Homework Sheet 1

Exercise 1 (5 points) Let *A*, *B*, *C* be propositional variables. Determine (with proof) whether there exists a formula φ such that the formula $A \rightarrow \varphi$ is equivalent to

- (a) $\varphi \to A$;
- (b) $\varphi \rightarrow B$;
- (c) $B \rightarrow \varphi$.

In a second step, determine whether we can choose the formula φ such that it depends on the variable *C* (i.e., there exist two variable assignments v, v' that agree on all variables different from *C* and such that $v(\varphi) \neq v'(\varphi)$).

Exercise 2 (6 points) Let $\mathbb{N} = \{0, 1, 2, ...\}$ be the set of natural numbers. Suppose that we have a propositional variable A_n , for every $n \in \mathbb{N}$. We call a variable assignment v an *n*-assignment if

 $v(A_k) = 0$, for all $k \ge n$.

(There therefore exist exactly 2^n *n*-assignments.) We call a formula φ an *n*-formula if it only contains implications \rightarrow and (some of) the variables A_0, \ldots, A_{n-1} .

- (a) (1 point) Find a 3-formula that is true for exactly 7 3-assignments.
- (b) (2 points) Prove (preferably by induction) that there is no 2-formula that is true for exactly 1 2-assignment.
- $(c)^*$ (1 point) Find a 10-formula that is true for exactly 600 10-assignments.
- (d)* (2 points) Determine (with proof) for which numbers $n, k \in \mathbb{N}$ there exists an *n*-formula that is true for exactly *k n*-assignments.