
Homework Sheet 3

Exercise � (� points) We consider the vocabulary L = {P, f } (with equality) where P is a unary
predicate symbol and f a unary function symbol. Define the following formulae.

φ ∶= ∃x∀y[P(y)↔ y = x] ,
ψ ∶= ∀x[P(x)↔ f (x) = x] ,
ξ ∶= ∀x∃y[y ≠ x ∧ ∀z[ f (z) = f (x)↔ (z = x ∨ z = y)]] ,
ζ ∶= ∃x¬P( f ( f ( f (x)))) .

For which n ∈ N does there exist a structureM over the vocabulary L such thatM ⊧ φ ∧ ψ ∧ ξ ∧ ζ

and such thatM has exactly n elements (no proof necessary)?

Solution For n = , we have a modelM with universe M = {, , , , , }, PM = {}, and

fM = {⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩, ⟨, ⟩} .

For every even n ≥ , we have a modelM with universe M = {, , . . . , n − }, PM = {}, and

fM = {⟨, ⟩, ⟨, ⟩} ∪ { ⟨k + , k⟩, ⟨k + , k⟩ ∣ k ≤ n/ − } .

For other values of n there is no model with n-elements. As an example, let us draw the models for
n =  and n = . The red circle denotes the element in PM and the arrows describe the function fM.
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Let us explain why models of other sizes do not exist. The formula ξ states that, for every element
a ∈ M, there is exactly one other element b ∈ M with f (a) = f (b). Consequently, every element
of M has either exactly two preimages under f or none. If we add the number of these preimages for
all element of M, we get the number of elements of M (since f is a function).

It follows that the size ofM is even. Furthermore, by definition of a structure, M cannot be empty.
To exclude the remaining cases n =  and n = , it is sufficient to prove that the above formulae
imply that M has at least  elements. By φ, there exists a (unique) element a ∈ PM. By ψ, we have
fM(a) = a, and by ξ a has a second preimage b. BY ζ, there is some element c with f


M
(c) ∉ PM. We

have c ≠ a and c ≠ b since fM(a), fM(b) ∈ PM. Furthermore, d ∶= fM(c) is different from a and b

(since fM(d) ∉ PM) and also from c (by φ). By ξ, d must have a second preimage e under fM. This
makes  different elements a, b, c, d , e.



Exercise � (� points) We consider the vocabulary L = {P,Q , S} without equality consisting of three
relation symbols of arities, respectively, , , and . We call a structureM over this vocabulary nice if
it satisfies the following conditions.
• The domain M is the set N of all subsets of the set of natural numbers.
• The relation SM is the proper subset relation: SM = { ⟨A, B⟩ ∣ A ⊂ B }.

Find a formula φ(x , y, z) over the vocabulary L such that, given a nice structureM and a variable
assignment e, we haveM ⊧ φ[e] if, and only if, the following condition holds.1

(a) (� point) e(x) = e(y)

(b) (� point) e(z) = e(x) ∩ e(y)

(c) (� point) e(z) = e(x) ∪ e(y)

(d) (� point) e(x) is the complement of e(y).
Briefly justify the correctness of your answer.

Consider the formulae

ψQ ∶= ∀x∀y[Q(x , y)↔ [S(x , y) ∧ ¬∃z[S(x , z) ∧ S(z, y)]]] ,
ψP ∶= ∀x∀y[Q(x , y)→ [P(x)↔ P(y)]] .

(e) (� point) Note that there exists a unique relation Q ⊆ N × N such that Q = QM, for every nice
structureM satisfying ψQ . Describe this relation as explicitly as possible.

(f) (� points) Find as many sets P ⊆ N as possible such that P = PM, for some nice structureM sat-
isfying ψQ ∧ψP . Or better, compute exactly how many2 such sets exist and prove the correctness
of your answer.

Solution LetM be a nice structure and e a variable assignment.
(a) A first try would be to take the formula

ψ ∶= ∀u[S(u, x)↔ S(u, y)] .

Clearly,ψ is true if e(x) = e(y). Conversely, suppose that e(x) ≠ e(y). Then there is some n ∈ Nwith
n ∈ e(x) and n ∉ e(y) (or the other way round). Hence, {n} ⊆ e(x), but {n} ⊈ e(y). If e(x) ≠ {n},
it follows that

M ⊭ ψ[e] .

But if e(x) = {n}, the only proper subset of e(x) is ∅. So, if e(y) = {k} for k ≠ n, the only proper
subset of e(y) is also ∅ and it follows that

M ⊧ ψ[e] .

Consequently, the formula ψ above does not quite work.
If we take the dual formula

ξ ∶= ∀u[S(x , u)↔ S(y, u)]

1In (a) and (d), the variable z does not need to appear in φ.
2Here we expect for the answer a cardinal number such as , , ,ℵ ,ℵ , ℵ ,ℵω , 

ℵ
ωω .



instead, we have a similar problem that ξ holds if e(x) = N ∖ {n} and e(y) = N ∖ {k}, for n ≠ k.
Since the cases where the two formulae ψ and ξ fail are disjoint, we can combine these formulae to

get

φa ∶= ψ ∧ ξ .

(b) Note that the intersection is the infimum with respect to the inclusion ordering. Hence, we can
set

φb ∶= z ⊆ x ∧ z ⊆ y ∧ ∀t[(t ⊆ x ∧ t ⊆ y)→ t ⊆ z] .

(c) Dually to (b), we can use

φc ∶= x ⊆ z ∧ y ⊆ z ∧ ∀t[(x ⊆ t ∧ y ⊆ t)→ z ⊆ t] .

(d) It is sufficient to state that the sets x and y are disjoint and that their union is all ofN. Guessing
the sets t ∶= ∅ and u ∶= N and using the formulae from (b) and (c), we can write

φd ∶= ∃t∃u[∀v(t ⊆ v ∧ v ⊆ u) ∧ φb(x , y, t) ∧ φc(x , y, z)] .

A different solution to (b)–(d) works with singleton sets. The formula J(x) ∶= ∃y∀z[S(z, x) ↔
φa(z, y)] states that x is a singleton.

φb ∶= ∀t[J(t)→ [t ⊆ z↔ (t ⊆ x ∧ t ⊆ y)]] ,
φc ∶= ∀t[J(t)→ [t ⊆ z↔ (t ⊆ x ∨ t ⊆ y)]] ,
φd ∶= ∀t[J(t)→ ¬(t ⊆ x ↔ t ⊆ y)] .

(e) Clearly, Q must include all pairs ⟨A, B⟩ such that A ⊂ B and ∣B ∖ A∣ = . Conversely, if A ⊂ B

and B∖A contains more than one element,we have A ⊂ A∪{n} ⊂ B, for any n ∈ B∖A. Hence, ⟨A, B⟩
does not belong to Q. Therefore,

Q = { ⟨A,A∪ {n}⟩ ∣ A ⊂ N, n ∈ N ∖ A} .

(f) Clearly, the equivalence P(x)↔ P(y) always holds if P is true for all sets, or if it is true for no
set. So we have at least these  choices for P.

The formula ψP only requires that P(x)↔ P(y) holds for all ⟨x , y⟩ ∈ Q, that is, for all pairs where
y contains exactly one more element that x. By induction on the difference y ∖ x it follows that
P(x)↔ P(y)must hold for all pairs that differ by a finite number of elements. This condition is also
sufficient for the validity of φP . Thus, we can choose P to be true for all finite sets and false for all
infinite ones, or vice versa. This gives already  choices.

Next we can distinguish between infinite sets whose complement is finite and those where the
complement is infinite. This gives a total of  =  choices.

For the general statement, consider the relation

E ∶= { ⟨A, B⟩ ∈ N × N ∣ A⊕ B is finite} .

(⊕ denotes the symmetric difference.) Note that E is an equivalence relation: reflexivity holds since
A⊕ A = ∅ is finite; symmetry holds since A⊕ B = B ⊕ A; and transitivity holds since, if A⊕ B and



B ⊕ C are finite, then A⊕ C = (A⊕ B)⊕ (B ⊕ C) is the symmetric difference of two finite sets and,
therefore, also finite.

Let R ∶= N/E be the quotient. We have argued above that the predicate P satisfies our formula if,
and only if, it respects E, i.e., if, and only if, it either contains all elements of a given E-class, or none
of them. This gives ∣R∣ choices for P.

To conclude our argument,we show that ∣R∣ = ℵ (whichmeans that there are 
ℵ possible choices

for P). Clearly,

∣R∣ ≤ ∣N∣ = ℵ .

For the converse inequality, we find an injection N → R, i.e., a function f ∶ N → N such that
f (A) and f (B) are not E-equivalent for A ≠ B. To do so, we fix an injection g ∶ N × N → N. For
instance, we can set

g(a, b) ∶= pb+a , where p, p, . . . is an enumeration of all prime numbers.

Then we can set

f (A) ∶= { g(a, b) ∣ a ∈ A, b ∈ N} .

(Intuitively, for each a ∈ A, we include in f (A) the entire row of the table for g (see below).)
If A ≠ B, then f (A)⊕ f (B) contains all numbers g(a, b) with a ∈ A⊕ B and b ∈ N. In particular,

the symmetric difference is infinite.

g(a,b) b = 0 b = 1 b = 2 b = 3 b = 4 b = 5 ⋯

a = 0 2 4 8 16 32 64 ⋯

a = 1 3 9 27 81 243 729 ⋯

a = 2 5 25 125 625 3125 15625 ⋯

a = 3 7 49 343 2401 18087 117649 ⋯

a = 4 11 121 1331 14641 161051 1771561 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮


