
Homework Sheet 3

Exercise � (� points) We consider the vocabulary L = {P, f } (with equality) where P is a unary
predicate symbol and f a unary function symbol. Define the following formulae.

φ ∶= ∃x∀y[P(y)↔ y = x] ,
ψ ∶= ∀x[P(x)↔ f (x) = x] ,
ξ ∶= ∀x∃y[y ≠ x ∧ ∀z[ f (z) = f (x)↔ (z = x ∨ z = y)]] ,
ζ ∶= ∃x¬P( f ( f ( f (x)))) .

For which n ∈ N does there exist a structureM over the vocabulary L such thatM ⊧ φ ∧ ψ ∧ ξ ∧ ζ

and such thatM has exactly n elements (no proof necessary)?

Solution For n = , we have a modelM with universe M = {, , , , , }, PM = {}, and

fM = {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩} .

For every even n ≥ , we have a modelM with universe M = {, , . . . , n − }, PM = {}, and

fM = {⟨, ⟩, ⟨, ⟩} ∪ { ⟨k + , k⟩, ⟨k + , k⟩ ∣ k ≤ n/ − } .

For other values of n there is no model with n-elements. As an example, let us draw the models for
n =  and n = . The red circle denotes the element in PM and the arrows describe the function fM.
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Let us explain why models of other sizes do not exist. The formula ξ states that, for every element
a ∈ M, there is exactly one other element b ∈ M with f (a) = f (b). Consequently, every element
of M has either exactly two preimages under f or none. If we add the number of these preimages for
all element of M, we get the number of elements of M (since f is a function).

It follows that the size ofM is even. Furthermore, by definition of a structure, M cannot be empty.
To exclude the remaining cases n =  and n = , it is sufficient to prove that the above formulae
imply that M has at least  elements. By φ, there exists a (unique) element a ∈ PM. By ψ, we have
fM(a) = a, and by ξ a has a second preimage b. BY ζ, there is some element c with f


M
(c) ∉ PM. We

have c ≠ a and c ≠ b since fM(a), fM(b) ∈ PM. Furthermore, d ∶= fM(c) is different from a and b

(since fM(d) ∉ PM) and also from c (by φ). By ξ, d must have a second preimage e under fM. This
makes  different elements a, b, c, d , e.



Exercise � (� points) We consider the vocabulary L = {P,Q , S} without equality consisting of three
relation symbols of arities, respectively, , , and . We call a structureM over this vocabulary nice if
it satisfies the following conditions.
• The domain M is the set N of all subsets of the set of natural numbers.
• The relation SM is the proper subset relation: SM = { ⟨A, B⟩ ∣ A ⊂ B }.

Find a formula φ(x , y, z) over the vocabulary L such that, given a nice structureM and a variable
assignment e, we haveM ⊧ φ[e] if, and only if, the following condition holds.1

(a) (� point) e(x) = e(y)

(b) (� point) e(z) = e(x) ∩ e(y)

(c) (� point) e(z) = e(x) ∪ e(y)

(d) (� point) e(x) is the complement of e(y).
Briefly justify the correctness of your answer.

Consider the formulae

ψQ ∶= ∀x∀y[Q(x , y)↔ [S(x , y) ∧ ¬∃z[S(x , z) ∧ S(z, y)]]] ,
ψP ∶= ∀x∀y[Q(x , y)→ [P(x)↔ P(y)]] .

(e) (� point) Note that there exists a unique relation Q ⊆ N × N such that Q = QM, for every nice
structureM satisfying ψQ . Describe this relation as explicitly as possible.

(f) (� points) Find as many sets P ⊆ N as possible such that P = PM, for some nice structureM sat-
isfying ψQ ∧ψP . Or better, compute exactly how many2 such sets exist and prove the correctness
of your answer.

Solution LetM be a nice structure and e a variable assignment.
(a) A first try would be to take the formula

ψ ∶= ∀u[S(u, x)↔ S(u, y)] .

Clearly,ψ is true if e(x) = e(y). Conversely, suppose that e(x) ≠ e(y). Then there is some n ∈ Nwith
n ∈ e(x) and n ∉ e(y) (or the other way round). Hence, {n} ⊆ e(x), but {n} ⊈ e(y). If e(x) ≠ {n},
it follows that

M ⊭ ψ[e] .

But if e(x) = {n}, the only proper subset of e(x) is ∅. So, if e(y) = {k} for k ≠ n, the only proper
subset of e(y) is also ∅ and it follows that

M ⊧ ψ[e] .

Consequently, the formula ψ above does not quite work.
If we take the dual formula

ξ ∶= ∀u[S(x , u)↔ S(y, u)]

1In (a) and (d), the variable z does not need to appear in φ.
2Here we expect for the answer a cardinal number such as , , ,ℵ ,ℵ , ℵ ,ℵω , 

ℵ
ωω .



instead, we have a similar problem that ξ holds if e(x) = N ∖ {n} and e(y) = N ∖ {k}, for n ≠ k.
Since the cases where the two formulae ψ and ξ fail are disjoint, we can combine these formulae to

get

φa ∶= ψ ∧ ξ .

(b) Note that the intersection is the infimum with respect to the inclusion ordering. Hence, we can
set

φb ∶= z ⊆ x ∧ z ⊆ y ∧ ∀t[(t ⊆ x ∧ t ⊆ y)→ t ⊆ z] .

(c) Dually to (b), we can use

φc ∶= x ⊆ z ∧ y ⊆ z ∧ ∀t[(x ⊆ t ∧ y ⊆ t)→ z ⊆ t] .

(d) It is sufficient to state that the sets x and y are disjoint and that their union is all ofN. Guessing
the sets t ∶= ∅ and u ∶= N and using the formulae from (b) and (c), we can write

φd ∶= ∃t∃u[∀v(t ⊆ v ∧ v ⊆ u) ∧ φb(x , y, t) ∧ φc(x , y, z)] .

A different solution to (b)–(d) works with singleton sets. The formula J(x) ∶= ∃y∀z[S(z, x) ↔
φa(z, y)] states that x is a singleton.

φb ∶= ∀t[J(t)→ [t ⊆ z↔ (t ⊆ x ∧ t ⊆ y)]] ,
φc ∶= ∀t[J(t)→ [t ⊆ z↔ (t ⊆ x ∨ t ⊆ y)]] ,
φd ∶= ∀t[J(t)→ ¬(t ⊆ x ↔ t ⊆ y)] .

(e) Clearly, Q must include all pairs ⟨A, B⟩ such that A ⊂ B and ∣B ∖ A∣ = . Conversely, if A ⊂ B

and B∖A contains more than one element,we have A ⊂ A∪{n} ⊂ B, for any n ∈ B∖A. Hence, ⟨A, B⟩
does not belong to Q. Therefore,

Q = { ⟨A,A∪ {n}⟩ ∣ A ⊂ N, n ∈ N ∖ A} .

(f) Clearly, the equivalence P(x)↔ P(y) always holds if P is true for all sets, or if it is true for no
set. So we have at least these  choices for P.

The formula ψP only requires that P(x)↔ P(y) holds for all ⟨x , y⟩ ∈ Q, that is, for all pairs where
y contains exactly one more element that x. By induction on the difference y ∖ x it follows that
P(x)↔ P(y)must hold for all pairs that differ by a finite number of elements. This condition is also
sufficient for the validity of φP . Thus, we can choose P to be true for all finite sets and false for all
infinite ones, or vice versa. This gives already  choices.

Next we can distinguish between infinite sets whose complement is finite and those where the
complement is infinite. This gives a total of  =  choices.

For the general statement, consider the relation

E ∶= { ⟨A, B⟩ ∈ N × N ∣ A⊕ B is finite} .

(⊕ denotes the symmetric difference.) Note that E is an equivalence relation: reflexivity holds since
A⊕ A = ∅ is finite; symmetry holds since A⊕ B = B ⊕ A; and transitivity holds since, if A⊕ B and



B ⊕ C are finite, then A⊕ C = (A⊕ B)⊕ (B ⊕ C) is the symmetric difference of two finite sets and,
therefore, also finite.

Let R ∶= N/E be the quotient. We have argued above that the predicate P satisfies our formula if,
and only if, it respects E, i.e., if, and only if, it either contains all elements of a given E-class, or none
of them. This gives ∣R∣ choices for P.

To conclude our argument,we show that ∣R∣ = ℵ (whichmeans that there are 
ℵ possible choices

for P). Clearly,

∣R∣ ≤ ∣N∣ = ℵ .

For the converse inequality, we find an injection N → R, i.e., a function f ∶ N → N such that
f (A) and f (B) are not E-equivalent for A ≠ B. To do so, we fix an injection g ∶ N × N → N. For
instance, we can set

g(a, b) ∶= pb+a , where p, p, . . . is an enumeration of all prime numbers.

Then we can set

f (A) ∶= { g(a, b) ∣ a ∈ A, b ∈ N} .

(Intuitively, for each a ∈ A, we include in f (A) the entire row of the table for g (see below).)
If A ≠ B, then f (A)⊕ f (B) contains all numbers g(a, b) with a ∈ A⊕ B and b ∈ N. In particular,

the symmetric difference is infinite.

g(a,b) b = 0 b = 1 b = 2 b = 3 b = 4 b = 5 ⋯

a = 0 2 4 8 16 32 64 ⋯

a = 1 3 9 27 81 243 729 ⋯

a = 2 5 25 125 625 3125 15625 ⋯

a = 3 7 49 343 2401 18087 117649 ⋯

a = 4 11 121 1331 14641 161051 1771561 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮


