Homework Sheet 3

Exercise 1 (3 points) We consider the vocabulary $\mathcal{L}=\{P, f\}$ (with equality) where P is a unary predicate symbol and f a unary function symbol. Define the following formulae.

$$
\begin{aligned}
\varphi & :=\exists x \forall y[P(y) \leftrightarrow y=x], \\
\psi & :=\forall x[P(x) \leftrightarrow f(x)=x], \\
\xi & :=\forall x \exists y[y \neq x \wedge \forall z[f(z)=f(x) \leftrightarrow(z=x \vee z=y)]], \\
\zeta & :=\exists x \neg P(f(f(f(x)))) .
\end{aligned}
$$

For which $n \in \mathbb{N}$ does there exist a structure \mathcal{M} over the vocabulary \mathcal{L} such that $\mathcal{M} \vDash \varphi \wedge \psi \wedge \xi \wedge \zeta$ and such that \mathcal{M} has exactly n elements (no proof necessary)?

Exercise 2 (9 points) We consider the vocabulary $\mathcal{L}=\{P, Q, S\}$ without equality consisting of three relation symbols of arities, respectively, 1,2 , and 2 . We call a structure \mathcal{M} over this vocabulary nice if it satisfies the following conditions.

- The domain M is the set $2^{\mathbb{N}}$ of all subsets of the set of natural numbers.
- The relation $S_{\mathcal{M}}$ is the proper subset relation: $S_{\mathcal{M}}=\{\langle A, B\rangle \mid A \subset B\}$.

Find a formula $\varphi(x, y, z)$ over the vocabulary \mathcal{L} such that, given a nice structure \mathcal{M} and a variable assignment e, we have $\mathcal{M} \vDash \varphi[e]$ if, and only if, the following condition holds. ${ }^{1}$
(a) (1 point) $e(x)=e(y)$
(b) (1 point) $e(z)=e(x) \cap e(y)$
(c) (1 point) $e(z)=e(x) \cup e(y)$
(d) (1 point) $e(x)$ is the complement of $e(y)$.

Briefly justify the correctness of your answer.
Consider the formulae

$$
\begin{aligned}
\psi_{Q} & :=\forall x \forall y[Q(x, y) \leftrightarrow[S(x, y) \wedge \neg \exists z[S(x, z) \wedge S(z, y)]]] \\
\psi_{P} & :=\forall x \forall y[Q(x, y) \rightarrow[P(x) \leftrightarrow P(y)]] .
\end{aligned}
$$

(e) (1 point) Note that there exists a unique relation $Q \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ such that $Q=Q_{\mathcal{M}}$, for every nice structure \mathcal{M} satisfying ψ_{Q}. Describe this relation as explicitly as possible.
(f) (4 points) Find as many sets $P \subseteq 2^{\mathbb{N}}$ as possible such that $P=P_{\mathcal{M}}$, for some nice structure \mathcal{M} satisfying $\psi_{Q} \wedge \psi_{P}$. Or better, compute exactly how many ${ }^{2}$ such sets exist and prove the correctness of your answer.

[^0]
[^0]: ${ }^{1}$ In (a) and (d), the variable z does not need to appear in φ.
 ${ }^{2}$ Here we expect for the answer a cardinal number such as $1,42,69, \aleph_{o}, \aleph_{1}, 2^{\aleph_{o}}, \aleph_{\omega}, 2^{2^{\kappa} \omega^{\omega}}$.

