Randomized algorithms - seminar exercises

December 13, 2023

1) Let X be the random variable determining the absolute value of the difference between the number of heads and tails after n flips of an unbiased coin. Show that the expected value of X is $\Theta(n)$.
2) Show that there exists $c>0$ such that the expected length of the longest increasing subsequence in a randomly chosen permutation of order n is at least $c \cdot n^{1 / 2}$.
3) Give examples of random variables for which Markov's Inequality and Chebyshev's Inequality are tight.
4) Suppose that n balls are placed into n urns uniformly and independently of each other. Show that the expected number of empty urns is $n / e+o(n)$.
5) A family H is strongly 2 -universal if for all $x \neq y$ from the universe $[\mathrm{m}]$ and all s and t from the range $[\mathrm{n}]$, it holds that $\operatorname{Pr}_{h}[h(x)=s$ and $h(y)=t]=1 / n^{2}$. Show that if $n=m=p$ is a prime, then the family from the lecture is strongly 2-universal.
6) Suppose that $m=2^{s}$ and $n=2^{t}$. Define H as a family of functions h_{A} associated with binary matrices A with t rows and $\mathrm{s}+1$ columns such that $h_{A}(x)=A \cdot x^{\prime}$ where x^{\prime} is x appended with an extra entry equal to 1 . Show that H is a 2 -universal hash family. Is it strongly 2 -universal?
7) Consider the family H of functions mapping x to $(a x \bmod p) \bmod n$, for $a \neq 0$. Show that for every $x \neq y, \operatorname{Pr}_{h}[h(x)=h(y)]<=2 / n$.
8) [use probabilistic method] Fix $m>=n$. Show that there exists a (not necessarily constructible) family H of hash functions, $|H|<=m$, such that for any ($\mathrm{n}-1$)-element subset S , there exists h from H such that each bucket contains at most $\mathrm{O}(\log n)$ elements.
9) Fix $m>=s$. Show that for $n=\Omega\left(s^{2}\right)$ there exists a family H of hash functions, $|H|<=m$, such that for any s-element subset S , there exists h from H that is injective on S .
10) Show that PP class is closed under the complement.
11) Find deterministic 3/4-approximative algorithm for MAX 2-SAT.
12) Find deterministic $7 / 8$-approximative algorithm for MAX 3-SAT.
13) Prove that for all $k>0$ and $\epsilon>0$ there exists an instance of MAX 2-SAT such that the maximum number of satisfiable clauses is at most $3 / 4+\epsilon$, but any k clauses are satisfiable.
14) Using Yao's principle show that any Las Vegas algorithm, which decides the existence of perfect matching has the worst-case expected time complexity
$\Omega\left(n^{2}\right)$, where n is the number of vertices.
15) Using "Schwartz-Zippel Polynomial Identity Testing" design a probabilistic algorithm that decides if two rooted trees are isomorphic with linear time complexity.
16) Let $n=p_{1}^{a_{1}} \cdot \ldots \cdot p_{m}^{a_{m}}$. Show that $x^{n-1}=1 \bmod \mathrm{n}$ for every x coprime with n if and only if $\phi\left(p_{i}^{a_{i}}\right) \mid n-1$ for every $\mathrm{i}=1, \ldots, \mathrm{~m}$.
17) Let $n=p_{1} \cdot \ldots \cdot p_{m}$. Show that $x^{n-1}=1 \bmod \mathrm{n}$ for every x coprime with n if and only if $p_{i}-1 \mid n-1$.
18) Let $n=p q$, where p, q are primes. Show that calculating $\phi(n)$ is equally hard as factorization of n. (from black-box for one problem calculate the other)
19) https://codeforces.com/contest/1823/problem/F
20) https://codeforces.com/problemset/problem/1743/D
21) https://codeforces.com/problemset/problem/1453/D
22) https://codeforces.com/problemset/problem/1770/E
23) https://codeforces.com/problemset/problem/839/C
