Homework Sheet 1

Exercise 1 (5 points) Let A, B, C be propositional variables. Determine (with proof) whether there exists a formula φ such that the formula $A \rightarrow \varphi$ is equivalent to
(a) $\varphi \rightarrow A$;
(b) $\varphi \rightarrow B$;
(c) $B \rightarrow \varphi$.

In a second step, determine whether we can choose the formula φ such that it depends on the variable C (i.e., there exist two variable assignments v, v^{\prime} that agree on all variables different from C and such that $\left.v(\varphi) \neq v^{\prime}(\varphi)\right)$.

Solution

(a) We can obviously choose $\varphi:=A$. In fact, this is the only possibility (up to logical equivalence).

If v is a variable assignment with $v(A)=0$, we have

$$
v(A \rightarrow \varphi)=1 \quad \text { and } \quad v(\varphi \rightarrow A)=1-v(\varphi) .
$$

Hence, if $A \rightarrow \varphi \approx \varphi \rightarrow A$, we must have $v(\varphi)=0$.
Similarly, if v is a variable assignment with $v(A)=1$, we have

$$
v(\varphi \rightarrow A)=1 \quad \text { and } \quad v(A \rightarrow \varphi)=v(\varphi) .
$$

Hence, $A \rightarrow \varphi \approx \varphi \rightarrow A$ implies $v(\varphi)=1$.
It follows that $\varphi \approx A$. In particular, it cannot depend on C.
(b) Such a formula does not exist. Let v be the variable assignment with $v(A)=1$ and $v(X)=0$ for all other variables. Then

$$
v(A \rightarrow \varphi)=v(\varphi) \neq 1-v(\varphi)=v(\varphi \rightarrow B) .
$$

A contradiction.
(c) Any tautology works. Another solution is the formula $\varphi:=A \vee B \vee C$, which does depend on C. To show that this formula is indeed a solution, we can use a truth table, or we can argue as follows. The formula $A \rightarrow(A \vee B \vee C)$ is true if $v(A)=0$ and if $v(A)=1$. Similarly, $B \rightarrow(A \vee B \vee C)$ is true if $v(B)=0$ and if $v(B)=1$. Hence, both formulae are tautologies.

Exercise 2 (6 points) Let $\mathbb{N}=\{0,1,2, \ldots\}$ be the set of natural numbers. Suppose that we have a propositional variable A_{n}, for every $n \in \mathbb{N}$. We call a variable assignment v an n-assignment if

$$
v\left(A_{k}\right)=0, \quad \text { for all } k \geq n
$$

(There therefore exist exactly $2^{n} n$-assignments.) We call a formula φ an n-formula if it only contains implications \rightarrow and (some of) the variables A_{0}, \ldots, A_{n-1}.
(a) (1 point) Find a 3-formula that is true for exactly 7 3-assignments.
(b) (2 points) Prove (preferably by induction) that there is no 2 -formula that is true for exactly 1 2-assignment.
(c) ${ }^{*}(1$ point) Find a 10 -formula that is true for exactly 60010 -assignments.
(d) ${ }^{*}$ (2 points) Determine (with proof) for which numbers $n, k \in \mathbb{N}$ there exists an n-formula that is true for exactly $k n$-assignments.

Solution

(a) for example, $A_{2} \rightarrow\left(A_{\mathrm{o}} \rightarrow A_{1}\right)$
(b) See the first part of (d) below.
(c) $\left(A_{5} \rightarrow\left(\left(\left(\left(A_{0} \rightarrow A_{1}\right) \rightarrow A_{2}\right) \rightarrow A_{3}\right) \rightarrow A_{4}\right)\right) \rightarrow A_{6}$
(d) There is obviously no o-formula. Hence, suppose that $n \in \mathbb{N}^{+}$. First, we prove that every n formula φ is true for at least $2^{n-1} n$-assignments. We proceed by induction on φ.

If $\varphi=A_{k}$, every n-assignment v with $v\left(A_{k}\right)=1$ satisfies φ. There are 2^{n-1} such assignments.
Next, suppose that $\varphi=\psi \rightarrow \xi$. Then φ is true for every assignment satisfying ξ. By inductive hypothesis, there are at least 2^{n-1} of these.

Since $2^{2-1}=2$, it follows in particular that there is no 2 -formula that is true for exactly 12 -assignment.
Next we show by induction on n that, for every $2^{n-1} \leq k \leq 2^{n}$, there is some n-formula that is true for exactly $k n$-assignments.

For $n=1$ and $k=1$, we can take $\varphi=A_{0}$. For $n=1$ and $k=2$, we can take $\varphi=A_{0} \rightarrow A_{0}$.
Suppose that $n \geq 2$. We distinguish two cases. If $k<3 \cdot 2^{n-2}$, we use the inductive hypothesis to find an $(n-1)$-formula φ that is true for $2^{n}-k(n-1)$-assignments. We consider the formula $\psi:=\varphi \rightarrow A_{n-1}$. This formula is false if, and only if, φ is true and A_{n-1} is false. There are $2^{n}-k$ such assignments. Consequently, there are $2^{n}-\left(2^{n}-k\right)=k n$-assignments that make ψ true.

Similarly, if $k \geq 3 \cdot 2^{n-2}$, we take an $(n-1)$-formula φ that is true for exactly $k-2^{n-1}(n-1)$ assignments. We consider the formula $\psi:=A_{n-1} \rightarrow \varphi$. This formula is false if, and only if, A_{n-1} is true and φ is false. There are $2^{n-1}-\left(k-2^{n-1}\right)=2^{n}-k$ such assignments. Consequently, there are $2^{n}-\left(2^{n}-k\right)=k n$-assignments that make ψ true.

It follows that there exists an n-formula that is true for at least $k n$-assignments if, and only if, $n>0$ and $2^{n-1} \leq k \leq 2^{n}$.

