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The Transformer Decoder

23

• A Transformer decoder is how 
we’ll build systems like 
language models.

• It’s a lot like our minimal self-
attention architecture, but 
with a few more components.

• The embeddings and position 
embeddings are identical.

• We’ll next replace our self-
attention with multi-head self-
attention.

Transformer Decoder



Recall the Self-Attention Hypothetical Example
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Hypothetical Example of Multi-Head Attention

25



Sequence-Stacked form of Attention

• Let’s look at how key-query-value attention is computed, in matrices.

• Let 𝑋 = 𝑥1; … ; 𝑥𝑛 ∈ ℝ𝑛×𝑑 be the concatenation of input vectors.

• First, note that 𝑋𝐾 ∈ ℝ𝑛×𝑑, 𝑋𝑄 ∈ ℝ𝑛×𝑑, 𝑋𝑉 ∈ ℝ𝑛×𝑑.

• The output is defined as output = softmax 𝑋𝑄 𝑋𝐾 ⊤ 𝑋𝑉 ∈∈ ℝ𝑛×𝑑.

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑛×𝑛

All pairs of 
attention scores!

output ∈ ℝ𝑛×𝑑

=

𝐾⊤ 𝑋⊤

𝑋𝑄

First, take the query-key dot 
products in one matrix 
multiplication: 𝑋𝑄 𝑋𝐾 ⊤

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

𝑋𝑄𝐾⊤ 𝑋⊤softmax 𝑋𝑉

26



Multi-headed attention

• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝑖
⊤𝑄⊤𝐾𝑥𝑗 is high, but maybe we want 

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention heads, and ℓ ranges 
from 1 to ℎ.

• Each attention head performs attention independently:

• outputℓ = softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ, where  outputℓ ∈ ℝ

𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = output1; … ; outputℎ 𝑌, where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value vectors 
differently.

27



Multi-head self-attention is computationally efficient

• Even though we compute ℎ many attention heads, it’s not really more costly.

• We compute 𝑋𝑄 ∈ ℝ𝑛×𝑑, and then reshape to ℝ𝑛×ℎ×𝑑/ℎ. (Likewise for 𝑋𝐾, 𝑋𝑉.)  

• Then we transpose to ℝℎ×𝑛×𝑑/ℎ; now the head axis is like a batch axis.

• Almost everything else is identical, and the matrices are the same sizes.

28

𝑋𝑄

First, take the query-key dot 
products in one matrix 
multiplication: 𝑋𝑄 𝑋𝐾 ⊤

𝐾⊤ 𝑋⊤

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

softmax 𝑋𝑉𝑋𝑄𝐾⊤ 𝑋⊤ 𝑋𝑉

output ∈ ℝ𝑛×𝑑

=
𝑃

=

mix

∈ ℝ3×𝑛×𝑛

3 sets of all pairs of 
attention scores!𝑋𝑄𝐾⊤ 𝑋⊤=



Scaled Dot Product [Vaswani et al., 2017]

• “Scaled Dot Product” attention aids in training.

• When dimensionality 𝑑 becomes large, dot products between vectors tend to 
become large.

• Because of this, inputs to the softmax function can be large, making the 
gradients small.

• Instead of the self-attention function we’ve seen:

outputℓ = softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ

• We divide the attention scores by 𝑑/ℎ, to stop the scores from becoming large 
just as a function of 𝑑/ℎ (The dimensionality divided by the number of heads.)

outputℓ = softmax
𝑋𝑄ℓ𝐾ℓ

⊤𝑋⊤

𝑑/ℎ
∗ 𝑋𝑉ℓ
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The Transformer Decoder

30

• Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two 
optimization tricks that end up 
being :

• Residual Connections

• Layer Normalization

• In most Transformer diagrams, 
these are often written 
together as “Add & Norm”

Transformer Decoder



The Transformer Encoder: Residual connections [He et al., 2016]

• Residual connections are a trick to help models train better.

• Instead of 𝑋(𝑖) = Layer(𝑋 𝑖−1 ) (where 𝑖 represents the layer)

• We let 𝑋(𝑖) = 𝑋(𝑖−1) + Layer(𝑋 𝑖−1 ) (so we only have to learn “the residual” 
from the previous layer)

• Gradient is great through the residual
connection; it’s 1!

• Bias towards the identity function!

𝑋(𝑖−1)
Layer 𝑋(𝑖)

𝑋(𝑖−1)
Layer 𝑋(𝑖)+

[no residuals] [residuals]

[Loss landscape visualization,

Li et al., 2018, on a ResNet]31



The Transformer Encoder: Layer normalization [Ba et al., 2016]

• Layer normalization is a trick to help models train faster.

• Idea: cut down on uninformative variation in hidden vector values by normalizing 
to unit mean and standard deviation within each layer.

• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let 𝑥 ∈ ℝ𝑑 be an individual (word) vector in the model.

• Let 𝜇 = σ𝑗=1
𝑑 𝑥𝑗; this is the mean; 𝜇 ∈ ℝ.

• Let 𝜎 =
1

𝑑
σ𝑗=1
𝑑 𝑥𝑗 − 𝜇

2
; this is the standard deviation; 𝜎 ∈ ℝ.

• Let 𝛾 ∈ ℝ𝑑 and 𝛽 ∈ ℝ𝑑 be learned “gain” and “bias” parameters. (Can omit!)

• Then layer normalization computes:

output =
𝑥 − 𝜇

𝜎 + 𝜖
∗ 𝛾 + 𝛽

Normalize by scalar 
mean and variance

Modulate by learned 
elementwise gain and bias
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The Transformer Decoder

33

• The Transformer Decoder is a 
stack of Transformer Decoder 
Blocks.

• Each Block consists of:

• Self-attention

• Add & Norm

• Feed-Forward

• Add & Norm

• That’s it! We’ve gone through 
the Transformer Decoder.

Transformer Decoder



The Transformer Encoder

34

• The Transformer Decoder 
constrains to unidirectional 
context, as for language 
models.

• What if we want bidirectional 
context, like in a bidirectional 
RNN?

• This is the Transformer 
Encoder. The only difference is 
that we remove the masking
in the self-attention.

Transformer DecoderNo Masking!



The Transformer Encoder-Decoder

35

• Recall that in machine 
translation, we processed the 
source sentence with a 
bidirectional model and 
generated the target with a 
unidirectional model.

• For this kind of seq2seq 
format, we often use a 
Transformer Encoder-Decoder.

• We use a normal Transformer 
Encoder.

• Our Transformer Decoder is 
modified to perform cross-
attention to the output of the 
Encoder.



Cross-attention (details)

• We saw that self-attention is when keys, 
queries, and values come from the same 
source.

• In the decoder, we have attention that 
looks more like what we saw last week.

• Let ℎ1, … , ℎ𝑛 be output vectors from the 
Transformer encoder;  𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑛 be input vectors from the 
Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the 
encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the 
decoder, 𝑞𝑖 = 𝑄𝑧𝑖.

36

ℎ1, … , ℎ𝑛

𝑧1, … , 𝑧𝑛



Outline

1. From recurrence (RNN) to attention-based NLP models

2. Introducing the Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

38



Great Results with Transformers

[Vaswani et al., 2017]

Not just better Machine 
Translation BLEU scores

Also more efficient to 
train!

First, Machine Translation from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]39



Great Results with Transformers

[Liu et al., 2018]; WikiSum dataset

Transformers all the way down.

Next, document generation! 

The old standard

40



Great Results with Transformers

[Liu et al., 2018]

Before too long, most Transformers results also included pretraining, a method we’ll 
go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them 
the de-facto standard. 

On this popular aggregate 
benchmark, for example:

All top models are 
Transformer (and 
pretraining)-based. 

More results Thursday when we discuss pretraining.
41



Outline

1. From recurrence (RNN) to attention-based NLP models

2. Introducing the Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

42



• Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our computation grows 
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?

43



• One of the benefits of self-attention over recurrence was that it’s highly 
parallelizable.

• However, its total number of operations grows as 𝑂 𝑛2𝑑 , where 𝑛 is the 
sequence length, and 𝑑 is the dimensionality.

Quadratic computation as a function of sequence length

44

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑛×𝑛

Need to compute all 
pairs of interactions!
𝑂 𝑛2𝑑𝐾⊤ 𝑋⊤

𝑋𝑄

• Think of 𝑑 as around 𝟏, 𝟎𝟎𝟎 (though for large language models it’s much larger!).

• So, for a single (shortish) sentence,  𝑛 ≤ 30; 𝑛2 ≤ 𝟗𝟎𝟎.

• In practice, we set a bound like 𝑛 = 512.

• But what if we’d like 𝒏 ≥ 𝟓𝟎, 𝟎𝟎𝟎? For example, to work on long documents?



• Considerable recent work has gone into the question, Can we build models like 
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Work on improving on quadratic self-attention cost

45

Key idea: map the 
sequence length 
dimension to a lower-
dimensional space for 
values, keys In
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Sequence length / batch size



• As Transformers grow larger, a larger and larger percent of compute is outside
the self-attention portion, despit the quadratic cost.

• In practice, almost no large Transformer language models use anything but the 
quadratic cost attention we’ve presented here.

• The cheaper methods tend not to work as well at scale.

• So, is there no point in trying to design cheaper alternatives to self-attention?

• Or would we unlock much better models with much longer contexts (>100k 
tokens?) if we were to do it right?

Do we even need to remove the quadratic cost of attention?

46



Do Transformer Modifications Transfer?

47

• "Surprisingly, we find that most modifications do not meaningfully improve 
performance."



• Pretraining on Tuesday! 

• Good luck on assignment 4!

• Remember to work on your project proposal!

Parting remarks

48



Word structure and subword models

Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

word vocab mapping embedding

hat → pizza (index)

learn → tasty (index)

taaaaasty → UNK (index)

laern → UNK (index)

Transformerify→ UNK (index)

3

Common 
words

Variations

misspellings

novel items



Word structure and subword models

Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure. 

• The effect is more word types, each occurring fewer times.

4

Example: Swahili verbs can have 
hundreds of conjugations, each 
encoding a wide variety of 
information. (Tense, mood, 
definiteness, negation, information 
about the object, ++)

Here’s a small fraction of the 
conjugations for ambia – to tell.

[Wiktionary]



The byte-pair encoding algorithm

Subword modeling in NLP encompasses a wide range of methods for reasoning about 
structure below the word level. (Parts of words, characters, bytes.)

• The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).

• At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.

3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained 
models.

5 [Sennrich et al., 2016, Wu et al., 2016]



Word structure and subword models

Common words end up being a part of the subword vocabulary, while rarer words are split 
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word vocab mapping embedding

hat → hat 

learn → learn 

taaaaasty → taa## aaa## sty

laern → la## ern## 

Transformerify→ Transformer## ify

6

Common 
words

Variations

misspellings

novel items



Outline

1. A brief note on subword modeling

2. Motivating model pretraining from word embeddings

3. Model pretraining three ways

1. Encoders

2. Encoder-Decoders

3. Decoders

4. What do we think pretraining is teaching?
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Motivating word meaning and context

Recall the adage we mentioned at the beginning of the course:

“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

This quote is a summary of distributional semantics, and motivated word2vec. But:

“… the complete meaning of a word is always contextual,

and no study of meaning apart from a complete context

can be taken seriously.” (J. R. Firth 1935)

Consider I record the record: the two instances of record mean different things.

8 [Thanks to Yoav Goldberg on Twitter for pointing out the 1935 Firth quote.]



Where we were: pretrained word embeddings

Circa 2017:

• Start with pretrained word embeddings (no 
context!)

• Learn how to incorporate context in an LSTM 
or Transformer while training on the task.

Some issues to think about:

• The training data we have for our 
downstream task (like question answering) 
must be sufficient to teach all contextual 
aspects of language.

• Most of the parameters in our network are 
randomly initialized!

9

… the movie was … 

ෝ𝒚

Not pretrained

pretrained
(word embeddings)

[Recall, movie gets the same word embedding, 
no matter what sentence it shows up in]



Where we’re going: pretraining whole models

In modern NLP:

• All (or almost all) parameters in NLP 
networks are initialized via pretraining.

• Pretraining methods hide parts of the input 
from the model, and train the model to 
reconstruct those parts.

• This has been exceptionally effective at 
building strong: 

• representations of language

• parameter initializations for strong NLP 
models.

• Probability distributions over language that 
we can sample from

10

… the movie was … 

ෝ𝒚

Pretrained jointly

[This model has learned how to represent 
entire sentences through pretraining]



What can we learn from reconstructing the input?

11

Stanford University is located in __________, California.



What can we learn from reconstructing the input?

12

I put ___ fork down on the table.



What can we learn from reconstructing the input?

13

The woman walked across the street,

checking for traffic over ___ shoulder.



What can we learn from reconstructing the input?

14

I went to the ocean to see the fish, turtles, seals, and _____. 



What can we learn from reconstructing the input?

15

Overall, the value I got from the two hours watching

it was the sum total of the popcorn and the drink.

The movie was ___.



What can we learn from reconstructing the input?

16

Iroh went into the kitchen to make some tea.

Standing next to Iroh, Zuko pondered his destiny.

Zuko left the ______. 



What can we learn from reconstructing the input?

17

I was thinking about the sequence that goes

1, 1, 2, 3, 5, 8, 13, 21, ____ 



Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

• Model 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1), the probability 
distribution over words given their past 
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:

• Train a neural network to perform language 
modeling on a large amount of text.

• Save the network parameters.

18

Decoder
(Transformer, LSTM, ++ )

Iroh goes to make tasty tea

goes to make tasty tea END



The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

19

(Transformer, LSTM, ++ )

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

(Transformer, LSTM, ++ )

☺/

… the movie was … 



Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a “training neural nets” perspective?

• Consider, provides parameters 𝜃 by approximating min
𝜃

ℒpretrain 𝜃 .

• (The pretraining loss.)

• Then, finetuning approximates min
𝜃

ℒfinetune 𝜃 , starting at 𝜃.

• (The finetuning loss)

• The pretraining may matter because stochastic gradient descent sticks (relatively) 

close to 𝜃 during finetuning.

• So, maybe the finetuning local minima near 𝜃 tend to generalize well!

• And/or, maybe the gradients of finetuning loss near 𝜃 propagate nicely!

20



Lecture Plan

1. A brief note on subword modeling

2. Motivating model pretraining from word embeddings

3. Model pretraining three ways

1. Encoders

2. Encoder-Decoders

3. Decoders

4. What do we think pretraining is teaching?

21



Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

22

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?



Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

23

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?



ℎ1, … , ℎ𝑇

Pretraining encoders: what pretraining objective to use?

So far, we’ve looked at language model pretraining. But encoders get bidirectional 
context, so we can’t do language modeling!

24

Idea: replace some fraction of words in the 
input with a special [MASK]  token; predict 
these words.

ℎ1, … , ℎ𝑇 = Encoder 𝑤1, … , 𝑤𝑇

𝑦𝑖 ∼ 𝐴𝑤𝑖 + 𝑏

Only add loss terms from words that are 
“masked out.” If 𝑥 is the masked version of 𝑥, 
we’re learning 𝑝𝜃(𝑥| 𝑥). Called Masked LM.

I [M] to the [M]

went store

𝐴, 𝑏

[Devlin et al., 2018]



BERT: Bidirectional Encoder Representations from Transformers 

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a 
pretrained Transformer, a model they labeled BERT.

25

Some more details about Masked LM for BERT:

• Predict a random 15% of (sub)word tokens.

• Replace input word with [MASK] 80% of the time

• Replace input word with a random token 10% of 
the time

• Leave input word unchanged 10% of the time (but 
still predict it!)

• Why? Doesn’t let the model get complacent and not 
build strong representations of non-masked words.
(No masks are seen at fine-tuning time!)

[Predict these!]

I pizza to the [M]

went store

Transformer
Encoder

[Devlin et al., 2018]

to

[Masked][Replaced] [Not replaced]



BERT: Bidirectional Encoder Representations from Transformers 

26

• The pretraining input to BERT was two separate contiguous chunks of text:

• BERT was trained to predict whether one chunk follows the other or is randomly 
sampled.

• Later work has argued this “next sentence prediction” is not necessary.

[Devlin et al., 2018, Liu et al., 2019]



BERT: Bidirectional Encoder Representations from Transformers 

Details about BERT

• Two models were released:

• BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.

• BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

• Trained on:

• BooksCorpus (800 million words)

• English Wikipedia (2,500 million words)

• Pretraining is expensive and impractical on a single GPU.

• BERT was pretrained with 64 TPU chips for a total of 4 days.

• (TPUs are special tensor operation acceleration hardware)

• Finetuning is practical and common on a single GPU

• “Pretrain once, finetune many times.”

27 [Devlin et al., 2018]



BERT: Bidirectional Encoder Representations from Transformers 

BERT was massively popular and hugely versatile; finetuning BERT led to new state-of-
the-art results on a broad range of tasks.

28

• QQP: Quora Question Pairs (detect paraphrase 
questions)

• QNLI: natural language inference over question 
answering data

• SST-2: sentiment analysis

• CoLA: corpus of linguistic acceptability (detect 
whether sentences are grammatical.)

• STS-B: semantic textual similarity

• MRPC: microsoft paraphrase corpus

• RTE: a small natural language inference corpus

[Devlin et al., 2018]



Limitations of pretrained encoders

Those results looked great! Why not used pretrained encoders for everything?

29

If your task involves generating sequences, consider using a pretrained decoder; BERT and other 
pretrained encoders don’t naturally lead to nice autoregressive (1-word-at-a-time) generation 
methods.

Pretrained Encoder

Iroh goes to [MASK] tasty tea

make/brew/craft

Pretrained Decoder

Iroh goes to make tasty tea

goes to make tasty tea END



Extensions of BERT

You’ll see a lot of BERT variants like RoBERTa, SpanBERT,  +++

30

Some generally accepted improvements to the BERT pretraining formula:

• RoBERTa: mainly just train BERT for longer and remove next sentence prediction!

• SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

[Liu et al., 2019; Joshi et al., 2020]

BERT

[MASK] irr## esi## sti## [MASK] good

It’s

SpanBERT

bly

It’ [MASK] good

irr## esi## sti## bly

[MASK][MASK][MASK]



Extensions of BERT

A takeaway from the RoBERTa paper: more compute, more data can improve pretraining 
even when not changing the underlying Transformer encoder.

31 [Liu et al., 2019; Joshi et al., 2020]



Full Finetuning vs. Parameter-Efficient Finetuning

Finetuning every parameter in a pretrained model works well, but is memory-intensive.

But lightweight finetuning methods adapt pretrained models in a constrained way.

Leads to less overfitting and/or more efficient finetuning and inference.

32 [Liu et al., 2019; Joshi et al., 2020]

(Transformer, LSTM, ++ )

☺/

… the movie was … 

Full Finetuning

Adapt all parameters 

(Transformer, LSTM, ++ )

☺/

… the movie was … 

Lightweight Finetuning

Train a few existing or new parameters



Parameter-Efficient Finetuning: Prefix-Tuning, Prompt tuning

Prefix-Tuning adds a prefix of parameters, and freezes all pretrained parameters.

The prefix is processed by the model just like real words would be.

Advantage: each element of a batch at inference could run a different tuned model.

33 [Li and Liang, 2021; Lester et al., 2021]

(Transformer, LSTM, ++ )

☺/

… the movie was … 
Learnable prefix 
parameters



Parameter-Efficient Finetuning: Low-Rank Adaptation

Low-Rank Adaptation Learns a low-rank “diff” between the pretrained and finetuned 
weight matrices.

Easier to learn than prefix-tuning.

34 [Hu et al., 2021]

(Transformer, LSTM, ++ )

☺/

… the movie was … 

𝑊 ∈ ℝ𝑑×𝑑

𝐴 ∈ ℝ𝑑×𝑘

𝐵 ∈ ℝ𝑘×𝑑

𝑊 +𝐴𝐵



Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?



Pretraining encoder-decoders: what pretraining objective to use?

For encoder-decoders, we could do something like language modeling, but where a 
prefix of every input is provided to the encoder and is not predicted.

36

ℎ1, … , ℎ𝑇 = Encoder 𝑤1, … , 𝑤𝑇

ℎ𝑇+1, … , ℎ2 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝑤1, … , 𝑤𝑇 , ℎ1, … , ℎ𝑇
𝑦𝑖 ∼ 𝐴ℎ𝑖 + 𝑏, 𝑖 > 𝑇

The encoder portion benefits from 
bidirectional context; the decoder portion is 
used to train the whole model through 
language modeling.

[Raffel et al., 2018]

𝑤1, … , 𝑤𝑇

𝑤𝑇+1, … , 𝑤2𝑇

𝑤𝑇+2, … ,



Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.
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Replace different-length spans from the input 
with unique placeholders; decode out the 
spans that were removed!

This is implemented in text 
preprocessing: it’s still an objective 
that looks like language modeling at 
the decoder side.



Pretraining encoder-decoders: what pretraining objective to use?

Raffel et al., 2018 found encoder-decoders to work better than decoders for their tasks,

and span corruption (denoising) to work better than language modeling.



Pretraining encoder-decoders: what pretraining objective to use?

A fascinating property 
of T5: it can be 
finetuned to answer a 
wide range of 
questions, retrieving 
knowledge from its 
parameters.

NQ: Natural Questions

WQ: WebQuestions

TQA: Trivia QA

All “open-domain” 
versions

[Raffel et al., 2018]

220 million params

770 million params

3 billion params

11 billion params



Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

• All the biggest pretrained models are Decoders.

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?



ℎ1, … , ℎ𝑇

Pretraining decoders

When using language model pretrained decoders, we can ignore

that they were trained to model 𝑝 𝑤𝑡 𝑤1:𝑡−1).
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We can finetune them by training a classifier 
on the last word’s hidden state.

ℎ1, … , ℎ𝑇 = Decoder 𝑤1, … , 𝑤𝑇

𝑦 ∼ 𝐴ℎ𝑇 + 𝑏

Where 𝐴 and 𝑏 are randomly initialized and 
specified by the downstream task.

Gradients backpropagate through the whole 
network.

☺/

𝑤1, … , 𝑤𝑇

Linear 𝐴, 𝑏

[Note how the linear layer hasn’t been 
pretrained and must be learned from scratch.]



Pretraining decoders

It’s natural to pretrain decoders as language models and then

use them as generators, finetuning their 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1)!
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This is helpful in tasks where the output is a 
sequence with a vocabulary like that at 
pretraining time! 

• Dialogue (context=dialogue history)

• Summarization (context=document)

ℎ1, … , ℎ𝑇 = Decoder 𝑤1, … , 𝑤𝑇

𝑤𝑡 ∼ 𝐴ℎ𝑡−1 + 𝑏

Where 𝐴, 𝑏 were pretrained in the language 
model!

𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

[Note how the linear layer has been pretrained.]

𝐴, 𝑏

ℎ1, … , ℎ𝑇

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5



Generative Pretrained Transformer (GPT) [Radford et al., 2018]

2018’s GPT was a big success in pretraining a decoder!

• Transformer decoder with 12 layers, 117M parameters.

• 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.

• Byte-pair encoding with 40,000 merges

• Trained on BooksCorpus: over 7000 unique books.

• Contains long spans of contiguous text, for learning long-distance dependencies.

• The acronym “GPT” never showed up in the original paper; it could stand for 
“Generative PreTraining” or “Generative Pretrained Transformer”

43 [Devlin et al., 2018]



Generative Pretrained Transformer (GPT) [Radford et al., 2018]

How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral

Premise: The man is in the doorway

Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.

Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

44

entailment



Generative Pretrained Transformer (GPT) [Radford et al., 2018]

GPT results on various natural language inference datasets.
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We mentioned how pretrained decoders can be used in their capacities as language models.

GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce relatively 
convincing samples of natural language.

Increasingly convincing generations (GPT2) [Radford et al., 2018]


