
Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning

Lecture 5: Language Models and Recurrent Neural Networks

• Language Modeling is the task of predicting what word comes next

the students opened their ______

• More formally: given a sequence of words ,
compute the probability distribution of the next word :

where can be any word in the vocabulary

• A system that does this is called a Language Model

2. Language Modeling

exams
minds

laptops
books

9

Language Modeling

• You can also think of a Language Model as a system that
assigns a probability to a piece of text

• For example, if we have some text , then the
probability of this text (according to the Language Model) is:

10

This is what our LM provides

How to build a neural language model?

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob. dist. of the next word

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition in Lecture 2:

23
in Paris are amazingmuseums

LOCATION

A fixed-window neural Language Model

the students opened theiras the proctor started the clock ______
discard fixed window

24

A fixed-window neural Language Model

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors

hidden layer

a zoo

output distribution

25

A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-grams

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊
• Window can never be large enough!
• 𝑥(!) and 𝑥(") are multiplied by

completely different weights in 𝑊.
No symmetry in how the inputs are
processed.

We need a neural architecture
that can process any length input

26

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

3. Recurrent Neural Networks (RNN)

27

hidden states

input sequence
(any length)

…

…

…

Core idea: Apply the same
weights 𝑊 repeatedlyA family of neural architectures

outputs
(optional)

A Simple RNN Language Model

the students opened theirwords / one-hot vectors

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much
longer now!

hidden states

is the initial hidden state

28

RNN Language Models

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Computation for step t can (in

theory) use information from
many steps back

• Model size doesn’t increase for
longer input context

• Same weights applied on every
timestep, so there is symmetry
in how inputs are processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access

information from many steps
back

More on
these later

29

Training an RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution for every step t.

• i.e., predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability
distribution , and the true next word (one-hot for):

• Average this to get overall loss for entire training set:

30

Training an RNN Language Model
= negative log prob

of “students”

the students opened their …examsCorpus

Loss

…

31

Predicted
prob dists

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

32

Predicted
prob dists

= negative log prob
of “opened”

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

33

Predicted
prob dists

= negative log prob
of “their”

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

34

Predicted
prob dists

= negative log prob
of “exams”

Training an RNN Language Model

+ + + + … =

the students opened their …exams

…

35

Corpus

Loss

Predicted
prob dists

“Teacher forcing”

Training a RNN Language Model

• However: Computing loss and gradients across entire corpus at once is
too expensive (memory-wise)!

• In practice, consider as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small
chunk of data, and update.

• Compute loss for a sentence (actually, a batch of sentences), compute gradients
and update weights. Repeat on a new batch of sentences.

36

Backpropagation for RNNs

37

……

Question: What’s the derivative of w.r.t. the repeated weight matrix ?

Answer:
“The gradient w.r.t. a repeated weight

is the sum of the gradient
w.r.t. each time it appears”

Why?

Multivariable Chain Rule

38

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Training the parameters of RNNs: Backpropagation for RNNs

39

……

Question: How do we calculate this?

Answer: Backpropagate over timesteps
i = t, … ,0, summing gradients as you go.
This algorithm is called “backpropagation
through time” [Werbos, P.G., 1988, Neural
Networks 1, and others]

equals

equals

equals

equals

equals

Apply the multivariable chain rule:
= 1

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

Generating with an RNN Language Model (“Generating roll outs”)
Just like an n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

<s> my favorite season

sample

my
sample

favorite
sample

season
sample

is

is40

sample

spring

spring

sample

</s>

Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Obama speeches:

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

41

Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Harry Potter:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

42

Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on recipes:

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc

43

Generating text with a RNN Language Model

44

Let’s have some fun!
• You can train a RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on paint color names:

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

This is an example of a character-level RNN-LM (predicts what character comes next)

4. Problems with RNNs: Vanishing and Exploding Gradients

47

Vanishing gradient intuition

48

?

Vanishing gradient intuition

chain rule!

49

Vanishing gradient intuition

chain rule!

50

Vanishing gradient intuition

chain rule!

51

Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

backpropagates further
52

Why is vanishing gradient a problem?

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

55

Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her ________

• To learn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7th step and the target word “tickets” at the end.

• But if the gradient is small, the model can’t learn this dependency
• So, the model is unable to predict similar long-distance dependencies at test time

56

Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step becomes too big:

• This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)
• You think you’ve found a hill to climb, but suddenly you’re in Iowa

• In the worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

57

learning rate

gradient

Gradient clipping: solution for exploding gradient

58

• Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

• In practice, remembering to clip gradients is important, but exploding gradients are an
easy problem to solve

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

How to fix the vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to preserve information
over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• First off next time: How about an RNN with separate memory which is added to?
• LSTMs

• And then: Creating more direct and linear pass-through connections in model
• Attention, residual connections, etc.

59

5. Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks that:
• Take sequential input of any length
• Apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model

• We’ve shown that RNNs are a great way to build a LM (despite some problems)

• RNNs are also useful for much more!
60

Why should we care about Language Modeling?

61

• Language Modeling is a benchmark task that helps us measure our progress on
predicting language use

• Language Modeling is a subcomponent of many NLP tasks, especially those involving
generating text or estimating the probability of text:

• Everything else in NLP has now been rebuilt upon Language Modeling: GPT-3 is an LM!

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.

How to fix the vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to preserve information
over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• Could we design an RNN with separate memory which is added to?

16

Long Short-Term Memory RNNs (LSTMs)

• A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the problem of
vanishing gradients

• Everyone cites that paper but really a crucial part of the modern LSTM is from Gers et al. (2000) 💜

• Only started to be recognized as promising through the work of S’s student Alex Graves c. 2006
• Work in which he also invented CTC (connectionist temporal classification) for speech recognition

• But only really became well-known after Hinton brought it to Google in 2013
• Following Graves having been a postdoc with Hinton

18

Hochreiter and Schmidhuber, 1997. Long short-term memory. https://www.bioinf.jku.at/publications/older/2604.pdf
Gers, Schmidhuber, and Cummins, 2000. Learning to Forget: Continual Prediction with LSTM. https://dl.acm.org/doi/10.1162/089976600300015015

Graves, Fernandez, Gomez, and Schmidhuber, 2006. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets.
https://www.cs.toronto.edu/~graves/icml_2006.pdf

Long Short-Term Memory RNNs (LSTMs)

• On step t, there is a hidden state 𝒉(") and a cell state 𝒄(")

• Both are vectors length n
• The cell stores long-term information
• The LSTM can read, erase, and write information from the cell

• The cell becomes conceptually rather like RAM in a computer

• The selection of which information is erased/written/read is controlled by three corresponding gates
• The gates are also vectors of length n
• On each timestep, each element of the gates can be open (1), closed (0), or somewhere in-between
• The gates are dynamic: their value is computed based on the current context

19

We have a sequence of inputs 𝑥("), and we will compute a sequence of hidden states ℎ(") and cell states
𝑐("). On timestep t:

Long Short-Term Memory (LSTM)

Al
l t

he
se

 a
re

 v
ec

to
rs

 o
f s

am
e

le
ng

th
 n

Forget gate: controls what is kept vs
forgotten, from previous cell state

Input gate: controls what parts of the
new cell content are written to cell

Output gate: controls what parts of
cell are output to hidden state

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

Hidden state: read (“output”) some
content from the cell

Sigmoid function: all gate
values are between 0 and 1

20
Gates are applied using element-wise

(or Hadamard) product: ⊙

Long Short-Term Memory (LSTM)

21

You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ct-1

ht-1

ct

ht

ft
it ot

ct

ct~

Long Short-Term Memory (LSTM)

22

You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Compute the
forget gate

Forget some
cell content

Compute the
input gate

Compute the
new cell content

Compute the
output gate

Write some new cell content

Output some cell content
to the hidden state

The + sign is the secret!

How does LSTM solve vanishing gradients?

• The LSTM architecture makes it much easier for an RNN to
preserve information over many timesteps
• e.g., if the forget gate is set to 1 for a cell dimension and the input gate

set to 0, then the information of that cell is preserved indefinitely.
• In contrast, it’s harder for a vanilla RNN to learn a recurrent weight

matrix Wh that preserves info in the hidden state
• In practice, you get about 100 timesteps rather than about 7

• However, there are alternative ways of creating more direct and linear
pass-through connections in models for long distance dependencies

23

Is vanishing/exploding gradient just an RNN problem?

24

• No! It can be a problem for all neural architectures (including feed-forward and
convolutional), especially very deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it

backpropagates
• Thus, lower layers are learned very slowly (i.e., are hard to train)

• Another solution: lots of new deep feedforward/convolutional architectures add more
direct connections (thus allowing the gradient to flow)

For example:
• Residual connections aka “ResNet”
• Also known as skip-connections
• The identity connection

preserves information by default
• This makes deep networks much

easier to train
"Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

Is vanishing/exploding gradient just a RNN problem?

25

Other methods:
• Dense connections aka “DenseNet”
• Directly connect each layer to all future layers!

• Conclusion: Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable
due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]

”Densely Connected Convolutional Networks", Huang et al, 2017. https://arxiv.org/pdf/1608.06993.pdf

• Highway connections aka “HighwayNet”
• Similar to residual connections, but the identity

connection vs the transformation layer is
controlled by a dynamic gate

• Inspired by LSTMs, but applied to deep
feedforward/convolutional networks

”Highway Networks", Srivastava et al, 2015. https://arxiv.org/pdf/1505.00387.pdf

”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf

LSTMs: real-world success

• In 2013–2015, LSTMs started achieving state-of-the-art results
• Successful tasks include handwriting recognition, speech recognition, machine

translation, parsing, and image captioning, as well as language models
• LSTMs became the dominant approach for most NLP tasks

• Now (2019–2023), Transformers have become dominant for all tasks
• For example, in WMT (a Machine Translation conference + competition):
• In WMT 2014, there were 0 neural machine translation systems (!)
• In WMT 2016, the summary report contains “RNN” 44 times (and these systems won)
• In WMT 2019: “RNN” 7 times, ”Transformer” 105 times

26

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf
Source: "Findings of the 2019 Conference on Machine Translation (WMT19)", Barrault et al. 2019, http://www.statmt.org/wmt18/pdf/WMT028.pdf

3. Other RNN uses: RNNs can be used for sequence tagging
e.g., part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT JJ NN

27

RNNs can be used as a sentence encoder model

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

e.g., for sentiment classification

28

RNNs can be used as a sentence encoder model

the movie a lotoverall I enjoyed

positive

Sentence
encoding

equals

How to compute
sentence encoding?

Basic way:
Use final hidden

state

e.g., for sentiment classification

29

RNNs can be used as a sentence encoder model

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all

hidden states

e.g., for sentiment classification

30

RNN-LMs can be used to generate text based on other information
e.g., speech recognition, machine translation, summarization

what’s the

weatherthewhat’s

This is an example of a conditional language model.
We’ll see Machine Translation as an example in much more detail

31

Input (audio)

<START>

conditioning

RNN-LM

4. Bidirectional and Multi-layer RNNs: motivation

32

terribly exciting !the movie was

positive

Sentence
encoding

element-wise mean/max element-wise mean/max

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

These contextual
representations only
contain information
about the left context
(e.g. “the movie was”).

What about right
context?

In this example,
“exciting” is in the right
context and this
modifies the meaning of
“terribly” (from negative
to positive)

Task: Sentiment Classification

Bidirectional RNNs

33
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and right context!

Bidirectional RNNs

34

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean
“compute one forward step of the
RNN” – it could be a simple RNN or
LSTM computation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Generally, these
two RNNs have
separate weights

On timestep t:

Bidirectional RNNs: simplified diagram

35

terribly exciting !the movie was

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be the

concatenated forwards+backwards states

Bidirectional RNNs

• Note: bidirectional RNNs are only applicable if you have access to the entire input
sequence
• They are not applicable to Language Modeling, because in LM you only have left

context available.

• If you do have entire input sequence (e.g., any kind of encoding), bidirectionality is
powerful (you should use it by default).

• For example, BERT (Bidirectional Encoder Representations from Transformers) is a
powerful pretrained contextual representation system built on bidirectionality.
• You will learn more about transformers, including BERT, in a couple of weeks!

36

Multi-layer RNNs

• RNNs are already “deep” on one dimension (they unroll over many timesteps)

• We can also make them “deep” in another dimension by
applying multiple RNNs – this is a multi-layer RNN.

• This allows the network to compute more complex representations
• The lower RNNs should compute lower-level features and the higher RNNs should

compute higher-level features.

• Multi-layer RNNs are also called stacked RNNs.

37

Multi-layer RNNs

38
terribly exciting !the movie was

RNN layer 1

RNN layer 2

RNN layer 3

The hidden states from RNN layer i
are the inputs to RNN layer i+1

Multi-layer RNNs in practice

• Multi-layer or stacked RNNs allow a network to compute more complex representations
– they work better than just have one layer of high-dimensional encodings!
• The lower RNNs should compute lower-level features and the higher RNNs should

compute higher-level features.
• High-performing RNNs are usually multi-layer (but aren’t as deep as convolutional or

feed-forward networks)
• For example: In a 2017 paper, Britz et al. find that for Neural Machine Translation, 2 to 4

layers is best for the encoder RNN, and 4 layers is best for the decoder RNN
• Often 2 layers is a lot better than 1, and 3 might be a little better than 2
• Usually, skip-connections/dense-connections are needed to train deeper RNNs

(e.g., 8 layers)
• Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.
• You will learn about Transformers later; they have a lot of skipping-like connections

39 “Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906.pdf

