Homework Sheet 3

Exercise 1 (3 points) We consider the vocabulary $\mathcal{L} = \{P, f\}$ (with equality) where P is a unary predicate symbol and f a unary function symbol. Define the following formulae.

$$\begin{split} \varphi &\coloneqq \exists x \forall y [P(y) \leftrightarrow y = x], \\ \psi &\coloneqq \forall x [P(x) \leftrightarrow f(x) = x], \\ \xi &\coloneqq \forall x \exists y [y \neq x \land \forall z [f(z) = f(x) \leftrightarrow (z = x \lor z = y)]], \\ \zeta &\coloneqq \exists x \neg P(f(f(f(x)))). \end{split}$$

For which $n \in \mathbb{N}$ does there exist a structure \mathcal{M} over the vocabulary \mathcal{L} such that $\mathcal{M} \models \varphi \land \psi \land \xi \land \zeta$ and such that \mathcal{M} has exactly *n* elements (no proof necessary)?

Solution For n = 6, we have a model \mathcal{M} with universe $M = \{0, 1, 2, 3, 4, 5\}, P_{\mathcal{M}} = \{0\}$, and

$$f_{\mathcal{M}} = \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 2, 3 \rangle, \langle 3, 2 \rangle, \langle 4, 2 \rangle, \langle 5, 3 \rangle \}.$$

For every even $n \ge 8$, we have a model \mathcal{M} with universe $M = \{0, 1, \dots, n-1\}, P_{\mathcal{M}} = \{1\}, \text{and}$

$$f_{\mathcal{M}} = \{ \langle 0, 1 \rangle, \langle 1, 1 \rangle \} \cup \{ \langle 2k+2, 2k \rangle, \langle 2k+3, 2k \rangle \mid k \leq n/2 - 2 \}.$$

For other values of *n* there is no model with *n*-elements. As an example, let us draw the models for n = 6 and n = 10. The red circle denotes the element in P_M and the arrows describe the function f_M .

Let us explain why models of other sizes do not exist. The formula ξ states that, for every element $a \in M$, there is exactly one other element $b \in M$ with f(a) = f(b). Consequently, every element of M has either exactly two preimages under f or none. If we add the number of these preimages for all element of M, we get the number of elements of M (since f is a function).

It follows that the size of \mathcal{M} is even. Furthermore, by definition of a structure, \mathcal{M} cannot be empty. To exclude the remaining cases n = 2 and n = 4, it is sufficient to prove that the above formulae imply that \mathcal{M} has at least 5 elements. By φ , there exists a (unique) element $a \in P_{\mathcal{M}}$. By ψ , we have $f_{\mathcal{M}}(a) = a$, and by ξa has a second preimage b. BY ζ , there is some element c with $f_{\mathcal{M}}^3(c) \notin P_{\mathcal{M}}$. We have $c \neq a$ and $c \neq b$ since $f_{\mathcal{M}}(a), f_{\mathcal{M}}(b) \in P_{\mathcal{M}}$. Furthermore, $d \coloneqq f_{\mathcal{M}}(c)$ is different from a and b(since $f_{\mathcal{M}}(d) \notin P_{\mathcal{M}}$) and also from c (by φ). By ξ , d must have a second preimage e under $f_{\mathcal{M}}$. This makes 5 different elements a, b, c, d, e. **Exercise 2 (9 points)** We consider the vocabulary $\mathcal{L} = \{P, Q, S\}$ without equality consisting of three relation symbols of arities, respectively, 1, 2, and 2. We call a structure \mathcal{M} over this vocabulary *nice* if it satisfies the following conditions.

- The domain *M* is the set $2^{\mathbb{N}}$ of all subsets of the set of natural numbers.
- The relation $S_{\mathcal{M}}$ is the proper subset relation: $S_{\mathcal{M}} = \{ \langle A, B \rangle \mid A \subset B \}.$

Find a formula $\varphi(x, y, z)$ over the vocabulary \mathcal{L} such that, given a nice structure \mathcal{M} and a variable assignment e, we have $\mathcal{M} \vDash \varphi[e]$ if, and only if, the following condition holds.¹

(a) (1 point) e(x) = e(y)

- (b) (1 point) $e(z) = e(x) \cap e(y)$
- (c) (1 point) $e(z) = e(x) \cup e(y)$
- (d) (1 point) e(x) is the complement of e(y).

Briefly justify the correctness of your answer.

Consider the formulae

$$\psi_{Q} \coloneqq \forall x \forall y [Q(x, y) \leftrightarrow [S(x, y) \land \neg \exists z [S(x, z) \land S(z, y)]]],$$

$$\psi_{P} \coloneqq \forall x \forall y [Q(x, y) \rightarrow [P(x) \leftrightarrow P(y)]].$$

- (e) (1 point) Note that there exists a unique relation $Q \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ such that $Q = Q_{\mathcal{M}}$, for every nice structure \mathcal{M} satisfying ψ_Q . Describe this relation as explicitly as possible.
- (f) (4 points) Find as many sets $P \subseteq 2^{\mathbb{N}}$ as possible such that $P = P_{\mathcal{M}}$, for some nice structure \mathcal{M} satisfying $\psi_Q \wedge \psi_P$. Or better, compute exactly how many² such sets exist and prove the correctness of your answer.

Solution Let \mathcal{M} be a nice structure and *e* a variable assignment.

(a) A first try would be to take the formula

$$\psi \coloneqq \forall u[S(u,x) \leftrightarrow S(u,y)].$$

Clearly, ψ is true if e(x) = e(y). Conversely, suppose that $e(x) \neq e(y)$. Then there is some $n \in \mathbb{N}$ with $n \in e(x)$ and $n \notin e(y)$ (or the other way round). Hence, $\{n\} \subseteq e(x)$, but $\{n\} \notin e(y)$. If $e(x) \neq \{n\}$, it follows that

$$\mathcal{M} \not\models \psi[e]$$

But if $e(x) = \{n\}$, the only proper subset of e(x) is \emptyset . So, if $e(y) = \{k\}$ for $k \neq n$, the only proper subset of e(y) is also \emptyset and it follows that

 $\mathcal{M} \vDash \psi[e].$

Consequently, the formula ψ above does not quite work.

If we take the dual formula

 $\xi \coloneqq \forall u [S(x, u) \leftrightarrow S(y, u)]$

¹In (a) and (d), the variable z does not need to appear in φ .

²Here we expect for the answer a cardinal number such as 1, 42, 69, \aleph_0 , \aleph_1 , 2^{\aleph_0} , \aleph_{ω} , $2^{2^{\aleph_{\omega}\omega}}$.

instead, we have a similar problem that ξ holds if $e(x) = \mathbb{N} \setminus \{n\}$ and $e(y) = \mathbb{N} \setminus \{k\}$, for $n \neq k$.

Since the cases where the two formulae ψ and ξ fail are disjoint, we can combine these formulae to get

$$\varphi_{\mathrm{a}} \coloneqq \psi \wedge \xi$$
.

(b) Note that the intersection is the infimum with respect to the inclusion ordering. Hence, we can set

$$\varphi_{\mathsf{b}} \coloneqq z \subseteq x \land z \subseteq y \land \forall t [(t \subseteq x \land t \subseteq y) \to t \subseteq z].$$

(c) Dually to (b), we can use

$$\varphi_{c} \coloneqq x \subseteq z \land y \subseteq z \land \forall t [(x \subseteq t \land y \subseteq t) \rightarrow z \subseteq t].$$

(d) It is sufficient to state that the sets x and y are disjoint and that their union is all of \mathbb{N} . Guessing the sets $t := \emptyset$ and $u := \mathbb{N}$ and using the formulae from (b) and (c), we can write

$$\varphi_{\rm d} \coloneqq \exists t \exists u [\forall v (t \subseteq v \land v \subseteq u) \land \varphi_{\rm b}(x, y, t) \land \varphi_{\rm c}(x, y, z)].$$

A different solution to (b)–(d) works with singleton sets. The formula $J(x) := \exists y \forall z [S(z,x) \leftrightarrow \varphi_a(z,y)]$ states that x is a singleton.

$$\begin{split} \varphi_{\mathbf{b}} &\coloneqq \forall t \big[J(t) \to \big[t \subseteq z \leftrightarrow (t \subseteq x \land t \subseteq y) \big] \big], \\ \varphi_{\mathbf{c}} &\coloneqq \forall t \big[J(t) \to \big[t \subseteq z \leftrightarrow (t \subseteq x \lor t \subseteq y) \big] \big], \\ \varphi_{\mathbf{d}} &\coloneqq \forall t \big[J(t) \to \neg (t \subseteq x \leftrightarrow t \subseteq y) \big]. \end{split}$$

(e) Clearly, *Q* must include all pairs (A, B) such that $A \subset B$ and $|B \setminus A| = 1$. Conversely, if $A \subset B$ and $B \setminus A$ contains more than one element, we have $A \subset A \cup \{n\} \subset B$, for any $n \in B \setminus A$. Hence, (A, B) does not belong to *Q*. Therefore,

$$Q = \{ \langle A, A \cup \{n\} \rangle \mid A \subset \mathbb{N}, n \in \mathbb{N} \setminus A \}.$$

(f) Clearly, the equivalence $P(x) \leftrightarrow P(y)$ always holds if *P* is true for all sets, or if it is true for no set. So we have at least these 2 choices for *P*.

The formula ψ_P only requires that $P(x) \leftrightarrow P(y)$ holds for all $\langle x, y \rangle \in Q$, that is, for all pairs where y contains exactly one more element that x. By induction on the difference $y \setminus x$ it follows that $P(x) \leftrightarrow P(y)$ must hold for all pairs that differ by a finite number of elements. This condition is also sufficient for the validity of φ_P . Thus, we can choose P to be true for all finite sets and false for all infinite ones, or vice versa. This gives already 4 choices.

Next we can distinguish between infinite sets whose complement is finite and those where the complement is infinite. This gives a total of $2^3 = 8$ choices.

For the general statement, consider the relation

$$E := \{ \langle A, B \rangle \in 2^{\mathbb{N}} \times 2^{\mathbb{N}} \mid A \oplus B \text{ is finite} \}$$

(\oplus denotes the symmetric difference.) Note that *E* is an equivalence relation: reflexivity holds since $A \oplus A = \emptyset$ is finite; symmetry holds since $A \oplus B = B \oplus A$; and transitivity holds since, if $A \oplus B$ and

 $B \oplus C$ are finite, then $A \oplus C = (A \oplus B) \oplus (B \oplus C)$ is the symmetric difference of two finite sets and, therefore, also finite.

Let $R := 2^{\mathbb{N}}/E$ be the quotient. We have argued above that the predicate *P* satisfies our formula if, and only if, it respects *E*, i.e., if, and only if, it either contains all elements of a given *E*-class, or none of them. This gives $2^{|R|}$ choices for *P*.

To conclude our argument, we show that $|R| = 2^{\aleph_0}$ (which means that there are $2^{2^{\aleph_0}}$ possible choices for *P*). Clearly,

$$|R| \leq 2^{|\mathbb{N}|} = 2^{\aleph_0}.$$

For the converse inequality, we find an injection $2^{\mathbb{N}} \to R$, i.e., a function $f : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ such that f(A) and f(B) are not *E*-equivalent for $A \neq B$. To do so, we fix an injection $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. For instance, we can set

 $g(a, b) := p_a^{b+1}$, where p_0, p_1, \dots is an enumeration of all prime numbers.

Then we can set

$$f(A) \coloneqq \{ g(a,b) \mid a \in A, b \in \mathbb{N} \}.$$

(Intuitively, for each $a \in A$, we include in f(A) the entire row of the table for g (see below).)

If $A \neq B$, then $f(A) \oplus f(B)$ contains all numbers g(a, b) with $a \in A \oplus B$ and $b \in \mathbb{N}$. In particular, the symmetric difference is infinite.

g(a,b)	b = 0	b = 1	b = 2	b = 3	b = 4	b = 5	
a = 0	2	4	8	16	32	64	
a = 1	3	9	27	81	243	729	
a = 2	5	25	125	625	3125	15625	
a = 3	7	49	343	2401	18087	117649	
a = 4	11	121	1331	14641	161051	1771561	
:	÷	÷	:	÷	:	:	