

Statistical Natural Language Processing

PA153

P. Rychlý

September 25, 2023

P. Rychlý • Statistical Natural Language Processing • September 25, 2023

P. Rychlý • Statistical Natural Language Processing • September 25, 2023

Statistical Natural Language Processing

- statistics provides a summary (of a text)
- highlights important or interesting facts
- can be used to model data
- foundation of estimating probabilities
- fundamental statistics: size (+ domain, range)

Statistical Natural Language Processing

- statistics provides a summary (of a text)
- highlights important or interesting facts
- can be used to model data
- foundation of estimating probabilities
- fundamental statistics: size (+ domain, range)

	lines	words	bytes
Book 1	3,715	37,703	223,415
Book 2	1,601	16,859	91,031

Word list

- list of all words from a text
- list of most frequent words
- words, lemmas, senses, tags, domains, years ...

Book 1	Book 2
the, and, of, to, you, his, in, said,	the, l, to, a, of, is, that, , you,
that, I, will, him, your, he, a, my,	he, and, said, was, , in, it,
was, with, s, for, me, He, is,	not, me, my, have, And, are, one,
, , it, them, be, The, all,	for, But, his, be, The, It, at, all,
, have, from, , on, her,	with, on, will, as, very, had, this,
, , , , are, their,	him, He, from, they, , so,
were, they, which, , t, up,	them, no, You, do, would, like
, had, there	

Word list

- list of all words from a text
- list of most frequent words
- words, lemmas, senses, tags, domains, years ...

Book 1	Book 2
the, and, of, to, you, his, in, said,	the, I, to, a, of, is, that, little , you,
that, I, will, him, your, he, a, my,	he, and, said, was, , in, it,
was, with, s, for, me, He, is, fa-	not, me, my, have, And, are, one,
ther, , it, them, be, The, all,	for, But, his, be, The, It, at, all,
land, have, from, , on, her,	with, on, will, as, very, had, this,
, son , , are, their,	him, He, from, they, planet , so,
were, they, which, sons , t, up,	them, no, You, do, would, like
, had, there	

Word list

- list of all words from a text
- list of most frequent words
- words, lemmas, senses, tags, domains, years ...

Book 1	Book 2
the, and, of, to, you, his, in, said,	the, I, to, a, of, is, that, little , you,
that, I, will, him, your, he, a, my,	he, and, said, was, prince , in, it,
was, with, s, for, me, He, is, fa-	not, me, my, have, And, are, one,
ther, God, it, them, be, The, all,	for, But, his, be, The, It, at, all,
land, have, from, Jacob, on, her,	with, on, will, as, very, had, this,
Yahweh, son, Joseph, are, their,	him, He, from, they, planet , so,
were, they, which, sons, t, up,	them, no, You, do, would, like
Abraham, had, there	

Frequency

- number of occurrences (raw frequency)
- relative frequency (hits per million)
- document frequency (number of documents with a hit)
- reduced frequency (ARF, ALDf)
 - 1 < reduced < raw
- normalization for comparison
- hapax legomena (= 1 hit)

Zipf's Law

- rank-frequency plot
- rank × frequency = constant

Zipf's Law

P. Rychlý • Statistical Natural Language Processing • September 25, 2023

Keywords

select only important words from a word list

- compare to reference text (norm)
- simple math score:

$$score = \frac{freq_{focus} + N}{freq_{reference} + N}$$

Genesis	Little Prince
	prince planet flower little fox never too drawing reply star

Collocations

- meaning of words is defined by the context
- collocations a salient words in the context
- usually not the most frequent
- filtering by part of speech, grammatical relation
- compare to reference = context for other words
- many statistics (usually single use only) based on frequencies
- MI-score, t-score, χ^2 , ...
- logDice scalable

$$logDice = 14 + log rac{f_{AB}}{f_A + f_B}$$

Collocations of Prince

←	X	
modifiers of "prin	ce"	verbs wi
little the little prince		say said the littl
fair fair , little prince		ask asked the li
Oh , little prince		demand demanded
dear dear little prince		see when he sa coming
prince , dear little prince		inquire inquired the
great great prince		repeat repeated th

	×	₽
verbs with "prince" object	as	v
.y aid the little prince		sa th
sked the little prince		CO Sa
emand emanded the little prince	•••	go Ai
e hen he saw the little prir oming	nce	ad th
quire Iquired the little prince		as th
peat epeated the little prince ,	who	flu TI

.≓	×
verbs with "prince" as subject	•
say • the little prince said to himsel	•• If
saw the little prince coming	••
go . And the little prince went awa	•• ay
add • • • • • • • • • • • • • • • • • •	••
ask • • • • • • • • • • • • • • • • • • •	••
flush . The little prince flushed	••

Collocations of Prince

Thesaurus

comparing collocation distributions

Frequency ?

82 ••• 184 ••• 157 ••• 41 ••• 61 ••• 54 ••• 78 ••• 234 ••• 24 ••• 278 •••

counting same context

son as noun 3	301×	Abraham as noun 134×
Word	Frequency ?	Word Frequence
1 brother	161 •••	1 Isaac
2 wife	125 •••	2 Jacob
³ father	278 •••	3 Joseph
4 daughter	108 •••	4 Noah
5 child	80 •••	5 Abram
6 man	187 •••	6 Laban
7 servant	91 •••	7 Esau
8 Esau	78 •••	8 God
9 Jacob	184 •••	9 Abimelech
10 name	85 •••	10 father

P. Rychlý	Statistical Natural	Language Processing •	September 25, 2023
-----------	---------------------	-----------------------	--------------------

Multi-word units

- meaning of some words is completely different in the context of specific co-occurring word
- black hole, is not black and is not a hole
- strong collocations
- uses same statistics with different threshold
- better to compare context distribution instead of only numbers
- terminology compare to a reference corpus

Language models-what are they good for?

- assigning scores to sequences of words
- predicting words
- generating text

 \Rightarrow

- statistical machine translation
- automatic speech recognition
- optical character recognition

OCR + MT

P. Rychlý • Statistical Natural Language Processing • September 25, 2023

Language models - probability of a sentence

- LM is a probability distribution over all possible word sequences.
- What is the probability of utterance of s?

Probability of sentence

. . .

 p_{LM} (Catalonia President urges protests) p_{LM} (President Catalonia urges protests) p_{LM} (urges Catalonia protests President)

Ideally, the probability should strongly correlate with fluency and intelligibility of a word sequence.

N-gram models

- an approximation of long sequences using short n-grams
- a straightforward implementation
- an intuitive approach
- good local fluency

Randomly generated text

"Jsi nebylo vidět vteřin přestal po schodech se dal do deníku a položili se táhl ji viděl na konci místnosti 101," řekl důstojník.

Hungarian

A társaság kötelezettségeiért kapta a középkori temploma az volt, hogy a felhasználók az adottságai, a felhasználó azonosítása az egyesület alapszabályát.

N-gram models, naïve approach

$$W = w_1, w_2, \cdots, w_n$$

$$p(W) = \prod_i p(w_i | w_1 \cdots w_{i-1})$$

Markov's assumption

$$p(W) = \prod_i p(w_i|w_{i-2}, w_{i-1})$$

 $p(this is a sentence) = p(this) \times p(is|this) \times p(a|this, is) \times p(sentence|is, a)$

$$p(a|this, is) = \frac{|this is a|}{|this is|}$$

Sparse data problem.

P. Rychlý • Statistical Natural Language Processing • September 25, 2023

Probabilities, practical issue

- probabilities of words are very small
- multiplying small numbers goes quickly to zero
- limits of floating point numbers: 10^{-38} , 10^{-388}
- using log space:
 - avoid underflow
 - adding is faster

 $\log(p_1 \times p_2 \times p_3 \times p_4) = \log p_1 + \log p_2 + \log p_3 + \log p_4$

Computing, LM probabilities estimation

Trigram model uses 2 preceding words for probability learning. Using **maximum-likelihood estimation**:

$$p(w_3|w_1,w_2) = \frac{count(w_1,w_2,w_3)}{\sum_{w} count(w_1,w_2,w)}$$

quadrigram: (lord, of, the, ?)

Computing, LM probabilities estimation

Trigram model uses 2 preceding words for probability learning. Using **maximum-likelihood estimation**:

$$p(w_3|w_1,w_2) = \frac{count(w_1,w_2,w_3)}{\sum_{w} count(w_1,w_2,w)}$$

<pre>quadrigram: (lord, of, the, ?)</pre>			
W	count $p(w)$		
rings	30,156	0.425	
flies	2,977	0.042	
well	1,536	0.021	
manor	907	0.012	
dance	767	0.010	

P. Rychlý • Statistical Natural Language Processing • September 25, 2023

Larger LM – n-gram counts

How many unique n-grams in a corpus?

order	unique	singletons
unigram	86,700	33,447 (38.6%)
bigram	1,948,935	1,132,844 (58.1%)
trigram	8,092,798	6,022,286 (74.4%)
4-gram	15,303,847	13,081,621 (85.5%)
5-gram	19,882,175	18,324,577 (92.2%)

Corpus: Europarl, 30 M tokens.

Smoothing of probabilities

The problem: an n-gram is missing in the data but it is in a *sentence* $\rightarrow p(sentence) = 0$.

We need to assign non-zero *p* for *unseen data*. This must hold:

 $\forall w : p(w) > 0$

The issue is more pronounced for higher-order models.

Smoothing: an attempt to amend real counts of n-grams to expected counts in any (unseen) data.

Add-one, Add- α , Good–Turing smoothing More in PA154 (Language Modeling).

Quality and comparison of LMs

We need to compare quality of various LM (various orders, various data, smoothing techniques etc.)

- extrinsic (WER, MT, ASR, OCR)
- intrinsic (perplexity) evaluation

A good LM should assign a higher probability to a good (looking) text than to an incorrect text. For a fixed test text we can compare various LMs.

Cross-entropy

$$H(p_{LM}) = -\frac{1}{n} \log p_{LM}(w_1, w_2, \dots, w_n)$$

= $-\frac{1}{n} \sum_{i=1}^n \log p_{LM}(w_i | w_1, \dots, w_{i-1})$

Cross-entropy is average value of negative logarithms of words' probabilities in testing text. It corresponds to a measure of uncertainty of a probability distribution. **The lower the better**.

A good LM should reach entropy close to real entropy of language. That can't be measured directly but quite reliable estimates exist, e.g. Shannon's game. For English, entropy is estimated to approx. 1.3 bit per letter.

Cross Perplexity

 $PP = 2^{H(p_{LM})}$

Cross perplexity is a simple transformation of cross-entropy.

A good LM should not waste p for improbable phenomena.

The lower entropy, the better \rightarrow the lower perplexity, the better.