Natural Language Processing
with Deep Learning

CS224N/Ling284

P

Christopher Manning

Lecture 3: Neural net learning: Gradients by hand (matrix calculus)
and algorithmically (the backpropagation algorithm)

NER: Binary classification for center word being location

 We do supervised training and want high score if it’s a location

) 1 el ®
]tf(e) =0a(s) = 1+e=S | J .

i T
predlct-egl model S — U h
probability of class

f=Some element-

h — f(W.’E _|_ b) 0000 0000 wise non-linear

function, e.g.,
logistic, tanh, ReLU

4 (1nput) € R4 (0000 0000 0000 0000 0000

Embedding of

X =[Xmuseums Xin XParis Xare Xamazin]
87 | 1-hot words

7. Neural computation

Nyeln
sheath

Temriral bun;u—?{:

Original McCulloch & Pitts ,
1943 threshold unit:
1(Wx > 0)

= 1Wx -6 > 0)
This function has no slope, 4
so, no gradient-based learning

Non-linearities, old and new

(Rectified Linear Unit) Leaky RelLU /

logistic (“sigmoid”) tanh hard tanh RelLU Parametric RelLU
1 e’ —e ? 1 ifx<—1
z) = tanh(z) = ardTanh(x) ={ x if —1<=x<=1 ReLU(z) = max(z, 0
1) = T ee ()= et { ap (2) = max(z, 0)
0
. o=

O_ - _| 8 | | _1

3 -2 -1 0 1 2 3
X

tanh is just a rescaled and shifted sigmoid (2 X as steep, [-1,1]): GELU arxiv:1606.08415

Swish arxiv:1710.05941

tanh(z) = 2logistic(2z) -1 - — x - logisti GELU(x)
(2) g (2z2) swish(x) = x - logistic(x) — x+ P(X < x), X~N(0.,1)
Logistic and tanh are still used (e.g., logistic to get a probability) ~ x - logistic(1.702x)
However, now, for deep networks, the first thing to try is RelLU: it : N -»r»-j)

trains quickly and performs well due to good gradient backflow.

ReLU has a negative “dead zone” that recent proposals mitigate 0 — EEEEEE.
GELU is frequently used with Transformers (BERT, RoBERTa, etc.)

Non-linearities (i.e., “f” on previous slide): Why they’re needed

 Neural networks do function approximation, | x x _
e.g., regression or classification . "‘N_x_
* Without non-linearities, deep neural networks | x]
can’t do anything more than a linear transform - 1
* Extra layers could just be compiled down into a 1
single linear transform: W; W, x = Wx) N x
e But, with more layers that include non-linearities, . =
they can approximate any complex function! . :
1 !
"Da coo| *na -1 '
§ : $ i 0 1

Remember: Stochastic Gradient Descent

Update equation:

prew — Hold . CMV@J(Q)

« = step size or learning rate

aJ(6)

i.e., for each parameter: 67 = 6?'¢ — ~gold
J

In deep learning, 0 includes the data representation (e.g., word vectors) too!

How can we compute Vy/(6)?
1. By hand
I 2. Algorithmically: the backpropagation algorithm
8

Lecture Plan

Lecture 4: Gradients by hand and algorithmically
1. Introduction (10 mins)

2. Matrix calculus (35 mins)

3. Backpropagation (35 mins)

Computing Gradients by Hand

10

Matrix calculus: Fully vectorized gradients

)

“Multivariable calculus is just like single-variable calculus if you use matrices’
Much faster and more useful than non-vectorized gradients

But doing a non-vectorized gradient can be good for intuition; recall the first
lecture for an example

Lecture notes and matrix calculus notes cover this material in more detail

You might also review Math 51, which has an online textbook:
http://web.stanford.edu/class/math51/textbook.html

Gradients

* Given a function with 1 output and 1 input

Fx) = ¥3

* |t's gradient (slope) is its derivative

“How much will the output change if we change the input a bit?”
At x = 1 it changes about 3 times as much: 1.013=1.03
At x = 4 it changes about 48 times as much: 4.013 = 64.48

11

Gradients

e Given a function with 1 output and n inputs

f(il?‘) — f(ib‘l, LYy euns .I'n)

* Its gradient is a vector of partial derivatives with
respect to each input

of _[of of of
ox | 0x1 02’ Oz

I 12

Jacobian Matrix: Generalization of the Gradient

e Given a function with m outputs and n inputs

flx) =|fi(z1,22,....;Tn),s oy frn(T1, T2y ..o Ty

* It’s Jacobian is an m x n matrix of partial derivatives

T C T
a_f — . 1 - (ﬂ) _9fi
N T T 9
L 0x1 "o ox,, -

Chain Rule

* For composition of one-variable functions: multiply derivatives
z =3y

y =’
dz dzdy

e d_ya = (3)(2x) = 6z

* For multiple variables functions: multiply Jacobians

h = f(z)

z=Wx+b

oh Ohodz
I ox 0z ox

Example Jacobian: Elementwise activation Function

h = f(z),what is 8_h7 h,z ¢ R"

h; = f(Zz) o=

Example Jacobian: Elementwise activation Function

h = f(z),what is a—h‘? h,z ¢ R"

h; = f(Zz) o=

Function has n outputs and n inputs - n by n Jacobian

Example Jacobian: Elementwise activation Function

Oh
h = f(z),what is 8—7 h,z ¢ R"
s
hi = f(z)
(g—z>m = gzj % f(z;) definition of Jacobian

Example Jacobian: Elementwise activation Function

h = f(z),what is g—};?
hi = f(z)

oh\ oh, 9,
(a_z>z] - O0zj a—zjf(ZZ)

)0 if otherwise

h,z ¢ R"

definition of Jacobian

regular 1-variable derivative

Example Jacobian: Elementwise activation Function

h = f(z),what is Z—Z‘?

hi = f(2i)

oh Oh; 0 |

(8_Z>zg - 0zj a—zjf(%)
_ () ifi=

0 if otherwise
9 [f'(=)
P
B L0

h,z ¢ R"

definition of Jacobian

regular 1-variable derivative

0

f'(zn))

= diag(f'(2))

Other Jacobians

0,

Other Jacobians

9,
a—w(Wa: +b)=W
%(Ww + b) = I (Identity matrix)

Other Jacobians

0,

é Wax + b) = I (Identity matrix
0b

a T T Fine print: This is the correct Jacobian.
_— (u h) p— h Later we discuss the “shape convention”;

au using it the answer would be h.

Other Jacobians

i(antb) =W

ox

%(Ww + b) = I (Identity matrix)
O\ Ty\ _ 3T

501 (u”h)=nh

 Compute these at home for practice!

* Check your answers with the lecture notes
I 23

Back to our Neural Net!

h = f(W.’B + b) 0000 0000

X =[Xmuseums Xin XParis Xare Xamazing]

I x (input)

Back to our Neural Net!

e Let’s find @
Ob

* Really, we care about the gradient of the loss J, but we
will compute the gradient of the score for simplicity

S = ’U,Th x
h = f(WLE + b) 0000 0000
T (input) 0000 0000 0000 0000 0000

X =[Xmuseums Xin XParis Xare Xamazing]
25

1. Break up equations into simple pieces

s=ulh s=ulh

h=f(Wz + b) h = f(z)
z=Wx+0b

x (input) x (input)

I Carefully define your variables and keep track of their dimensionality!
26

2. Apply the chain rule

SZUTh @:aSahaZ
h = f(2) ob 0Oh 0z 0b
z=Wx+0b

x (input)

2. Apply the chain rule

s=ulh

h = f(z)
z=Wx+b
x (input)

0s
0b

0s

Oh 0z

Oh

0z 0b

2. Apply the chain rule

SZUTh @:88(9}%3,2
h— f(2) 0ob O0h|0z |0b
z=Wx+0b

x (input)

2. Apply the chain rule

s=ulh

h = f(z)

z=Wx+0b

x (input)

0s 0s Oh

0z

ob ~ Oh 0z

0b

3. Write out the Jacobians

s=ulh Os 0O0s Oh 0z
h = f(z) ob ~ Oh 0z 0Ob
z=Wx+0b
x (input)

Useful Jacobians from previous slide

0 T . T
(9_u(u h)=~h
7 (7(2) = diag(f(2)

G,
. — T
I 5 (W +b)
31

3. Write out the Jacobians

s=u'h Os 0O0s Oh 0z
h = f(z) ob ~ Oh 0z 0Ob
=Wz +b l
x (input) uTl

Useful Jacobians from previous slide

0 T . T
(9_u(u h)=~h
7 (7(2) = diag(f(2)

G,
. — T
I 5 (W +b)
32

3. Write out the Jacobians

s=u'h

h = f(z)
z=Wx+0b
x (input)

0s s Oh 0z

56~ oh 0z b
.

u” diag(f'(2))

Useful Jacobians from previous slide

0 T . T

(9_u(u h)=~h

7 (7(2) = diag(f(2)
0

%(W:B +b)=1

3. Write out the Jacobians

s=u'h

h = f(z)
z=Wx+0b
x (input)

0s s Oh 0z

ob 8lh (‘le 5’1)

= udiag(f'(2))1

Useful Jacobians from previous slide

0 T . T

(9_u(u h)=~h

7 (7(2) = diag(f(2)
0

%(W:B +b)=1

3. Write out the Jacobians

s=u'h

h = f(z)
z=Wx+0b
x (input)

0s s Oh 0z

T

= u' diag(f'(2))I

= u' o f'(z)

Useful Jacobians from previous slide

0 T . T

(9_u(u h)=~h

7 (7(2) = diag(f(2)
0

%(W:B +b)=1

(O =Hadamard product =
element-wise multiplication

of 2 vectors to give vector

Re-using Computation

0s
* Suppose we now want to compute ——

oW

Using the chain rule again:

0s s Oh Oz
OW — 9h dz OW

Re-using Computation

0s
* Suppose we now want to compute ——

oW

* Using the chain rule again:

0s 0s Oh 0z

oW — Oh 0z OW
0s 0s Oh 0z

ob _ Oh 9z Ob

The same! Let’s avoid duplicated computation ...

Re-using Computation

° Suppose we now want to compute ;—‘;/_
Using the chain rule again:
ds 5 0z
oW OW
0s _ 0z _ s
ob 0b
~0soh L,
- Oh 0z u' o fi(2)

I 0 is the upstream gradient (“error signal”)
38

Derivative with respect to Matrix: Output shape

* What does ;—‘; look like? W < RMxm

1 output, nminputs: 1 by nm Jacobian?
Inconvenient to then do ™€YY = QOld — CVVQ J(@)

Derivative with respect to Matrix: Output shape

* What does ;—‘; look like? W < RMxm

1 output, nminputs: 1 by nm Jacobian?
* Inconvenient to then do §™ €Y = HOld — @V@J(Q)

* Instead, we leave pure math and use the shape convention:
the shape of the gradient is the shape of the parameters!

- Os 0s -
0s 8W11 te 6’W1m

T is n by m:

0s 0s
L oW1 T OW 1y -
40

* So

Derivative with respect to Matrix

s oW OW

. 5 is going to be in our answer

The other term should be ¢ because 2 = W x -+ b

e Answer is: — 51T

ow

0 is upstream gradient (“error signal”) at z
x is local input signal

Why the Transposes?

83 B T T
ow — % 7
nxm| [nxI1][1xm)|
_51- _(515131
— [wla 7xm] —
571, _5n331

* Hacky answer: this makes the dimensions work out!
e Useful trick for checking your work!
* Full explanation in the lecture notes
I * Each input goes to each output — you want to get outer product
42

5155?71

0 Tom

Deriving local input gradient in backprop

or W IN OUr equa lon:
> 5% aa Wx + b
ow ~ aw ~CawWx b

* Let’s consider the derivative of a single weight W
* W, only contributes to z;

* For example: Wo5 is only
used to compute z, not z,

0% _ 0 W,.x + b;
oWy oWy

_ 9
AWy
43

ikXk = Xj

What shape should derivatives be?

* Similarly, %: h' o f'(z) is a row vector

* But shape convention says our gradient should be a column vector because b is
a column vector ...

* Disagreement between Jacobian form (which makes the chain rule
easy) and the shape convention (which makes implementing SGD easy)

* We expect answers in the assignment to follow the shape convention

* ButJacobian form is useful for computing the answers

I 44

What shape should derivatives be?

Two options for working through specific problems:

1. Use Jacobian form as much as possible, reshape to
follow the shape convention at the end:

s,
* What we just did. But at the end transpose 8_2 to make the

derivative a column vector, resulting in §*

2. Always follow the shape convention

* Look at dimensions to figure out when to transpose and/or
reorder terms

 The error message 6 that arrives at a hidden layer has the
same dimensionality as that hidden layer

I 45

3. Backpropagation

We've almost shown you backpropagation

It’s taking derivatives and using the (generalized, multivariate, or matrix)
chain rule

Other trick:

We re-use derivatives computed for higher layers in computing
derivatives for lower layers to minimize computation

I 46

Computation Graphs and Backpropagation

T
e Software represents our neural s=u"h
net equations as a graph h = f(z)
* Source nodes: inputs z=Wax+0b
* Interior nodes: operations I (input)

\ 4

T . (+) f
YT
|47 W b

Computation Graphs and Backpropagation

48

* Software represents our neural
net equations as a graph

* Source nodes: inputs
* Interior nodes: operations

* Edges pass along result of the
operation

s=u'h

h = f(z)
z=Wx+0b
x (input)

S

- N\Wz /70 2 f h
T
W b

N
7

u

Computation Graphs and Backpropagation

T
» Software represents our neural s=u h
net equations as a graph = f(2)

operation

w—?v‘/w>§> < @ h><-[>i
|4 b u

I 49

Backpropagation

* Then go backwards along edges s=u'h
Pass along gradients h = f(z)
z=Wx+b
x (input)
z h S
£ ° Wz >+) f) > o Y~
Js 0s 0s
0z oh 0s

Backpropagation: Single Node

* Node receives an “upstream gradient”

* Goalis to pass on the correct h=f(z)
“downstream gradient”

Z h

v

N
N

88 ag
0z Oh
Downstream Upstream

gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

* The gradient of its output with h = f(z)
respect to its input

Z h

v

N
N

88 ag
0z oh
Downstream Local Upstream

gradient gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

* The gradient of its output with h = f(z)
respect to its input

h

v

pd
~

N

Chain | Os Os Oh) 0s

rulel 192 T Oh 0z Oh
Downstream Local Upstream
53 gradient gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

* The gradient of its output with h=f(z)
respect to its input

e [downstream gradient] = [upstream gradient] x [local gradient]

Z h

v

N

ds ds Oh 9s
I 0z Oh 0z Oh

Downstream Local Upstream
gradient gradient gradient

Backpropagation: Single Node

What about nodes with multiple inputs?

|44

z=Wx

v

Backpropagation: Single Node

* Multiple inputs - multiple local gradients z=Wax

%4
W z
oW 0z OW .
/ Oz
05 _ 0502
Ox 0z Ox

Downstream Local Upstream
e gradients gradients gradient

An Example

f(z,y,2) = (x +y) max(y,)
r=1,y=2,2=0

An Example f(x,y,2) = (z +y) max(y, 2)
r=1y=2,2=0

Forward prop steps

a=I+Y
b = max(y, z)
f=uab

L

\ 4

y *

An Example

Forward prop steps

a=x+Y
b = max(y, 2)
f=uab

X

f(x,y,2) = (z + y) max(y,)
r=1y=2,2=0

\ 4

An Example f(x,y,2) = (z +y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa

@ T+ Yy Ox oy

b = max(y, 2)

f=uab

X

\ 4

An Example f(x,y,2) = (z +y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy Ox oy
b = max(y, z 00 _ _q 9% _
(yv) ay—l(y>z)— 5, (z>y)=0
f=uab

X

\ 4

An Example f(x,y,2) = (z +y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy Ox oy
— ob ob
b = max(y, z) gy ~ >z =1 52 =1(z>y) =0
f=ab of of
—_— = = 2 _— = =
da b ob a=3

X

\ 4

An Example f(x,y,2) = (z +y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy Ox oy
— ob ob
b = max(y, z) gy ~ >z =1 52 =1(z>y) =0
f=ab of of
—_— = = 2 _— = =
da b ob a=3

X

An Example f(x,y,2) = (z +y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy Ox oy
— ob ob
b = max(y, z) gy ~ >z =1 52 =1(z>y) =0
f=ab of of
L —_—p=9 L _,4=
da b ob a=3
1
X
6 N
Y T

1*3=3

upstream * local = downstream

An Example f(x,y,2) = (z +y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy Ox oy
— ob ob
b = max(y, z) gy ~ >z =1 52 =1(z>y) =0
f=ab i 33
L —_—p=9 L _,4=
da b ob a=3
1
X
6 N
Y T

I < 3*0=0 upstream * local = downstream
65

An Example f(x,y,2) = (z +y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy Ox oy
— ob ob
b = max(y, z) gy ~ >z =1 52 =1(z>y) =0
f=ab of of
L —_—p=9 L _,4=
da b ob a=3

X

\ 4

3
> 0
0 upstream * local = downstream
66

An Example f(x,y,2) = (z +y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ :13+y Ox oy
b = max(y, z b _ _q 9 _ _
(y, 2) ay—l(y>z)—1 o, =1z>y) =0
Of da 0b
—2 —9 1
Ox T >
0
a—f:3+2:5 2
83/ 2 6
_f:() Y 2 1
0z 3
0
< 0
67

Gradients sum at outward branches

1
N
A\

\

N

/
.

Gradients sum at outward branches

)

—

+

0

a=I+Y
b=max(y,z) Of Ofda Of 0b
f =ab Oy dady Obdy

I 69

Node Intuitions f(z,y,2) = (x + y) max(y, 2)
r=1,y=2,2=0

* + “distributes” the upstream gradient to each summand

N NN N -

Node Intuitions f(z,y,2) = (x + y) max(y, 2)
r=1,y=2,2=0

* + “distributes” the upstream gradient to each summand

* max “routes” the upstream gradient

|
~N
=
N
O W/N

Node Intuitions f(z,y,2) = (x + y) max(y, 2)
r=1,y=2,2=0

* + “distributes” the upstream gradient
* max “routes” the upstream gradient

 * “switches” the upstream gradient

\ 4

Efficiency: compute all gradients at once

* Incorrect way of doing backprop: s=u'h
First compute % h = f(z)
z=Wx+b
x (input)
4 & 1T + K < B T —
D

0b

Efficiency: compute all gradients at once

. T
* Incorrect way of doing backprop: s=u h
0 _
* First compute 8_8 h = f(z)
« Then independently compute z=Wx+b
W g (input)

* Duplicated computation! 12

:,B * | > + < f & > o <—;

Efficiency: compute all gradients at once

T
* Correct way: s=u"h
 Compute all the gradients at once h = f(z)
* Analogous to using 6 when we z=Wxz+b
computed gradients by hand T (input)
x—(x T + f (o \—

W os b Os (7
| Ve

Back-Prop in General Computation Graph

1. Fprop: visit nodes in topological sort order
- Compute value of node given predecessors

2. Bprop:

- initialize output gradient =1

- visit nodes in reverse order:

Compute gradient wrt each node using

gradient wrt successors
{y1, Y2, ... Yn} =successors of

Single scalar output 2

Done correctly, big O() complexity of fprop and
bprop is the same

In general, our nets have regular layer-structure

and so we can use matrices and Jacobians...
76

Automatic Differentiation

* The gradient computation can be

automatically inferred from the symbolic
expression of the fprop

* Each node type needs to know how to
compute its output and how to compute
the gradient wrt its inputs given the
gradient wrt its output

* Modern DL frameworks (Tensorflow,
PyTorch, etc.) do backpropagation for
you but mainly leave layer/node writer
to hand-calculate the local derivative

Backprop Implementations

class ComputationalGraph(object):
Foaa
def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

78

Implementation: forward/backward API

y
(X,y,z are scalars)

class MultiplyGate(object):

def

def

forward(x,y):
z = xX*y

return z

backward(dz) :
#dx = ... #tOd‘(\
dy = ... #todo

return [dx, dy]

N

OL
Ox

OL
0z

Implementation: forward/backward API

80

y
(X,y,z are scalars)

class MultiplyGate(object):

def

def

forward(x,y):

Z = X*y

self.x = x # must keep these around!
self.y =y

return z

backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

Summary

(T B T
We’ve mastered the core technology of neural nets! & & &

* Backpropagation: recursively (and hence efficiently) apply the chain rule
along computation graph

 [downstream gradient] = [upstream gradient] x [local gradient]

* Forward pass: compute results of operations and save intermediate
values

 Backward pass: apply chain rule to compute gradients

82

