

Continuous Space Representation

PA153

Pavel Rychlý

18 Sep 2023

Problems with statistical NLP

- many distinct words (items) (from Zipf)
- zero counts
 - MLE gives zero probability

$$p(w_3|w_1, w_2) = \frac{count(w_1, w_2, w_3)}{count(w_1, w_2)}$$

- not handling similarities
 - some words share some (important) features
 - driver, teacher, butcher
 - small, little, tiny

Many distinct words

How to solve:

- use only most frequent ones (ignore outliers)
- use smaller units (subwords)
 - prefixes, suffixes
 - -er, -less, pre-

But:

- we want to add more words
- black hole is not black or hole
- even less frequent words are important
 - deagrofertizace from "The deagrofertization of the state must come."

Zero counts

How to solve:

- complicated smoothing strategies
 - Good-Turing, Kneser Ney, back-off, ...
- bigger corpora
- more data = better estimation

But:

- sometimes there is no more data
 - Shakespeare, new research field
- any size is not big enough

Noun test

- British National Corpus
- 15789 hits, rank 918
- word sketches from the Sketch Engine
- object-of: pass, undergo, satisfy, fail, devise, conduct, administer, perform, apply, boycott
- modifier: blood, driving, fitness, beta, nuclear, pregnancy
- can we freely combine any two from that lists?

Collocations of noun test

- blood test in BNC
 - object-of: order (3), take (12)
- blood test in enClueWeb16 (16 billion tokens)
 - object-of: order (708), perform (959), undergo (174), administer (123), conduct (229), require (676), repeat (80), run (347), request (105), take (1215)

Phrase pregnancy test in 16 billion corpus

pregnancy test (noun) enClueWeb - Sketches freq = 13677 (0.8 per million)											
(test-n filtered by pregnancy)											
Constructio	<u>ns</u>		PP_X	<u>955</u>		N_mod	<u>13677</u>	-1.6	and_or	<u>1684</u>	-4.2
wh	243	-3.6	PP in-i	<u>175</u>	-4.8	urine	<u>314</u>	3.07	ultrasound	<u>65</u>	2.25
that_0	212	-4.7	PP at-i	<u>150</u>	-3.1	home	2204	2.68	urine	39	1.31
Vinf_to	<u>211</u>	-4.8	PP on-i	<u>139</u>	-3.9	blood	248	1.36	counseling	44	0.9
			PP for-i	<u>82</u>	-5.0	serum	<u>53</u>	0.56	condom	<u>23</u>	0.66
object_of	<u>5530</u>	-2.2	PP after-i	<u>60</u>	-2.3	at-home	<u>37</u>	0.21	urinalysis	14	0.44
take	<u>1765</u>	1.15	PP with-i	<u>55</u>	-5.1				test	<u>190</u>	0.33
perform	<u>203</u>	0.84	PP from-i	<u>37</u>	-5.1	AVP_post_m	od <u>431</u>	-2.8	smear	14	0.25
buy	<u>237</u>	0.67	PP within-i	<u>32</u>	-3.1	prior	<u>27</u>	0.11			
administer	<u>40</u>	0.05	PP to-i	<u>31</u>	-6.6				N_premod	<u>1505</u>	nan
			PP as-i	<u>26</u>	-5.3	AJ_premod	3077	7 -3.0	kit	<u>317</u>	2.48
			PP before-i	<u>26</u>	-3.2	positive	<u>853</u>	3.66	ept	<u>54</u>	1.15

Phrase black hole in 16 billion corpus

Similarities of words

Distinct words?:

- supermassive, super-massive, Supermassive
- small, little, tiny
- black hole, star
- apple, banana, orange
- red, green, orange
- auburn, burgundy, mahogony, ruby

Continuous space representation

- words are not distinct
- represented by a vector of numbers
- similar words are *closer* each other
- more dimensions = more features
 - tens to hundreds, up to 1000

Words as vectors

$$continue = [0.286, 0.792, -0.177, -0.107, 0.109, -0.542, 0.349]$$

How to create a vector representation

From co-occurrence counts:

- Singular value decomposition (SVD)
 - each word one dimension
 - select/combine important dimenstions
 - factorization of co-occurrence matrix
- Principal component analysis (PCA)
- Latent Dirichlet Allocation (LDA)
 - learning probabilities of hidden variables
- Neural Networks

Neural Networks

- training from examples = supervised training
- sometimes negative examples
- generating examples from texts
- from very simple (one layer) to deep ones (many layers)

NN training method

- one training example = (input, expected output) = (x, y)
- random initialization of parameters
- for each example:
 - get output for input: y' = NN(x)
 - compute loss = difference between expected output and real output: loss = |y y'|
 - update paremeters to decrease loss

Are vectors better than IDs

- even one hit could provide useful information
- Little Prince corpus (21,000 tokens)
- modifiers of "planet"
 - seventh, stately, sixth, wrong, tine, fifth, ordinary, next, little, whole
 - each with 1 hit
 - many are *close* together, share a feature

Simple vector learning

- each word has two vectors
 - node vector (*node*_w)
 - \blacksquare context vector (ctx_w)
- generate (node, context) pairs from text
 - for example from bigrams: w1, w2
 - w1 is context, w2 is node
- \blacksquare move closer ctx_{w1} and $node_{w2}$

Simple vector learning

```
node vec = np.random.rand(len(vocab), dim) * 2 -1
ctx vec = np.zeros((len(vocab), dim))
def train pair(nodeid, ctxid, alpha):
  global node vec, ctx vec
  Nd = node vec[nodeid]
  Ct = ctx vec[ctxid]
  loss = 1 - expit(np.dot(Nd. Ct))
  corr = loss * alpha
  Nd += corr * (Ct - Nd)
  Ct += corr * (Nd - Ct)
```

Expit (sigmoid) function

- $expit(x) = 1/(1 + exp(-x)) = 1/(1 + e^{-x})$
- limit range: output in (0, 1)

Simple vector learning

```
for e in range(epochs):
    last = tokIDs[0]
    for wid in tokIDs[1:]:
        train_pair(wid, last, alpha)
        last = wid
        # update alpha
```

Embeddings advantages

- no problem in number of parameters
- similarity in many different directions
- good estimations of scores
- generalization
 - learnig for some words generalize to similar words

Embeddings of other items

- lemmata
- part of speech
- topics
- any list of items with some structure

Summary

- numeric vectors provides continues space representation of words
- similar words are closer
- similarity in many different directions (features)
 - morphology (number, gender)
 - domain/style
 - word formation