

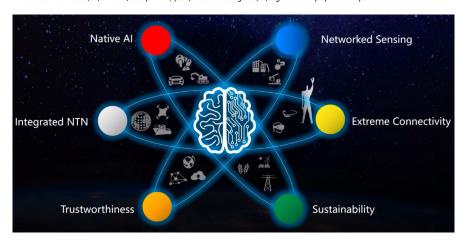
6 G – connected intelligence

COST Action 2022 WG3 – Network Architectures and Protocols HA3 – Training

Václav Oujezský oujezsky@fi.muni.cz https://www.fi.muni.cz/~oujezsky/

Faculty of Informatics, Masaryk Univerzity (SITOLA 2022)

September 14, 2022

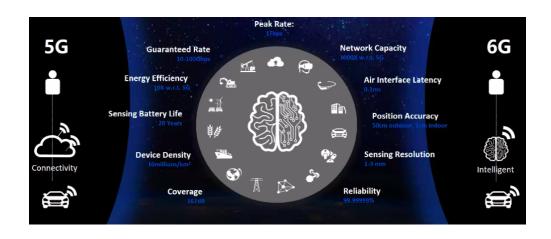

Full Members

Materials and figures adapted from the COST meeting, for internal use only.

6 G – Connected Intelligence

Huawei - white paper
https://www-file.huawei.com/-/media/corp2020/pdf/tech-insights/1/6g-white-paper-en.pdf?la=en

6 G - Connected Intelligence

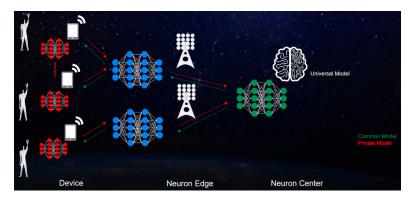

The 6 G Pillars

- Pillar 1: New Communication Paradigm reliable, low latency, high efficient connectivity based on machine learning
- **Pillar 2**: Integrated Sensing and Communications networks as sensors (NLOS¹ joint sensing with gNB² and UE)
- **Pillar 3**: Ultimate Connectivity Supremacy peak data rate 1 Tbps, battery life 20 years, sensing resolution 1-3mm, latency 0.1 ms (new eMBB, mMTC, URLLC, new sensing, all being controlled by **Intelligence**)
- Pillar 4: NTN³ integration inter-satellite 600 km, satellite-to-terrestrial 300 km
- **Pillar 5**: Native Trustworthiness Quantum resisted security, block-chain, QKD and quantum switching key distribution compatible
- **Pillar 6**: Sustainability and Humanity Good need to establish and industry consensus on the methodology for the evaluation of sustainability

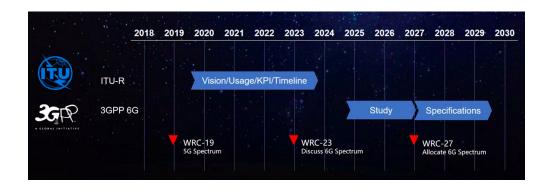
¹ Non-line of sight

²3GPP 5G Next Generation base station

³NTN – Non-Terrestrial Networks



New Communication Model


DNN Model as a Communication Object – as Compressor, Data Operator, Data Memory, Data ID

For 6 G ISP - the Al model more important than data, the model can be exchanged over networks while data can be kept at local

Distributed Learning Model for 6 G – federated learning, distilled learning

6 G and Timeline

Current research overview – examples

CNIT / WiLab

- Al-Enabled Massive URLLC⁴ for Inter-Machine IIoT⁵ Applications distributed machine learning
- Non-orthogonal Resource Allocation Techniques for Sidelink Cellular Vehicle to Everything (V2X)
- Radio signal analysis to gain information about target objects or environment

Ottawa Wireless Advanced System Competency Center

■ 3D Networks – UAVs flying over cities acting as BSs

II ab

■ Proactive link selection in high frequencies IoVs⁶ network – sensor sharing

And many more – over 100 papers published and available as TDs

⁴Ultra-Reliable Low-Latency Communication

⁵Industrial Internet of Things

⁶Internet of Vehicles

The trends in networking and ML

- NETWORK ARCHITECTURES
- NETWORK PLANNING AND ORCHESTRATION
- ML approaches for planning and orchestration
- NETWORKING FOR ML

In cooperation with Connected Experience Lab (ConExLab) – Institute of Information Systems (IIG), University of Applied Sciences of Western Switzerland – HES SO Valais

The personal inside view of possible research

WG3 – Network Architectures and Protocols

- Protocols enabling cooperation of 6 G IIoT and cloud systems for high adaptability, low latency employing Machine Learning
- Network Architectures for 6 G enabled transit core network
- ...

A tip:

https://www.comsoc.org/publications/magazines/ieee-network/cfp/federatedoptimizations-and-networked-edge-intelligence

Leaflet

https://bit.ly/3DQgzHb

MUNI FACULTY OF INFORMATICS