Homework Sheet 1

Exercise 1 (5 points) Let *A*, *B*, *C* be propositional variables. Determine (with proof) whether there exists a formula φ such that the formula $A \rightarrow \varphi$ is equivalent to

- (a) $\varphi \to A$;
- (b) $\varphi \rightarrow B$;
- (c) $B \rightarrow \varphi$.

In a second step, determine whether we can choose the formula φ such that it depends on the variable *C* (i.e., there exist two variable assignments v, v' that agree on all variables different from *C* and such that $v(\varphi) \neq v'(\varphi)$).

Solution

(a) We can obviously choose $\varphi := A$. In fact, this is the only possibility (up to logical equivalence). If v is a variable assignment with v(A) = 0, we have

 $v(A \to \varphi) = 1$ and $v(\varphi \to A) = 1 - v(\varphi)$.

Hence, if $A \to \varphi \approx \varphi \to A$, we must have $v(\varphi) = 0$.

Similarly, if *v* is a variable assignment with v(A) = 1, we have

 $v(\varphi \to A) = 1$ and $v(A \to \varphi) = v(\varphi)$.

Hence, $A \rightarrow \varphi \approx \varphi \rightarrow A$ implies $v(\varphi) = 1$.

It follows that $\varphi \approx A$. In particular, it cannot depend on *C*.

(b) Such a formula does not exist. Let v be the variable assignment with v(A) = 1 and v(X) = 0 for all other variables. Then

$$v(A \to \varphi) = v(\varphi) \neq 1 - v(\varphi) = v(\varphi \to B).$$

A contradiction.

(c) Any tautology works. Another solution is the formula $\varphi := A \lor B \lor C$, which does depend on *C*. To show that this formula is indeed a solution, we can use a truth table, or we can argue as follows. The formula $A \to (A \lor B \lor C)$ is true if v(A) = 0 and if v(A) = 1. Similarly, $B \to (A \lor B \lor C)$ is true if v(B) = 0 and if v(B) = 1. Hence, both formulae are tautologies.

Exercise 2 (6 points) Let $\mathbb{N} = \{0, 1, 2, ...\}$ be the set of natural numbers. Suppose that we have a propositional variable A_n , for every $n \in \mathbb{N}$. We call a variable assignment v an *n*-assignment if

 $v(A_k) = 0$, for all $k \ge n$.

(There therefore exist exactly 2^n *n*-assignments.) We call a formula φ an *n*-formula if it only contains implications \rightarrow and (some of) the variables A_0, \ldots, A_{n-1} .

- (a) (1 point) Find a 3-formula that is true for exactly 7 3-assignments.
- (b) (2 points) Prove (preferably by induction) that there is no 2-formula that is true for exactly 1 2-assignment.
- $(c)^*$ (1 point) Find a 10-formula that is true for exactly 600 10-assignments.
- (d)* (2 points) Determine (with proof) for which numbers $n, k \in \mathbb{N}$ there exists an *n*-formula that is true for exactly *k n*-assignments.

Solution

(a) for example, $A_2 \rightarrow (A_0 \rightarrow A_1)$

(b) See the first part of (d) below.

 $(c) (A_5 \to ((((A_0 \to A_1) \to A_2) \to A_3) \to A_4)) \to A_6$

(d) There is obviously no o-formula. Hence, suppose that $n \in \mathbb{N}^+$. First, we prove that every *n*-formula φ is true for at least 2^{n-1} *n*-assignments. We proceed by induction on φ .

If $\varphi = A_k$, every *n*-assignment *v* with $v(A_k) = 1$ satisfies φ . There are 2^{n-1} such assignments.

Next, suppose that $\varphi = \psi \rightarrow \xi$. Then φ is true for every assignment satisfying ξ . By inductive hypothesis, there are at least 2^{n-1} of these.

Since $2^{2-1} = 2$, it follows in particular that there is no 2-formula that is true for exactly 1 2-assignment. Next we show by induction on *n* that, for every $2^{n-1} \le k \le 2^n$, there is some *n*-formula that is true for exactly *k n*-assignments.

For n = 1 and k = 1, we can take $\varphi = A_0$. For n = 1 and k = 2, we can take $\varphi = A_0 \rightarrow A_0$.

Suppose that $n \ge 2$. We distinguish two cases. If $k < 3 \cdot 2^{n-2}$, we use the inductive hypothesis to find an (n-1)-formula φ that is true for $2^n - k$ (n-1)-assignments. We consider the formula $\psi := \varphi \rightarrow A_{n-1}$. This formula is false if, and only if, φ is true and A_{n-1} is false. There are $2^n - k$ such assignments. Consequently, there are $2^n - (2^n - k) = k$ *n*-assignments that make ψ true.

Similarly, if $k \ge 3 \cdot 2^{n-2}$, we take an (n-1)-formula φ that is true for exactly $k - 2^{n-1} (n-1)$ assignments. We consider the formula $\psi := A_{n-1} \rightarrow \varphi$. This formula is false if, and only if, A_{n-1} is
true and φ is false. There are $2^{n-1} - (k - 2^{n-1}) = 2^n - k$ such assignments. Consequently, there are $2^n - (2^n - k) = k n$ -assignments that make ψ true.

It follows that there exists an *n*-formula that is true for at least *k n*-assignments if, and only if, n > 0 and $2^{n-1} \le k \le 2^n$.