Homework Sheet 3

Exercise 1 (3 points) We consider the vocabulary $\mathcal{L}=\{P, f\}$ (with equality) where P is a unary predicate symbol and f a unary function symbol. Define the following formulae.

$$
\begin{aligned}
\varphi & :=\exists x \forall y[P(y) \leftrightarrow y=x], \\
\psi & :=\forall x[P(x) \leftrightarrow f(x)=x], \\
\xi & :=\forall x \exists y[y \neq x \wedge \forall z[f(z)=f(x) \leftrightarrow(z=x \vee z=y)]], \\
\zeta & :=\exists x \neg P(f(f(f(x)))) .
\end{aligned}
$$

For which $n \in \mathbb{N}$ does there exist a structure \mathcal{M} over the vocabulary \mathcal{L} such that $\mathcal{M} \vDash \varphi \wedge \psi \wedge \xi \wedge \zeta$ and such that \mathcal{M} has exactly n elements (no proof necessary)?

Solution For $n=6$, we have a model \mathcal{M} with universe $M=\{0,1,2,3,4,5\}, P_{\mathcal{M}}=\{0\}$, and

$$
f_{\mathcal{M}}=\{\langle 0,0\rangle,\langle 1,0\rangle,\langle 2,3\rangle,\langle 3,2\rangle,\langle 4,2\rangle,\langle 5,3\rangle\} .
$$

For every even $n \geq 8$, we have a model \mathcal{M} with universe $M=\{0,1, \ldots, n-1\}, P_{\mathcal{M}}=\{1\}$, and

$$
f_{\mathcal{M}}=\{\langle 0,1\rangle,\langle 1,1\rangle\} \cup\{\langle 2 k+2,2 k\rangle,\langle 2 k+3,2 k\rangle \mid k \leq n / 2-2\} .
$$

For other values of n there is no model with n-elements. As an example, let us draw the models for $n=6$ and $n=10$. The red circle denotes the element in $P_{\mathcal{M}}$ and the arrows describe the function $f_{\mathcal{M}}$.

Let us explain why models of other sizes do not exist. The formula ξ states that, for every element $a \in M$, there is exactly one other element $b \in M$ with $f(a)=f(b)$. Consequently, every element of M has either exactly two preimages under f or none. If we add the number of these preimages for all element of M, we get the number of elements of M (since f is a function).

It follows that the size of \mathcal{M} is even. Furthermore, by definition of a structure, M cannot be empty. To exclude the remaining cases $n=2$ and $n=4$, it is sufficient to prove that the above formulae imply that M has at least 5 elements. By φ, there exists a (unique) element $a \in P_{\mathcal{M}}$. By ψ, we have $f_{\mathcal{M}}(a)=a$, and by ξa has a second preimage b. BY ζ, there is some element c with $f_{\mathcal{M}}^{3}(c) \notin P_{\mathcal{M}}$. We have $c \neq a$ and $c \neq b$ since $f_{\mathcal{M}}(a), f_{\mathcal{M}}(b) \in P_{\mathcal{M}}$. Furthermore, $d:=f_{\mathcal{M}}(c)$ is different from a and b (since $f_{\mathcal{M}}(d) \notin P_{\mathcal{M}}$) and also from c (by φ). By ξ, d must have a second preimage e under $f_{\mathcal{M}}$. This makes 5 different elements a, b, c, d, e.

Exercise 2 (9 points) We consider the vocabulary $\mathcal{L}=\{P, Q, S\}$ without equality consisting of three relation symbols of arities, respectively, 1, 2, and 2 . We call a structure \mathcal{M} over this vocabulary nice if it satisfies the following conditions.

- The domain M is the set $2^{\mathbb{N}}$ of all subsets of the set of natural numbers.
- The relation $S_{\mathcal{M}}$ is the proper subset relation: $S_{\mathcal{M}}=\{\langle A, B\rangle \mid A \subset B\}$.

Find a formula $\varphi(x, y, z)$ over the vocabulary \mathcal{L} such that, given a nice structure \mathcal{M} and a variable assignment e, we have $\mathcal{M} \vDash \varphi[e]$ if, and only if, the following condition holds. ${ }^{1}$
(a) (1 point) $e(x)=e(y)$
(b) (1 point) $e(z)=e(x) \cap e(y)$
(c) (1 point) $e(z)=e(x) \cup e(y)$
(d) (1 point) $e(x)$ is the complement of $e(y)$.

Briefly justify the correctness of your answer.
Consider the formulae

$$
\begin{aligned}
\psi_{Q} & :=\forall x \forall y[Q(x, y) \leftrightarrow[S(x, y) \wedge \neg \exists z[S(x, z) \wedge S(z, y)]]] \\
\psi_{P} & :=\forall x \forall y[Q(x, y) \rightarrow[P(x) \leftrightarrow P(y)]] .
\end{aligned}
$$

(e) (1 point) Note that there exists a unique relation $Q \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}$ such that $Q=Q_{\mathcal{M}}$, for every nice structure \mathcal{M} satisfying ψ_{Q}. Describe this relation as explicitly as possible.
(f) (4 points) Find as many sets $P \subseteq 2^{\mathbb{N}}$ as possible such that $P=P_{\mathcal{M}}$, for some nice structure \mathcal{M} satisfying $\psi_{Q} \wedge \psi_{P}$. Or better, compute exactly how many ${ }^{2}$ such sets exist and prove the correctness of your answer.

Solution Let \mathcal{M} be a nice structure and e a variable assignment.
(a) A first try would be to take the formula

$$
\psi:=\forall u[S(u, x) \leftrightarrow S(u, y)] .
$$

Clearly, ψ is true if $e(x)=e(y)$. Conversely, suppose that $e(x) \neq e(y)$. Then there is some $n \in \mathbb{N}$ with $n \in e(x)$ and $n \notin e(y)$ (or the other way round). Hence, $\{n\} \subseteq e(x)$, but $\{n\} \nsubseteq e(y)$. If $e(x) \neq\{n\}$, it follows that

$$
\mathcal{M} \nRightarrow \psi[e] .
$$

But if $e(x)=\{n\}$, the only proper subset of $e(x)$ is \varnothing. So, if $e(y)=\{k\}$ for $k \neq n$, the only proper subset of $e(y)$ is also \varnothing and it follows that

$$
\mathcal{M} \vDash \psi[e] .
$$

Consequently, the formula ψ above does not quite work.
If we take the dual formula

$$
\xi:=\forall u[S(x, u) \leftrightarrow S(y, u)]
$$

[^0]instead, we have a similar problem that ξ holds if $e(x)=\mathbb{N} \backslash\{n\}$ and $e(y)=\mathbb{N} \backslash\{k\}$, for $n \neq k$.
Since the cases where the two formulae ψ and ξ fail are disjoint, we can combine these formulae to get
$$
\varphi_{\mathrm{a}}:=\psi \wedge \xi
$$
(b) Note that the intersection is the infimum with respect to the inclusion ordering. Hence, we can set
$$
\varphi_{\mathrm{b}}:=z \subseteq x \wedge z \subseteq y \wedge \forall t[(t \subseteq x \wedge t \subseteq y) \rightarrow t \subseteq z]
$$
(c) Dually to (b), we can use
$$
\varphi_{c}:=x \subseteq z \wedge y \subseteq z \wedge \forall t[(x \subseteq t \wedge y \subseteq t) \rightarrow z \subseteq t]
$$
(d) It is sufficient to state that the sets x and y are disjoint and that their union is all of \mathbb{N}. Guessing the sets $t:=\varnothing$ and $u:=\mathbb{N}$ and using the formulae from (b) and (c), we can write
$$
\varphi_{\mathrm{d}}:=\exists t \exists u\left[\forall v(t \subseteq v \wedge v \subseteq u) \wedge \varphi_{\mathrm{b}}(x, y, t) \wedge \varphi_{\mathrm{c}}(x, y, z)\right]
$$

A different solution to (b)-(d) works with singleton sets. The formula $J(x):=\exists y \forall z[S(z, x) \leftrightarrow$ $\left.\varphi_{\mathrm{a}}(z, y)\right]$ states that x is a singleton.

$$
\begin{aligned}
\varphi_{\mathrm{b}} & :=\forall t[J(t) \rightarrow[t \subseteq z \leftrightarrow(t \subseteq x \wedge t \subseteq y)]] \\
\varphi_{\mathrm{c}} & :=\forall t[J(t) \rightarrow[t \subseteq z \leftrightarrow(t \subseteq x \vee t \subseteq y)]] \\
\varphi_{\mathrm{d}} & :=\forall t[J(t) \rightarrow \neg(t \subseteq x \leftrightarrow t \subseteq y)]
\end{aligned}
$$

(e) Clearly, Q must include all pairs $\langle A, B\rangle$ such that $A \subset B$ and $|B \backslash A|=1$. Conversely, if $A \subset B$ and $B \backslash A$ contains more than one element, we have $A \subset A \cup\{n\} \subset B$, for any $n \in B \backslash A$. Hence, $\langle A, B\rangle$ does not belong to Q. Therefore,

$$
Q=\{\langle A, A \cup\{n\}\rangle \mid A \subset \mathbb{N}, n \in \mathbb{N} \backslash A\} .
$$

(f) Clearly, the equivalence $P(x) \leftrightarrow P(y)$ always holds if P is true for all sets, or if it is true for no set. So we have at least these 2 choices for P.

The formula ψ_{P} only requires that $P(x) \leftrightarrow P(y)$ holds for all $\langle x, y\rangle \in Q$, that is, for all pairs where y contains exactly one more element that x. By induction on the difference $y \backslash x$ it follows that $P(x) \leftrightarrow P(y)$ must hold for all pairs that differ by a finite number of elements. This condition is also sufficient for the validity of φ_{P}. Thus, we can choose P to be true for all finite sets and false for all infinite ones, or vice versa. This gives already 4 choices.

Next we can distinguish between infinite sets whose complement is finite and those where the complement is infinite. This gives a total of $2^{3}=8$ choices.

For the general statement, consider the relation

$$
E:=\left\{\langle A, B\rangle \in 2^{\mathbb{N}} \times 2^{\mathbb{N}} \mid A \oplus B \text { is finite }\right\}
$$

(\oplus denotes the symmetric difference.) Note that E is an equivalence relation: reflexivity holds since $A \oplus A=\varnothing$ is finite; symmetry holds since $A \oplus B=B \oplus A$; and transitivity holds since, if $A \oplus B$ and
$B \oplus C$ are finite, then $A \oplus C=(A \oplus B) \oplus(B \oplus C)$ is the symmetric difference of two finite sets and, therefore, also finite.

Let $R:=2^{\mathbb{N}} / E$ be the quotient. We have argued above that the predicate P satisfies our formula if, and only if, it respects E, i.e., if, and only if, it either contains all elements of a given E-class, or none of them. This gives $2^{|R|}$ choices for P.

To conclude our argument, we show that $|R|=2^{\aleph_{\circ}}$ (which means that there are $2^{2^{\aleph_{0}}}$ possible choices for P). Clearly,

$$
|R| \leq 2^{|\mathbb{N}|}=2^{\aleph_{0}} .
$$

For the converse inequality, we find an injection $2^{\mathbb{N}} \rightarrow R$, i.e., a function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ such that $f(A)$ and $f(B)$ are not E-equivalent for $A \neq B$. To do so, we fix an injection $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. For instance, we can set

$$
g(a, b):=p_{a}^{b+1}, \quad \text { where } p_{0}, p_{1}, \ldots \text { is an enumeration of all prime numbers. }
$$

Then we can set

$$
f(A):=\{g(a, b) \mid a \in A, b \in \mathbb{N}\}
$$

(Intuitively, for each $a \in A$, we include in $f(A)$ the entire row of the table for g (see below).)
If $A \neq B$, then $f(A) \oplus f(B)$ contains all numbers $g(a, b)$ with $a \in A \oplus B$ and $b \in \mathbb{N}$. In particular, the symmetric difference is infinite.

$\mathrm{g}(\mathrm{a}, \mathrm{b})$	$\mathrm{b}=0$	$\mathrm{~b}=1$	$\mathrm{~b}=2$	$\mathrm{~b}=3$	$\mathrm{~b}=4$	$\mathrm{~b}=5$	\cdots
$\mathrm{a}=0$	2	4	8	16	32	64	\cdots
$\mathrm{a}=1$	3	9	27	81	243	729	\cdots
$\mathrm{a}=2$	5	25	125	625	3125	15625	\cdots
$\mathrm{a}=3$	7	49	343	2401	18087	117649	\cdots
$\mathrm{a}=4$	11	121	1331	14641	161051	1771561	\cdots
\vdots							

[^0]: ${ }^{1}$ In (a) and (d), the variable z does not need to appear in φ.
 ${ }^{2}$ Here we expect for the answer a cardinal number such as $1,42,69, \aleph_{o}, \aleph_{1}, 2^{\aleph_{\circ}}, \aleph_{\omega}, 2^{2^{\aleph} \omega^{\omega}}$.

