Homework Sheet 3

Exercise 1 (3 points) We consider the vocabulary $\mathcal{L} = \{P, f\}$ (with equality) where P is a unary predicate symbol and f a unary function symbol. Define the following formulae.

$$\begin{split} \varphi &:= \exists x \forall y [P(y) \leftrightarrow y = x], \\ \psi &:= \forall x [P(x) \leftrightarrow f(x) = x], \\ \xi &:= \forall x \exists y [y \neq x \land \forall z [f(z) = f(x) \leftrightarrow (z = x \lor z = y)]], \\ \zeta &:= \exists x \neg P(f(f(f(x)))). \end{split}$$

For which $n \in \mathbb{N}$ does there exist a structure \mathcal{M} over the vocabulary \mathcal{L} such that $\mathcal{M} \models \varphi \land \psi \land \xi \land \zeta$ and such that \mathcal{M} has exactly *n* elements (no proof necessary)?

Exercise 2 (9 points) We consider the vocabulary $\mathcal{L} = \{P, Q, S\}$ without equality consisting of three relation symbols of arities, respectively, 1, 2, and 2. We call a structure \mathcal{M} over this vocabulary *nice* if it satisfies the following conditions.

- The domain *M* is the set $2^{\mathbb{N}}$ of all subsets of the set of natural numbers.
- The relation $S_{\mathcal{M}}$ is the proper subset relation: $S_{\mathcal{M}} = \{ \langle A, B \rangle \mid A \subset B \}.$

Find a formula $\varphi(x, y, z)$ over the vocabulary \mathcal{L} such that, given a nice structure \mathcal{M} and a variable assignment e, we have $\mathcal{M} \models \varphi[e]$ if, and only if, the following condition holds.¹

(a) (1 point)
$$e(x) = e(y)$$

- (b) (1 point) $e(z) = e(x) \cap e(y)$
- (c) (1 point) $e(z) = e(x) \cup e(y)$

(d) (1 point) e(x) is the complement of e(y).

Briefly justify the correctness of your answer.

Consider the formulae

$$\psi_{Q} \coloneqq \forall x \forall y [Q(x, y) \leftrightarrow [S(x, y) \land \neg \exists z [S(x, z) \land S(z, y)]]],$$

$$\psi_{P} \coloneqq \forall x \forall y [Q(x, y) \rightarrow [P(x) \leftrightarrow P(y)]].$$

- (e) (1 point) Note that there exists a unique relation $Q \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ such that $Q = Q_{\mathcal{M}}$, for every nice structure \mathcal{M} satisfying ψ_Q . Describe this relation as explicitly as possible.
- (f) (4 points) Find as many sets $P \subseteq 2^{\mathbb{N}}$ as possible such that $P = P_{\mathcal{M}}$, for some nice structure \mathcal{M} satisfying $\psi_Q \wedge \psi_P$. Or better, compute exactly how many² such sets exist and prove the correctness of your answer.

¹In (a) and (d), the variable *z* does not need to appear in φ .

²Here we expect for the answer a cardinal number such as 1, 42, 69, \aleph_0 , \aleph_1 , 2^{\aleph_0} , \aleph_{ω} , $2^{2^{\aleph_{\omega}\omega}}$.