Real Application

39

PC: Partition Tolerance & Consistency

Example: two users, two

masters, two write attempts

● Strong consistency:
○ Before the write is committed,

both nodes have to agree on the order of the writes

node 1 node 2

Write(key, A)

Write(key, B)

agreement

node 1 node 2

Write(key, A)

(waiting 4ever)

Write(key, B)

(waiting 4ever)

● If the nodes are partitioned,
we are losing Availability
○ (but reads are still available)

40

PC: Partition Tolerance & Consistency (2)

● Adding some availability:
○ Master-slave replication

master slave

Write(key, A)

Write(key, B)

master slave

Write(key, A)

(OK)

Write(key, B)

(waiting 4ever)

● In case of partitioning,
master can commit write
○ Losing some Consistency:

Data on slave will be stale
for read

Write(key, B)

41

PA: Partition Tolerance & Availability

● Choosing Availability:
○ Peer-to-peer replication
○ Eventual consistency

● In case of Partitioning
○ All requests are answered (full Availability)
○ We risk losing consistency guarantees completely

● But we can do something in the middle: Quorum
● for replication consistency

peer 1 peer 2

Write(key, A)

Write(key, B)

42

Quora

● Peer-to-peer replication with replication factor N

○ Number of replicas of each data object

● Write quorum: W
○ When writing, at least W replicas have to agree
○ Having W > N/2 results in write consistency

■ in case of two simultaneous writes, only one can get the majority

peer 1 peer 2

Write(key, A) Write(key, B)

peer 3

Example:
● Replication factor N = 3
● Write quorum: W = 2

(W > N/2)
43

Quora (2)

● Read quorum: R
○ Number of peers contacted for a single read

■ Assuming that each value has a time stamp (time of write) to tell the
older value from the newer

○ For a strong read consistency: R + W > N
■ reader surely does not read stale data

peer 1 peer 2

Write(key, A) Write(key, B)

peer 3

Read(key)

Example:
● Read quorum: R = 2

(R + W > N)
● 2 nodes contacted for read

=> the newest data returned
44

Relaxing Durability

Durability:

● When Write is committed, the change is permanent
● In some cases, strict durability is not essential and it

can be traded for scalability (write performance)
○ e.g., storing session data, collection sensor data

A simple way to relax durability:

● Store data in memory and flush to disk regularly
○ if the system shuts down, we loose updates in memory

45

Relaxing Durability II

● Replication durability (of a write operation)
○ The writing node can either

1. acknowledge (answer) the write operation immediately
● not wait until spread to other replicas
● if the writing node crashes before spreading, durability fails
● write-behind (write-back)

2. or it can first spread the update to other replicas
● operation is answered only after acknowledgement from the others
● write-through

○ both variants are possible for P2P repl., master-slave
replication, quora...

46

BASE Concept

BASE is a vague term often used as contrast to ACID

● Basically Available
○ The system works basically all the time
○ Partial failures can occur, but without total system failure

● Soft state
○ The system is in flux (unstable), non-deterministic state
○ Changes occur all the time

● Eventual consistency
○ The system will be in some consistent state
○ At some time in the future

source: Eric Brewer: Towards Robust Distributed Systems. www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
47

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

Summary of the Lesson

● Aggregate-oriented data modeling
● Sharding vs. replication

○ Master-slave vs. peer-to-peer replication
■ Combination of sharding & replication

● Database consistency:
○ Write/Read consistency (write-write & write-read conflict)

■ Replication consistency (also, read-your-own-writes)

● Relaxing consistency:
○ CAP (Consistency, Availability, Tolerance to Partitions),

■ Eventual consistency

○ Quora (write/read quorum)
■ can ensure strong replication consistency; wide range of settings 48

Conclusions

● There is a wide range of options influencing
○ Scalability

■ of data storage, of read operations, of update (write) requests

○ Availability
■ How the system behaves in case of HW (e.g., network) failure

○ Consistency
■ Consistency has many facets and it depends how important they are

○ Durability
■ Can I rely on confirmed updates (and is it so important)?

○ Fault-tolerance
■ Do I have copies of data to recover after a complete HW fail?

● It’s good to know the options and choose wisely.
49

References

● I. Holubová, J. Kosek, K. Minařík, D. Novák. Big Data a

NoSQL databáze. Praha: Grada Publishing, 2015. 288 p.

● Sadalage, P. J., & Fowler, M. (2012). NoSQL Distilled: A

Brief Guide to the Emerging World of Polyglot

Persistence. Addison-Wesley Professional, 192 p.

● doc. RNDr. Irena Holubova, Ph.D. MMF UK course
NDBI040: Big Data Management and NoSQL Databases

● Eric Brewer: Towards Robust Distributed Systems.
www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

50

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

