Natural Language Processing with Deep Learning CS224N/Ling284

Christopher Manning

Lecture 3: Neural net learning: Gradients by hand (matrix calculus) and algorithmically (the backpropagation algorithm)

NER: Binary classification for center word being location

• We do supervised training and want high score if it's a location

7. Neural computation

Non-linearities, old and new

tanh is just a rescaled and shifted sigmoid (2 × as steep, [-1,1]): tanh(z) = 2logistic(2z) - 1

Swish $\frac{arXiv:1710.05941}{swish(x) = x \cdot logistic(x)}$

Logistic and tanh are still used (e.g., logistic to get a probability)

However, now, for deep networks, the first thing to try is ReLU: it trains quickly and performs well due to good gradient backflow. ReLU has a negative "dead zone" that recent proposals mitigate GELU is frequently used with Transformers (BERT, RoBERTa, etc.)

GELU arXiv: 1606.08415 GELU(x) $= x \cdot P(X \le x), X \sim N(0,1)$ $\approx x \cdot \text{logistic}(1.702x)$

Non-linearities (i.e., "f" on previous slide): Why they're needed

- Neural networks do function approximation, e.g., regression or classification
 - Without non-linearities, deep neural networks can't do anything more than a linear transform
 - Extra layers could just be compiled down into a single linear transform: W₁ W₂ x = Wx
 - But, with more layers that include non-linearities, they can approximate any complex function!

Remember: Stochastic Gradient Descent

Update equation:

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

 α = step size or learning rate

i.e., for each parameter:
$$\theta_j^{new} = \theta_j^{old} - \alpha \frac{\partial J(\theta)}{\partial \theta_j^{old}}$$

In deep learning, θ includes the data representation (e.g., word vectors) too!

How can we compute $\nabla_{\theta} J(\theta)$?

- 1. By hand
- 2. Algorithmically: the backpropagation algorithm

Lecture Plan

Lecture 4: Gradients by hand and algorithmically

- **1.** Introduction (10 mins)
- 2. Matrix calculus (35 mins)
- **3**. Backpropagation (35 mins)

Computing Gradients by Hand

- Matrix calculus: Fully vectorized gradients
 - "Multivariable calculus is just like single-variable calculus if you use matrices"
 - Much faster and more useful than non-vectorized gradients
 - But doing a non-vectorized gradient can be good for intuition; recall the first lecture for an example
 - Lecture notes and matrix calculus notes cover this material in more detail
 - You might also review Math 51, which has an online textbook: <u>http://web.stanford.edu/class/math51/textbook.html</u>

Gradients

- Given a function with 1 output and 1 input $f(x) = x^3$
- It's gradient (slope) is its derivative

$$\frac{df}{dx} = 3x^2$$

"How much will the output change if we change the input a bit?"

At x = 1 it changes about 3 times as much: $1.01^3 = 1.03$

At x = 4 it changes about 48 times as much: $4.01^3 = 64.48$

Gradients

• Given a function with 1 output and *n* inputs

$$f(\boldsymbol{x}) = f(x_1, x_2, ..., x_n)$$

 Its gradient is a vector of partial derivatives with respect to each input

$$\frac{\partial f}{\partial \boldsymbol{x}} = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right]$$

Jacobian Matrix: Generalization of the Gradient

• Given a function with *m* outputs and *n* inputs $f(x) = [f_1(x_1, x_2, ..., x_n), ..., f_m(x_1, x_2, ..., x_n)]$

• It's Jacobian is an *m* x *n* matrix of partial derivatives

$$\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right)_{ij} = \frac{\partial f_i}{\partial x_j}$$

Chain Rule

- For composition of one-variable functions: multiply derivatives z = 3y $y = x^2$ $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} = (3)(2x) = 6x$
- For multiple variables functions: **multiply Jacobians**

$$h = f(z)$$
$$z = Wx + b$$
$$\frac{\partial h}{\partial x} = \frac{\partial h}{\partial z} \frac{\partial z}{\partial x} = \dots$$

$$m{h} = f(m{z}), ext{ what is } rac{\partial m{h}}{\partial m{z}}?$$

 $h_i = f(z_i)$

$$oldsymbol{h},oldsymbol{z}\in\mathbb{R}^n$$

$$oldsymbol{h} = f(oldsymbol{z}), ext{ what is } rac{\partial oldsymbol{h}}{\partial oldsymbol{z}}? \qquad oldsymbol{h}, oldsymbol{z} \in \mathbb{R}^n$$

 $h_i = f(z_i)$

Function has *n* outputs and *n* inputs \rightarrow *n* by *n* Jacobian

$$m{h} = f(m{z}), \text{what is } rac{\partial m{h}}{\partial m{z}}?$$

 $h_i = f(z_i)$

$$oldsymbol{h},oldsymbol{z}\in\mathbb{R}^n$$

$$\left(\frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}}\right)_{ij} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i)$$

definition of Jacobian

$$m{h} = f(m{z}), ext{ what is } rac{\partial m{h}}{\partial m{z}}?$$

 $h_i = f(z_i)$

$$oldsymbol{h},oldsymbol{z}\in\mathbb{R}^n$$

$$\begin{pmatrix} \frac{\partial \mathbf{h}}{\partial \mathbf{z}} \end{pmatrix}_{ij} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i)$$
$$= \begin{cases} f'(z_i) & \text{if } i = j \\ 0 & \text{if otherwise} \end{cases}$$

definition of Jacobian

regular 1-variable derivative

$$m{h} = f(m{z}), \text{ what is } rac{\partial m{h}}{\partial m{z}}?$$

 $h_i = f(z_i)$

$$oldsymbol{h},oldsymbol{z}\in\mathbb{R}^n$$

$$\begin{pmatrix} \frac{\partial \mathbf{h}}{\partial \mathbf{z}} \end{pmatrix}_{ij} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i)$$
$$= \begin{cases} f'(z_i) & \text{if } i = j \\ 0 & \text{if otherwise} \end{cases}$$

definition of Jacobian

regular 1-variable derivative

$$\frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} = \begin{pmatrix} f'(z_1) & 0 \\ & \ddots & \\ 0 & f'(z_n) \end{pmatrix} = \operatorname{diag}(\boldsymbol{f}'(\boldsymbol{z}))$$

$$\frac{\partial}{\partial \boldsymbol{x}}(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) = \boldsymbol{W}$$

$$rac{\partial}{\partial x}(Wx+b) = W$$

 $rac{\partial}{\partial b}(Wx+b) = I$ (Identity matrix)

$$\begin{split} &\frac{\partial}{\partial x}(Wx+b) = W\\ &\frac{\partial}{\partial b}(Wx+b) = I \ \text{(Identity matrix)}\\ &\frac{\partial}{\partial b}(u^Th) = h^T \end{split}$$

22

$$\frac{\partial}{\partial x} (Wx + b) = W$$
$$\frac{\partial}{\partial b} (Wx + b) = I \text{ (Identity matrix)}$$
$$\frac{\partial}{\partial u} (u^T h) = h^T$$

- Compute these at home for practice!
 - Check your answers with the lecture notes

Back to our Neural Net!

Back to our Neural Net!

- Let's find $\frac{\partial s}{\partial b}$
 - Really, we care about the gradient of the loss J_t but we will compute the gradient of the score for simplicity

1. Break up equations into simple pieces

$$s = u^T h$$

 $s = u^T h$
 $s = u^T h$
 $h = f(Wx + b)$
 $x = Wx + b$
 x (input)
 x (input)

Carefully define your variables and keep track of their dimensionality!

$$s = u^T h$$

 $h = f(z)$
 $z = Wx + b$
 x (input)

$$\frac{\partial s}{\partial \boldsymbol{b}} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}}$$

$$egin{aligned} &s = oldsymbol{u}^Toldsymbol{h}\ &oldsymbol{h} = f(oldsymbol{z})\ &oldsymbol{z} = oldsymbol{W}oldsymbol{x} + oldsymbol{b}\ &oldsymbol{x} \quad (ext{input}) \end{aligned}$$

$$\frac{\partial s}{\partial \boldsymbol{b}} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}}$$

$$s = u^T h$$

 $h = f(z)$
 $z = Wx + b$
 x (input)

$$\frac{\partial s}{\partial \boldsymbol{b}} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}}$$

$$s = u^T h$$

 $h = f(z)$
 $z = Wx + b$
 x (input)

$$\frac{\partial s}{\partial \boldsymbol{b}} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}}$$

$$s = u^{T}h$$

$$h = f(z)$$

$$z = Wx + b$$

$$x \quad (input)$$

$$\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \quad \frac{\partial h}{\partial z} \quad \frac{\partial z}{\partial b}$$

$$\begin{array}{c} \underline{s} = \boldsymbol{u}^T \boldsymbol{h} \\ \boldsymbol{h} = f(\boldsymbol{z}) \\ \boldsymbol{z} = \boldsymbol{W} \boldsymbol{x} + \boldsymbol{b} \\ \boldsymbol{x} \quad (\text{input}) \end{array} \begin{array}{c} \frac{\partial s}{\partial \boldsymbol{b}} = \frac{\partial s}{\partial \boldsymbol{h}} & \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} & \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}} \\ \downarrow \\ \boldsymbol{u}^T \end{array}$$

$$s = u^{T}h$$

$$\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \quad \frac{\partial h}{\partial z} \quad \frac{\partial z}{\partial b}$$

$$z = Wx + b$$

$$u^{T} \operatorname{diag}(f'(z))$$

$$s = u^{T}h$$

$$h = f(z)$$

$$z = Wx + b$$

$$x \text{ (input)}$$
Useful Jacobians from previous slide
$$\frac{\partial}{\partial u}(u^{T}h) = h^{T}$$

$$\frac{\partial}{\partial z}(f(z)) = \operatorname{diag}(f'(z))$$

$$\frac{\partial}{\partial b}(Wx + b) = I$$

Re-using Computation

- Suppose we now want to compute
- $rac{\partial s}{\partial oldsymbol{W}}$

• Using the chain rule again:

 $\frac{\partial s}{\partial W} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial W}$

Re-using Computation

- Suppose we now want to compute
 - Using the chain rule again:

$$\frac{\partial s}{\partial W} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial W}$$
$$\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial b}$$

The same! Let's avoid duplicated computation ...

 $rac{\partial s}{\partial oldsymbol{W}}$

Re-using Computation

- Suppose we now want to compute
 - Using the chain rule again:

$$\frac{\partial s}{\partial W} = \boldsymbol{\delta} \frac{\partial \boldsymbol{z}}{\partial W}$$
$$\frac{\partial s}{\partial \boldsymbol{b}} = \boldsymbol{\delta} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}} = \boldsymbol{\delta}$$
$$\boldsymbol{\delta} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} = \boldsymbol{u}^{T} \circ f'(\boldsymbol{z})$$

 δ is the upstream gradient ("error signal")

 $rac{\partial s}{\partial oldsymbol{W}}$

Derivative with respect to Matrix: Output shape

• What does
$$rac{\partial s}{\partial W}$$
 look like? $oldsymbol{W} \in \mathbb{R}^{n imes m}$

• 1 output, *nm* inputs: 1 by *nm* Jacobian?

- Inconvenient to then do
$$\, heta^{new} = heta^{old} - lpha
abla_{ heta} J(heta)$$

Derivative with respect to Matrix: Output shape

• What does
$$rac{\partial s}{\partial oldsymbol{W}}$$
 look like? $oldsymbol{W} \in \mathbb{R}^{n imes m}$

• 1 output, *nm* inputs: 1 by *nm* Jacobian?

- Inconvenient to then do
$$heta^{new}= heta^{old}-lpha
abla_ heta J(heta)$$

 Instead, we leave pure math and use the shape convention: the shape of the gradient is the shape of the parameters!

• So
$$\frac{\partial s}{\partial W}$$
 is *n* by *m*:
$$\begin{bmatrix} \frac{\partial s}{\partial W_{11}} & \cdots & \frac{\partial s}{\partial W_{1m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial s}{\partial W_{n1}} & \cdots & \frac{\partial s}{\partial W_{nm}} \end{bmatrix}$$

Derivative with respect to Matrix

• What is

$$\frac{\partial s}{\partial \boldsymbol{W}} = \boldsymbol{\delta} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{W}}$$

- $oldsymbol{\delta}$ is going to be in our answer
- The other term should be $oldsymbol{x}$ because $oldsymbol{z} = oldsymbol{W} oldsymbol{x} + oldsymbol{b}$

• Answer is:
$$\frac{\partial s}{\partial W} = \boldsymbol{\delta}^T \boldsymbol{x}^T$$

 δ is upstream gradient ("error signal") at z x is local input signal Why the Transposes?

$$\frac{\partial s}{\partial \boldsymbol{W}} = \boldsymbol{\delta}^T \quad \boldsymbol{x}^T$$
$$[n \times m] \quad [n \times 1][1 \times m]$$
$$= \begin{bmatrix} \delta_1 \\ \vdots \\ \delta_n \end{bmatrix} [x_1, \dots, x_m] = \begin{bmatrix} \delta_1 x_1 & \dots & \delta_1 x_m \\ \vdots & \ddots & \vdots \\ \delta_n x_1 & \dots & \delta_n x_m \end{bmatrix}$$

- Hacky answer: this makes the dimensions work out!
 - Useful trick for checking your work!
- Full explanation in the lecture notes
 - Each input goes to each output you want to get outer product

Deriving local input gradient in backprop

• For
$$\frac{\partial z}{\partial W}$$
 in our equation:
 $\frac{\partial s}{\partial W} = \delta \frac{\partial z}{\partial W} = \delta \frac{\partial}{\partial W} (Wx + b)$

- Let's consider the derivative of a single weight W_{ij}
- W_{ij} only contributes to z_i
 - For example: W_{23} is only used to compute z_2 not z_1

$$\frac{\partial z_i}{\partial W_{ij}} = \frac{\partial}{\partial W_{ij}} \boldsymbol{W}_i \cdot \boldsymbol{x} + b_i$$
$$= \frac{\partial}{\partial W_{ij}} \sum_{k=1}^d W_{ik} x_k = x_j$$

What shape should derivatives be?

• Similarly,
$$\frac{\partial s}{\partial b} = h^T \circ f'(z)$$
 is a row vector

- But shape convention says our gradient should be a column vector because b is a column vector ...
- Disagreement between Jacobian form (which makes the chain rule easy) and the shape convention (which makes implementing SGD easy)
 - We expect answers in the assignment to follow the **shape convention**
 - But Jacobian form is useful for computing the answers

What shape should derivatives be?

Two options for working through specific problems:

- 1. Use Jacobian form as much as possible, reshape to follow the shape convention at the end:
 - What we just did. But at the end transpose $rac{\partial s}{\partial b}$ to make the derivative a column vector, resulting in δ^T
- 2. Always follow the shape convention
 - Look at dimensions to figure out when to transpose and/or reorder terms
 - The error message $oldsymbol{\delta}$ that arrives at a hidden layer has the same dimensionality as that hidden layer

We've almost shown you backpropagation

It's taking derivatives and using the (generalized, multivariate, or matrix) chain rule

Other trick:

We **re-use** derivatives computed for higher layers in computing derivatives for lower layers to minimize computation

Computation Graphs and Backpropagation

- Software represents our neural net equations as a graph
 - Source nodes: inputs
 - Interior nodes: operations

- $s = u^T h$ h = f(z)z = Wx + b
- \boldsymbol{x} (input)

Computation Graphs and Backpropagation

- Software represents our neural net equations as a graph
 - Source nodes: inputs
 - Interior nodes: operations
 - Edges pass along result of the operation

- $s = u^T h$ h = f(z)z = Wx + b
- \boldsymbol{x} (input)

Computation Graphs and Backpropagation

operation

Backpropagation

- Then go backwards along edges
 - Pass along gradients

 $s = u^T h$ h = f(z) z = Wx + bx (input)

- Node receives an "upstream gradient"
- Goal is to pass on the correct "downstream gradient"

- Each node has a **local gradient**
 - The gradient of its output with respect to its input

- Each node has a **local gradient**
 - The gradient of its output with respect to its input

- Each node has a **local gradient**
 - The gradient of its output with respect to its input

$$oldsymbol{h} = f(oldsymbol{z})$$

[downstream gradient] = [upstream gradient] x [local gradient]

• What about nodes with multiple inputs?

$$z = Wx$$

• Multiple inputs \rightarrow multiple local gradients

$$z = Wx$$

$$f(x, y, z) = (x + y) \max(y, z)$$

x = 1, y = 2, z = 0

$$\begin{cases} f(x, y, z) = (x + y) \max(y, z) \\ x = 1, y = 2, z = 0 \end{cases}$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

$$\begin{cases} f(x, y, z) = (x + y) \max(y, z) \\ x = 1, y = 2, z = 0 \end{cases}$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

$$f(x, y, z) = (x + y) \max(y, z)$$

x = 1, y = 2, z = 0

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

Local gradients $\frac{\partial a}{\partial x} = 1$ $\frac{\partial a}{\partial y} = 1$

$$f(x, y, z) = (x + y) \max(y, z)$$

x = 1, y = 2, z = 0

Forward prop steps

Forward prop stepsLocal gradients
$$a = x + y$$
 $\frac{\partial a}{\partial x} = 1$ $\frac{\partial a}{\partial y} = 1$ $b = \max(y, z)$ $\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1$ $\frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$ $f = ab$

$$f(x, y, z) = (x + y) \max(y, z)$$

x = 1, y = 2, z = 0

$$f(x, y, z) = (x + y) \max(y, z)$$

x = 1, y = 2, z = 0

$$f(x, y, z) = (x + y) \max(y, z)$$

x = 1, y = 2, z = 0

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps Local gradients $\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$ a = x + y $\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1$ $\frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$ $b = \max(y, z)$ f = ab $\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3$ 1 \mathcal{X} 3 6 * \mathcal{Y} 1 2 3*1 = 3 max 3 3*0 = 0 upstream * local = downstream

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps Local gradients $\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$ a = x + y $\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1$ $\frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$ $b = \max(y, z)$ f = ab $\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3$ \mathcal{X} 2*1 = 2 3 2*1 = 2 6 * Y 1 2 3 max 3 0 upstream * local = downstream 0

$$\begin{cases} f(x, y, z) = (x + y) \max(y, z) \\ x = 1, y = 2, z = 0 \end{cases}$$

Gradients sum at outward branches

Gradients sum at outward branches

$$\begin{aligned} a &= x + y \\ b &= \max(y, z) \\ f &= ab \end{aligned} \qquad \frac{\partial f}{\partial y} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial y} + \frac{\partial f}{\partial b} \frac{\partial b}{\partial y} \end{aligned}$$

Node Intuitions

$$\begin{cases} f(x, y, z) = (x + y) \max(y, z) \\ x = 1, y = 2, z = 0 \end{cases}$$

• + "distributes" the upstream gradient to each summand

Node Intuitions

$$\begin{cases} f(x, y, z) = (x + y) \max(y, z) \\ x = 1, y = 2, z = 0 \end{cases}$$

- + "distributes" the upstream gradient to each summand
- max "routes" the upstream gradient

Node Intuitions

$$\begin{cases} f(x, y, z) = (x + y) \max(y, z) \\ x = 1, y = 2, z = 0 \end{cases}$$

- + "distributes" the upstream gradient
- max "routes" the upstream gradient
- * "switches" the upstream gradient

Efficiency: compute all gradients at once

- Incorrect way of doing backprop:
 - First compute $\frac{\partial s}{\partial b}$

- $s = u^T h$ h = f(z)z = Wx + b
 - \boldsymbol{x} (input)

Efficiency: compute all gradients at once

- Incorrect way of doing backprop:
 - First compute $\frac{\partial s}{\partial b}$
 - Then independently compute $\frac{\partial s}{\partial W}$
 - Duplicated computation!

$$s = u^T h$$

 $h = f(z)$

$$oldsymbol{z} = oldsymbol{W} oldsymbol{x} + oldsymbol{b}$$

 $oldsymbol{x}$ (input)

Efficiency: compute all gradients at once

- Correct way:
 - Compute all the gradients at once
 - Analogous to using $\boldsymbol{\delta}$ when we computed gradients by hand

- $s = u^T h$ h = f(z)z = Wx + b
- \boldsymbol{x} (input)

Back-Prop in General Computation Graph

- 1. Fprop: visit nodes in topological sort order
 - Compute value of node given predecessors
- 2. Bprop:
 - initialize output gradient = 1
 - visit nodes in reverse order:
 - Compute gradient wrt each node using gradient wrt successors

 $\{y_1, y_2, \ldots, y_n\}$ = successors of x

$$\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}$$

Done correctly, big O() complexity of fprop and bprop is **the same**

In general, our nets have regular layer-structure and so we can use matrices and Jacobians...

Automatic Differentiation

- The gradient computation can be automatically inferred from the symbolic expression of the fprop
- Each node type needs to know how to compute its output and how to compute the gradient wrt its inputs given the gradient wrt its output
- Modern DL frameworks (Tensorflow, PyTorch, etc.) do backpropagation for you but mainly leave layer/node writer to hand-calculate the local derivative

Backprop Implementations

class ComputationalGraph(object):

#...

def forward(inputs):

1. [pass inputs to input gates...]

2. forward the computational graph:

for gate in self.graph.nodes_topologically_sorted():

gate.forward()

return loss # the final gate in the graph outputs the loss

def backward():

for gate in reversed(self.graph.nodes_topologically_sorted()):
 gate.backward() # little piece of backprop (chain rule applied)
return inputs_gradients

Implementation: forward/backward API


```
(x,y,z are scalars)
```


Implementation: forward/backward API


```
(x,y,z are scalars)
```

class M	<pre>ultiplyGate(object):</pre>
def	<pre>forward(x,y):</pre>
	z = x*y
	<pre>self.x = x # must keep these around!</pre>
	self.y = y
	return z
def	<pre>backward(dz):</pre>
	<pre>dx = self.y * dz # [dz/dx * dL/dz]</pre>
	<pre>dy = self.x * dz # [dz/dy * dL/dz]</pre>
	<pre>return [dx, dy]</pre>

We've mastered the core technology of neural nets! 🎉 🎉 🎉

- **Backpropagation:** recursively (and hence efficiently) apply the chain rule along computation graph
 - [downstream gradient] = [upstream gradient] x [local gradient]
- Forward pass: compute results of operations and save intermediate values
- **Backward pass:** apply chain rule to compute gradients