Homework Sheet 2

Exercise 1 (6 points)

(a) (3 points) *Intuition*: We are looking for a binary operation f and a unary operation u that together form a complete system, but such that f together with all other unary operations does not.

Exact question: For $i \in \{0, 1, 2, 3\}$, let u_i be the unary operation mapping $0 \mapsto i \mod 2$ and $1 \mapsto \lfloor i/2 \rfloor$. Find a binary operation f and an index $i \in \{0, 1, 2, 3\}$ such that the system $\mathcal{L}(f, u_i)$ is complete but the system $\mathcal{L}(f, u_{(i+1) \mod 4}, u_{(i+2) \mod 4}, u_{(i+3) \mod 4})$ is not. Prove your claim.

(b) (3 points) Intuition: Is there a strongest unary operation?

Exact question: Is there an index $i \in \{0, 1, 2, 3\}$ such that, for every $n \in \mathbb{N}$ and every n-ary operation f, if there is some $j \in \{0, 1, 2, 3\}$ such that $\mathcal{L}(f, u_j)$ is complete, then $\mathcal{L}(f, u_i)$ is also complete? Prove your answer. You can use the statement from the lecture that the system $\mathcal{L}(\neg, \rightarrow)$ is complete, but you cannot assume the completeness of other systems.

Exercise 2 (5 points) We consider the logical system $\mathcal{L}(\uparrow, \downarrow, \rightarrow)$ where \uparrow and \downarrow are unary and \rightarrow is binary. We use the following proof system consisting of three axiom schemata and one rule.

- (A1) $\uparrow \uparrow \downarrow \downarrow \varphi$
- (A2) $\uparrow \downarrow \varphi \rightarrow \uparrow \psi$
- (A₃) $(\varphi \rightarrow \psi) \rightarrow (\uparrow \psi \rightarrow \uparrow \varphi)$
- (MP) from φ and $\varphi \rightarrow \psi$ derive ψ

Determine (with proof) which of the following formulae are derivable in this system.

- (a) $\uparrow\uparrow\downarrow A$
- (b) $\uparrow \downarrow A$
- (c) $\downarrow A$
- (d) $\downarrow A \rightarrow \downarrow A$