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Agenda

® Fundamentals of RDBMs and NoSQL Databases

e Data Model of Aggregates

® Models of Data Distribution

O scalability
O sharding vs. replication: master-slave, peer-to-peer

O combination

® (Consistency
O write-write vs. read-write conflict
O strategies and techniques
O relaxing consistency



Fundamentals of RDBMS

Relational Database Management Systems (RDMBS)

1. Data structures are broken into the smallest units

O normalization of database schema (3NF, BCNF)

® because the data structure is known in advance
e and users/applications query the data in different ways

O database schemais rigid

2. Queries merge the data from different tables

3. Write operations are simple, search can be slower
4. Strong guarantees for transactional processing
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From RDBMS to NoSQL ] cemieapre ]

Efficient implementations of table joins and of
transactional processing require centralized system.

NoSQL Databases:

e Database schema tailored for a specific application
O keep together data pieces that are often accessed together

e Write operations might be slower but read is fast
e Weaker consistency guarantees

=> efficiency and horizontal scalability
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Data Model

e The model by which the database organizes data
e Each NoSQL DB type has a different data model

o Key-value, document, column-family, graph
O The first three are oriented on aggregates

® Let us have a look at the classic relational model



Example (1): UML Model

data
conSIStencgﬁfi

Ferent

<<Entity>>
1 Invoice

<<Entity>> <<Entity>>
Customer 1 0..N Order
name date
1
0..N
<<Entity>> <<Entity>>
Product 1 0.N Order Item
name quantity
price

bankAccount
paymentDate

0..N

<<Relationship>>
Invoice Address

1

<<Entity>>
Address

street
city

<<Relationship>>
Customer Address

source: Holubova, Kosek, Minafik, Novak. Big Data a NoSQL databaze. 2015.

ZIP
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Example (2): Relational Model

Customer

Order

data

consistencys: -

Ldistripu
RETWOTK

customer|D
name

addressID (FK)

orderNumber

date

customerlD (FK)

Invoice

invoicelD

bankAccount
paymentDate
addressID (FK)
orderNumber (FK)

Product

Orderltem

Address

roduct|D

name

orderNumber (FK)

productID (FK)

quantity

price

address|D

street
city
ZIP

source: Holubova, Kosek, Minafik, Novak. Big Data a NoSQL databaze. 2015.

Ferent

7
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Agenda

e Data Model of Aggregates



Aggregates

An aggregate

® A data unit with a complex structure
O Not simply a tuple (a table row) like in RDBMS

e A collection of related objects treated as a unit
O unit for data manipulation and management of consistency

e Relational model is aggregate-ignorant
O Itis not a bad thing, it is a feature
o Allows to easily look at the data in different ways
O Best choice when there is no primary structure for data
manipulation
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Example (3): Aggregates
<<Entity>> <<Entity>>
Customer 1 0..N Order
name date
0..N 1
<<Entity>> <<Entity>> <<Entity>>
Product 0.N Order Item Invoice
name quantity bankAccount
price paymentDate
1
<<Entity>>
Address
street
city 1
ZIP

source: Holubova, Kosek, Minafik, Novak. Big Data a NoSQL databaze. 2015.

C

w9
twosl  Bdifferent
NOSQLB
[

-

N

o

[
[0}
ko)
Qo
c

510



data o
consistencyiz .

d str buted

Example (4): Aggregates

dif ferent

butlon

[
o]
ko)
o
[=

L
o

ssssssss
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sssss

// collection "Customer" // collection "Order"
{ {
"customerID": 1, "orderNumber": 11,
"name": "Jan Novak", "date": "2015-04-01",
"address": { "customerID": 1,
"city": "Praha', "orderItems": [
"street": "Krasna 5", {
"zIP": "111 OO" "productID": 111,
} "name": "Vysavac ETA E1490",
} "quantity": 1,
// collection "Invoice" "price": 1300

{ },
"invoiceID": 2015003,

"orderNumber": 11, "productID": 112,
"bankAccount": "64640439/0100", "name": "Sacek k ETA E1490",
"paymentDate": "2015-04-16", "quantity": 10,
"address": { "price": 300

"city": "Brno", }

"street": "Slunec¢na 7", 1,

"ZIP". "g02 00" "invoice": { "bankAccount": .., ..}
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NoSQL Databases: Aggregate-oriented .= =

Many NoSQL stores are aggregate-oriented:

O There is no general strategy to set aggregate boundaries
O Aggregates give the database information about which bits

of data will be manipulated together
m What should be stored on the same node

O

Minimize the number of nodes accessed during a search

O Impact on concurrency control:

m NoSQL databases typically support atomic manipulation of a single
aggregate at a time

12
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Agenda

® Models of Data Distribution

O scalability
O sharding vs. replication: master-slave, peer-to-peer

O combination

13
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Scalability of Database Systems il

e Scalability = handling growing amounts of data
and queries without losing performance

Two general approaches:
e vertical scalability,

e horizontal scalability.

14
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Vertical Scalability (Scaling up) "= iraeEs

® Involve larger and more powerful machines

O large disk storage using disk arrays
O massively parallel architectures
O large main memories

® Traditional choice

O in favour of strong consistency
o very simple to realize (no handling of data distribution)

e Works in many cases but...

15
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Vertical Scalability: Drawbacks

e Higher costs
O Large machines cost more than equivalent commodity HW
e Data growth limit
O Large machine works well until the data grows to fill it
O Even the largest of machines has a limit
® Proactive provisioning
O Inthe beginning, no idea of the final scale of the application
o An upfront budget is needed when scaling vertically
e Vendor lock-in

O Large machines are produced by a few vendors
O Customer is dependent on a single vendor (proprietary HW)



System is distributed across multiple machines/nodes

e Commodity machines, cost effective

® Provides higher scalability than vertical approach

o Data is partitioned over many disks
O Application can use main memory of all machines
O Distribution computational model

® [ntroduces new problems:
O synchronization, consistency, partial-failures handling, etc.

17
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Horizontal Scalability: Fallacies == i iy

e Typical false assumptions of distributed computing:
o The network is reliable

Latency is zero

Bandwidth is infinite

The network is secure

The network is homogeneous

Topology of the network does not change

There is one network administrator

O O O O OO

source: https://blogs.oracle.com/jag/resource/Fallacies.html 18
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Distribution Models: Overview

e for horizontal scalability

® Two generic ways of data distribution:

O Replication —the same data is copied over multiple nodes
m Master-slave vs. peer-to-peer

o Sharding — different data chunks are put on different nodes
(data partitioning)

m Master-master

® \We can use either or combine them

o Distribution models = specific ways to do sharding,
replication or combination of both

19
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Distribution Model: Single Server = ==y

e Running the database on a single machine is

always the preferred scenario
O it spares us a lot of problems

® It can make sense to use a NoSQL database on a

single server

o Other advantages remain: Flexible data model, simplicity

O Graph databases: If the graph is “almost” complete, it is
difficult to distribute it

20
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Sharding (Data Partitioning) p

e Placing different parts

of the data (card suits) Sp—
onto different servers )A/
Each shard reads and

writes its own dafa

e Applicability: Different
clients access different

parts of the dataset

source: Sadalage & Fowler: NoSQL Distilled, 2012 21
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Distribution Models: Sharding (2)~= " i)

We should try to ensure that
1. Data accessed together is kept together

O So that user gets all data from a single server
O Aggregates data model helps achieve this

2. Arrange the data on the nodes:

O Keep the load balanced (can change in time)
O Consider the physical location (of the data centers)

e Many NoSQL databases offer auto-sharding

® A node failure makes shard’s data unavailable

O Sharding is often combined with replication .
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Master-slave Replication

e We replicate data across
multiple nodes

Master

All updates are made to

. . the master
® One node is designated as \ A
. master or siave
primary (master), others as s rpomte o ——
secondary (slaves)

e [Vlaster is responsible for t (& v B i »
processing all updates to KB ¢l &
the data

Slaves

¢ Reads frOm d ny nOde source: Sadalage & Fowler: NoSQL Distilled, 2012 23
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Master-slave Replication (2)

® For scaling a read-intensive application

O More read requests - more slave nodes
O The master fails - the slaves can still handle read requests
O A slave can become a new master quickly (it is a replica)

e Limited by ability of the master to process updates

® Masters are selected manually or automatically
O User-defined vs. cluster-elected

24
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Peer-to-peer Replication

e No master, all the
replicas are equal

All nodes read and

® Every node can handle \ Nodwmm/ -
a write and then i wites
spreads the update
to the others “

v
o

3 £ K2
o 00 “

source: Sadalage & Fowler: NoSQL Distilled, 20122'5
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Peer-to-peer Replication (2)

® Problem: consistency
O Users can write simultaneously at two different nodes

e Solution:

o When writing, the peers coordinate to avoid conflict

m At the cost of network traffic
m The write operation waits till the coordination process is finished

O Not all replicas need to agree on the write, just a
majority (details below)

26
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Sharding & Replication (1)

. ]
e Sharding and master-slave replication:

O Each data shard is replicated (via a single master)

te..
EV
ited

O A node can be a master for some data and a slave for other
master for two shards slave for two shards master for one shard

source: Sadalage & Fowler: NoSQL Distilled, 2012

m“,ﬁv%‘;”: :m,r: slave for two shards slave for one shard 27
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Sharding & Replication (2)

e Sharding and peer-to-peer replication:

O A common strategy for column-family databases

O A typical default is replication factor of 3
m i.e., each shardis present on three nodes

=> we have to solve
consistency issues

(let’s first talk more about
what consistency means)

source: Sadalage & Fowler: NoSQL Distilled, 2012 28
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Fundamentals of RDBMs and NoSQL Databases

Data Model of Aggregates

Models of Data Distribution

O scalability

O sharding vs. replication: master-slave, peer-to-peer
O combination

Consistency

O write-write vs. read-write conflict
O strategies and techniques

O relaxing consistency

29



Consistency in Databases

“Consistency is the lack of contradiction in the DB”
e Centralized RDBMS ensure strong consistency

e Distributed NoSQL databases typically relax

consistency (and/or durability)

O Strong consistency - eventual consistency

O BASE (basically available, soft state, eventual consistency)
O CAP theorem

O tradeoff between consistency and availability

30



Write (Update) Consistency

® Problem: two users want JWrite (K, A .

\ Write (K, B) .~

to update the same record \

(write-write conflict)

O Issues: lost update, second update is based on stale data

e Two general solutions

O Pessimistic approach: preventing conflicts from occurring
m acquiring write locks before update

O Optimistic approach: let conflicts occur, but detect them

and take actions to resolve them

m conditional update, save both updates and record the conflict
m implementation by, e.g., version stamps (details later in the course)

31



Read Consistency

A 1. Write(K, A)
® Problem: one user reads @ 2. Read(K) ----- @
N 3. Read(K') = ===
in the middle of other 4. Write(x’, B)

user’s writes

(read-write conflict, inconsistent read)

o this leads to logical inconsistency

e |deal solution: transactions (ACID)
O strong consistency

32
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Read Consistency in NoSQL ey LR

e NoSQL databases inherently support atomic

updates only within a single aggregate

O Update that affects multiple aggregates leaves a time slot
when clients could perform an inconsistent read

O Inconsistency window

e Graph Databases
o Typically strong consistency (if centralized)

33



e Basically, no problem if the DB is centralized
o ACID can be implemented

O Various levels of isolation (details later in the course)
read uncommitted

read committed

repeatable reads

serializable

® Distributed transactions (details later in the course)
O X/Open Distributed Trans. Processing Model (X/Open XA)
o Two-phase Commit Protocol (2PC)
O Strong Strict Two-phase Locking (SS2PL)

34



Replication Consistency

e Consistency among replicas
O Ensuring that the same data item
has the same value when reading
from different replicas
e After some time, the write propagates everywhere
o Eventual consistency, in the meanwhile: stale data

O Various levels of consistency (e.g., quorum - see below)

® Read-your-writes (session consistency)

O Gets violated if a user writes and reads on different replicas

O Solution: sticky session (session affinity)
35
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CAP Theorem

CAP = Consistency, Availability, Partition Tolerance

Consistency

e After an update, all readers in a distributed system
(assuming replication) see the same data

® Example:
O Asingle server database is always consistent
o If the replication factor > 1, the system must handle the

writes and/or reads in a special way
36
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Availability

® FEvery request must result in a response
o If a node (server) is working, it can read and write data

Partition Tolerance

e System continues to operate, even if two sets of servers

get isolated
O A connection failure should not shut the system down

It would be great to have all these three CAP properties!

37
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CAP Theorem: Formulation e replcation = g

® CAP Theorem: A “shared-data” system cannot

have all three CAP properties

o Or: only two of the three CAP properties are possible
m This is the common version of the theorem

e First formulated in 2000: prof. Eric Brewer

o PODC Conference Keynote speech
m www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

® Proven in 2002: Seth Gilbert & Nancy Lynch

O SIGACT News 33(2) http://dl.acm.org/citation.cfm?id=564601

38
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CAP Theorem: Real Application ™= fika==y

® A single-server system is ROBMS ~ orestendy
always CA Ny <
o As well as all ACID systems Availabiliy \ Parttion
e A distributed system practically - Key-value stores

has to be tolerant of network Partitions (P)
O because it is difficult to detect all network failures

e So, tradeoff between Consistency and Availability
O in fact, itis not a binary decision

39
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Example: two users, two et @
. \\\ Write (key, B),/’//
masters, two write attempts \
. node 1 node 2
® Strong consistency: +---,

agreement

O Before the write is committed,
both nodes have to agree on the order of the writes

\ -
\ -~

e If the nodes are partitioned, @Wme(key, D meiie(key, B
. . ape \(waiting 4ever) (waiting 4ex’zer) e
we are losing Availability
O (but reads are still available) -

.
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PC: Partition Tolerance & Consistéincy

Write (key, A)

\ -,

e Adding some availability: \ Write(key, B) -

\ -

O Master-slave replication

Write (key, B)

® |n case of partitioning,
Write (key, A)

master can commit write
o Losing some Consistency: N itetey, B o7

\ ' d

”

\ (waiting 4ever) -

Data on slave will be stale -

for read

41
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e Choosing Availability: R,
O Peer-to-peer replication \\ Write (key, B) -7
o Eventual consistency ‘ e

® |n case of Partitioning

o All requests are answered (full Availability)
o Wer risk losing consistency guarantees completely

e But we can do something in the middle: Quorum

® for replication consistency
42
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e Peer-to-peer replication with replication factor N
o Number of replicas of each data object

e Write quorum: W

o When writing, at least W replicas have to agree

o Having W > N/2 results in write consistency
m in case of two simultaneous writes, only one can get the majority

Example' < firite(key, A) Write (key, B) _._

e Replication factor N =3

e Write quorum: W =2
(W > N/2)

43
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e Read quorum:R

o Number of peers contacted for a single read
m Assuming that each value has a time stamp (time of write) to tell the
older value from the newer

O For a strong read consistency: R+ W >N
m reader surely does not read stale data

Example:

® Read quorum:R=2 ~Jrmite (key, B
(R+ W >N) -

e 2 nodes contacted for read
=> the newest data returned

Write (key, B) _ -
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Relaxing Durability

Durability:
e \When Write is committed, the change is permanent

® [n some cases, strict durability is not essential and it

can be traded for scalability (write performance)
O e.g., storing session data, collection sensor data

A simple way to relax durability:

e Store data in memory and flush to disk regularly
O if the system shuts down, we loose updates in memory

45
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Relaxing Durability Il

e Replication durability (of a write operation)

O The writing node can either

1. acknowledge (answer) the write operation immediately
® not wait until spread to other replicas
e if the writing node crashes before spreading, durability fails
e write-behind (write-back)

2. oritcan first spread the update to other replicas
® operation is answered only after acknowledgement from the others
® write-through

O both variants are possible for P2P repl., master-slave
replication, quora...

46
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BASE Concept

BASE is a vague term often used as contrast to ACID

e Basically Available

O The system works basically all the time
o Partial failures can occur, but without total system failure

e Soft state
O The system is in flux (unstable), non-deterministic state
O Changes occur all the time

e Eventual consistency

O The system will be in some consistent state
O At some time in the future

source: Eric Brewer: Towards Robust Distributed Systems. Www.cs.berkelev.edu/~brewer/csZ62b—2004/PODC—kevnote.|odf47
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Summary of the Lesson

e Aggregate-oriented data modeling

e Sharding vs. replication

O Master-slave vs. peer-to-peer replication
m Combination of sharding & replication

e Database consistency:

O Write/Read consistency (write-write & write-read conflict)
m Replication consistency (also, read-your-own-writes)

® Relaxing consistency:

O CAP (Consistency, Availability, Tolerance to Partitions),
m Eventual consistency

O Quora (write/read quorum)
m can ensure strong replication consistency; wide range of settings 48
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Conclusions

e There is a wide range of options influencing
O Scalability

m of data storage, of read operations, of update (write) requests

O Availability

m How the system behaves in case of HW (e.g., network) failure

o Consistency
m Consistency has many facets and it depends how important they are

O Durability

m Canlrely on confirmed updates (and is it so important)?

O Fault-tolerance
m Dol have copies of data to recover after a complete HW fail?

e |t's good to know the options and choose wisely.

49
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e |. Holubova, J. Kosek, K. Minafik, D. Novak. Big Data a
NoSQL databaze. Praha: Grada Publishing, 2015. 288 p.

e Sadalage, P. J., & Fowler, M. (2012). NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot
Persistence. Addison-Wesley Professional, 192 p.

e doc. RNDr. Irena Holubova, Ph.D. MMF UK course
NDBI040: Big Data Management and NoSQL Databases

e Eric Brewer: Towards Robust Distributed Systems.
www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
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