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• Language Modeling is the task of predicting what word comes next

the students opened their ______

• More formally: given a sequence of words                                 ,
compute the probability distribution of the next word             :

where            can be any word in the vocabulary

• A system that does this is called a Language Model

2. Language Modeling

exams
minds

laptops
books
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Language Modeling

• You can also think of a Language Model as a system that 
assigns a probability to a piece of text

• For example, if we have some text                          , then the 
probability of this text (according to the Language Model) is:
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This is what our LM provides



How to build a neural language model?

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob. dist. of the next word 

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition in Lecture 2:
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in Paris are amazingmuseums
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A fixed-window neural Language Model

the students opened theiras the proctor started the clock ______
discard fixed window
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A fixed-window neural Language Model

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors 

hidden layer

a zoo

output distribution 
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A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-grams

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊
• Window can never be large enough!
• 𝑥(!) and 𝑥(") are multiplied by 

completely different weights in 𝑊.
No symmetry in how the inputs are 
processed.

We need a neural architecture 
that can process any length input
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Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model



3. Recurrent Neural Networks (RNN)

27

hidden states 

input sequence 
(any length)

…

…

…

Core idea: Apply the same 
weights 𝑊 repeatedlyA family of neural architectures

outputs 
(optional)



A Simple RNN Language Model

the students opened theirwords / one-hot vectors 

books
laptops

word embeddings

a zoo

output distribution 

Note: this input sequence could be much 
longer now!

hidden states 

is the initial hidden state
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RNN Language Models

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Computation for step t can (in 

theory) use information from
many steps back

• Model size doesn’t increase for 
longer input context

• Same weights applied on every 
timestep, so there is symmetry 
in how inputs are processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access 

information from many steps 
back 

More on 
these later
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Training an RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution         for every step t.

• i.e., predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability 
distribution        , and the true next word        (one-hot for           ):

• Average this to get overall loss for entire training set:
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Training an RNN Language Model
= negative log prob

of “students”

the students opened their …examsCorpus

Loss

…
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Predicted 
prob dists



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…
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Predicted 
prob dists

= negative log prob
of “opened”



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…
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Predicted 
prob dists

= negative log prob
of “their”



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…
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Predicted 
prob dists

= negative log prob
of “exams”



Training an RNN Language Model

+                  +                   +                  + …      =

the students opened their …exams

…
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Corpus

Loss

Predicted 
prob dists

“Teacher forcing”



Training a RNN Language Model

• However: Computing loss and gradients across entire corpus at once is 
too expensive (memory-wise)!

• In practice, consider                       as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small 
chunk of data, and update.

• Compute loss          for a sentence (actually, a batch of sentences), compute gradients 
and update weights. Repeat on a new batch of sentences.
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Backpropagation for RNNs
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……

Question: What’s the derivative of              w.r.t. the repeated weight matrix         ?

Answer:
“The gradient w.r.t. a repeated weight 

is the sum of the gradient 
w.r.t. each time it appears”

Why?



Multivariable Chain Rule
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Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version



Training the parameters of RNNs: Backpropagation for RNNs
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……

Question: How do we calculate this?

Answer: Backpropagate over timesteps
i = t, … ,0, summing gradients as you go.
This algorithm is called “backpropagation 
through time” [Werbos, P.G., 1988, Neural 
Networks 1, and others]

equals

equals

equals

equals

equals

Apply the multivariable chain rule:
= 1

In practice, often 
“truncated” after ~20 
timesteps for training 
efficiency reasons



Generating with an RNN Language Model (“Generating roll outs”)
Just like an n-gram Language Model, you can use a RNN Language Model to 
generate text by repeated sampling. Sampled output becomes next step’s input.

<s> my favorite season

sample

my
sample

favorite
sample

season
sample

is

is40

sample

spring

spring

sample

</s>



Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Obama speeches:

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
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Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Harry Potter:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
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Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on recipes:

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc
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Generating text with a RNN Language Model
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Let’s have some fun!
• You can train a RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on paint color names:

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

This is an example of a character-level RNN-LM (predicts what character comes next)



4. Problems with RNNs: Vanishing and Exploding Gradients
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Vanishing gradient intuition

48

?



Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem: 
When these are small, the gradient 
signal gets smaller and smaller as it 

backpropagates further
52



Why is vanishing gradient a problem?

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.
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Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the printer was out of toner. 
She went to the stationery store to buy more toner. It was very overpriced. After 
installing the toner into the printer, she finally printed her ________

• To learn from this training example, the RNN-LM needs to model the dependency 
between “tickets” on the 7th step and the target word “tickets” at the end.

• But if the gradient is small, the model can’t learn this dependency
• So, the model is unable to predict similar long-distance dependencies at test time
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Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step becomes too big:

• This can cause bad updates: we take too large a step and reach a weird and bad 
parameter configuration (with large loss)
• You think you’ve found a hill to climb, but suddenly you’re in Iowa

• In the worst case, this will result in Inf or NaN in your network 
(then you have to restart training from an earlier checkpoint)

57

learning rate

gradient



Gradient clipping: solution for exploding gradient
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• Gradient clipping: if the norm of the gradient is greater than some threshold, scale it 
down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

• In practice, remembering to clip gradients is important, but exploding gradients are an 
easy problem to solve

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf



How to fix the vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to preserve information 
over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• First off next time: How about an RNN with separate memory which is added to?
• LSTMs

• And then: Creating more direct and linear pass-through connections in model
• Attention, residual connections, etc.
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5. Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks that:
• Take sequential input of any length 
• Apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model 

• We’ve shown that RNNs are a great way to build a LM (despite some problems)

• RNNs are also useful for much more!
60



Why should we care about Language Modeling?
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• Language Modeling is a benchmark task that helps us measure our progress on 
predicting language use

• Language Modeling is a subcomponent of many NLP tasks, especially those involving 
generating text or estimating the probability of text:

• Everything else in NLP has now been rebuilt upon Language Modeling: GPT-3 is an LM!

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.



How to fix the vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to preserve information 
over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• Could we design an RNN with separate memory which is added to?
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Long Short-Term Memory RNNs (LSTMs)

• A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the problem of 
vanishing gradients

• Everyone cites that paper but really a crucial part of the modern LSTM is from Gers et al. (2000) 💜

• Only started to be recognized as promising through the work of S’s student Alex Graves c. 2006
• Work in which he also invented CTC (connectionist temporal classification) for speech recognition

• But only really became well-known after Hinton brought it to Google in 2013
• Following Graves having been a postdoc with Hinton

18

Hochreiter and Schmidhuber, 1997. Long short-term memory. https://www.bioinf.jku.at/publications/older/2604.pdf
Gers, Schmidhuber, and Cummins, 2000. Learning to Forget: Continual Prediction with LSTM. https://dl.acm.org/doi/10.1162/089976600300015015

Graves, Fernandez, Gomez, and Schmidhuber, 2006. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets. 
https://www.cs.toronto.edu/~graves/icml_2006.pdf



Long Short-Term Memory RNNs (LSTMs)

• On step t, there is a hidden state 𝒉(") and a cell state 𝒄(")

• Both are vectors length n
• The cell stores long-term information
• The LSTM can read, erase, and write information from the cell

• The cell becomes conceptually rather like RAM in a computer

• The selection of which information is erased/written/read is controlled by three corresponding gates
• The gates are also vectors of length n
• On each timestep, each element of the gates can be open (1), closed (0), or somewhere in-between
• The gates are dynamic: their value is computed based on the current context 
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We have a sequence of inputs 𝑥("), and we will compute a sequence of hidden states ℎ(") and cell states 
𝑐(").  On timestep t:

Long Short-Term Memory (LSTM)
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Forget gate: controls what is kept vs 
forgotten, from previous cell state

Input gate: controls what parts of the 
new cell content are written to cell

Output gate: controls what parts of 
cell are output to hidden state

New cell content: this is the new 
content to be written to the cell

Cell state: erase (“forget”) some 
content from last cell state, and write 
(“input”) some new cell content

Hidden state: read (“output”) some 
content from the cell

Sigmoid function: all gate 
values are between 0 and 1

20
Gates are applied using element-wise 

(or Hadamard) product: ⊙



Long Short-Term Memory (LSTM)

21

You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory (LSTM)
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You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Compute the 
forget gate

Forget some 
cell content

Compute the 
input gate

Compute the 
new cell content

Compute the 
output gate

Write some new cell content

Output some cell content 
to the hidden state

The + sign is the secret!



How does LSTM solve vanishing gradients?

• The LSTM architecture makes it much easier for an RNN to 
preserve information over many timesteps
• e.g., if the forget gate is set to 1 for a cell dimension and the input gate 

set to 0, then the information of that cell is preserved indefinitely.
• In contrast, it’s harder for a vanilla RNN to learn a recurrent weight 

matrix Wh that preserves info in the hidden state 
• In practice, you get about 100 timesteps rather than about 7

• However, there are alternative ways of creating more direct and linear 
pass-through connections in models for long distance dependencies
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Is vanishing/exploding gradient just an RNN problem?
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• No! It can be a problem for all neural architectures (including feed-forward and 
convolutional), especially very deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it 

backpropagates
• Thus, lower layers are learned very slowly (i.e., are hard to train)

• Another solution: lots of new deep feedforward/convolutional architectures add more 
direct connections (thus allowing the gradient to flow) 

For example:
• Residual connections aka “ResNet”
• Also known as skip-connections
• The identity connection 

preserves information by default
• This makes deep networks much 

easier to train
"Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf



Is vanishing/exploding gradient just a RNN problem?
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Other methods:
• Dense connections aka “DenseNet”
• Directly connect each layer to all future layers!

• Conclusion: Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable 
due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]

”Densely Connected Convolutional Networks", Huang et al, 2017. https://arxiv.org/pdf/1608.06993.pdf

• Highway connections aka “HighwayNet”
• Similar to residual connections, but the identity 

connection vs the transformation layer is 
controlled by a dynamic gate

• Inspired by LSTMs, but applied to deep 
feedforward/convolutional networks

”Highway Networks", Srivastava et al, 2015. https://arxiv.org/pdf/1505.00387.pdf

”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf



LSTMs: real-world success

• In 2013–2015, LSTMs started achieving state-of-the-art results
• Successful tasks include handwriting recognition, speech recognition, machine 

translation, parsing, and image captioning, as well as language models
• LSTMs became the dominant approach for most NLP tasks

• Now (2019–2023), Transformers have become dominant for all tasks
• For example, in WMT (a Machine Translation conference + competition):
• In WMT 2014, there were 0 neural machine translation systems (!)
• In WMT 2016, the summary report contains “RNN” 44 times (and these systems won)
• In WMT 2019: “RNN” 7 times, ”Transformer” 105 times
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Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf
Source: "Findings of the 2019 Conference on Machine Translation (WMT19)", Barrault et al. 2019, http://www.statmt.org/wmt18/pdf/WMT028.pdf



3. Other RNN uses: RNNs can be used for sequence tagging
e.g., part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT JJ NN
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RNNs can be used as a sentence encoder model

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

e.g., for sentiment classification
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RNNs can be used as a sentence encoder model

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

equals

How to compute 
sentence encoding?

Basic way: 
Use final hidden 

state

e.g., for sentiment classification
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RNNs can be used as a sentence encoder model

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

Usually better: 
Take element-wise 
max or mean of all 

hidden states

e.g., for sentiment classification
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RNN-LMs can be used to generate text based on other information
e.g., speech recognition, machine translation, summarization

what’s the

weatherthewhat’s

This is an example of a conditional language model.
We’ll see Machine Translation as an example in much more detail

31

Input (audio)

<START>

conditioning

RNN-LM



4. Bidirectional and Multi-layer RNNs: motivation
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terribly exciting !the movie was

positive

Sentence 
encoding

element-wise mean/max element-wise mean/max

We can regard this hidden state as a 
representation of the word “terribly” in the 
context of this sentence. We call this a 
contextual representation.

These contextual 
representations only 
contain information 
about the left context 
(e.g. “the movie was”). 

What about right
context?

In this example, 
“exciting” is in the right 
context and this 
modifies the meaning of 
“terribly” (from negative 
to positive)

Task: Sentiment Classification



Bidirectional RNNs
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terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated 
hidden states

This contextual representation of “terribly” 
has both left and right context!



Bidirectional RNNs
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Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean 
“compute one forward step of the 
RNN” – it could be a simple RNN or 
LSTM computation.

We regard this as “the hidden 
state” of a bidirectional RNN. 
This is what we pass on to the 
next parts of the network.

Generally, these 
two RNNs have 
separate weights

On timestep t:



Bidirectional RNNs: simplified diagram
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terribly exciting !the movie was

The two-way arrows indicate bidirectionality and 
the depicted hidden states are assumed to be the 

concatenated forwards+backwards states



Bidirectional RNNs

• Note: bidirectional RNNs are only applicable if you have access to the entire input 
sequence
• They are not applicable to Language Modeling, because in LM you only have left 

context available.

• If you do have entire input sequence (e.g., any kind of encoding), bidirectionality is 
powerful (you should use it by default).

• For example, BERT (Bidirectional Encoder Representations from Transformers) is a 
powerful pretrained contextual representation system built on bidirectionality.
• You will learn more about transformers, including BERT, in a couple of weeks!
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Multi-layer RNNs

• RNNs are already “deep” on one dimension (they unroll over many timesteps)

• We can also make them “deep” in another dimension by 
applying multiple RNNs – this is a multi-layer RNN.

• This allows the network to compute more complex representations
• The lower RNNs should compute lower-level features and the higher RNNs should 

compute higher-level features. 

• Multi-layer RNNs are also called stacked RNNs.
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Multi-layer RNNs

38
terribly exciting !the movie was

RNN layer 1

RNN layer 2

RNN layer 3

The hidden states from RNN layer i
are the inputs to RNN layer i+1



Multi-layer RNNs in practice

• Multi-layer or stacked RNNs allow a network to compute more complex representations 
– they work better than just have one layer of high-dimensional encodings!
• The lower RNNs should compute lower-level features and the higher RNNs should 

compute higher-level features. 
• High-performing RNNs are usually multi-layer (but aren’t as deep as convolutional or 

feed-forward networks)
• For example: In a 2017 paper, Britz et al. find that for Neural Machine Translation, 2 to 4 

layers is best for the encoder RNN, and 4 layers is best for the decoder RNN
• Often 2 layers is a lot better than 1, and 3 might be a little better than 2
• Usually, skip-connections/dense-connections are needed to train deeper RNNs

(e.g., 8 layers)
• Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.
• You will learn about Transformers later; they have a lot of skipping-like connections

39 “Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906.pdf


