Continuous Space Representation

PA153

Pavel Rychlý

18 Sep 2023

Problems with statistical NLP

■ many distinct words (items) (from Zipf)
■ zero counts
■ MLE gives zero probability

$$
p\left(w_{3} \mid w_{1}, w_{2}\right)=\frac{\operatorname{count}\left(w_{1}, w_{2}, w_{3}\right)}{\operatorname{count}\left(w_{1}, w_{2}\right)}
$$

■ not handling similarities

- some words share some (important) features
- driver, teacher, butcher
- small, little, tiny

Many distinct words

How to solve:
■ use only most frequent ones (ignore outliers)
■ use smaller units (subwords)

- prefixes, suffixes
- -er, -less, pre-

But:

- we want to add more words
- black hole is not black or hole

■ even less frequent words are important

- deagrofertizace from "The deagrofertization of the state must come."

Zero counts

How to solve:

- complicated smoothing strategies

■ Good-Turing, Kneser-Ney, back-off, ...

- bigger corpora
- more data = better estimation

But:

- sometimes there is no more data
- Shakespeare, new research field

■ any size is not big enough

How big corpus?

Noun test

- British National Corpus

■ 15789 hits, rank 918
■ word sketches from the Sketch Engine
■ object-of: pass, undergo, satisfy, fail, devise, conduct, administer, perform, apply, boycott

- modifier: blood, driving, fitness, beta, nuclear, pregnancy
- can we freely combine any two from that lists?

How big corpus?

Collocations of noun test

- blood test in BNC
- object-of: order (3), take (12)

■ blood test in enClueWeb16 (16 billion tokens)
■ object-of: order (708), perform (959), undergo (174), administer (123), conduct (229), require (676), repeat (80), run (347), request (105), take (1215)

How big corpus?

Phrase pregnancy test in 16 billion corpus

pregnancy teSt (noun) enclueWeb - sketches freq $=13677$ (0.8 per million)
(test-n filtered by pregnancy)

Constructions			PP X	955		N mod	136	77	-1.6	and or	1684	-4.2
wh	$\underline{243}$	-3.6	PP in-i	175	-4.8	urine		314	3.07	ultrasound	65	2.25
that_0	$\underline{212}$	-4.7	PP at-i	150	-3.1	home		$\underline{2204}$	2.68	urine	39	1.31
Vinf_to	$\underline{211}$	-4.8	PP on-i	139	-3.9	blood		$\underline{248}$	1.36	counseling	44	0.9
			PP for-i	82	-5.0	serum		$\underline{53}$	0.56	condom	$\underline{23}$	0.66
take perform buy administer	5530	-2.2	PP after-i	60	-2.3	at-home		$\underline{37}$	0.21	urinalysis	14	0.44
	$\underline{1765}$ 1.15 $\underline{203}$ 0.84 $\underline{237}$ 0.67 $\underline{40}$ 0.05		PP with-i	55	-5.1					test	190	0.33
			PP from-i	37	-5.1	AVP post	od	431	-2.8	smear	14	0.25
			PP within-i	32	-3.1	prior		$\underline{27}$	0.11			
			PP to-i		-6.6					N premod 1505 nan		
			PP as-i	$\underline{26}$		AJ premo		3077	-3.0	kit	317	2.48
			PP before-i	$\underline{26}$	-3.2	positive		853	3.66	ept	54	1.15

How big corpus?

Phrase black hole in 16 billion corpus WORD SKETCH |enTenTen[2012]

Similarities of words

Distinct words?:
■ supermassive, super-massive, Supermassive

- small, little, tiny
- black hole, star
- apple, banana, orange
- red, green, orange
- auburn, burgundy, mahogony, ruby

Continuous space representation

■ words are not distinct

- represented by a vector of numbers

■ similar words are closer each other
■ more dimensions = more features

- tens to hundreds, up to 1000

Words as vectors

$$
\text { continue }=[0.286,0.792,-0.177,-0.107,0.109,-0.542,0.349]
$$

being
been

How to create a vector representation

From co-occurrence counts:

- Singular value decomposition (SVD)

■ each word one dimension
■ select/combine important dimenstions
■ factorization of co-occurrence matrix

- Principal component analysis (PCA)

■ Latent Dirichlet Allocation (LDA)

- learning probabilities of hidden variables

■ Neural Networks

Neural Networks

- training from examples = supervised training
- sometimes negative examples
- generating examples from texts

■ from very simple (one layer) to deep ones (many layers)

NN training method

■ one training example $=($ input, expected output $)=(\mathrm{x}, \mathrm{y})$

- random initialization of parameters
- for each example:

■ get output for input: $y^{i}=N N(x)$
■ compute loss = difference between expected output and real output: loss $=\left|y-y^{\prime}\right|$

- update paremeters to decrease loss

Are vectors better than IDs

■ even one hit could provide useful information
■ Little Prince corpus (21,000 tokens)

- modifiers of "planet"
- seventh, stately, sixth, wrong, tine, fifth, ordinary, next, little, whole
- each with 1 hit
- many are close together, share a feature

Simple vector learning

- each word has two vectors
- node vector (node $_{w}$)
- context vector (ctxw
- generate (node, context) pairs from text
- for example from bigrams: w1, w2
- $w 1$ is context, $w 2$ is node

■ move closer $c t x_{w 1}$ and $n o d e_{w 2}$

Simple vector learning

node_vec $=n p . r a n d o m . r a n d(l e n(v o c a b), \operatorname{dim}) * 2-1$ ctx_vec = np.zeros((len(vocab), dim))
def train_pair(nodeid, ctxid, alpha):
global node_vec, ctx_vec
Nd = node_vec[nodeid]
Ct = ctx_vec[ctxid]
loss = 1 - expit(np.dot(Nd, Ct)) corr = loss * alpha Nd += corr * (Ct - Nd)
Ct += corr * (Nd - Ct)

Expit (sigmoid) function

- $\operatorname{expit}(x)=1 /(1+\exp (-x))=1 /\left(1+e^{-x}\right)$

■ limit range: output in $(0,1)$

Simple vector learning

```
for e in range(epochs):
    last = tokIDs[0]
    for wid in tokIDs[1:]:
    train_pair(wid, last, alpha)
    last = wid
    \# update alpha
```


Embeddings advantages

■ no problem in number of parameters

- similarity in many different directions

■ good estimations of scores

- generalization
- learnig for some words generalize to similar words

Embeddings of other items

- lemmata
- part of speech

■ topics
■ any list of items with some structure

Summary

■ numeric vectors provides continues space representation of words

- similar words are closer

■ similarity in many different directions (features)

- morphology (number, gender)
- domain/style
- word formation

