
PV198 - UART II
One-chip Controllers

Jan Koniarik

Faculty of Informatics, Masaryk University

Context

Until now, most of the projects were simple, this time we will
increase the complexity.
The data will get more complex:

Instead of working with simple data, we will use layered protocol
We will use more advanced API:

Until now, most of the API you used is blocking
Today, we will try non-blocking API

J. Koniarik · PV198 - UART II · 2 / 18

Goal

Implement an app that waits for an input on UART to setup RGB LED.
In case the input is corrupted, the app returns an error message over
the same UART.

J. Koniarik · PV198 - UART II · 3 / 18

Protocol

The app shall use two-layered protocol for communication:
1. Outter layer is binary protocol:

| SIZE_HIGH | SIZE_LOW | <inner message> | CHECKSUM |
where SIZE_HIGH, SIZE_LOW, and CHECKSUM are 8bit values
SIZE is the number of bytes the <inner message> is made of
CHECKSUM is calculated by XORing all bytes of <inner message>

2. Inner layer is ASCII-based protocol:
Input: string consisting of three RGB values delimited by comma

"255,255,255" turns on all three LEDs fully
Output: Error messages

J. Koniarik · PV198 - UART II · 4 / 18

Guideline

When implementing the app, focus on decomposition, there should
be clearly separate functionalities for:

Loading data from UART
Code for outter layer of the message
Code for inner layer of the message
Work with RGB LED

J. Koniarik · PV198 - UART II · 5 / 18

Template

The provided template contains parts of the functionality already
implemented in libraries:

circular_buffer.h - queue of bytes with fixed size - good for
output data
matrix_buffer.h - queue of byte arrays with fixed size - good for
input messages
protocol.h - utilities to work with the outter layer of the protocol

J. Koniarik · PV198 - UART II · 6 / 18

Task I
Get yourself familiar with the matrix buffer and protocol
libraries.
Use UART_ReadBlocking to store input data into the matrix buffer.
Hint: MatrixBuffer should be a global

J. Koniarik · PV198 - UART II · 7 / 18

Once we are able to load input data into buffer, we can start
processing the message
Note that the matrix buffer gives as ability to handle a burst of
messages in case the processing would be slow

J. Koniarik · PV198 - UART II · 8 / 18

Task II
Extract the inner message from currently processed message
Use sscanf to extract RGB values
Verify the RGB range of received values
Set the RGB values to the LEDS

J. Koniarik · PV198 - UART II · 9 / 18

The API of libraries has one property: most functionality returns
bool indicating whenever operation succeeded.
It is crucial in embedded to have proper error reporting
capability.

J. Koniarik · PV198 - UART II · 10 / 18

Task III
Study the circular_buffer.h.
Write a function that can take any message, wrap it in outter
protocol and insert into circular buffer.
Use the function to error report potential problems in processing
of the input message.
Hint: CircularBuffer should be a global

J. Koniarik · PV198 - UART II · 11 / 18

We have capability to process messages now.
But you should see that the process is blocking and there is
chance to miss input messages.
Note: There is also python script in the project to test it.

J. Koniarik · PV198 - UART II · 12 / 18

Interrupts

We can use interrupts to managed sending and receiving of the
data
For the sake of simplicity, we will:

Step A: send output data with interrupts and read with blocking
API
Step B: send output data with interrupts and read with interrupts

J. Koniarik · PV198 - UART II · 13 / 18

Interrupts

Start by going into peripheral and switching it into interrupt
mode
Prepare the interrupt handler function in main.c

J. Koniarik · PV198 - UART II · 14 / 18

Interrupts

To send data over UART with simple usage of interrupts, we should:
Enable the specific interrupt for sending byte if we have bytes to
sent:

UART_EnableInterrupts(UART3_PERIPHERAL,
kUART_TxDataRegEmptyInterruptEnable);

Check in the interrupt that the source is free tx:
if (kUART_TxDataRegEmptyFlag & status)

Write one byte at a time:
UART_WriteByte

Disable the interrupt once the buffer is empty

J. Koniarik · PV198 - UART II · 15 / 18

Task IV
Make all the necessary steps for sending the data with interrupts.

J. Koniarik · PV198 - UART II · 16 / 18

Interrupts

To receive data over UART with simple usage of interrupts, we should:

Enable the specific interrupt for receiving bytes forever:
UART_EnableInterrupts(UART3_PERIPHERAL,
kUART_RxDataRegFullInterruptEnable);

Check in the interrupt that the source is rx byte:
kUART_RxDataRegFullFlag or kUART_RxOverrunFlag

Read one byte at a time:
UART_ReadByte

J. Koniarik · PV198 - UART II · 17 / 18

Task V
Make all the necessary steps for receiving the data with interrupts.
Do not forget to implement proper usage of MatrixBuffer in the
interrupt, the rows have to be switched properly!

J. Koniarik · PV198 - UART II · 18 / 18

