Homework Sheet 3

Exercise 1 (3 points) We consider the vocabulary £ = {P, f} (with equality) where P is a unary
predicate symbol and f a unary function symbol. Define the following formulae.

¢ :=3IxVy[P(y) © y=x],

= Vx[P(x) < f(x) =x],

§:=Vx3yly #x nV2[f(2) = f(x) & (z=xVvz=y)]],
¢:=3x=P(f(f(f(x)))).

For which n € N does there exist a structure M over the vocabulary £ such that M = 9 Ay A A
and such that M has exactly n elements (no proof necessary)?

Solution For n = 6, we have a model M with universe M = {0,1,2,3, 4,5}, Pxoq = {0}, and

fm={{0,0),(1,0),(2,3),(3,2),(4,2),(5,3) } -

For every even n > 8, we have a model M with universe M = {0,1,...,n -1}, Poq = {1},and

fm = {{0,1), (1,1)} U {(2k +2,2k), (2k +3,2k) | k <n/2-2}.

For other values of n there is no model with n-elements. As an example, let us draw the models for
n = 6 and n = 10. The red circle denotes the element in Py and the arrows describe the function fu.
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Let us explain why models of other sizes do not exist. The formula £ states that, for every element
a € M, there is exactly one other element b € M with f(a) = f(b). Consequently, every element
of M has either exactly two preimages under f or none. If we add the number of these preimages for
all element of M, we get the number of elements of M (since f is a function).

It follows that the size of M is even. Furthermore, by definition of a structure, M cannot be empty.
To exclude the remaining cases n = 2 and n = 4, it is sufficient to prove that the above formulae
imply that M has at least 5 elements. By ¢, there exists a (unique) element a € Py4. By y, we have
fm(a) = a,and by & a has a second preimage b. BY {, there is some element ¢ with f3 (c) ¢ Pas. We
have ¢ # a and ¢ # b since faq(a), fam1(b) € Pryg. Furthermore, d := foq(c) is different from a and b
(since faq(d) ¢ Paq) and also from ¢ (by ¢). By &, d must have a second preimage e under fu. This
makes 5 different elements a, b, ¢, d, e.



Exercise 2 (9 points) We consider the vocabulary £ = {P, Q, S} without equality consisting of three
relation symbols of arities, respectively, 1, 2, and 2. We call a structure M over this vocabulary nice if
it satisfies the following conditions.

o The domain M is the set 2" of all subsets of the set of natural numbers.
o The relation Sy is the proper subset relation: Sy = { (A,B) | Ac B}.

Find a formula ¢(x, y, z) over the vocabulary £ such that, given a nice structure M and a variable
assignment e, we have M  ¢[e] if, and only if, the following condition holds.!

(a) (1point) e(x) =e(y)

(b) (1 point) e(z) = e(x)ne(y)

(c) (1point) e(z) =e(x)ue(y)

(d) (1 point) e(x) is the complement of e(y).

Briefly justify the correctness of your answer.
Consider the formulae

yq = VxVy[Q(x, y) < [S(x, y) A ~32[S(x,2) A S(2, »)]]],
yp = VaVy[Q(x, y) = [P(x) < P(y)]].

(e) (1 point) Note that there exists a unique relation Q < 2N x 2N such that Q = Q M, for every nice
structure M satisfying yq. Describe this relation as explicitly as possible.

(f) (4 points) Find as many sets P C 2N as possible such that P = Py, for some nice structure M sat-
isfying wq A yp. Or better, compute exactly how many? such sets exist and prove the correctness
of your answer.

Solution Let M be a nice structure and e a variable assignment.
(a) A first try would be to take the formula

vi=Vu[S(u,x) < S(u,y)].

Clearly, yistrueif e(x) = e(y). Conversely, suppose that e(x) # e(y). Then there is some n € N with
nee(x)andn ¢ e(y) (or the other way round). Hence, {n} C e(x),but {n} ¢ e(y). If e(x) # {n},
it follows that

M yle].

But if e(x) = {n}, the only proper subset of e(x) is @. So, if e(y) = {k} for k # n, the only proper
subset of e(y) is also @ and it follows that

MEevyle].

Consequently, the formula y above does not quite work.
If we take the dual formula

&= VulS(x,u) < S(y,u)]

'In (a) and (d), the variable z does not need to appear in ¢.

wa

2Here we expect for the answer a cardinal number such as 1, 42, 69, Ro, R, 2% Ry, 27



instead, we have a similar problem that & holds if e(x) = N\ {n} and e(y) = N\ {k},for n # k.
Since the cases where the two formulae y and ¢ fail are disjoint, we can combine these formulae to
get

Pai=Y AL,

(b) Note that the intersection is the infimum with respect to the inclusion ordering. Hence, we can
set

Pb=2CxAZCyAVEH(tSxAtCy)>tCz].
(c) Dually to (b), we can use
Pci=xCzZAYyCzAVE[(xStAyCt)>zCt].

(d) It is sufficient to state that the sets x and y are disjoint and that their union is all of N. Guessing
the sets ¢ := @ and u := N and using the formulae from (b) and (c), we can write

@q:=3tFu[Vv(tcvavcu) Aep(x, y,t) Apc(x, y,2)].

A different solution to (b)-(d) works with singleton sets. The formula J(x) := 3yVz[S(z,x) <
¢a(z, y)] states that x is a singleton.

g = Vt[J(t) > [tcz (tcxntcy)]],
@ =Vit[J(t) > [tcze (tcxvicy)]],
pa=Vt[J(t) > ~(tcxtcy)].

(e) Clearly, Q must include all pairs (A, B) such that A ¢ B and |B \ A| = 1. Conversely, if A c B
and B\ A contains more than one element, we have A c Au{n} c B,forany n € B\ A. Hence, (A, B)
does not belong to Q. Therefore,

Q={{AAU{n})|AcN,neN\A}.

(f) Clearly, the equivalence P(x) < P(y) always holds if P is true for all sets, or if it is true for no
set. So we have at least these 2 choices for P.

The formula yp only requires that P(x) <> P(y) holds for all (x, y) € Q, that is, for all pairs where
y contains exactly one more element that x. By induction on the difference y \ x it follows that
P(x) <> P(y) must hold for all pairs that differ by a finite number of elements. This condition is also
sufficient for the validity of ¢p. Thus, we can choose P to be true for all finite sets and false for all
infinite ones, or vice versa. This gives already 4 choices.

Next we can distinguish between infinite sets whose complement is finite and those where the
complement is infinite. This gives a total of 23 = 8 choices.

For the general statement, consider the relation

E:={(A,B) €2 x2" | A® Bis finite } .

(& denotes the symmetric difference.) Note that E is an equivalence relation: reflexivity holds since
A ® A = @ is finite; symmetry holds since A @ B = B @ A; and transitivity holds since, if A ® B and



B @ C are finite,then A® C = (A @ B) @ (B @ C) is the symmetric difference of two finite sets and,
therefore, also finite.

Let R := 2"/E be the quotient. We have argued above that the predicate P satisfies our formula if,
and only if, it respects E, i.e,, if, and only if, it either contains all elements of a given E-class, or none
of them. This gives 2R choices for P.

To conclude our argument, we show that |R| = 2™ (which means that there are 22 possible choices
for P). Clearly,

IR| < 2N = 5%,

For the converse inequality, we find an injection 2N — R, i.e., a function f : 2V — 2~ such that

f(A) and f(B) are not E-equivalent for A # B. To do so, we fix an injection g : N x N — N. For
instance, we can set

g(a,b) == p*',  where po, ps, ... is an enumeration of all prime numbers.

Then we can set
f(A)={g(a,b)|acA beN}.

(Intuitively, for each a € A, we include in f(A) the entire row of the table for g (see below).)
If A # B, then f(A) @ f(B) contains all numbers g(a, b) with a € A® B and b € N. In particular,
the symmetric difference is infinite.

g(ab) b=0 b=1 b=2 b=3 b=4 b=5
a=0 2 4 8 16 32 64
a=1 3 9 27 81 243 729
a=2 5 25 125 625 3125 15625
a=3 7 49 343 2401 18087 117649

a=4

. —
—

121 1331 14641 161051 1771561




