Statistical Natural Language Processing
PA153
P. Rychlý

September 25, 2023
(1) Word lists
(2) Collocations
(3) Language Modeling

4 N -grams
(5) Evaluation of Language Models

Statistical Natural Language Processing

■ statistics provides a summary (of a text)
■ highlights important or interesting facts

- can be used to model data
- foundation of estimating probabilities

■ fundamental statistics: size (+ domain, range)

Statistical Natural Language Processing

■ statistics provides a summary (of a text)
■ highlights important or interesting facts

- can be used to model data
- foundation of estimating probabilities

■ fundamental statistics: size (+ domain, range)

	lines	words	bytes
Book 1	3,715	37,703	223,415
Book 2	1,601	16,859	91,031

Word list

■ list of all words from a text
■ list of most frequent words
■ words, lemmas, senses, tags, domains, years ...

Book 1	Book 2
the, and, of, to, you, his, in, said, that, I, will, him, your, he, a, my, was, with, s, for, me, He, is, , it, them, be, The, all, , have, from, , on, her, , are, their, were, they, which, , t, up, , had, there	the, I, to, a, of, is, that, ,you, he, and, said, was, , in, it, not, me, my, have, And, are, one, for, But, his, be, The, It, at, all, with, on, will, as, very, had, this, him, He, from, they, , so, them, no, You, do, would, like

Word list

■ list of all words from a text
■ list of most frequent words
■ words, lemmas, senses, tags, domains, years ...

Book 1	Book 2
the, and, of, to, you, his, in, said,	the, I, to, a, of, is, that, little, you,
that, I, will, him, your, he, a, my,	he, and, said, was, , in, it,
was, with, s, for, me, He, is, fa-	not, me, my, have, And, are, one,
ther, ,it, them, be, The, all,	for, But, his, be, The, It, at, all,
land, have, from, , on, her,	with, on, will, as, very, had, this,
, son, , are, their,	him, He, from, they, planet, so,
were, they, which, sons, t, up,	
,had, there	them, no, You, do, would, like

Word list

■ list of all words from a text
■ list of most frequent words
■ words, lemmas, senses, tags, domains, years ...

Book 1	Book 2
the, and, of, to, you, his, in, said,	the, I, to, a, of, is, that, little, you,
that, I, will, him, your, he, a, my,	he, and, said, was, prince, in, it,
was, with, s, for, me, He, is, fa-	not, me, my, have, And, are, one,
ther, God, it, them, be, The, all,	for, But, his, be, The, It, at, all,
land, have, from, Jacob, on, her,	with, on, will, as, very, had, this,
Yahweh, son, Joseph, are, their,	him, He, from, they, planet, so,
were, they, which, sons, t, up,	them, no, You, do, would, like
Abraham, had, there	

Frequency

- number of occurrences (raw frequency)
- relative frequency (hits per million)
- document frequency (number of documents with a hit)
- reduced frequency (ARF, ALDf)
$1<$ reduced < raw
- normalization for comparison
- hapax legomena (= 1 hit)

Zipf's Law

- rank-frequency plot

■ rank \times frequency $=$ constant

Zipf's Law

Keywords

■ select only important words from a word list

- compare to reference text (norm)

■ simple math score:

$$
\text { score }=\frac{\text { freq }_{\text {focus }}+N}{\text { freq }}{ }_{\text {reference }}+N
$$

Genesis	Little Prince
son God father Jacob Yahweh Joseph Abraham wife behold daughter	prince planet flower little fox never too drawing reply star

Collocations

■ meaning of words is defined by the context
■ collocations a salient words in the context
■ usually not the most frequent
■ filtering by part of speech, grammatical relation
■ compare to reference = context for other words

- many statistics (usually single use only) based on frequencies

■ MI-score, t-score, χ^{2}, \ldots
■ logDice - scalable

$$
\log \text { Dice }=14+\log \frac{f_{A B}}{f_{A}+f_{B}}
$$

Collocations of Prince

$\leftrightarrow \quad$ E® \%	E®® O' \times
modifiers of "prince"	
little the little prince	*..
fair fair, little prince	**
Oh Oh , little prince	\cdots
dear dear little prince	\cdots
prince prince, dear little prince	e prince
great great prince	\cdots

verbs with "prince" as
object
say
said the little prince
ask
asked the little prince
demand demanded the little prince
see when he saw the little prince coming
inquire inquired the little prince
repeat repeated the little prince , who

verbs with "prince" as
subject

Collocations of Prince

Thesaurus

■ comparing collocation distributions
■ counting same context

	Word	Frequency?	
1	brother	161	\cdots
2	wife	125	**
3	father	278	\cdots
4	daughter	108	\cdots
5	child	80	\cdots
6	man	187	\cdots
7	servant	91	**
8	Esau	78	\cdots
9	Jacob	184	\cdots
	name	85	\cdots

Abraham as noun $134 \times$

	Word	Frequency?	
1	Isaac	82	\cdots
2	Jacob	184	\cdots
3	Joseph	157	\cdots
4	Noah	41	\cdots
5	Abram	61	\cdots
6	Laban	54	\cdots
7	Esau	78	\cdots
8	God	234	\cdots
9	Abimelech	24	\cdots
10	father	278	\cdots

Multi-word units

■ meaning of some words is completely different in the context of specific co-occurring word
■ black hole, is not black and is not a hole

- strong collocations

■ uses same statistics with different threshold

- better to compare context distribution instead of only numbers

■ terminology - compare to a reference corpus

Language models - what are they good for?

■ assigning scores to sequences of words

- predicting words
- generating text \Rightarrow

■ statistical machine translation
■ automatic speech recognition
■ optical character recognition

OCR + MT

Language models - probability of a sentence

■ LM is a probability distribution over all possible word sequences.
■ What is the probability of utterance of s ?

Probability of sentence

$p_{L M}$ (Catalonia President urges protests)
$p_{L M}$ (President Catalonia urges protests)
$p_{L M}$ (urges Catalonia protests President)

Ideally, the probability should strongly correlate with fluency and intelligibility of a word sequence.

N-gram models

■ an approximation of long sequences using short n-grams

- a straightforward implementation
- an intuitive approach
- good local fluency

Randomly generated text

"Jsi nebylo vidět vteřin přestal po schodech se dal do deníku a položili se táhl ji viděl na konci místnosti 101," řekl důstojník.

Hungarian

A társaság kötelezettségeiért kapta a középkori temploma az volt, hogy a felhasználók az adottságai, a felhasználó azonosítása az egyesület alapszabályát.

N-gram models, naïve approach

$$
\begin{aligned}
W & =w_{1}, w_{2}, \cdots, w_{n} \\
p(W) & =\prod p\left(w_{i} \mid w_{1} \cdots w_{i-1}\right)
\end{aligned}
$$

Markov's assumption

$$
p(W)=\prod_{i} p\left(w_{i} \mid w_{i-2}, w_{i-1}\right)
$$

$p($ this is a sentence $)=p($ this $) \times p(i s \mid$ this $) \times p(a \mid$ this, is $) \times p($ sentence \mid is, $a)$

$$
p(a \mid \text { this }, \text { is })=\frac{\mid \text { this is a|}}{\mid \text { this is } \mid}
$$

Sparse data problem.

Probabilities, practical issue

- probabilities of words are very small

■ multiplying small numbers goes quickly to zero

- limits of floating point numbers: $10^{-38}, 10^{-388}$

■ using log space:
■ avoid underflow

- adding is faster

$$
\log \left(p_{1} \times p_{2} \times p_{3} \times p_{4}\right)=\log p_{1}+\log p_{2}+\log p_{3}+\log p_{4}
$$

Computing, LM probabilities estimation

Trigram model uses 2 preceding words for probability learning. Using maximum-likelihood estimation:

$$
p\left(w_{3} \mid w_{1}, w_{2}\right)=\frac{\operatorname{count}\left(w_{1}, w_{2}, w_{3}\right)}{\sum_{w} \operatorname{count}\left(w_{1}, w_{2}, w\right)}
$$

quadrigram: (lord, of, the, ?)

Computing, LM probabilities estimation

Trigram model uses 2 preceding words for probability learning. Using maximum-likelihood estimation:

$$
p\left(w_{3} \mid w_{1}, w_{2}\right)=\frac{\operatorname{count}\left(w_{1}, w_{2}, w_{3}\right)}{\sum_{w} \operatorname{count}\left(w_{1}, w_{2}, w\right)}
$$

quadrigram: (lord, of, the, ?)

w	count	$p(w)$
rings	30,156	0.425
flies	2,977	0.042
well	1,536	0.021
manor	907	0.012
dance	767	0.010
\ldots		

Larger LM - n-gram counts

How many unique n-grams in a corpus?

order	unique	singletons
unigram	86,700	$33,447(38.6 \%)$
bigram	$1,948,935$	$1,132,844(58.1 \%)$
trigram	$8,092,798$	$6,022,286(74.4 \%)$
4 -gram	$15,303,847$	$13,081,621(85.5 \%)$
5-gram	$19,882,175$	$18,324,577(92.2 \%)$

Corpus: Europarl, 30 M tokens.

Smoothing of probabilities

The problem: an n -gram is missing in the data but it is in a sentence $\rightarrow p($ sentence $)=0$.

We need to assign non-zero p for unseen data. This must hold:

$$
\forall w: p(w)>0
$$

The issue is more pronounced for higher-order models.
Smoothing: an attempt to amend real counts of n-grams to expected counts in any (unseen) data.

Add-one, Add- α, Good-Turing smoothing
More in PA154 (Language Modeling).

Quality and comparison of LMs

We need to compare quality of various LM (various orders, various data, smoothing techniques etc.)
(1) extrinsic (WER, MT, ASR, OCR)
(2) intrinsic (perplexity) evaluation

A good LM should assign a higher probability to a good (looking) text than to an incorrect text. For a fixed test text we can compare various LMs.

Cross-entropy

$$
\begin{aligned}
H\left(p_{L M}\right) & =-\frac{1}{n} \log p_{L M}\left(w_{1}, w_{2}, \ldots w_{n}\right) \\
& =-\frac{1}{n} \sum_{i=1}^{n} \log p_{L M}\left(w_{i} \mid w_{1}, \ldots w_{i-1}\right)
\end{aligned}
$$

Cross-entropy is average value of negative logarithms of words' probabilities in testing text. It corresponds to a measure of uncertainty of a probability distribution. The lower the better.

A good LM should reach entropy close to real entropy of language. That can't be measured directly but quite reliable estimates exist, e.g. Shannon's game. For English, entropy is estimated to approx. 1.3 bit per letter.

Cross Perplexity

$$
P P=2^{H\left(p_{L M}\right)}
$$

Cross perplexity is a simple transformation of cross-entropy.
A good LM should not waste p for improbable phenomena.
The lower entropy, the better \rightarrow the lower perplexity, the better.

